WO2021051910A1 - 光伏瓦的瓦基板、光伏瓦和光伏屋顶 - Google Patents

光伏瓦的瓦基板、光伏瓦和光伏屋顶 Download PDF

Info

Publication number
WO2021051910A1
WO2021051910A1 PCT/CN2020/097077 CN2020097077W WO2021051910A1 WO 2021051910 A1 WO2021051910 A1 WO 2021051910A1 CN 2020097077 W CN2020097077 W CN 2020097077W WO 2021051910 A1 WO2021051910 A1 WO 2021051910A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
tile
area
substrate
tile substrate
Prior art date
Application number
PCT/CN2020/097077
Other languages
English (en)
French (fr)
Inventor
朱斌
郑直
刘璿睿
孟夏杰
李彦伯
贺迪
李阳阳
Original Assignee
西安隆基绿能建筑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基绿能建筑科技有限公司 filed Critical 西安隆基绿能建筑科技有限公司
Priority to DE112020003895.5T priority Critical patent/DE112020003895T5/de
Priority to ES202290026A priority patent/ES2924904A1/es
Priority to AU2020349748A priority patent/AU2020349748B2/en
Priority to JP2022515542A priority patent/JP2023501864A/ja
Publication of WO2021051910A1 publication Critical patent/WO2021051910A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/24Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like
    • E04D3/30Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/351Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
    • E04D3/355Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material the insulating layers of adjacent slabs having cooperating edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • H02S40/345Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes with cooling means associated with the electrical connection means, e.g. cooling means associated with or applied to the junction box
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention generally relates to the field of photovoltaic technology, and specifically relates to a photovoltaic tile substrate, photovoltaic tile and photovoltaic roof.
  • BIPV Building Integrated Photovoltaic
  • building Integrated Photovoltaic is a photovoltaic power generation system designed at the same time as new buildings, constructed at the same time, installed at the same time, and integrated with the building. It is an indispensable part of the building, which not only exerts the function of building materials (such as shelter from wind, rain, heat insulation, etc.), and play the function of generating electricity, making the building a green building.
  • BIPV has many different installation forms, such as photovoltaic roof, photovoltaic curtain wall and photovoltaic ceiling.
  • photovoltaic roofs are mostly component-type BIPV.
  • This scheme is mainly a photovoltaic roof installation method that replaces or covers the roof building materials by making the frame of the galvanized aluminum alloy backplane module into a lock structure, which can directly replace the roof color steel Because the photovoltaic modules are completely attached to the metal tile surface, this solution has poor heat dissipation.
  • the junction box of this solution is also indoors, and the roof system has poor fire resistance, and it is impossible to install thermal insulation systems and roof wiring. Inconvenience and other issues.
  • the present invention provides a photovoltaic tile substrate, including:
  • At least one carrying board area located on at least one side of the bottom board area and used to carry the side edge of the photovoltaic module
  • Two bending connection areas are respectively connected to both sides of the bottom plate area, at least one of the bending connection areas is connected to the carrying plate area on the other side; the bottom plate area and the bending connection area can be connected to the photovoltaic
  • the components form a heat dissipation channel;
  • At least one connecting structure at least the bearing board area is connected to the connecting structure
  • the connecting structure on one side of the tile substrate of the photovoltaic tile can be connected to the other side of the tile substrate of the adjacent photovoltaic tile.
  • the connecting structure is a seaming structure, each of the bending connecting areas is connected to the carrying board area, and the seaming structure on one side of the tile substrate of the photovoltaic tile can be connected to the adjacent The locking structure on the other side of the tile substrate of the photovoltaic tile is locked; or,
  • connection structure is a lap structure, and the lap structure on one side of the tile substrate of the photovoltaic tile can be overlapped on the bending connection area on the other side of the tile substrate of the adjacent photovoltaic tile .
  • the two bearing plate areas are located on the same plane.
  • the middle portion of the bottom plate area is raised with a convex rib, and the convex rib extends along the length direction of the bottom plate area.
  • the top surface of the protruding rib and the carrying plate area are located on the same plane.
  • a plurality of reinforcing ribs are provided on the bottom plate area, and the extending direction of each of the reinforcing ribs intersects the length direction of the bottom plate area.
  • the plane where the bottom plate area is located is parallel to the plane where the load board area is located, and the distance between the two is 2-20 cm.
  • the present invention provides a photovoltaic tile, which includes the above-mentioned photovoltaic tile substrate, and further includes a photovoltaic module.
  • the edges on both sides of the photovoltaic module are respectively fixed on the carrier board area.
  • the photovoltaic module and the carrier The board area and the bottom plate area are surrounded by a heat dissipation channel, and a junction box is provided on the back of the photovoltaic module, and the junction box is located in the heat dissipation channel.
  • a plurality of the photovoltaic components are arranged along the length direction of the bottom plate area; at least a part of the adjacent photovoltaic components is provided with a gap for placing a pedal.
  • the photovoltaic module is adhered to the carrier board area.
  • the photovoltaic module is a borderless photovoltaic module.
  • the present invention provides a photovoltaic roof, including the above-mentioned photovoltaic tile.
  • At least one of the photovoltaic tiles is connected to the tile substrate of the photovoltaic tile, the tile substrate of the photovoltaic tile extends from the ridge of the photovoltaic roof to the eaves, and the tile substrate of the photovoltaic tile is installed There are pedals for stepping on.
  • the connecting lines between the photovoltaic module, the junction box and the junction box are all located outdoors (under the tile substrate of the photovoltaic tile is indoor, and above the tile substrate of the photovoltaic tile is outdoor), There is a layer of photovoltaic tile substrate between the room and the photovoltaic module, which makes the photovoltaic roof have good fire resistance.
  • the photovoltaic module is installed on the tile substrate of the photovoltaic tile, a heat dissipation channel is formed between the tile substrate of the photovoltaic tile and the photovoltaic module, and the heat dissipation channel can improve the heat dissipation capacity of the photovoltaic module.
  • junction box is located outdoors, on the one hand, there is no need to punch holes to connect the junction box from the room, but only need to connect the junction box through the wire outdoors, which improves the convenience of the connection.
  • it is not It is necessary to perforate and thread the tile substrate of the photovoltaic tile, and it is convenient to provide a thermal insulation layer on the back of the tile substrate of the photovoltaic tile.
  • Figure 1 is a front view of a tile substrate of a photovoltaic tile provided by an embodiment of the present invention
  • Figure 2 is a front view of the tile substrates of the two photovoltaic tiles shown in Figure 1 after being connected;
  • Figure 3 is a partial enlarged view I of Figure 2;
  • Fig. 4 is a front view of the two photovoltaic tiles shown in Fig. 2 with photovoltaic modules installed after the tile substrates are connected;
  • Fig. 5 is a front view of a tile substrate of a photovoltaic tile provided by another embodiment of the present invention.
  • Figure 6 is a front view of the tile substrates of the two photovoltaic tiles shown in Figure 5 after being connected;
  • Figure 7 is a front view of the two photovoltaic tiles shown in Figure 6 with photovoltaic modules installed after the tile substrates are connected;
  • Fig. 8 is a front view of a tile substrate of a photovoltaic tile provided by another embodiment of the present invention.
  • Figure 9 is a top view of Figure 8.
  • Figure 10 is a perspective view of Figure 8.
  • Figure 11 is a front view of a photovoltaic tile provided by an embodiment of the present invention.
  • Figure 12 is a top view of Figure 11;
  • Figure 13 is a perspective view of Figure 11;
  • Figure 14 is a schematic diagram of the structure of a photovoltaic module
  • Figure 15 is a schematic circuit diagram of a photovoltaic module
  • Figure 16 is a bottom view of the photovoltaic module.
  • the tile substrate of the photovoltaic tile provided by the embodiment of the present invention includes a bottom plate area 1, a bearing plate area 3, two bending connection areas 2, and a connection structure 18.
  • the bottom plate area 1 may be a flat surface or a non-planar surface. Generally, when a flat surface is used, a convex or concave reinforcing structure can be provided on the flat surface in order to improve rigidity and strength.
  • a supporting board area 3 is located on one side of the bottom board area 1, and is used for supporting the side edge of the photovoltaic module.
  • Two bending connection areas 2 are respectively connected to both sides of the bottom plate area 1, and one of the bending connection areas 2 is connected to the carrying plate area 3 on the other side. Of course, two carrying plate areas 3 can also be provided.
  • each side of the floor area 1 is connected to a bending connection area 2, and one of the bending connection areas is away from the side of the floor area 1 (also referred to as the other side) connected to the carrier board area 3, as shown in Figure 1.
  • the bending connection area 2 is bent upwards relative to the bottom plate area 1, and the bending connection area 2 is bent downwards relative to the bearing plate area 3.
  • a connecting structure 18 is connected to the outside of the carrying plate area 1.
  • the carrying plate area 1 is connected to the outside of the carrying plate area 1 on the left side.
  • the carrying plate area 1 can also be arranged on the right side, and the corresponding connecting structure 18 is connected to The outer side of the bearing plate area 1 on the right; the connecting structure 18 on one side of the tile substrate of one photovoltaic tile can be connected to the other side of the tile substrate of the adjacent photovoltaic tile.
  • the specific structure of the connection structure 18 is not limited here, as long as it can connect the tile substrates of two photovoltaic tiles.
  • one side of the tile substrate of the photovoltaic tile may be the left side, and the other side may be the right side.
  • the left side of the tile substrate of one photovoltaic tile is connected to the right side of the tile substrate of the adjacent photovoltaic tile.
  • the tile substrate of the photovoltaic tile with the above structure can be, but is not limited to, a metal plate formed by stamping, rolling and other processes.
  • the metal sheet is preferably a sheet with an anticorrosive layer on the surface to improve the corrosion resistance of the sheet.
  • the sheet is, for example, but not limited to, a steel plate.
  • the anti-corrosion layer is, for example, but not limited to, a paint layer, a galvanized layer, and the like.
  • the left edge of the photovoltaic module 9 is carried on the bearing plate area 3 of the tile substrate of the photovoltaic tile on the left.
  • the right edge of 9 is carried on the bearing plate area 3 of the tile substrate of the photovoltaic tile on the right.
  • the photovoltaic tile substrate provided by the embodiment of the present invention includes a bottom plate area 1, a carrier plate area 3, two bending connection areas 2, and two connection areas. Structure 18, 19.
  • the two connecting structures 18 and 19 may be overlapping structures, and their specific shapes may be different, as long as the tile substrates of the two photovoltaic tiles can be connected.
  • the bottom plate area 1 may be a flat surface or a non-planar surface. Generally, when a flat surface is used, a convex or concave reinforcing structure can be provided on the flat surface in order to improve rigidity and strength.
  • a supporting board area 3 is located on one side of the bottom board area 1, and is used for supporting the side edge of the photovoltaic module.
  • Two bending connection areas 2 are respectively connected to both sides of the bottom plate area 1, and one of the bending connection areas 2 is connected to the bearing plate area 3.
  • two bearing plate areas 3 can also be provided, which will be introduced in subsequent embodiments.
  • one side of the bottom plate area 1 is connected to a bending connection area 2, and the side of one of the bending connection areas away from the bottom plate area 1 is connected to the bearing plate area 3.
  • the bending connection area 2 is opposite to the bottom plate area 1. It is upward bending, the bending connection area 2 is downward bending relative to the bearing plate area 3, and a certain distance difference is formed between the bottom plate area 1 and the bearing plate area 3 by bending the connection area 2; the bearing plate area is made by the distance difference 3 and the bottom plate area 1 are used to enclose a heat dissipation channel with the photovoltaic module.
  • One of the connecting structures 18 is connected to the outside of the carrying plate area 3.
  • the carrying plate area 3 is connected to the outside of the carrying plate area 3 on the left side.
  • the carrying plate area 3 can also be arranged on the right side, and the corresponding connecting structure 18 is connected On the outside of the bearing plate area 3 on the right; another connection structure 19 is connected to the outside of the bending connection area 2 on the right, and the connection structure 18 on the left side of the tile substrate of a photovoltaic tile can overlap the adjacent
  • the photovoltaic tile’s tile base plate is located on the bending connection area 2 on the right side, and is also located on the connection structure 19 on the right side.
  • the connection here can be overlapped, and the photovoltaic tile’s tiles are connected by self-tapping screws 22 at the overlapped place.
  • the base plate is fixed on the purlin 23 of the roof.
  • the left edge of the photovoltaic module 9 is carried on the bearing plate area 3 of the tile substrate of the photovoltaic tile on the left.
  • the right edge of 9 is carried on the bearing plate area 3 of the tile substrate of the photovoltaic tile on the right.
  • the photovoltaic tile substrate provided by the embodiment of the present invention includes a bottom plate area 1, two load-bearing plate areas 3, two bending connection areas 2, and two The connection structure, the connection structure is the locking structure 5.
  • the bottom plate area 1 may be a flat surface or a non-planar surface. Generally, when a flat surface is used, a convex or concave reinforcing structure can be provided on the flat surface in order to improve rigidity and strength.
  • the two load-bearing board areas 3 are located on both sides of the bottom board area 1 and are used to carry the two sides of the photovoltaic module. The two sides here refer to the two sides facing away in one direction. As shown in Figure 1, the bottom board area 1 Bearing plate areas 3 are respectively provided on the left and right sides.
  • Two bending connection areas 2 are respectively connected between the two sides of the bottom plate area 1 and the two bearing plate areas 3, that is, one side of the bottom plate area 1 is connected to a bending connection area 2, and the bending connection area 2 is away from the bottom plate area
  • One side of 1 is connected to the bearing plate area 3.
  • the bending connection area 2 is bent upward relative to the bottom plate area 1, and the bending connection area 2 is bent downward relative to the bearing plate area 3, and is connected by bending Zone 2 forms a certain distance difference between the bottom plate area 1 and the bearing plate area 3; through this distance difference, the bearing plate area 3 and the bottom plate area 1 are used to enclose a heat dissipation channel with the photovoltaic module.
  • Two seaming structures 5 are respectively connected to the outer sides of the two load-bearing board areas 1.
  • the two seaming structures 5 can be directly connected to the outer sides of the two load-bearing board areas 1, or connected to the two load-bearing board areas 1 through a connecting plate 4. Outside; the seam structure 5 on one side of the tile substrate of a photovoltaic tile can be locked with the seam structure 5 on the other side of the tile substrate of the adjacent photovoltaic tile, and the bending direction of the edge structure 5 can be the same, also It can be different.
  • the bending direction of the seam structure 5 is the same, and the bending angle of one seam structure 5 is smaller than the bending angle of the other seam structure 5, which is convenient for fixing the tile substrate of a photovoltaic tile.
  • the seaming structure 5 on one side covers the tile substrates of the adjacent photovoltaic tiles, and the seaming structure 5 on the other side is used for locking.
  • the tile substrate of the photovoltaic tile with the above structure can be, but is not limited to, a metal plate formed by stamping, rolling and other processes.
  • the metal sheet is preferably a sheet with an anticorrosive layer on the surface to improve the corrosion resistance of the sheet.
  • the sheet is, for example, but not limited to, a steel plate.
  • the anti-corrosion layer is, for example, but not limited to, a paint layer, a galvanized layer, and the like.
  • the two load-bearing board areas 3 can be located on the same plane. Since each load-bearing board area 3 is located on the same plane, when the photovoltaic module 9 is installed, one side of the photovoltaic module 9 in the width direction coincides with the support. On the board area 3, the other side is supported on the other bearing board area 3, which can support the photovoltaic module 9 better. In the case of good supporting effect, the strength requirement of the photovoltaic module 9 can be reduced. As the requirement for its own strength is reduced, the thickness of the photovoltaic module 9 itself can be reduced to reduce the weight and manufacturing cost.
  • the thickness of the photovoltaic module 9 itself can be reduced by reducing the thickness of the glass packaging plate on the front of the photovoltaic module 9. As the thickness of the glass packaging plate on the front is reduced, the light transmittance of the photovoltaic module 9 is enhanced, and photoelectric conversion is followed. Performance has also been improved.
  • a convex rib 6 is raised in the middle of the bottom plate area 1, and the convex rib 6 extends along the length direction of the bottom plate area 1.
  • the rib 6 may be formed on the bottom plate area 1 through a rolling or stamping process.
  • a rib 6 is provided.
  • two or more ribs 6 may be provided. When two or more ribs 6 are provided, the interval between adjacent ribs 6 may be equal or non-equal. of. Generally, as the number of ribs 6 increases, the strength of the tile substrate of the photovoltaic tile will also increase correspondingly.
  • the top surface of the rib 6 and the carrying plate area 3 are located on the same plane.
  • the rib 6 supports the middle of the photovoltaic module 9, so that the requirement on the rigidity of the photovoltaic module 9 can be reduced.
  • the thickness of the photovoltaic module 9 can also be reduced accordingly.
  • the thickness of the encapsulating glass plate on the top is generally 3.2mm photovoltaic glass instead of the conventional single-glass photovoltaic module. After applying for the photovoltaic tile substrate, photovoltaic glass below 3.2mm can be used.
  • a plurality of reinforcing ribs 7 are provided on the bottom plate area 1, and the extending direction of each reinforcing rib 7 intersects the length direction of the bottom plate area 1.
  • the above-mentioned ribs 6 strengthen the tile substrate of the photovoltaic tile in the longitudinal direction
  • the reinforcing rib 7 strengthens the tile substrate of the photovoltaic tile in the direction intersecting the longitudinal direction.
  • the reinforcing rib 7 can be formed by a rolling or stamping process.
  • the reinforcing rib 7 may be in the shape of a strip, a cross, and the like. In this embodiment, the elongated shape is taken as an example for description. A plurality of reinforcing ribs 7 are uniformly arranged side by side on the bottom plate area 1 different from the position of the rib 6, and the convex direction of the rib 7 is consistent with the convex direction of the rib 6.
  • each reinforcing rib 7 is perpendicular to the length direction of the bottom plate area 1.
  • the plane where the bottom plate area is located is parallel to the plane where the load board area is located, and the distance between the two is 2-20 cm. This spacing is set so that the channel has a sufficient cross-sectional area to ensure sufficient air flow to dissipate the photovoltaic components.
  • the embodiment of the present invention also provides a photovoltaic tile, including the photovoltaic tile substrate 8 of the above embodiment.
  • a photovoltaic tile substrate 8 for the specific structure and effect of the photovoltaic tile substrate 8, please refer to the above implementation For example, I won’t repeat them here.
  • It also includes photovoltaic modules 9. The edges on both sides of the photovoltaic modules 9 are respectively fixed on the bearing plate area 3.
  • the photovoltaic module 9, the bearing plate area 3 and the bottom plate area 1 are surrounded by heat dissipation channels.
  • the back of the photovoltaic module 9 is provided with a junction box 10 for wiring
  • the box 10 is located in the heat dissipation channel.
  • the connecting lines between the photovoltaic module 9, the junction box 10 and the junction box 10 are all located outdoors (under the tile substrate 8 of the photovoltaic tile is indoor, and above the tile substrate 8 of the photovoltaic tile is outdoor) , There is a layer of photovoltaic tile substrate 8 between the room and the photovoltaic module 9, so that the photovoltaic roof has good fire resistance.
  • the photovoltaic module 9 is installed on the tile substrate 8 of the photovoltaic tile, a heat dissipation channel will be formed between the tile substrate 8 of the photovoltaic tile and the photovoltaic module 9.
  • This heat dissipation channel can improve the heat dissipation capacity of the photovoltaic module 9. Specifically, During use, the heat generated by the photovoltaic module during operation is transferred to the air in the heat dissipation channel. As the air in the heat dissipation channel expands due to heat, the density becomes smaller, and it starts to move upwards along the heat dissipation channel to form an ascending airflow, and passes through the top of the heat dissipation channel. The opening diffuses into the external environment. After the airflow in the heat dissipation channel rises, the air pressure in the heat dissipation channel decreases.
  • the outside air enters from the bottom of the heat dissipation channel, and then thermally expands under the influence of the photovoltaic module to form an upward airflow. Cycle in turn to effectively cool down the photovoltaic modules.
  • the junction box 10 since the junction box 10 is located outdoors, on the one hand, there is no need to punch holes to connect the junction box 10 indoors, but only need to connect the junction box 10 outdoors (on the roof) through wires, which improves the convenience of connection.
  • there is no need to perforate and thread the tile substrate 8 of the photovoltaic tile it is convenient to provide a thermal insulation layer on the back of the tile substrate 8 of the photovoltaic tile.
  • a plurality of photovoltaic modules 9 are arranged, and gaps 11 are provided between at least part of adjacent photovoltaic modules 9.
  • the gaps can be used to set pedals for stepping on, and the pedals are placed on the photovoltaic tiles. Tile on the substrate.
  • the gap can constitute the operation and maintenance channel of the photovoltaic roof.
  • a row of photovoltaic modules 9 is laid on the tile substrate 8 of the photovoltaic tile.
  • the photovoltaic modules 9 can be arranged closely together.
  • a gap can also be provided between two adjacent photovoltaic modules 9.
  • the gap may be a smaller gap 21, such as but not limited to 5 mm, or a larger gap 11, such as but not limited to 30 cm, and the larger gap 11 is used as an operation and maintenance gap. Since the surface of the photovoltaic module 9 is provided with glass, if the staff step on the photovoltaic module 9 during the installation or operation and maintenance process, it is easy to cause irreversible damage to the photovoltaic module 9, and after the operation and maintenance gap is set, it will be used as the operation and maintenance gap.
  • a pedal is overlapped on the tile substrate of the photovoltaic tile at the gap.
  • the staff can step on the pedal at the gap 11 to work to avoid damage to the photovoltaic module 9.
  • the smaller gap 21 and/or the larger gap 11 provided between the photovoltaic modules 9 can be used as the inlet and outlet of the airflow of the heat dissipation channel to improve the flow of air inside and outside the heat dissipation channel to improve the heat dissipation effect.
  • the photovoltaic module 9 is adhered to the carrier board area 3.
  • the photovoltaic module 9 can be adhered to the bearing plate area 3 by means of adhesives or tapes, etc. This method has the effect of convenient operation.
  • the adhesive can be a silicone structural adhesive or other materials, and the adhesive tape can be a pressure sensitive adhesive or an adhesive tape of other materials.
  • the photovoltaic module 9 is a borderless photovoltaic module 9.
  • the weight of the photoresist component can be further reduced.
  • the frameless photovoltaic component 9 is provided with a POE (Polyolefin elastomer; polyolefin elastomer) encapsulation layer on both the front and the back, which can better isolate the battery from water vapor.
  • POE Polyolefin elastomer; polyolefin elastomer
  • the photovoltaic module 9 includes a photovoltaic back sheet 12, a POE encapsulation layer 13 is formed on the photovoltaic back sheet 12, and a cell 14 is formed on the POE encapsulation layer 13.
  • the size of the cell 14 For example, but not limited to, half the size of a conventional cell can be used, and another layer of POE encapsulation layer 15 is formed on the cell 14, and photovoltaic glass 16 is formed on the other layer of POE encapsulation layer 15.
  • the cells in the photovoltaic module 9 can be connected in series to form a cell string, and the number of cells forming the cell string can be determined according to specific conditions.
  • Two or more battery strings are connected in parallel to form a battery string group, and the battery string groups are connected in series.
  • the battery string is connected in parallel with a bypass diode 17, and the bypass diode 17 protects the internal circuit of the photoresist component and reduces the influence of the hot spot effect.
  • the junction box 10 is arranged on the back of the photovoltaic module 9 along the length direction of the bottom plate area 1.
  • the photovoltaic tile When the photovoltaic tile is installed on the roof, it can be directly assembled on the building site after the photovoltaic tile assembly is completed in the factory, or it can be completed in the factory to process the components of the photovoltaic tile, and the photovoltaic tile can be assembled on the building site. After the tiles are assembled, the roof is assembled.
  • the seaming structure 5 of one of the adjacent photovoltaic tiles covers the other seaming structure 5, and the two seaming structures 5 are pressed together by the seaming machine to achieve a better waterproof effect.
  • the photovoltaic tiles of the assembled roof can be full-length or non-full-length.
  • the overall length mentioned here refers to a complete photovoltaic tile from the ridge to the eaves.
  • Non-full length refers to the need for multiple photovoltaic tiles to be spliced from the ridge to the eaves.
  • photovoltaic tiles on the building site, that is, install the photovoltaic tile substrate 8 on the roof of the building first, and then apply glue or tape on the bearing plate area 3 of the photovoltaic tile substrate 8, and then The photovoltaic modules 9 are placed on the load-bearing board area 3 for bonding and fixing, and finally the junction boxes 10 between adjacent photovoltaic modules 9 are electrically connected together to complete the assembly of the photovoltaic roof.
  • the photovoltaic module 9 is located above the tile base plate 8 of the photovoltaic tile as a whole, and the tile base plate 8 with photovoltaic tiles isolates the fire source. , The entire photovoltaic roof has good fire resistance.
  • an embodiment of the present invention provides a photovoltaic roof, which includes the photovoltaic tile of the foregoing embodiment.
  • Photovoltaic tiles can adopt full-length structure and non-full-length structure.
  • the photovoltaic tile When the photovoltaic tile adopts a full-length structure, it contains only one photovoltaic tile from the ridge of the photovoltaic roof to the eaves direction. That is, the photovoltaic tile is a full-length structure. You only need to pave the photovoltaic tile side by side along the ridge to complete the photovoltaic roof. Assembling.
  • the photovoltaic tile adopts a non-full-length structure, in the process of assembling the photovoltaic roof, it needs to be assembled along the direction of the ridge and from the ridge to the eaves.
  • At least one photovoltaic tile is connected to the tile substrate of the photovoltaic tile of the above embodiment, the tile substrate of the photovoltaic tile extends from the ridge of the photovoltaic roof to the eaves, and the tile substrate of the photovoltaic tile is provided with a pedal for stepping on.
  • Both the photovoltaic tile and the photovoltaic tile substrate adopt a full-length structure.
  • the photovoltaic tile substrate can be used as an operation and maintenance channel, and the staff can step on the pedal set on the photovoltaic tile substrate , Move between the eaves and the ridge for installation or maintenance.
  • the following simulation software is used to simulate and compare the existing photovoltaic tile with the photovoltaic tile with a heat dissipation channel structure in this embodiment. temperature.
  • the conditions of the simulation are: the ambient temperature is 20°C, the angle between the photovoltaic tile and the horizontal plane is 5°, and the location is Xi'an (34°N latitude, 108°E longitude). In order to obtain the maximum light, the solar radiation at 2 pm on August 1st is taken.
  • the upper surface temperature of the photovoltaic tile in this embodiment is 70.50°C
  • the cell temperature is 71.33°C
  • the temperature of the tile substrate 8 of the photovoltaic tile is 70.29°C;
  • the temperature of the upper surface of the existing photovoltaic tile is 82.94°C, the temperature of the cell is 86.69°C, and the temperature of the tile substrate 8 of the photovoltaic tile is 87.80°C;
  • the temperature of the photovoltaic watts of this patent is lower than that of the existing photovoltaic watts by more than 10 degrees Celsius.
  • the lowering of the temperature of the photovoltaic tile can ensure the stability and reliability of the cell work on the one hand, and on the other hand, it can also reduce the requirement for a thermal insulation layer on the back of the photovoltaic tile and reduce the use cost.
  • the indoor temperature of the photovoltaic tile provided by this embodiment is lower than the indoor temperature of the existing photovoltaic tile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种光伏瓦的瓦基板、光伏瓦和光伏屋顶,其中,瓦基板包括至少一个承载板区,位于所述底板区的至少一侧且用于承载光伏组件的侧边缘;两个弯折连接区,分别连接于所述底板区的两侧,至少一个所述弯折连接区另一侧连接所述承载板区;所述底板区及所述弯折连接区能够与光伏组件围成散热通道;至少一个连接结构,至少所述承载板区连接所述连接结构;一所述光伏瓦的瓦基板的一侧的连接结构能够与相邻的所述光伏瓦的瓦基板的另一侧连接。上述方案解决了现有技术中光伏组件散热能力差,屋顶系统防火能力差,不便安装保温隔热层及屋顶接线不便的问题。

Description

光伏瓦的瓦基板、光伏瓦和光伏屋顶
本申请要求在2019年09月18日提交中国专利局、申请号为201910882043.X、发明名称为“光伏瓦的瓦基板、光伏瓦和光伏屋顶”,及在2020年05月19日提交中国专利局、申请号为202010426134.5、发明名称为“光伏瓦的瓦基板、光伏瓦和光伏屋顶”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明一般涉及光伏技术领域,具体涉及一种光伏瓦的瓦基板、光伏瓦和光伏屋顶。
背景技术
BIPV(Building Integrated Photovoltaic;光伏建筑一体化)是与新建筑物同时设计、同时施工和同时安装并与建筑形成结合的光伏发电系统,是建筑物必不可少的一部分,既发挥建筑材料的功能(如遮风、挡雨、隔热等),又发挥发电的功能,使建筑物成为绿色建筑。
BIPV具有多种不同的安装形式,比如光伏屋顶、光伏幕墙和光伏天棚等。现阶段光伏屋顶多为构件式BIPV,该方案主要是通过将镀锌铝合金背板组件边框做成锁扣结构,替代或覆盖于屋顶建材的一种光伏屋顶安装方式,可直接替代屋顶彩钢瓦,该方案由于光伏组件完全贴合在金属瓦面上,组件散热较差,此外,该方案接线盒同样是在室内,也存在屋顶系统防火能力差,无法安装保温隔热系统,以及屋顶接线不方便等问题。
发明内容
鉴于现有技术中的上述缺陷或不足,期望提供一种光伏瓦的瓦基板、光伏瓦和光伏屋顶,用以解决现有技术中光伏组件散热能力差,屋顶系统防火能力差,不便安装保温隔热层及屋顶接线不便的问题。
第一方面,本发明提供一种光伏瓦的瓦基板,包括:
底板区;
至少一个承载板区,位于所述底板区的至少一侧且用于承载光伏组件的侧边缘;
两个弯折连接区,分别连接于所述底板区的两侧,至少一个所述弯折连接区另一侧连接所述承载板区;所述底板区及所述弯折连接区能够与光伏组件围成散热通道;
至少一个连接结构,至少所述承载板区连接所述连接结构;
一所述光伏瓦的瓦基板的一侧的连接结构能够与相邻的所述光伏瓦的瓦基板的另一侧连接。
作为可实现的方式,所述连接结构为锁边结构,各所述弯折连接区均连接有所述承载板区,一所述光伏瓦的瓦基板的一侧的锁边结构能够与相邻的所述光伏瓦的瓦基板的另一侧的锁边结构锁合;或,
所述连接结构为搭接结构,一所述光伏瓦的瓦基板的一侧的搭接结构能够搭接在相邻的所述光伏瓦的瓦基板的另一侧的所述弯折连接区上。
作为可实现的方式,在设置两个所述承载板区的情况下,两个所述承载板区位于同一平面。
作为可实现的方式,所述底板区的中部隆起有凸棱,所述凸棱沿所述底板区的长度方向延伸。
作为可实现的方式,所述凸棱的顶面与所述承载板区位于同一平面。
作为可实现的方式,所述底板区上设置有多个加强筋,各所述加强筋的延伸方向与所述底板区的长度方向相交。
作为可实现的方式,底板区所在平面与承载板区所在平面平行,两者之间的间距为2~20cm。
第二方面,本发明提供一种光伏瓦,包括上述光伏瓦的瓦基板,还包括光伏组件,所述光伏组件两侧边缘分别固定于所述承载板区上,所述光伏组件、所述承载板区及所述底板区围有散热通道,所述光伏组件的背面设置有接线盒,所述接线盒位于所述散热通道内。
作为可实现的方式,沿所述底板区的长度方向,设置有多个所述光伏组件;至少部分相邻的所述光伏组件之间设置有可供放置踏板的间隙。
作为可实现的方式,所述光伏组件粘接于所述承载板区上。
作为可实现的方式,所述光伏组件为无边框光伏组件。
第三方面,本发明提供一种光伏屋顶,包括上述的光伏瓦。
作为可实现的方式,自所述光伏屋顶的屋脊至屋檐方向,只含有一个所述光伏瓦。
作为可实现的方式,至少一所述光伏瓦锁合连接有上述光伏瓦的瓦基板,所述光伏瓦的瓦基板自所述光伏屋顶的屋脊延伸至屋檐,所述光伏瓦的瓦基板上搭设有用于供踩踏的踏板。
本申请提供的上述方案,在组装形成光伏屋顶后,光伏组件、接线盒及接线盒之间的连接线均位于室外(光伏瓦的瓦基板下方为室内,光伏瓦的瓦基板上方为室外),室内与光伏组件之间间隔一层光伏瓦的瓦基板,使得光伏屋顶就有很好的防火性能。此外,由于光伏组件安装在光伏瓦的瓦基板上之后,会在光伏瓦的瓦基板与光伏组件之间形成散热通道,该散热通道可以提高光伏组件散热能力。还有,由于接线盒位于室外,一方面不需要打孔从室内去连接接线盒,仅需在室外通过导线对接线盒进行连接即可,提高了连线的便利性,另一方面,由于不需要对光伏瓦的瓦基板进行打孔穿线,则便于在光伏瓦的瓦基板背面设置保温隔热层。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的光伏瓦的瓦基板的主视图;
图2为图1所示的两块光伏瓦的瓦基板连接后的主视图;
图3为图2的局部放大图I;
图4为图2所示的两块光伏瓦的瓦基板连接后设置有光伏组件的主视图;
图5为本发明另一实施例提供的光伏瓦的瓦基板的主视图;
图6为图5所示的两块光伏瓦的瓦基板连接后的主视图;
图7为图6所示的两块光伏瓦的瓦基板连接后设置有光伏组件的主视图;
图8为本发明又一实施例提供的光伏瓦的瓦基板的主视图;
图9为图8的俯视图;
图10为图8的立体图;
图11为本发明实施例提供的光伏瓦的主视图;
图12为图11的俯视图;
图13为图11的立体图;
图14为光伏组件的结构示意图;
图15为光伏组件的电路原理图;
图16为光伏组件的仰视图。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1所示,本发明实施例提供的光伏瓦的瓦基板,包括底板区1、一个承载板区3、两个弯折连接区2、以及一个连接结构18。
底板区1可以是一平面,也可以是非平面,一般采用平面时,为提高刚度及强度可以在平面上设置凸起或凹陷的加强结构。一个承载板区3位于底板区1的其中一侧,且用于承载光伏组件的侧边缘。两个弯折连接区2,分别连接于底板区1的两侧,其中一个弯折连接区2另一侧与承载板区3连接, 当然也可以设置两个承载板区3,后续实施例将予以介绍,即底板区1的每一侧连接一个弯折连接区2,其中一个弯折连接区远离底板区1的一侧(也可称为另一侧)连接承载板区3,如图1所示,弯折连接区2相对于底板区1是向上弯曲,弯折连接区2相对于承载板区3是向下弯曲,通过弯折连接区2使底板区1与承载板区3之间形成一定的距离差;通过该距离差使承载板区3及底板区1用于与光伏组件围有散热通道。一个连接结构18,连接于承载板区1外侧,该实施例中是连接在左侧的承载板区1的外侧,当然,承载板区1也可以设置在右侧,相应的连接结构18连接在右侧的承载板区1的外侧;一光伏瓦的瓦基板的一侧的连接结构18能够与相邻的光伏瓦的瓦基板的另一侧连接。这里不对连接结构18的具体结构进行限定,其只要可以对两个光伏瓦的瓦基板进行连接即可。该实施例中,光伏瓦的瓦基板的一侧可以是左侧,另一侧为右侧。如图2、图3所示,其中一个光伏瓦的瓦基板的左侧,与相邻的光伏瓦的瓦基板的右侧连接。
上述结构的光伏瓦的瓦基板可以但不限于采用金属板材,通过冲压、滚压等工艺形成。该金属板材优选表面具有防腐层的板材,以提高板材的耐腐蚀性能,板材例如但不限于为钢板。防腐层例如但不限于为油漆层、镀锌层等。
如图4所示,该示例中光伏瓦的瓦基板在连接后,安装光伏组件9时,光伏组件9的左侧边缘承载在左侧的光伏瓦的瓦基板的承载板区3上,光伏组件9的右侧边缘承载在右侧的光伏瓦的瓦基板的承载板区3上。
作为另外一种实现方式,如图5-7所示,本发明实施例提供的光伏瓦的瓦基板,包括底板区1、一个承载板区3、两个弯折连接区2、以及两个连接结构18、19。两个连接结构18、19可以是搭接结构,其具体形状可以不同,只要可以对两个光伏瓦的瓦基板进行连接即可。
底板区1可以是一平面,也可以是非平面,一般采用平面时,为提高刚度及强度可以在平面上设置凸起或凹陷的加强结构。一个承载板区3位于底板区1的其中一侧,且用于承载光伏组件的侧边缘。两个弯折连接区2,分别连接于底板区1的两侧,其中一个弯折连接区2与承载板区3连接,当然也可以设置两个承载板区3,后续实施例将予以介绍,即底板区1的一侧连接一个弯折连接区2,其中一个弯折连接区远离底板区1的一侧连接承载板 区3,如图5所示,弯折连接区2相对于底板区1是向上弯曲,弯折连接区2相对于承载板区3是向下弯曲,通过弯折连接区2使底板区1与承载板区3之间形成一定的距离差;通过该距离差使承载板区3及底板区1用于与光伏组件围有散热通道。其中一个连接结构18,连接于承载板区3外侧,该实施例中是连接在左侧的承载板区3的外侧,当然,承载板区3也可以设置在右侧,相应的连接结构18连接在右侧的承载板区3的外侧;另外一个连接结构19,连接于右侧的弯折连接区2的外侧,一光伏瓦的瓦基板的左侧的连接结构18能够搭接在相邻的光伏瓦的瓦基板的右侧的弯折连接区2上,同时也是位于右侧的连接结构19上,这里的连接可以是搭接,并在搭接处通过自攻螺钉22将光伏瓦的瓦基板固定在屋顶的檩条23上。
如图7所示,该示例中光伏瓦的瓦基板在连接后,安装光伏组件9时,光伏组件9的左侧边缘承载在左侧的光伏瓦的瓦基板的承载板区3上,光伏组件9的右侧边缘承载在右侧的光伏瓦的瓦基板的承载板区3上。
作为又一种实现方式,如图8-10所示,本发明实施例提供的光伏瓦的瓦基板,包括底板区1、两个承载板区3、两个弯折连接区2、以及两个连接结构,连接结构为锁边结构5。
底板区1可以是一平面,也可以是非平面,一般采用平面时,为提高刚度及强度可以在平面上设置凸起或凹陷的加强结构。两个承载板区3位于底板区1两侧且分别用于承载光伏组件两侧边缘,这里所说的两侧是指沿一方向相背离的两侧,如图1所示,底板区1的左右两侧分别设置了承载板区3。两个弯折连接区2,分别连接于底板区1的两侧与两个承载板区3之间,即底板区1的一侧连接一个弯折连接区2,弯折连接区2远离底板区1的一侧连接承载板区3,如图1所示,弯折连接区2相对于底板区1是向上弯曲,弯折连接区2相对于承载板区3是向下弯曲,通过弯折连接区2使底板区1与承载板区3之间形成一定的距离差;通过该距离差使承载板区3及底板区1用于与光伏组件围有散热通道。两个锁边结构5,分别连接于两个承载板区1外侧,两个锁边结构5可以直接连接在两个承载板区1外侧,也可以通过连接板4连接在两个承载板区1外侧;一光伏瓦的瓦基板的一侧的锁边结构5能够与相邻的光伏瓦的瓦基板的另一侧的锁边结构5锁合,锁边结构5的弯折方向可以相同,也可以相异,该实施例中锁边结构5的弯折方向相同, 且其中一个锁边结构5的弯折角度小于另一锁边结构5的弯折角度,便于将一光伏瓦的瓦基板的一侧的锁边结构5包覆相邻的光伏瓦的瓦基板,另一侧的锁边结构5以进行锁合。
上述结构的光伏瓦的瓦基板可以但不限于采用金属板材,通过冲压、滚压等工艺形成。该金属板材优选表面具有防腐层的板材,以提高板材的耐腐蚀性能,板材例如但不限于为钢板。防腐层例如但不限于为油漆层、镀锌层等。
在上述的方案中,两个承载板区3可以位于同一平面,由于各承载板区3位于同一平面,则在安装光伏组件9时,光伏组件9宽度方向的一侧吻合的支撑在其中一个承载板区3上,另一侧吻合的支撑在另一个承载板区3上,可以对光伏组件9进行较好的承托,在承托效果好的情况下,可以降低光伏组件9自身强度的要求,随着对自身强度要求的降低,可以降低光伏组件9自身的厚度,以降低重量及制造成本。一般地,可以通过降低光伏组件9正面的玻璃封装板的厚度来降低光伏组件9自身的厚度,随着正面的玻璃封装板的厚度的降低,光伏组件9的透光性增强,随之光电转换效能亦得以提升。
进一步地,为了提高该光伏瓦的瓦基板8的强度,在底板区1的中部隆起有凸棱6,凸棱6沿底板区1的长度方向延伸。该凸棱6可以是在底板区1上通过滚压或冲压工艺形成的。该实施例中设置了一个凸棱6。当然在其他实施例中,还可以设置两个或更多个凸棱6,设置两个或更多个凸棱6时,相邻凸棱6之间的间隔可以是均等的,也可以是非均等的。一般地,随着凸棱6数量的增多,该光伏瓦的瓦基板的强度也会相应的提高。
进一步地,为了能够最大限度的降低光伏组件9的厚度,以节省成本,减轻光伏组件9的重量,则凸棱6的顶面与承载板区3位于同一平面。这样在将光伏组件9安装在该光伏瓦的瓦基板8上时,凸棱6对光伏组件9的中部起到支撑的作用,因此可以降低对光伏组件9自身刚度的要求,随着对其自身刚度要求的降低,则光伏组件9的厚度也可相应的降低,现有常规的单玻光伏组件,为满足其刚度需要,其顶部的封装玻璃板厚度一般采用3.2mm的光伏玻璃,而采用本申请的光伏瓦的瓦基板后,可以采用3.2mm以下的光伏玻璃。
进一步地,为了进一步强化该光伏瓦的瓦基板的强度,在底板区1上设 置有多个加强筋7,各加强筋7的延伸方向与底板区1的长度方向相交。上述的凸棱6在长度方向上对该光伏瓦的瓦基板起到强化作用,该加强筋7在于长度方向相交的方向上对该光伏瓦的瓦基板起到强化作用。
加强筋7可以通过滚压或冲压的工艺形成。
加强筋7可以是长条形、十字形等形状。该实施例中以长条形为例进行说明。底板区1上异于凸棱6的位置均匀并排的设置了多个加强筋7,加强筋7的外凸方向与凸棱6的外凸方向一致。
进一步地,为了达到较佳的强化作用,各加强筋7的延伸方向与底板区1的长度方向垂直。
进一步地,为了保证所形成的散热通道具有足够的散热性能,则底板区所在平面与承载板区所在平面平行,两者之间的间距为2~20cm。设置此间距是通道具有足够的横截面积,以保证足够的空气流动来对光伏组件进行散热。
另一方面,如图11-13所示,本发明实施例还提供一种光伏瓦,包括上述实施例的的光伏瓦的瓦基板8,光伏瓦的瓦基板8的具体结构及效果参见上述实施例,这里不再赘述。还包括光伏组件9,光伏组件9两侧边缘分别固定于承载板区3上,光伏组件9、承载板区3及底板区1围有散热通道,光伏组件9的背面设置有接线盒10,接线盒10位于所述散热通道内。
上述方案,在组装形成光伏屋顶后,光伏组件9、接线盒10及接线盒10之间的连接线均位于室外(光伏瓦的瓦基板8下方为室内,光伏瓦的瓦基板8上方为室外),室内与光伏组件9之间间隔一层光伏瓦的瓦基板8,使得光伏屋顶就有很好的防火性能。此外,由于光伏组件9安装在光伏瓦的瓦基板8上之后,会在光伏瓦的瓦基板8与光伏组件9之间形成散热通道,该散热通道可以提高光伏组件9散热能力,具体地,在使用过程中,光伏组件工作时产生的热量,传递给散热通道内的空气,由于散热通道内的空气受热膨胀,密度变小,开始沿着散热通道向上运动形成上升气流,并经散热通道顶部的开口扩散至外界环境中,散热通道内的气流上升后,散热通道内的气压降低,外界空气在大气压的作用下,从散热通道的底部进入,然后再受光伏组件的影响而热膨胀形成上升气流,依次循环来对光伏组件进行有效降温。还有,由于接线盒10位于室外,一方面不需要打孔从室内去连接接线盒10, 仅需在室外(屋顶上)通过导线对接线盒10进行连接即可,提高了连线的便利性,另一方面,由于不需要对光伏瓦的瓦基板8进行打孔穿线,则便于在光伏瓦的瓦基板8背面设置保温隔热层。
进一步地,沿底板区1的长度方向,设置有多个光伏组件9,至少部分相邻的光伏组件9之间设置有间隙11,间隙处可用于设置供踩踏的踏板,踏板搭于光伏瓦的瓦基板上。也就是说,该间隙可以构成光伏屋顶的运维通道。
实际使用中,光伏瓦的瓦基板8上铺设一列光伏组件9,各光伏组件9可以是紧密排布在一起,当然,还可以在某两个相邻的光伏组件9之间设置间隙。间隙可以是较小的间隙21,例如但不限于5mm,也可以是较大的间隙11,例如但不限于30cm,较大的间隙11作为运维间隙。由于光伏组件9表面设置有玻璃,工作人员在安装或运维的过程中,若踩在光伏组件9上容易对光伏组件9造成不可逆的损伤,而设置运维间隙后,在作为运维间隙的间隙处的光伏瓦的瓦基板上搭接踏板。在采用该光伏瓦进行屋顶铺装及后续运维时,工作人员可以踩在间隙11处的踏板进行工作,避免对光伏组件9造成损伤。此外,光伏组件9之间设置的较小的间隙21和/或较大的间隙11均可以作为散热通道的气流的进出口,提高散热通道内外空气的流动,以提高散热效果。
进一步地,光伏组件9粘接于承载板区3上。可以通过粘结剂或胶带等方式将光伏组件9粘接在承载板区3,采用此种方式具有操作方便的效果。粘接剂可以是硅酮结构胶也可以为其他材料,胶带可以是压敏胶或者其他材料的胶带。
进一步地,光伏组件9为无边框光伏组件9。可以进一步降低光阻组件的重量,无边框光伏组件9的正面及背面均设置有POE(Polyolefin elastomer;聚烯烃弹性体)封装层,可以对电池片进行较佳的水汽隔绝。
如图14所示,作为一种可实现方式,光伏组件9包括光伏背板12,光伏背板12上形成有POE封装层13,在POE封装层13上形成电池片14,电池片14的大小例如但不限于可以采用常规电池片大小的一半,电池片14上形成有另外一层POE封装层15,该另外一层POE封装层15上形成有光伏玻璃16。
如图15所示,该光伏组件9内的电池片可以相互串联形成电池串,可 以根据具体情况确定形成电池串的电池片数量。两个或两个以上的电池串相互并联形成一个电池串组,电池串组进行串联。电池串组并联旁路二极管17,旁路二极管17对光阻组件内部电路进行保护,减少热斑效应带来的影响。
进一步地,如图16所示,为了便于对相邻光伏组件9进行电连接,则接线盒10沿底板区1的长度方向设置于光伏组件9的背面。
该光伏瓦在进行屋顶搭建时,可以是在工厂完成光伏瓦的组装后,直接在建筑现场通过光伏瓦进行屋顶的拼装,也可以是在工厂完成光伏瓦各组件的加工,在建筑现场对光伏瓦进行组装后,再进行屋顶的拼装。
例如,在工厂内分别完成光伏组件9,光伏瓦的瓦基板8的加工后,在光伏瓦的瓦基板8的承载板区3上涂胶或粘贴胶带,然后再将光伏组件9安放在承载板区3上以粘接固定,型材光伏瓦,然后将该光伏瓦运输到建筑现场在建筑物的屋顶上进行屋顶的拼装。
在拼装时,相邻光伏瓦中其中一个的锁边结构5包覆另外一个的锁边结构5,通过锁边机将两锁边结构5紧压在一起,起到较好的防水效果。
拼装屋顶的光伏瓦可以是通长的,也可以是非通长的。这里所说的通长是指从屋脊至屋檐是完整的一块光伏瓦,在进行屋顶拼装时,仅需多块光伏瓦沿屋脊方向并排拼装即可。非通长的是指从屋脊至屋檐需要多块光伏瓦进行拼接。
还可以在建筑现场进行光伏瓦的组装,即先将光伏瓦的瓦基板8安装在建筑物的屋顶,然后通过在光伏瓦的瓦基板8的承载板区3上涂胶或粘贴胶带,随后再将光伏组件9安放在承载板区3上以粘接固定,最后再将相邻光伏组件9间的接线盒10电连接在一起以完成光伏屋顶的拼装。
采用该光伏瓦拼装型材的屋顶,由于接线盒10位于建筑物的室外,当室内发生火灾的时候,光伏组件9整体位于光伏瓦的瓦基板8的上方,有光伏瓦的瓦基板8隔绝火源,整个光伏屋顶具有很好的防火性能。
第三方面,本发明实施例提供一种光伏屋顶,包括上述实施例的光伏瓦。
光伏瓦可以采用通长结构及非通长结构。
光伏瓦采用通长结构的时,其自光伏屋顶的屋脊至屋檐方向,只含有一个光伏瓦,即光伏瓦为通长结构,仅需沿屋脊方向并排铺装该光伏瓦即可完成光伏屋顶的拼装。
光伏瓦采用非通长结构的时,在进行光伏屋顶拼装的过程中,需要沿屋脊方向及屋脊至屋檐两个方向进行拼装。
进一步地,至少一光伏瓦锁合连接有上述实施例的光伏瓦的瓦基板,光伏瓦的瓦基板自光伏屋顶的屋脊延伸至屋檐,光伏瓦的瓦基板上搭设有用于供踩踏的踏板。作用一种可实现方式,光伏瓦及光伏瓦的瓦基板均采用通长结构,该光伏瓦的瓦基板可以作为运维通道使用,工作人员可以踩在该光伏瓦的瓦基板上设置的踏板上,在屋檐及屋脊间行动,以进行安装或维护。
为了确定该实施例中因设置了散热通道,其对光伏瓦的散热能力所带来的效果,以下通过仿真软件进行仿真模拟,以对比现有光伏瓦与本实施例具有散热通道结构的光伏瓦的温度。
模拟的条件是:环境温度20℃,光伏瓦与水平面夹角5度,地点为西安(北纬34°,东经108°),为获得最大光照取8月1日下午2点的日照辐射。
经模拟,本实施例的光伏瓦上表面温度为70.50℃,电池片温度为71.33℃,光伏瓦的瓦基板8温度为70.29℃;
现有光伏瓦上表面温度为82.94℃,电池片温度为86.69℃,光伏瓦的瓦基板8温度为87.80℃;
通过模拟的结果可以看出,本专利的光伏瓦温度比现有光伏瓦温度低10摄氏度以上。光伏瓦温度的降低,一方面可以保证电池片工作的稳定性及可靠性,另一方面还可以降低光伏瓦背面设置隔热层等要求,降低使用成本,在采用相同厚度隔热层的情况下,采用本实施例提供的光伏瓦的室内温度低于采用现有光伏瓦的室内温度。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 一种光伏瓦的瓦基板,其特征在于,包括:
    底板区;
    至少一个承载板区,位于所述底板区的至少一侧且用于承载光伏组件的侧边缘;
    两个弯折连接区,分别连接于所述底板区的两侧,至少一个所述弯折连接区另一侧连接所述承载板区;所述底板区及所述弯折连接区能够与光伏组件围成散热通道;
    至少一个连接结构,至少所述承载板区连接所述连接结构;
    一所述光伏瓦的瓦基板的一侧的连接结构能够与相邻的所述光伏瓦的瓦基板的另一侧连接。
  2. 根据权利要求1所述的光伏瓦的瓦基板,其特征在于,所述连接结构为锁边结构,各所述弯折连接区均连接有所述承载板区,一所述光伏瓦的瓦基板的一侧的锁边结构能够与相邻的所述光伏瓦的瓦基板的另一侧的锁边结构锁合;或,
    所述连接结构为搭接结构,一所述光伏瓦的瓦基板的一侧的搭接结构能够搭接在相邻的所述光伏瓦的瓦基板的另一侧的所述弯折连接区上。
  3. 根据权利要求1或2所述的光伏瓦的瓦基板,其特征在于,在设置两个所述承载板区的情况下,两个所述承载板区位于同一平面。
  4. 根据权利要求1所述的光伏瓦的瓦基板,其特征在于,所述底板区的中部隆起有凸棱,所述凸棱沿所述底板区的长度方向延伸。
  5. 根据权利要求4所述的光伏瓦的瓦基板,其特征在于,所述凸棱的顶面与所述承载板区位于同一平面。
  6. 根据权利要求1-2和4-5任一项所述的光伏瓦的瓦基板,其特征在于,所述底板区上设置有多个加强筋,各所述加强筋的延伸方向 与所述底板区的长度方向相交。
  7. 根据权利要求6所述的光伏瓦的瓦基板,其特征在于,底板区所在平面与承载板区所在平面平行,两者之间的间距为2~20cm。
  8. 一种光伏瓦,其特征在于,包括权利要求1-7任一项所述光伏瓦的瓦基板,还包括光伏组件,所述光伏组件两侧边缘分别固定于所述承载板区上,所述光伏组件、所述承载板区及所述底板区围有散热通道,所述光伏组件的背面设置有接线盒,所述接线盒位于所述散热通道内。
  9. 根据权利要求8所述的光伏瓦,其特征在于,沿所述底板区的长度方向,设置有多个所述光伏组件;至少部分相邻的所述光伏组件之间设置有可供放置踏板的间隙。
  10. 根据权利要求8或9所述的光伏瓦,其特征在于,所述光伏组件粘接于所述承载板区上。
  11. 根据权利要求8或9所述的光伏瓦,其特征在于,所述光伏组件为无边框光伏组件。
  12. 一种光伏屋顶,其特征在于,包括权利要求8-11任一项所述的光伏瓦。
  13. 根据权利要求12所述的光伏屋顶,其特征在于,从所述光伏屋顶的屋脊至屋檐方向,只含有一个所述光伏瓦。
  14. 根据权利要求12或13所述的光伏屋顶,其特征在于,至少一所述光伏瓦连接有权利要求1-5任一项所述光伏瓦的瓦基板,所述光伏瓦的瓦基板自所述光伏屋顶的屋脊延伸至屋檐,所述光伏瓦的瓦基板上搭设有用于供踩踏的踏板。
PCT/CN2020/097077 2019-09-18 2020-06-19 光伏瓦的瓦基板、光伏瓦和光伏屋顶 WO2021051910A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020003895.5T DE112020003895T5 (de) 2019-09-18 2020-06-19 Dachziegelplatte des Solardachziegels, Solardachziegel und Solardach
ES202290026A ES2924904A1 (es) 2019-09-18 2020-06-19 Sustrato de teja fotovoltaica, teja fotovoltaica y techo fotovoltaico
AU2020349748A AU2020349748B2 (en) 2019-09-18 2020-06-19 Tile substrate of photovoltaic tiles, photovoltaic tiles and photovoltaic roofing
JP2022515542A JP2023501864A (ja) 2019-09-18 2020-06-19 屋根型太陽電池の基板、屋根型太陽電池、及び太陽光発電屋根

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910882043 2019-09-18
CN201910882043.X 2019-09-18
CN202010426134.5A CN111464118A (zh) 2019-09-18 2020-05-19 光伏瓦的瓦基板、光伏瓦和光伏屋顶
CN202010426134.5 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021051910A1 true WO2021051910A1 (zh) 2021-03-25

Family

ID=71683964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097077 WO2021051910A1 (zh) 2019-09-18 2020-06-19 光伏瓦的瓦基板、光伏瓦和光伏屋顶

Country Status (6)

Country Link
JP (2) JP2023501864A (zh)
CN (1) CN111464118A (zh)
AU (1) AU2020349748B2 (zh)
DE (2) DE112020003895T5 (zh)
ES (1) ES2924904A1 (zh)
WO (1) WO2021051910A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396140A (zh) * 2022-01-27 2022-04-26 美联钢结构建筑系统(上海)股份有限公司 一种新型bipv光伏屋面组合板及安装方法
CN117728757A (zh) * 2023-11-20 2024-03-19 云南能晔建设有限公司 一种屋面光伏系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422064A (zh) * 2020-11-19 2021-02-26 苏州腾晖光伏技术有限公司 光伏组件加强筋机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013266A (ja) * 2000-06-28 2002-01-18 Kanegafuchi Chem Ind Co Ltd 太陽光発電装置、太陽光発電ユニット、及び該ユニットの設置方法
CN108824707A (zh) * 2018-08-02 2018-11-16 泗县汉能诚信电气工程有限公司 一种bipv光伏屋面
CN108915159A (zh) * 2018-08-02 2018-11-30 泗县汉能诚信电气工程有限公司 一种新型bipv光伏屋面

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005250970A1 (en) * 2004-06-04 2005-12-15 Ats Automation Tooling Systems Inc. Method for construction of rigid photovoltaic modules
JP2007186905A (ja) * 2006-01-13 2007-07-26 Asahi Kasei Construction Materials Co Ltd 太陽電池モジュール一体型屋根材
AU2011201649B2 (en) * 2010-04-12 2015-06-25 Stratco (Australia) Pty Limited Photo Voltaic Module Mounting System and Parts Thereof
CN208858062U (zh) * 2018-08-10 2019-05-14 中新春兴新能源电力(苏州)有限公司 一种加宽型角驰型彩钢瓦结构与光伏组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013266A (ja) * 2000-06-28 2002-01-18 Kanegafuchi Chem Ind Co Ltd 太陽光発電装置、太陽光発電ユニット、及び該ユニットの設置方法
CN108824707A (zh) * 2018-08-02 2018-11-16 泗县汉能诚信电气工程有限公司 一种bipv光伏屋面
CN108915159A (zh) * 2018-08-02 2018-11-30 泗县汉能诚信电气工程有限公司 一种新型bipv光伏屋面

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396140A (zh) * 2022-01-27 2022-04-26 美联钢结构建筑系统(上海)股份有限公司 一种新型bipv光伏屋面组合板及安装方法
CN117728757A (zh) * 2023-11-20 2024-03-19 云南能晔建设有限公司 一种屋面光伏系统

Also Published As

Publication number Publication date
DE112020003895T5 (de) 2022-05-12
DE202020005874U1 (de) 2022-12-19
JP2023501864A (ja) 2023-01-20
AU2020349748B2 (en) 2023-05-18
AU2020349748A1 (en) 2022-04-14
CN111464118A (zh) 2020-07-28
JP3240653U (ja) 2023-01-25
ES2924904A1 (es) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2021051910A1 (zh) 光伏瓦的瓦基板、光伏瓦和光伏屋顶
US5524401A (en) Roof with solar battery
EP0991827B1 (en) Vented cavity radiant barrier assembly and method
US6800801B2 (en) Photovoltaic power generating structure
US20090014051A1 (en) System and Method Utilizing Re-Deployable Insulated Self-Ballasted Photovoltaic Assemblies
JPH1136540A (ja) 太陽電池モジュールの設置構造
CN213602584U (zh) 光伏瓦和光伏屋顶
JPH11336210A (ja) 太陽光発電パネル設置型屋根の換気構造
CN212324035U (zh) 光伏瓦的瓦基板、光伏瓦和光伏屋顶
CN213125904U (zh) 光伏瓦和光伏屋顶
JP2565611B2 (ja) 太陽電池付き屋根
JPH07224506A (ja) 太陽電池モデュール付き屋根ユニット
JPH10317620A (ja) 太陽電池モジュール等の屋上設備機器を設置した屋根の換気構造
TW202219441A (zh) 用於鋪設坡屋頂之太陽能電池板及其施工方式
JP2587133Y2 (ja) 太陽電池付き屋根パネル
AU2018211333B2 (en) Solar sheeting for roofing or walling
JP2562279Y2 (ja) 太陽電池付き屋根
JP2563718B2 (ja) 太陽電池付き屋根
JP2607546Y2 (ja) 太陽電池パネルを用いた屋根構造
US20220416715A1 (en) System for mounting tiles over a surface
JP6501762B2 (ja) 太陽電池屋根パネル
JP2002303022A (ja) 太陽電池付き屋根の施工方法
US20230029089A1 (en) Assembly for mounting tiles over a surface
JP2006274551A (ja) 太陽光発電システム
ES1306988U (es) Base de teja fotovoltaica, teja fotovoltaica y tejado fotovoltaico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515542

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020349748

Country of ref document: AU

Date of ref document: 20200619

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20865554

Country of ref document: EP

Kind code of ref document: A1