WO2021042494A1 - 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用 - Google Patents

一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用 Download PDF

Info

Publication number
WO2021042494A1
WO2021042494A1 PCT/CN2019/115663 CN2019115663W WO2021042494A1 WO 2021042494 A1 WO2021042494 A1 WO 2021042494A1 CN 2019115663 W CN2019115663 W CN 2019115663W WO 2021042494 A1 WO2021042494 A1 WO 2021042494A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
difunctional
polymer
perovskite film
click
Prior art date
Application number
PCT/CN2019/115663
Other languages
English (en)
French (fr)
Inventor
吴永伟
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2021042494A1 publication Critical patent/WO2021042494A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles

Definitions

  • the present invention relates to the field of optoelectronic technology, in particular to a perovskite film additive and its preparation method and application.
  • perovskite optoelectronic devices As a new generation of semiconductor materials, materials based on the perovskite structure have shown great application potential in the fields of optoelectronic devices such as solar cells, displays and lighting, lasers and detectors. At the same time, most perovskite optoelectronic devices are based on wet preparation, which is very conducive to large-area, low-cost commercial production of devices.
  • perovskites are in the form of polycrystalline thin films. Therefore, the quality of the film caused by microscopic grain growth has a crucial impact on its optoelectronic performance.
  • the crystal grains do not completely cover the substrate, pinholes, and grain boundary problems that are almost inevitable. Poor film quality tends to increase the probability of non-radiative recombination, reduce luminescence performance and carrier mobility, and cause material degradation.
  • Additive engineering is a widely used method that can effectively protect the grain boundaries in the perovskite, passivate defects, and improve the stability of materials and devices.
  • additives are mainly concentrated in small molecular compounds such as organic amines and ammonium salts, which have limited protective effects, and there is an urgent need to develop new additive systems.
  • the present invention mainly includes an additive for perovskite film, which can form a polymer by in-situ click polymerization to obtain a perovskite film.
  • the polymer generated in situ can effectively protect the grain boundaries in the perovskite film, passivate defects, and improve the performance of the perovskite optoelectronic device.
  • the present invention provides a perovskite film additive used for click polymerization monomers to form polymers.
  • the click polymerization monomers are difunctional acetylenic compounds and difunctional azide compounds, which form a line by in-situ click polymerization.
  • Type polymers are:
  • n is an integer from 2 to 200
  • R1 and R3 are the same or different organic groups
  • R2 is a linking functional group
  • Fx is a fluorine atom connected to the benzene ring
  • x is the number of F atoms
  • x is 2 to 4 Integer.
  • R1 is an organic group.
  • the general structural formula of the difunctional azide compound in the polymerized monomer is:
  • R3 is an organic group
  • R2 is a linking functional group
  • Fx is a fluorine atom connected to the benzene ring
  • x is the number of F atoms
  • x is an integer of 2-4.
  • R3 can be selected from one or more of the following chemical structural formulas 1-21:
  • the R2 is selected from any one or more of the following structural formulae 22-25:
  • the polymer contains O, N, S atoms with lone pairs of electrons.
  • the preparation method of using the perovskite film additive click polymerizing monomer to form a polymer includes the following steps:
  • Step 1) adding the difunctional acetylenic compound and the difunctional azide compound into the perovskite precursor solution to perform in-situ click polymerization of monomers to form a polymer;
  • Step 2 The film additives formed by difunctional acetylenic compounds and difunctional azide compounds together with the perovskite component in the perovskite precursor are polymerized to form a perovskite film;
  • Step 3 After polymerization to form a perovskite film, annealing at 40-140 degrees for 5min-2h, or standing at room temperature for 2h-12h.
  • the perovskite precursor liquid can be selected from MAPbBr3, FAPbBr3, CsPbBr3, MAPbI3, FAPbI3, CsPbI3, MAPbCl3, FAPbCl3, CsPbCl3 and mixed cationic perovskites, mixed anionic perovskites, and quasi-two-dimensional perovskites One or more mixtures.
  • perovskite film additive which is applied to click polymerization monomer to form a polymer including perovskite materials for optoelectronic and semiconductor devices.
  • the optoelectronic and semiconductor devices of the perovskite material include perovskite light-emitting diodes, perovskite solar cells, perovskite color films, perovskite lasers, perovskite detectors or perovskite scintillators.
  • the improved perovskite film additive of the present invention clicks on the monomer in situ to cause the monomer to undergo polymerization reaction to form a polymer.
  • the polymerized monomer is a difunctional acetylenic compound and a difunctional stack.
  • Nitrogen compounds are available in a variety of chemical structural formulas.
  • the polymer contains O, S, N and other atoms with lone pairs of electrons, which can effectively interact with the perovskite and improve the binding ability between the polymer and the perovskite.
  • the polymer concentrated at the grain boundary effectively protects the grain boundary and passivates defects.
  • the polymer formed in situ will provide better heat and humidity insulation, higher mechanical resistance and stability, which is conducive to the extension of the life of materials and devices.
  • the present invention proposes an improved perovskite film additive, which can polymerize click monomers in situ to form polymers, use click polymerization monomers as additives, and utilize the high efficiency, mildness, and specificity of the click polymerization reaction. It forms a polymer at the site to protect the grain boundary and passivate defects, thereby improving the performance of the perovskite optoelectronic device.
  • the present invention provides a perovskite film additive used for click polymerization monomers to form polymers.
  • the click polymerization monomers are difunctional acetylenic compounds and difunctional azide compounds, which are mixed by two monomers Polymerization, the in-situ click polymerization to form a linear polymer is:
  • n is an integer from 2 to 200
  • R1 and R3 are the same or different organic groups
  • R2 is a linking functional group
  • Fx is a fluorine atom connected to the benzene ring
  • x is the number of F atoms
  • x is 2 to 4 Integer.
  • R1 is an organic group, and R1 is combined with a difunctional group through an alkyne.
  • the general structural formula (II) of the difunctional azide compound in the polymerized monomer is:
  • R3 is an organic group
  • R2 is a linking functional group
  • Fx is a fluorine atom connected to the benzene ring
  • x is the number of F atoms
  • x is an integer from 2 to 4
  • N3 is a specific functional group, namely azide.
  • R3 can be selected from one or more of the following organic compound chemical structural formulas 1-21:
  • the R2 is selected from any one or more of the following structural formulae 22-25:
  • the polymer contains O, N, S atoms with lone pairs of electrons.
  • O, N, S atoms with lone pairs of electrons By effectively interacting with the perovskite atom with a lone pair of electrons, the binding ability between the polymer and the perovskite is improved, and the polymer concentrated at the grain boundary will effectively protect the grain boundary and passivate defects.
  • the polymer formed in situ will provide better heat and humidity insulation, higher mechanical resistance and stability, which is conducive to the extension of the life of materials and devices.
  • the purpose of the present invention is to add a click polymerization monomer to the perovskite precursor solution, and use the click polymerization monomer to form a polymer in situ, which can improve the film quality of the perovskite.
  • the performance of the perovskite optoelectronic device largely depends on the quality of the perovskite film, so the performance of the perovskite optoelectronic device is further improved.
  • the additive itself is a click polymerization monomer, so the high efficiency, mildness, and specificity are inherent attributes of the additive.
  • the polymer formed by in-situ polymerization contains atoms containing lone pairs of electrons such as O, N, S, etc., it can effectively interact with the perovskite grains, thereby enriching the formed polymer in the grain boundaries.
  • the polymer formed in situ is concentrated in the grain boundary, blocking the infiltration of external water vapor, alleviating heat, light and other stimuli, blocking ion migration, filling defects, improving passivation defects, and improving the performance of perovskite optoelectronic devices. Improve the luminous efficiency, photoelectric conversion efficiency and stability of perovskite optoelectronic devices.
  • the present invention also provides a preparation method for forming a polymer by using the perovskite film additive click polymerization monomer to form a polymer, which includes the following steps:
  • Step 1) Add difunctional acetylenic compound and difunctional azide compound into the perovskite precursor solution to perform in-situ click polymerization of monomers to form a polymer; wherein the precursor solution is the existing form before the formation of the perovskite film ;
  • Step 2 The film additives formed by difunctional acetylenic compounds and difunctional azide compounds are polymerized together with the perovskite component in the perovskite precursor solution to form a perovskite film, and the perovskite film is transparent and uniform Dense polycrystalline film;
  • Step 3 After polymerization to form a perovskite film, annealing at 40-140 degrees for 5min-2h, or standing at room temperature for 2h-12h. Different annealing requirements of perovskite materials, some form polycrystalline films in a few minutes, and some require 1-2h annealing to accelerate the formation of perovskite grains and improve the quality of polycrystalline films. At the same time, it is also a click polymerization order. The process of forming a polymer in situ;
  • the perovskite precursor liquid can be selected from one of MAPbBr3, FAPbBr3, CsPbBr3, MAPbI3, FAPbI3, CsPbI3, MAPbCl3, FAPbCl3, CsPbCl3, and mixed cationic perovskites, mixed anionic perovskites, and quasi-two-dimensional perovskites.
  • the feeding ratio of the difunctional acetylenic compound and the difunctional azide compound ranges from 0.8:1 to 1:0.8.
  • the preparation method of the present invention not only utilizes the great advantages of click polymerization, but the polymer formed in situ is used as an additive to enhance the protection of the additive to the grain boundary. Expected effects that can be achieved: 1. The luminous efficiency of the perovskite film will be improved; 2. The stability of the perovskite device will be improved.
  • the present invention also provides an application of a perovskite thin film additive, which is applied to an optoelectronic and semiconductor device in which a click polymerized monomer forms a polymer including a perovskite material.
  • the optoelectronic and semiconductor devices of the perovskite material include perovskite light-emitting diodes, perovskite solar cells, perovskite color films, perovskite lasers, perovskite detectors or perovskite scintillators.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种钙钛矿薄膜添加剂,用于点击聚合单体形成聚合物,其中,所述点击聚合单体为二官能度炔类化合物和二官能度叠氮化合物,将原位点击聚合形成线型聚合物,使得单体发生聚合反应生成聚合物,所聚合的单体为二官能度炔类化合物和二官能度叠氮化合物,有多种化学结构式可选,聚合物中含有O、S、N等具有孤对电子的原子,有效地与钙钛矿发生相互作用,提高聚合物与钙钛矿之间的结合能力,集中于晶界处的聚合物有效保护晶界,钝化缺陷。

Description

一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用 技术领域
本发明涉及光电技术领域,特别是涉及一种钙钛矿薄膜添加剂及其制备方法和应用。
背景技术
作为新一代半导体材料,基于钙钛矿结构的材料在太阳能电池、显示和照明、激光和探测器等光电子器件领域展现出了巨大应用潜力。同时,大多数钙钛矿光电器件基于湿法制备,非常有利于器件的大面积、低成本商业化生产。
在绝大多数已报道的工作中,钙钛矿都是多晶薄膜形态,因此,微观晶粒生长造成的膜质优劣对其光电性能有着至关重要的影响。比如,晶粒没有完全覆盖基片,针孔,还有几乎无法避免的晶界问题等。较差的膜质往往加大非辐射复合的概率,降低发光性能和载流子迁移率,同时引起材料的降解。
为了制备光滑、平整、致密的钙钛矿薄膜,不同的策略被应用于降低薄膜中缺陷密度及其影响,比如溶剂工程,组分工程,添加剂工程等。
技术问题
添加剂工程是一种使用广泛的方法,能够有效保护钙钛矿中的晶界,钝化缺陷,提升材料和器件的稳定性。目前添加剂主要集中于有机胺、铵盐等小分子化合物,保护作用有限,急需开发新的添加剂体系。
技术解决方案
为解决上述技术问题,本发明主要包含一种钙钛矿薄膜的添加剂,其可原位点击聚合形成聚合物,获得钙钛矿薄膜。其原位生成的聚合物可以有效地保护钙钛矿薄膜中的晶界,钝化缺陷,进而提高钙钛矿光电器件的性能。
本发明提供了一种钙钛矿薄膜添加剂,用于点击聚合单体形成聚合物,所述点击聚合单体为二官能度炔类化合物和二官能度叠氮化合物,将原位点击聚合形成线型聚合物为:
Figure PCTCN2019115663-appb-000001
n为2~200的整数,R1,R3为相同或不同的有机基团,R2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数。
其中,所述聚合单体中二官能度炔类化合物的结构通式为:
Figure PCTCN2019115663-appb-000002
其中,R1为有机基团。
所述聚合单体中二官能度叠氮化合物的结构通式为:
Figure PCTCN2019115663-appb-000003
其中,R3为有机基团,R2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数。
优选地,所述二官能度叠氮化合物中,R3可选自以下化学结构式1-21中的一种或多种:
Figure PCTCN2019115663-appb-000004
其中,m为1~20的整数;R′选自O,S或Si元素;*表示取代位置。
所述R2选自以下结构式22~25中的任意一种或多种:
Figure PCTCN2019115663-appb-000005
所述聚合物含有O、N、S具有孤对电子的原子。
采用所述钙钛矿薄膜添加剂点击聚合单体形成聚合物的制备方法,包括以下步骤:
步骤1)将二官能度炔类化合物和二官能度叠氮化合物加入钙钛矿前驱液中,进行原位点击聚合单体形成聚合物;
步骤2)二官能度炔类化合物、二官能度叠氮化合物形成的薄膜添加剂与钙钛矿前驱液中的钙钛矿组分一起聚合成钙钛矿薄膜;
步骤3)聚合而成钙钛矿薄膜后,40-140度退火5min-2h,或常温放置2h–12h。
优选地,所述钙钛矿前驱液可选自MAPbBr3,FAPbBr3,CsPbBr3,MAPbI3,FAPbI3,CsPbI3,MAPbCl3,FAPbCl3,CsPbCl3以及混合阳离子钙钛矿,混合阴离子钙钛矿,准二维钙钛矿中的一种或多种混合。
一种钙钛矿薄膜添加剂的应用,其应用于点击聚合单体形成聚合物包括钙钛矿材料的光电及半导体器件。
所述钙钛矿材料的光电及半导体器件包括钙钛矿发光二极管,钙钛矿太阳能电池,钙钛矿彩膜,钙钛矿激光器,钙钛矿探测器或钙钛矿闪烁体。
有益效果
与现有技术相比,本发明改进的钙钛矿薄膜添加剂通过原位点击单体,使得单体发生聚合反应生成聚合物,所聚合的单体为二官能度炔类化合物和二官能度叠氮化合物,有多种化学结构式可选,聚合物中含有O、S、N等具有孤对电子的原子,有效地与钙钛矿发生相互作用,提高聚合物与钙钛矿之间的结合能力,集中于晶界处的聚合物有效保护晶界,钝化缺陷。相较于小分子添加剂,该原位形成的聚合物将提供更好的湿热隔绝性,更高的机械抗力和稳定性,有利于与材料与器件寿命的延长。
本发明的实施方式
本发明提出一种改进的钙钛矿薄膜添加剂,其可原位点击单体聚合而成聚合物,将点击聚合单体作为添加剂,利用点击聚合反应的高效性、温和性、专一性,原位形成聚合物,保护晶界,钝化缺陷,进而提高钙钛矿光电器件的性能。本发明提供了一种钙钛矿薄膜添加剂,用于点击聚合单体形成聚合物,所述点击聚合单体为二官能度炔类化合物和二官能度叠氮化合物,通过两种单体进行混合聚合,将原位点击聚合形成线型聚合物为:
Figure PCTCN2019115663-appb-000006
n为2~200的整数,R1,R3为相同或不同的有机基团,R2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数。
其中,所述聚合单体中二官能度炔类化合物的结构通式(I)为:
Figure PCTCN2019115663-appb-000007
其中,R1为有机基团,R1通过炔烃与二官能团组合。
所述聚合单体中二官能度叠氮化合物的结构通式(II)为:
Figure PCTCN2019115663-appb-000008
其中,R3为有机基团,R2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数,N3是具体的官能团,即叠氮。
优选地,所述二官能度叠氮化合物中,R3可选自以下有机化合物化学结构式1-21中的一种或多种:
Figure PCTCN2019115663-appb-000009
其中,m为1~20的整数;R′选自O,S或Si元素;*表示取代位置。
所述R2选自以下结构式22~25中的任意一种或多种:
Figure PCTCN2019115663-appb-000010
所述聚合物含有O、N、S具有孤对电子的原子。通过具有孤对电子的原子有效地与钙钛矿发生相互作用,提高聚合物与钙钛矿之间的结合能力,集中于晶界处的聚合物将有效的保护晶界,钝化缺陷。相较于小分子添加剂,该原位形成的聚合物将提供更好的湿热隔绝性,更高的机械抗力和稳定性,有利于与材料与器件寿命的延长。
本发明的目的是在钙钛矿前驱液中添加点击聚合单体,利用点击聚合单体原位形成聚合物,该聚合物可以改善提高钙钛矿的膜质。而钙钛矿光电器件的性能很大程度上依赖于钙钛矿膜质的好坏,所以进而提升钙钛矿光电器件的性能。
特别需要强调,采用本发明改进的钙钛矿薄膜添加剂,所用的添加剂本身就是点击聚合单体,所以高效性、温和性、专一性本身就是添加剂自带的属性。由于原位聚合形成的聚合物中含有O、N、S等含孤对电子的原子,可以有效的与钙钛矿晶粒发生相互作用,进而使得形成的聚合物富集于晶界之中。原位形成的聚合物富集于晶界,阻挡了外界水气的侵渗,缓解热、光等刺激,阻挡离子迁移,填充缺陷,改进钝化缺陷,进而提高钙钛矿光电器件的性能。提高钙钛矿光电器件的发光效率、光电转换效率、稳定性等。
本发明还提供了采用所述钙钛矿薄膜添加剂点击聚合单体形成聚合物的制备方法,包括以下步骤:
步骤1)将二官能度炔类化合物和二官能度叠氮化合物加入钙钛矿前驱液中,进行原位点击聚合单体形成聚合物;其中,前驱液就是钙钛矿薄膜形成前的存在形态;
步骤2)二官能度炔类化合物、二官能度叠氮化合物形成的薄膜添加剂与钙钛矿前驱液中的钙钛矿组分一起聚合成钙钛矿薄膜,所述钙钛矿薄膜为透明均一致密多晶薄膜;
步骤3)聚合而成钙钛矿薄膜后,40-140度退火5min-2h,或常温放置2h–12h。不同的钙钛矿材料退火需求,有的几分钟就形成了多晶薄膜,有的需要1-2h退火放置的,加速钙钛矿晶粒的形成,提高多晶薄膜品质,同时也是点击聚合单体原位形成聚合物的过程;
所述钙钛矿前驱液可选自MAPbBr3,FAPbBr3,CsPbBr3,MAPbI3,FAPbI3,CsPbI3,MAPbCl3,FAPbCl3,CsPbCl3,以及混合阳离子钙钛矿,混合阴离子钙钛矿,准二维钙钛矿中的一种或多种混合。所述二官能度炔类化合物和二官能度叠氮化合物的投料比例范围为:0.8:1-1:0.8。
本发明的制备方法,既利用了点击聚合的巨大优势,原位形成的聚合物作为添加剂,将增强添加剂对晶界的保护。可达到的预期效果:1.钙钛矿薄膜的发光效率将会提升;2.钙钛矿器件的稳定性会获得提升。
本发明还提供了一种钙钛矿薄膜添加剂的应用,其应用于点击聚合单体形成聚合物包括钙钛矿材料的光电及半导体器件。所述钙钛矿材料的光电及半导体器件包括钙钛矿发光二极管,钙钛矿太阳能电池,钙钛矿彩膜,钙钛矿激光器,钙钛矿探测器或钙钛矿闪烁体。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (10)

  1. 一种钙钛矿薄膜添加剂的应用,其特征在于:
    应用于点击聚合单体形成聚合物包括钙钛矿材料的光电及半导体器件,所述钙钛矿材料的光电及半导体器件包括钙钛矿发光二极管,钙钛矿太阳能电池,钙钛矿彩膜,钙钛矿激光器,钙钛矿探测器或钙钛矿闪烁体;
    所述点击聚合单体为二官能度炔类化合物和二官能度叠氮化合物,将原位点击聚合形成线型聚合物为:
    Figure PCTCN2019115663-appb-100001
    n为2~200的整数,R 1,R 3为相同或不同的有机基团,R 2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数;
    所述聚合单体中二官能度炔类化合物的结构通式为:
    Figure PCTCN2019115663-appb-100002
    其中,R 1为有机基团。
  2. 一种钙钛矿薄膜添加剂,用于点击聚合单体形成聚合物,其特征在于:所述点击聚合单体为二官能度炔类化合物和二官能度叠氮化合物,将原位点击聚合形成线型聚合物为:
    Figure PCTCN2019115663-appb-100003
    n为2~200的整数,R 1,R 3为相同或不同的有机基团,R 2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数。
  3. 根据权利要求2所述钙钛矿薄膜添加剂,其特征在于:所述聚合单体中二官能度炔类化合物的结构通式为:
    Figure PCTCN2019115663-appb-100004
    其中,R 1为有机基团。
  4. 根据权利要求2所述钙钛矿薄膜添加剂,其特征在于:所述聚合单体中二官能度叠氮化合物的结构通式为:
    Figure PCTCN2019115663-appb-100005
    其中,,R 3为有机基团,R 2为连接官能团,Fx为连接在苯环上的氟原子,x为F原子的个数,x为2~4的整数。
  5. 根据权利要求4所述钙钛矿薄膜添加剂,其特征在于:所述二官能度叠氮化合物中,R 3可选自以下化学结构式1-21中的一种或多种:
    Figure PCTCN2019115663-appb-100006
    Figure PCTCN2019115663-appb-100007
    其中,m为1~20的整数;R′选自O,S或Si元素;*表示取代位置。
  6. 根据权利要求2所述钙钛矿薄膜添加剂,其特征在于:所述R 2选自以下结构式22~25中的任意一种或多种:
    Figure PCTCN2019115663-appb-100008
  7. 根据权利要求2所述钙钛矿薄膜添加剂,其特征在于:所述聚合物含有O、N、S具有孤对电子的原子。
  8. 采用权利要求2所述钙钛矿薄膜添加剂点击聚合单体形成聚合物的制备方法:其特征在于包括以下步骤:
    步骤1)将二官能度炔类化合物和二官能度叠氮化合物加入钙钛矿前驱液中,进行原位点击聚合单体形成聚合物;
    步骤2)二官能度炔类化合物、二官能度叠氮化合物形成的薄膜添加剂与钙钛矿前驱液中的钙钛矿组分一起聚合成钙钛矿薄膜;
    步骤3)聚合而成钙钛矿薄膜后,40-140度退火5min-2h,或常温放置2h–12h。
  9. 根据权利要求8的采用所述钙钛矿薄膜添加剂点击聚合单体形成聚合物的制备方法:其特征在于:所述钙钛矿前驱液可选自MAPbBr 3,FAPbBr 3,CsPbBr 3,MAPbI 3,FAPbI 3,CsPbI 3,MAPbCl 3,FAPbCl 3,CsPbCl 3,以及混合阳离子钙钛矿,混合阴离子钙钛矿,准二维钙钛矿中的一种或多种混合。
  10. 根据权利要求8的采用所述钙钛矿薄膜添加剂点击聚合单体形成聚合物的制备方 法:其特征在于:所述二官能度炔类化合物和二官能度叠氮化合物的投料比例范围为:0.8:1-1:0.8。
PCT/CN2019/115663 2019-09-05 2019-11-05 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用 WO2021042494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910836534.0 2019-09-05
CN201910836534.0A CN110707214A (zh) 2019-09-05 2019-09-05 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2021042494A1 true WO2021042494A1 (zh) 2021-03-11

Family

ID=69193691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115663 WO2021042494A1 (zh) 2019-09-05 2019-11-05 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用

Country Status (2)

Country Link
CN (1) CN110707214A (zh)
WO (1) WO2021042494A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933802B (zh) * 2020-08-18 2024-04-19 昆山协鑫光电材料有限公司 离子液体于制备钙钛矿光敏层、钙钛矿太阳能电池的用途
CN113078267B (zh) * 2021-03-26 2022-05-20 电子科技大学 一种掺杂三维钙钛矿的准二维钙钛矿太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140569A1 (en) * 2008-12-09 2010-06-10 National Chiao Tung University Synthesis for catelysis of bifunctional perovskite compound
CN102585220A (zh) * 2012-01-16 2012-07-18 浙江大学 一种超支化聚三唑甲酸酯及其制备方法和应用
CN105906807A (zh) * 2016-06-16 2016-08-31 华南理工大学 一种具有本征阻燃性能的聚三唑及其制备方法和应用
CN109280422A (zh) * 2018-09-06 2019-01-29 深圳市华星光电半导体显示技术有限公司 喷墨打印用钙钛矿墨水及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033797A (zh) * 2015-03-13 2016-10-19 北京大学 一种具有有机骨架结构的钙钛矿太阳能电池及其制备方法
CN106206949A (zh) * 2015-05-07 2016-12-07 北京大学 一种柔性钙钛矿太阳能电池及其制备方法
WO2016208985A1 (ko) * 2015-06-25 2016-12-29 재단법인 멀티스케일 에너지시스템 연구단 할로겐화 납 어덕트 화합물 및 이를 이용한 페로브스카이트 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140569A1 (en) * 2008-12-09 2010-06-10 National Chiao Tung University Synthesis for catelysis of bifunctional perovskite compound
CN102585220A (zh) * 2012-01-16 2012-07-18 浙江大学 一种超支化聚三唑甲酸酯及其制备方法和应用
CN105906807A (zh) * 2016-06-16 2016-08-31 华南理工大学 一种具有本征阻燃性能的聚三唑及其制备方法和应用
CN109280422A (zh) * 2018-09-06 2019-01-29 深圳市华星光电半导体显示技术有限公司 喷墨打印用钙钛矿墨水及其制备方法

Also Published As

Publication number Publication date
CN110707214A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
TWI773639B (zh) 包含至少一種聚合物及至少一種鹽的組成物、該組成物的製造方法、該組成物的用途、以及含該組成物之電致發光裝置
Zou et al. Unexpected Propeller‐Like Hexakis (fluoren‐2‐yl) benzene Cores for Six‐Arm Star‐Shaped Oligofluorenes: Highly Efficient Deep‐Blue Fluorescent Emitters and Good Hole‐Transporting Materials
CN102264863B (zh) 导电聚合物、聚合物组合物、薄膜及含其的有机光电装置
Froehlich et al. Synthesis of multi-functional POSS emitters for OLED applications
TWI361811B (en) Conductive polymer composition comprising organic ionic salt and optoelectronic device using the same
Li et al. Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications
CN110526277B (zh) 掺杂氧化锌纳米晶的制备方法、电子传输层、发光器件
RU2014105870A (ru) Органические полупроводники
WO2021042494A1 (zh) 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用
JP5562555B2 (ja) 有機半導体のための溶媒混合物
US20180291157A1 (en) Graphene-containing composite material, preparation method and use thereof
CN112635679B (zh) 一种提高有机-无机杂化钙钛矿太阳能电池开路电压的方法
CN111471063A (zh) 一种含有硼的有机化合物及其在有机电致发光器件上的应用
Qiu et al. Stable, efficient near-infrared light-emitting diodes enabled by α/δ phase modulation
Lin et al. Understanding the molecular gelation processes of heteroatomic conjugated polymers for stable blue polymer light-emitting diodes
Bai et al. Revealing a zinc oxide/perovskite luminescence quenching mechanism targeting low-roll-off light-emitting diodes
Jin et al. Boosting the performance of CsPbBr 3-based perovskite light-emitting diodes via constructing nanocomposite emissive layers
WO2021056758A1 (zh) 一种钙钛矿薄膜及其制备方法、光电器件
KR100892987B1 (ko) 소수성기를 포함한 다중산 공중합체로 도핑된 전도성고분자 중합체, 전도성 고분자 공중합체 조성물, 전도성고분자 공중합체 조성물막, 및 이를 이용한 유기 광전 소자
Keum et al. Molecularly doped polymeric network nanolayers for organic light-emitting devices
He et al. Defect passivation with novel silicone copolymers for efficient perovskite light-emitting diodes
CN113054121A (zh) 纳米材料及其制备方法、半导体器件
Kim et al. Synthesis and effect on t-butyl pbd of the blue light emitting poly (phenyl-9, 9-dioctyl-9′, 9′-dihexanenitrile) fluorene
Luo et al. 44.3: Enhancing the Performance and Stability of Sky‐bule Perovskite Light‐emitting Diodes with Guanidinium Thiocyanate Additive
Xu et al. 20‐2: Mixed‐Cation Perovskite Light‐Emitting Diodes with High Brightness and High Current Efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944467

Country of ref document: EP

Kind code of ref document: A1