WO2021049419A1 - 巻鉄心 - Google Patents

巻鉄心 Download PDF

Info

Publication number
WO2021049419A1
WO2021049419A1 PCT/JP2020/033490 JP2020033490W WO2021049419A1 WO 2021049419 A1 WO2021049419 A1 WO 2021049419A1 JP 2020033490 W JP2020033490 W JP 2020033490W WO 2021049419 A1 WO2021049419 A1 WO 2021049419A1
Authority
WO
WIPO (PCT)
Prior art keywords
space factor
iron core
bent
electromagnetic steel
steel sheet
Prior art date
Application number
PCT/JP2020/033490
Other languages
English (en)
French (fr)
Inventor
茂木 尚
崇人 水村
輝幸 玉木
藤村 浩志
平山 隆
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CA3153414A priority Critical patent/CA3153414A1/en
Priority to AU2020345300A priority patent/AU2020345300B2/en
Priority to US17/641,103 priority patent/US20220285074A1/en
Priority to KR1020227011236A priority patent/KR20220058932A/ko
Priority to BR112022004233A priority patent/BR112022004233A2/pt
Priority to EP20863154.9A priority patent/EP4030447A4/en
Priority to MX2022002869A priority patent/MX2022002869A/es
Priority to JP2021545499A priority patent/JP7288213B2/ja
Priority to CN202080062833.4A priority patent/CN114342020A/zh
Publication of WO2021049419A1 publication Critical patent/WO2021049419A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • H01F27/385Auxiliary core members; Auxiliary coils or windings for reducing harmonics

Definitions

  • This disclosure relates to a winding iron core.
  • the wound iron core is used as a magnetic core for transformers, reactors, noise filters, etc.
  • low iron loss has been one of the important issues from the viewpoint of high efficiency, and low iron loss has been studied from various viewpoints.
  • Transformers and the like using a wound iron core are widely applied to electrical equipment and electronic equipment, but generate noise due to magnetostriction generated when a magnetic field is applied to the wound iron core. Therefore, research on noise reduction by reducing magnetostriction is being actively conducted.
  • a circumferential band is wound around the outer periphery of an iron core made of a steel plate wound in a coil shape in the winding direction of the steel plate, and is wound around the iron core on the surface side of the circumferential band.
  • a low-noise winding transformer in which a stacking direction band having a vibration loss coefficient ⁇ > 0.01 is arranged between the wound wire and the iron core is disclosed.
  • the object of the present disclosure is to provide a wound iron core in which iron loss is reduced and noise is suppressed.
  • the present disclosers paid attention to the gap between the laminated electromagnetic steel sheets while diligently studying the noise reduction of the wound steel core.
  • a time-varying magnetic field is applied to a transformer using a wound steel core
  • the magnetic steel sheet vibrates in the stacking direction due to the magnetostriction generated in the magnetic steel sheet. Due to this vibration, a dense wave of air is generated from the gap between the electromagnetic steel sheets. This dense wave of air is recognized as sound.
  • the present disclosures have found that the gap between the electromagnetic steel sheets becomes large at the bent portion of the wound steel core, and the gap at the bent portion greatly affects the noise of the transformer. Then, they found that the noise was reduced by reducing the gap of the bent portion, and as a result of further study, the present disclosure was reached.
  • the wound iron core of one aspect of the present disclosure includes a laminated body in which a plurality of electromagnetic steel sheets are laminated in an annular shape in a side view, and the laminated body is located between a plurality of bent portions and a plurality of adjacent bent portions.
  • the space factor of the electromagnetic steel sheet in the bent portion is the average space occupied by the electromagnetic steel plate in the plurality of side portions. It is a high space factor bending part higher than the rate.
  • FIG. 1 is a side view showing an example of a wound iron core according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a compression means included in the wound iron core, and is an exploded perspective view of a portion X in FIG.
  • FIG. 3 is a schematic view showing a bent portion before and after the application of the compression means.
  • the case where the electrical steel sheet S is viewed from the side surface side is referred to as a side view.
  • the stacking direction of the electromagnetic steel sheet S is appropriately referred to as a "stacking direction”.
  • the plate width direction of the electromagnetic steel plate S is appropriately referred to as a "plate width direction”.
  • the winding direction of the electromagnetic steel sheet S is appropriately referred to as a "winding direction”.
  • the wound steel core 1 includes a laminated body 2 in which a plurality of electromagnetic steel sheets S are annularly laminated in a side view (in other words, when the wound steel core 1 is viewed from the side surface). ..
  • a plurality of annularly formed electromagnetic steel sheets S are laminated in the plate thickness direction to form the laminated body 2.
  • the laminated body 2 has a plurality of bent portions 21 and a plurality of side portions 22 located between the bent portions 21 adjacent to each other.
  • the side surface referred to here means a surface formed by the side surfaces of the laminated electromagnetic steel sheets S.
  • the laminated body 2 is formed by laminating electromagnetic steel plates S and forming an octagon in a side view, and has a plurality of bent portions 21 and a plurality of side portions 22.
  • the laminated body 2 has a rectangular shape formed by bending the electromagnetic steel plate S on the innermost circumference so as to form four corners 21A, and the electromagnetic steel plate located on the outer periphery of the electromagnetic steel plate S on the innermost circumference. S is bent at the corner 21A of the innermost electromagnetic steel sheet S, and is laminated so that two corners 21B are formed.
  • the bent portion 21 of the laminated body 2 is a substantially triangular region in which one corner portion 21A and two corner portions 21B formed by bending the electromagnetic steel plate S at the corner portion 21A are connected by a straight line. It is a part.
  • the present disclosure is not limited to this configuration.
  • the bent portion 21 of the laminated body 2 is a portion of a substantially trapezoidal region in which the two corners 21A and the two corners 21B are connected by a straight line. May be.
  • the side portion 22 of the laminated body 2 is a substantially linear portion located between the adjacent bent portions 21.
  • the laminated body 2 of the present embodiment has four bent portions 21 and four side portions 22.
  • the laminated body 2 has an octagonal shape having eight square portions 21B on the outer circumference when viewed from the side surface side of the electromagnetic steel plate S. On the other hand, the laminated body 2 has a rectangular shape having four corners 21A on the inner circumference.
  • the space factor of the electromagnetic steel sheet S in each of the four bent portions 21 of the laminated body 2 is substantially constant. Further, the space factor of the electromagnetic steel plate S in each of the four side portions 22 of the laminated body 2 is substantially constant. In the present embodiment, the space factor of the electromagnetic steel sheet S in each of the four bent portions 21 of the laminated body 2 is substantially constant, but the space factor of the electromagnetic steel plate S in each of the four bent portions 21 is different. May be. In this case, the space factor of the electromagnetic steel sheet S in the bent portion 21 can be adjusted by the compression means 3 described later.
  • the space factor of the bent portion 21 and the side portion 22 of the laminated body 2 can be calculated based on JIS C 2550-5: 2011.
  • JIS C 2550-5: 2011 is IEC 60404-13: 1995, "Magnetic materials-Part 13: Methods of measurement of electricity, responsive steel support”.
  • an existing grain-oriented electrical steel sheet or an existing non-oriented electrical steel sheet can be used, but it is preferable to use a grain-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheet for the laminated body 2 it is possible to reduce the hysteresis loss among the iron losses, and it is possible to further reduce the iron loss of the wound iron core 1.
  • the thickness of the electromagnetic steel sheet S is not particularly limited, and may be, for example, 0.20 mm or more, or 0.40 mm or less.
  • the thickness of the electromagnetic steel sheet S is preferably 0.18 mm or more.
  • the thickness of the electromagnetic steel sheet S is preferably 0.35 mm or less, more preferably 0.27 mm or less.
  • the laminated electromagnetic steel sheets S are insulated from each other.
  • the surface of the electromagnetic steel sheet S is subjected to an insulating treatment so as to be insulated from each other. Since the layers of the electrical steel sheet S are insulated, eddy currents are less likely to be generated in the thick surface of the electrical steel sheet S, and eddy current loss can be reduced. As a result, the iron loss of the wound iron core 1 can be further reduced.
  • the surface of the electrical steel sheet S is subjected to an insulating treatment using an insulating coating liquid containing colloidal silica and a phosphate.
  • the wound iron core 1 is provided with a compression means 3 for compressing the bent portion 21 in the stacking direction of at least one of the plurality of bent portions 21 of the electromagnetic steel plate S.
  • the bent portion 21 is placed on both sides of the bending portion 21 in the stacking direction of the electromagnetic steel sheet S (in other words, the bent portion 21 is placed on the inner peripheral side and the outer peripheral side of the bent portion 21 in the stacking direction of the electromagnetic steel plate S). Compress.
  • the compression means 3 of the present embodiment has an outer plate 31, an inner plate 32, a bolt 33, and a nut 34.
  • an outer plate 31 and an inner plate 32 are arranged on the outer peripheral side and the inner peripheral side of the bent portion 21, respectively. Further, the lengths of the outer plate 31 and the inner plate 32 along the plate width direction of the electromagnetic steel plate S constituting the laminated body 2 are larger than the plate width of the electromagnetic steel plate S constituting the laminated body 2, and the outer plate 31 and the inner plate 31 and the inner plate 32 are longer. Insertion holes 31A and 32A into which bolts 33 are inserted are provided at both ends of the plate 32 in the longitudinal direction.
  • the outer peripheral side and the inner peripheral side of the bent portion 21 referred to here mean the outer peripheral side and the inner peripheral side of the bent portion 21 of the laminated body 2.
  • the inner plate 32 has a convex portion 32B extending in the longitudinal direction of the inner plate 32 according to the shape of the corner portion 21A so that a gap is not formed between the inner plate 32 and the laminated body 2.
  • the convex portion 32B is preferably a soft material capable of absorbing the vibration of the electromagnetic steel plate S.
  • resin or wood is preferably used as the material of the convex portion 32B.
  • Insert holes 31A and 32A provided at both ends of the outer plate 31 and the inner plate 32 are arranged so as to project from the side surface of the bent portion 21. Then, the bolt 33 is inserted into the insertion hole 31A of the outer plate 31 and the insertion hole 32A of the inner plate 32 corresponding to the insertion hole 31A, and the nut 34 is screwed into the bolt 33 to form the outer plate 31 and the inner plate 32. Are concatenated. Then, the nut 34 is tightened, and the bent portion 21 is compressed in the stacking direction by the outer plate 31 and the inner plate 32.
  • the outer plate 31 is an example of the first contact portion
  • the inner plate 32 is an example of the second contact portion
  • the bolt 33 and the nut 34 are examples of the connecting portion.
  • the compression means 3 includes a first contact portion that contacts the outer peripheral side of the bent portion 21, a second contact portion that contacts the inner peripheral side of the bent portion 21, and a first contact portion and a second contact portion.
  • the first contact portion and the second contact portion receive a binding force by the connecting portion and compress the bent portion 21 in the stacking direction of the electrical steel sheet S.
  • the plurality of electromagnetic steel sheets S constituting the bent portion 21 are compressed in the stacking direction.
  • At least one bent portion 21 of the plurality of bent portions 21 is compressed by the compression means 3 in the stacking direction of the electromagnetic steel plate S in the bent portion 21.
  • a gap is formed between the electromagnetic steel plates S as schematically shown in FIG. 3A.
  • the space factor of the electrical steel sheet S in the bent portion 21 before applying the compression means 3 is smaller than the space factor of the electrical steel sheet S in the side portion 22.
  • the gap between the electromagnetic steel sheets S becomes smaller as shown in FIG. 3B. In this way, the compression means 3 can increase the space factor of the electromagnetic steel sheet S in the bent portion 21.
  • the space factor of the electrical steel sheet S in the bent portion 21 can be made higher than the average space factor of the electrical steel sheet S in the plurality of side portions 22.
  • the space factor of the electromagnetic steel sheet S in the bent portion 21 when an AC magnetic field is applied to the wound iron core 1 in which the gap between the electromagnetic steel sheets S in the bent portion 21 is reduced, the noise generated from the gap between the electromagnetic steel sheets S in the bent portion 21 is reduced.
  • the bent portion 21 in which the space factor of the electromagnetic steel sheet S is higher than the average space factor of the electromagnetic steel plate S in the plurality of side portions 22 corresponds to the high space factor bent portion of the present disclosure.
  • the compression of the bent portion 21 by the compression means 3 is preferably performed so that the space factor of the compressed bent portion 21 is 93% or more, and more preferably 96% or more. ..
  • the space factor of the compressed bent portion 21 is 93% or more, the gap between the electromagnetic steel sheets S becomes smaller, and the noise of the wound iron core 1 to which the alternating magnetic field is applied can be further reduced.
  • the space factor of the compressed bent portion 21 is 96% or more, the noise of the wound iron core 1 can be further reduced.
  • the upper limit of the space factor of the compressed bent portion 21 is 100%.
  • the compression means 3 may be provided in at least one bent portion 21, but is preferably provided in more bent portions 21.
  • the gap of the entire bent portion 21 in the laminated body 2 becomes smaller, and noise can be reduced. Further, it is more preferable that the compression means 3 is provided in all the bent portions 21.
  • the gap between the electromagnetic steel sheets S becomes smaller in the laminated body 2 as a whole, and the noise of the wound iron core 1 to which the AC magnetic field is applied can be further reduced. Become.
  • the outer plate 31, the inner plate 32, the bolt 33 or the nut 34 are formed of a non-magnetic material.
  • a non-magnetic material for example, wood, resin, copper, brass or the like is preferably used. If the outer plate 31, the inner plate 32, the bolt 33, or the nut 34 is a non-magnetic material, it is possible to prevent the generation of eddy current in the compression means 3, and as a result, it is possible to prevent an increase in iron loss.
  • the compression means 3 preferably has an insulating washer (not shown). Since the compression means 3 has an insulating washer, it is possible to prevent a current from flowing through the outer plate 31, the inner plate 32, the bolt 33, and the nut 34 as a circuit. As a result, the generation of a magnetic field due to this current is prevented, so that a stable magnetic field can be formed. As a result, an increase in iron loss is prevented.
  • the compression means 3 does not have an insulating washer, it is preferable that at least one of the outer plate 31, the inner plate 32, the bolt 33, and the nut 34 is an insulator.
  • an insulator for at least one of the outer plate 31, the inner plate 32, the bolt 33, and the nut 34, a current does not flow to the compression means 3 and a stable magnetic field can be obtained, so that an increase in iron loss is prevented. It becomes possible to do.
  • the insulating material various known insulators such as natural rubber, epoxy resin, polyvinyl chloride or polyurethane insulating material can be used.
  • At least one bent portion 21 of the plurality of bent portions 21 is compressed by the compression means 3 in the stacking direction of the electromagnetic steel plate S in the bent portion 21, so that the compressed bent portion is compressed.
  • the gap between the electromagnetic steel plates S in 21 becomes smaller.
  • the wound iron core 1 according to the present embodiment can be applied to, for example, a transformer.
  • the transformer according to the present embodiment includes a winding iron core 1, a primary winding, and a secondary winding according to the present embodiment.
  • a winding iron core 1 When an AC voltage is applied to the primary winding, a magnetic flux is generated in the winding core 1, and a voltage is generated in the secondary winding due to the change in the generated magnetic flux.
  • At least one of the bent portions 21 of the laminated body 2 of the wound iron core is compressed by the compression means 3 in the laminating direction of the electromagnetic steel plate S at the bent portion 21. Therefore, the gap between the electromagnetic steel plates S in the compressed bent portion 21 becomes small. As a result, it becomes possible to suppress the noise of the transformer.
  • FIG. 4 is a side view showing an example of a wound iron core according to the present embodiment.
  • the wound iron core 1A includes a laminated body 2A and a compression means 3A.
  • the laminated body 2A is different from the laminated body 2 according to the first embodiment in that it has four linear corners 21A, but has the same basic configuration as the laminated body 2 described in the first embodiment. A detailed description here will be omitted.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the compression means 3 compresses the bent portion 21 in the stacking direction of the electrical steel sheet S by receiving the binding force of the first contact portion and the second contact portion by the connecting portion.
  • the compression means is not limited to the above configuration.
  • the compression means may be, for example, the mode shown in FIG.
  • the laminated body 2A of the wound iron core 1A has bent portions 21 at positions facing each other via the central axis C of the laminated body 2A in a side view.
  • the compression means 3A applies a force from the corner portion 21A to the bent portion 21 to compress the bent portion 21.
  • the compression means 3A includes a plurality of compression members 35 that compress two bent portions 21 facing each other via the central axis C of the laminated body 2A from the corner portion 21A in a side view.
  • the compression member 35 is, for example, a substantially rod-shaped member whose expansion and contraction can be adjusted, and is a member whose length can be arbitrarily adjusted or a member made of an elastic body.
  • the compression member 35 is, for example, a member having a turnbuckle.
  • the compression member 35 is arranged inside the laminated body 2A on a straight line connecting two corners 21A facing each other via the central axis C in a side view. Then, by extending the compression member 35, the two bent portions 21 facing each other via the central axis C are compressed.
  • the compression member 35 presses the two bent portions 21 facing each other via the two corner portions 21A facing each other via the central axis C in the side view from the inner peripheral side to the outer peripheral side, respectively.
  • the two opposing bent portions 21 are compressed in the stacking direction of the electromagnetic steel sheet S, respectively.
  • the gap between the electromagnetic steel sheets S in the two compressed bent portions 21 becomes smaller, so that the noise of the wound iron core to which the AC magnetic field is applied can be reduced.
  • a plurality of compression members 35 are provided in the plate width direction of the electromagnetic steel sheet S constituting the laminated body 2A. That is, a plurality of compression members 35 arranged on a straight line connecting two corners 21A facing each other via the central axis C in a side view are arranged in the plate width direction of the electromagnetic steel sheet S constituting the laminated body 2A. The two bent portions 21 facing each other via the central axis C are uniformly compressed in the plate width direction of the electromagnetic steel sheet S constituting the laminated body 2A. This makes it possible to further reduce the noise of the wound iron core to which the alternating magnetic field is applied.
  • the compression means 3A preferably has a plurality of compression members 35A and 35B that compress two pairs of bent portions 21 facing each other via the central axis C in a side view.
  • the gap between the electromagnetic steel sheets S can be made smaller as a whole of the wound iron core, and as a result, the noise of the wound iron core 1A to which the AC magnetic field is applied can be further reduced.
  • the compression means 3A is on a straight line connecting a plurality of compression members 35A arranged on a straight line connecting a pair of corner portions 21A facing each other via the central axis C in a side view and another pair of corner portions 21A.
  • the plurality of compression members 35B are arranged, and the plurality of compression members 35A and the plurality of compression members 35B are alternately arranged in the plate width direction of the electromagnetic steel sheet S. As a result, the bent portion 21 is uniformly compressed in the height direction, and the space factor can be increased.
  • the compression means 3A is preferably a non-magnetic material or an insulator. If the compression means 3A is a non-magnetic material, it is possible to prevent the generation of eddy currents in the compression means 3, and as a result, it is possible to prevent an increase in iron loss. Further, if the compression means 3A is an insulator, no current flows through the compression means 3A, so that a stable magnetic field can be formed. As a result, an increase in iron loss is prevented.
  • the average space factor (%) of the electromagnetic steel sheet S on the four side portions 22 is B
  • the average space factor A of the electromagnetic steel plate S on the plurality of bent portions 21 is (B-4). It is preferably 0.0)% or more.
  • the average space factor A is (B-4.0)% or more, it is possible to reduce the noise of the wound iron core.
  • the pressure applied to the bent portion 21 is preferably in the range of 0.2 MPa or more and 4.0 MPa or less regardless of the mode of the compression means. If the pressure applied to the bent portion 21 is within the above range, the noise is reduced and the iron loss does not worsen.
  • the pressure applied to the bent portion 21 can be controlled by the tightening torque of the bolt 33 and the nut 34.
  • the electromagnetic steel sheet S in at least one bent portion 21 of the plurality of bent portions 21 is occupied.
  • the product ratio C is preferably B% or more (B + 1)% or less regardless of the mode of the compression means.
  • the space factor C is B% or more (B + 1)% or less, the space factor at the bent portion 21 can be increased without plastically deforming the electromagnetic steel sheet S. Since the electromagnetic steel sheet S is not plastically deformed, a magnetic field without turbulence is generated, and it is possible to suppress an increase in leakage flux. As a result, it becomes possible to suppress an increase in iron loss. Further, since the vibration between the layers of the electromagnetic steel plate S in the bent portion 21 is suppressed, noise can also be suppressed.
  • the outer circumference of the laminated body is octagonal
  • the outer circumference of the laminated body may be polygonal, rounded rectangular, oval, oval, or the like.
  • an oval laminate is manufactured by winding an electromagnetic steel plate.
  • the octagonal laminated body is manufactured by laminating a plurality of electromagnetic steel plates bent in an annular shape in the plate thickness direction.
  • a laminate produced by laminating a plurality of electrically bent steel sheets bent in an annular shape in the plate thickness direction tends to have a smaller space factor at the bent portion than a laminate produced by winding an electromagnetic steel sheet.
  • the compression means when the compression means is applied to the laminated body, a plurality of electrically bent steel sheets bent in an annular shape are laminated in the plate thickness direction as compared with the case where the compression means is applied to the laminated body manufactured by winding the electromagnetic steel sheets. It is easier to obtain a high noise reduction effect when the compression means is applied to the laminated body produced in the above manner. Further, as the number of times the electromagnetic steel sheet is bent increases, the space factor at the bent portion becomes smaller. Therefore, the effect of improving the space factor of the bent portion by the compression means is increased, so that the compression means is preferably applied to an octagonal laminated body.
  • the inner circumference of the laminated bodies 2 and 2A is a quadrangle or an octagon has been described, but the present disclosure is not limited to this, and the inner circumference of the laminated bodies 2 and 2A is another polygonal shape. , Rounded square, oval, oval, etc.
  • the portion connecting the two adjacent vertices of the octagon is the corner, and when the inner circumference of the laminates 2 and 2A is oval, the arcuate portion. Is the corner.
  • the bent portion 21 is located between one adjacent side portion and the other side portion.
  • the shape of the end portion of the compression means 3A described in the second embodiment can be a shape corresponding to the shape of the corner portion 21A. As a result, the bent portion can be uniformly compressed.
  • the inner circumference of the laminated bodies 2 and 2A may have a shape corresponding to the shape of the outer circumference.
  • the inner circumference may be octagonal, and when the outer circumferences of the laminates 2 and 2A are rounded squares, the inner circumferences are rounded squares. There may be.
  • the compression means 3 shown in FIG. 1 and the compression means 3A shown in FIG. 4 are merely examples, and the compression means is not limited to the above mode as long as the bent portion 21 can be compressed.
  • the space factor of at least one side portion 22 of the plurality of side portions 22 of the laminated bodies 2 and 2A may be lowered. Specifically, by arranging a spacer or the like between the electromagnetic steel plates S in one side portion 22, the gap between the electromagnetic steel plates S in the side portion 22 can be increased. As a result, the heat dissipation area of the laminated bodies 2 and 2A can be increased.
  • the wound core shown as a modified example can be applied to a transformer in the same manner as the wound core 1 of the first embodiment. Similar to the transformer to which the wound iron core 1 is applied, the transformer to which the wound iron core 1 is applied has a small gap between the electromagnetic steel plates at the bent portion, so that the noise of the transformer is suppressed.
  • test examples of the present disclosure will be described.
  • the conditions in this test example are one condition example adopted for confirming the feasibility and effect of the present disclosure, and the present disclosure is not limited to this one condition example.
  • the present disclosure may adopt various conditions as long as the gist of the present disclosure is not deviated and the object of the present disclosure is achieved.
  • Test Example 1 A grain-oriented electrical steel sheet having a thickness of 0.20 mm was laminated to prepare a laminated body having four bent portions.
  • a wound iron core in which one of the four bent portions was compressed at the pressure shown in Table 1 was manufactured using a wooden compression means.
  • the manufactured rolled iron core has the same configuration as that illustrated in FIG.
  • a transformer having a capacity of 20 kVA was manufactured using the wound iron core.
  • the space factor was calculated based on JIS C 2550-5: 2011.
  • iron loss (no load loss) and sound pressure were measured for the manufactured transformer based on JEC-2200. was measured. Table 1 shows the values of compressive force, space factor, sound pressure and iron loss.
  • the space factor C in Table 1 indicates the space factor of the electromagnetic steel sheet in the bent portion compressed by the compression means, and the space factor A indicates the average space factor of the electromagnetic steel sheet in the four bent portions. , Space factor B indicates the average space factor of the electromagnetic steel sheet at the four sides.
  • the examples of inventions in Table 1 refer to examples to which the present disclosure is applied, and comparative examples refer to examples to which the present disclosure is not applied.
  • the space factor of one bent portion of the plurality of bent portions is higher than the average space factor of the electromagnetic steel sheet at the four sides, the sound pressure is reduced and the iron loss is reduced. ..
  • Test Example 2 A grain-oriented electrical steel sheet having a thickness of 0.23 mm was laminated to prepare a laminated body having four bent portions. Each of the four bent portions of the laminated body was compressed by a wooden compression means at the pressure shown in Table 2 to produce a wound iron core.
  • the manufactured rolled iron core has the same configuration as that illustrated in FIG. A transformer having a capacity of 20 kVA was manufactured using this wound iron core.
  • the space factor was calculated based on JIS C 2550-5: 2011. Further, with respect to the wound iron core used in the manufactured transformer, iron loss (no load loss) and sound pressure were measured in the same manner as in Test Example 1. Table 2 shows the values of compressive force, space factor, sound pressure and iron loss.
  • the average space factor A in Table 2 indicates the average space ratio of the electromagnetic steel sheet at the four bent portions
  • the average space factor B indicates the average space ratio of the electromagnetic steel plate at the four side portions.
  • FIG. 5 shows the relationship between the average space factor A and the sound pressure.
  • the examples of inventions in Table 2 refer to examples to which the present disclosure is applied, and comparative examples refer to examples to which the present disclosure is not applied.
  • Test Example 3 A wire-wound core was produced by the same method as in Test Example 1 using a grain-oriented electrical steel sheet having a thickness of 0.20 mm, and a transformer having a capacity of 1 kVA was produced using the wound core.
  • the manufactured rolled iron core has the same configuration as that illustrated in FIG.
  • Each of the four bent portions of the wound iron core was compressed at the pressure shown in Table 3 using a wooden compression means.
  • the space factor was calculated based on JIS C 2550-5: 2011. Further, with respect to the wound iron core used in the manufactured transformer, iron loss (no load loss) and sound pressure were measured in the same manner as in Test Example 1. Table 3 shows the values of compressive force, space factor, sound pressure and iron loss.
  • the average space factor A in Table 3 indicates the average space ratio of the electromagnetic steel sheet at the four bent portions
  • the average space factor B indicates the space ratio of the electromagnetic steel plate at the four side portions.
  • FIG. 6 shows the relationship between the average space factor A and the sound pressure.
  • the examples of inventions in Table 3 refer to examples to which the present disclosure is applied, and comparative examples refer to examples to which the present disclosure is not applied.
  • Appendix 1 It has a laminated body in which a plurality of electrical steel sheets are laminated in an annular shape in a side view.
  • the laminated body has a plurality of bent portions and a plurality of side portions located between the adjacent bent portions. At least one of the bent portions has a high space factor bending in which the space factor of the electromagnetic steel sheet in the bent portion is higher than the average space factor of the electromagnetic steel sheet in the plurality of side portions.
  • the part the winding iron core.
  • Appendix 3 The wound iron core according to Appendix 1 or Appendix 2, further comprising a compression means for compressing the plurality of electrical steel sheets in the high space factor bent portion in the stacking direction of the electrical steel sheets.
  • the compression means A first contact portion that is arranged on the outer peripheral side of the high space factor bending portion and abuts on the high space factor bending portion, A second contact portion that is arranged on the inner peripheral side of the high space factor bending portion and abuts on the high space factor bending portion, and It has a connecting portion that connects the first contact portion and the second contact portion.
  • the first contact portion and the second contact portion receive a binding force by the connecting portion and compress the plurality of electrical steel sheets in the high space factor bending portion in the stacking direction of the electrical steel sheets.
  • the winding iron core described in.
  • the compression member is a rod-shaped member whose expansion and contraction can be adjusted, and is arranged on a straight line connecting the respective corners of the high space factor bent portions facing each other inside the laminated body in a side view, and faces each other in an extended state.
  • Appendix 8 The wound iron core according to Appendix 6 or Appendix 7, wherein the compression member is made of a non-magnetic material.
  • Appendix 9 The wound iron core according to any one of Appendix 1 to Appendix 8, wherein the high space factor bent portion is compressed at a pressure of 0.2 MPa or more and 4.0 MPa or less.
  • Appendix 11 The wound iron core according to any one of Appendix 1 to Appendix 10, wherein all the bent portions are the high space factor bent portions.
  • the winding iron core
  • Appendix 15 The wound iron core according to Appendix 13 or Appendix 14, wherein the high space factor bent portion includes a compression means for compressing the electromagnetic steel sheet in the laminated direction in the high space factor bent portion.
  • the compression means A contact portion that abuts on the high space factor bending portion on the outer peripheral side and the inner peripheral side of the high space factor bending portion, and a contact portion that abuts on the high space factor bending portion. It has a connecting portion for connecting the contact portion arranged on the outer peripheral side and the contact portion arranged on the inner peripheral side.
  • Appendix 17 The wound iron core according to Appendix 16, wherein the contact portion or the connecting portion has a non-magnetic member.
  • Appendix 18 The wound iron core according to Appendix 15, wherein the compression means includes a compression member that compresses the high space factor bent portions facing each other through the center of the laminated body in a side view.
  • Appendix 20 The wound iron core according to any one of Appendix 13 to Appendix 19, wherein the high space factor bent portion is compressed at a pressure of 0.2 MPa or more and 4.0 MPa or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

巻鉄心は、複数の電磁鋼板が側面視で環状に積層された積層体を備え、前記積層体は、複数の屈曲部と、隣り合う前記屈曲部の間に位置する複数の辺部と、を有し、複数の前記屈曲部のうちの少なくとも1つの前記屈曲部は、当該屈曲部における前記電磁鋼板の占積率が前記複数の辺部における前記電磁鋼板の平均占積率よりも高い高占積率屈曲部である。

Description

巻鉄心
 本開示は、巻鉄心に関する。
 巻鉄心は、変圧器、リアクトル又はノイズフィルタ等の磁心として用いられている。変圧器においては、従来、高効率化の観点から、低鉄損化が重要な課題の一つとなっており、様々な観点から低鉄損化の検討が行われている。
 また、巻鉄心が用いられた変圧器等は、電気機器や電子機器に広く適用されているが、巻鉄心に磁場を印加した際に生じる磁歪により騒音を発する。そのため、磁歪の低減による低騒音化の研究が盛んに行われている。
 例えば、特開2017-84889号公報には、コイル状に巻かれた鋼板からなる鉄心の外周に、鋼板の巻方向に周方向バンドが巻かれ、周方向バンドの表面側において、鉄心に巻回された巻き線と該鉄心との間に、振動損失係数η>0.01の積層方向バンドが配置された低騒音巻きトランスが開示されている。
 ところで、巻鉄心の低鉄損化のために、巻鉄心を複数枚の電磁鋼板で形成する技術が知られている。しかしながら、電磁鋼板を用いることで磁歪による騒音が生じやすくなる傾向がある。
 近年では、磁歪の低減による巻鉄心の低騒音化に対してより一層の要求がある。そして、巻鉄心の低騒音化に関しては、改善の余地がある。
 本開示は、鉄損が低減され、かつ、騒音が抑制された巻鉄心を提供することを目的とする。
 本開示者らは巻鉄心の低騒音化を鋭意検討するなかで、積層した電磁鋼板間の隙間に着目した。巻鉄心を用いた変圧器に時間的に変化する磁場を加えると、電磁鋼板に生じる磁歪によって電磁鋼板が積層方向に振動する。この振動によって、電磁鋼板間の隙間から空気の疎密波が生じる。この空気の疎密波が音として認識される。本開示者らは、巻鉄心の屈曲した部分では電磁鋼板間の隙間が大きくなり、この屈曲した部分の隙間が変圧器の騒音に大きく影響することを知見した。そして、この屈曲した部分の隙間を小さくすることで騒音が低減することを見出し、さらに検討した結果、本開示に至った。
 上記知見に基づいてなされた本開示の一態様の要旨は以下の通りである。
 本開示の一態様の巻鉄心は、複数の電磁鋼板が側面視で環状に積層された積層体を備え、前記積層体は、複数の屈曲部と、隣り合う前記屈曲部の間に位置する複数の辺部と、を有し、複数の前記屈曲部のうちの少なくとも1つの前記屈曲部は、当該屈曲部における前記電磁鋼板の占積率が前記複数の辺部における前記電磁鋼板の平均占積率よりも高い高占積率屈曲部である。
 本開示によれば、鉄損が低減され、かつ、騒音が抑制された巻鉄心を提供することが可能となる。
本開示の第1の実施形態に係る巻鉄心の一例を示す側面図である。 第1の実施形態に係る巻鉄心が備える圧縮手段の一例を示す図であって、図1のX部の分解斜視図である。 圧縮手段適用前後の屈曲部を示す模式図である。 本開示の第2の実施形態に係る巻鉄心の一例を示す側面図である。 試験例での4つの屈曲部における電磁鋼板の平均占積率と音圧との関係を示すグラフである。 試験例での4つの屈曲部における電磁鋼板の平均占積率と音圧との関係を示すグラフである。
 本開示の実施形態について、添付図面を参照しながら詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付すことにより重複説明を省略する。また、図中の各構成要素の比率、寸法は、実際の各構成要素の比率、寸法を表すものではない。
<第1の実施形態>
 まず、図1~図3を参照して、第1の実施形態に係る巻鉄心について説明する。図1は、本実施形態に係る巻鉄心の一例を示す側面図である。図2は、巻鉄心が備える圧縮手段の一例を示す図であって、図1のX部の分解斜視図である。図3は、圧縮手段適用前後の屈曲部を示す模式図である。なお、以下では、電磁鋼板Sを側面側から見た場合を側面視という。電磁鋼板Sの積層方向を適宜「積層方向」という。また、電磁鋼板Sの板幅方向を適宜「板幅方向」という。さらに、電磁鋼板Sの巻回方向を適宜「巻回方向」という。
 本実施形態に係る巻鉄心1は、図1に示すように、複数枚の電磁鋼板Sが側面視(言い換えると、巻鉄心1を側面から見て)で環状に積層された積層体2を備える。言い換えると、環状に形成された複数枚の電磁鋼板Sが板厚方向に積層されて積層体2が形成されている。この積層体2は、複数の屈曲部21と、互いに隣り合う屈曲部21の間に位置する複数の辺部22と、を有する。なお、ここでいう側面とは、積層された電磁鋼板Sの側面によって形成された面をいう。
 積層体2は、図1に示すように、電磁鋼板Sが積層されて側面視で八角形に成形されており、複数の屈曲部21と複数の辺部22とを有する。具体的には、積層体2は、最内周の電磁鋼板Sが4つの隅部21Aを形成するように折り曲げられて長方形状をなし、最内周の電磁鋼板Sの外周に位置する電磁鋼板Sが最内周の電磁鋼板Sの隅部21Aにおいて折り曲げられ、2つの角部21Bが形成されるように積層されている。ここで、積層体2の屈曲部21は、一つの隅部21Aと、この隅部21Aにおいて電磁鋼板Sが折り曲げられて形成された2つの角部21Bとを直線で結んだ略三角形の領域の部分である。なお、本開示は、この構成に限定されない。例えば、隅部21Aが隣接して2つある場合には、積層体2の屈曲部21は、2つの隅部21Aと、2つの角部21Bとをそれぞれ直線で結んだ略台形の領域の部分としてもよい。また、積層体2の辺部22は、隣り合う屈曲部21の間に位置する略直線状の部分である。このように、本実施形態の積層体2は、4つの屈曲部21と4つの辺部22を有している。そして、積層体2は、電磁鋼板Sの側面側から見たときに、外周に8つの角部21Bを有する八角形をなしている。一方で、積層体2は、内周に4つの隅部21Aを有する長方形をなしている。
 積層体2が有する4つの屈曲部21のそれぞれにおける電磁鋼板Sの占積率は略一定である。また、積層体2が有する4つの辺部22のそれぞれにおける電磁鋼板Sの占積率は、略一定である。なお、本実施形態では、積層体2が有する4つの屈曲部21のそれぞれにおける電磁鋼板Sの占積率は略一定であるが、4つの屈曲部21における電磁鋼板Sの占積率がそれぞれ異なっていてもよい。この場合には、後述する圧縮手段3によって、屈曲部21における電磁鋼板Sの占積率を調整可能である。
 なお、積層体2の屈曲部21及び辺部22の占積率については、JIS C 2550-5:2011に基づいて算出可能である。なお、JIS C 2550-5:2011は、IEC 60404-13: 1995,「Magnetic materials-Part 13: Methods of measurement of density, resistivity and stacking factor of electrical steel sheet and strip」に対応している。
 積層体2には、例えば、既存の方向性電磁鋼板又は既存の無方向性電磁鋼板を使用することができるが、方向性電磁鋼板を使用することが好ましい。方向性電磁鋼板を積層体2に使用することで、鉄損のうちのヒステリシス損を低減することが可能となり、巻鉄心1の鉄損をより低減することが可能となる。
 電磁鋼板Sの厚みは、特段制限されず、例えば、0.20mm以上としてもよいし、0.40mm以下としてもよい。厚みが小さい(薄い)電磁鋼板Sを用いることで、電磁鋼板Sの板厚面内において渦電流が生じ難くなり、鉄損のうちの渦電流損をより低減することが可能となる。その結果、巻鉄心1の鉄損を低減することが可能となる。電磁鋼板Sの厚みは、好ましくは、0.18mm以上である。また、電磁鋼板Sの厚みは、好ましくは、0.35mm以下であり、より好ましくは、0.27mm以下である。
 積層された電磁鋼板Sは、互いに絶縁している。好ましくは、電磁鋼板Sの表面に絶縁処理が施されて互いに絶縁されていることが好ましい。電磁鋼板Sの層間が絶縁していることで、電磁鋼板Sの板厚面内において渦電流が生じ難くなり、渦電流損を低減することが可能となる。その結果、巻鉄心1の鉄損をより低減することが可能となる。例えば、電磁鋼板Sの表面には、コロイダルシリカ及びリン酸塩を含有する絶縁コーティング液を用いて絶縁処理が施されていることが好ましい。
 また、巻鉄心1は、複数の屈曲部21のうちの少なくとも1つの電磁鋼板Sの積層方向に屈曲部21を圧縮する圧縮手段3を備えている。具体的には、圧縮手段3は、屈曲部21を電磁鋼板Sの積層方向の両側(言い換えると、屈曲部21を電磁鋼板Sの積層方向で該屈曲部21の内周側及び外周側)から圧縮する。
 本実施形態の圧縮手段3は、外板31、内板32、ボルト33、及びナット34を有する。
 図2に示すように、屈曲部21の外周側及び内周側に、それぞれ外板31及び内板32が配置されている。また、積層体2を構成する電磁鋼板Sの板幅方向に沿った外板31及び内板32の長さは、積層体2を構成する電磁鋼板Sの板幅より大きく、外板31及び内板32の長手方向の両端部には、ボルト33が挿入される挿入孔31A、32Aが設けられている。なお、ここでいう屈曲部21の外周側及び内周側とは、積層体2の屈曲部21における外周側及び内周側を意味している。
 内板32は、内板32と積層体2との間に隙間が生じないように隅部21Aの形状に応じて内板32の長手方向に延びた凸部32Bを有する。この凸部32Bは、電磁鋼板Sの振動を吸収することが可能な柔らかい素材であることが好ましい。この凸部32Bの素材としては、例えば、樹脂又は木材等を用いることが好ましい。
 外板31及び内板32は、それぞれの両端に設けられた挿入孔31A、32Aが屈曲部21の側面から突出して配置される。そして、外板31の挿入孔31Aと挿入孔31Aに対応する内板32の挿入孔32Aとにボルト33を挿入し、ボルト33にナット34を捩じ込むことで外板31と内板32とが連結される。そして、ナット34を締め付けて、外板31と内板32とで屈曲部21を積層方向に圧縮する。なお、外板31は、第1当接部の一例であり、内板32は、第2当接部の一例であり、また、ボルト33及びナット34は、連結部の一例である。
 したがって、圧縮手段3は、屈曲部21の外周側に当接する第1当接部と、屈曲部の内周側に当接する第2当接部と、第1当接部と第2当接部とを連結する連結部と、を有し、第1当接部及び第2当接部は、連結部による拘束力を受けて、電磁鋼板Sの積層方向に屈曲部21を圧縮する。言い換えると屈曲部21を構成する複数の電磁鋼板Sを積層方向に圧縮する。
 以上により、複数の屈曲部21のうちの少なくとも1つの屈曲部21は、圧縮手段3によって当該屈曲部21における電磁鋼板Sの積層方向に圧縮される。ここで、圧縮手段3を適用する前の屈曲部21は、図3の(A)に模式的に示すように、電磁鋼板S間に隙間が生じている。一般に、圧縮手段3を適用する前の屈曲部21における電磁鋼板Sの占積率は、辺部22における電磁鋼板Sの占積率よりも小さい。一方で、圧縮手段3により電磁鋼板Sの積層方向に圧縮された屈曲部21は、図3の(B)に示したように、電磁鋼板S間の隙間が小さくなる。このように圧縮手段3により、屈曲部21における電磁鋼板Sの占積率を増加させることができる。本実施形態では、圧縮手段3を用いることで、屈曲部21における電磁鋼板Sの占積率を複数の辺部22における電磁鋼板Sの平均占積率よりも高くすることができる。これにより、屈曲部21における電磁鋼板S間の隙間が小さくなった巻鉄心1に交流磁場が加えられた場合、屈曲部21における電磁鋼板S間の隙間から生じる騒音が低減される。
 なお、電磁鋼板Sの占積率が複数の辺部22における電磁鋼板Sの平均占積率よりも高い屈曲部21は、本開示の高占積率屈曲部に対応する。
 また、圧縮手段3による屈曲部21の圧縮は、圧縮された屈曲部21の占積率が93%以上となるように圧縮することが好ましく、96%以上となるように圧縮することがより好ましい。圧縮された屈曲部21の占積率が93%以上の場合、電磁鋼板Sの隙間がさらに小さくなり、交流磁場が加えられた巻鉄心1の騒音をより低減することが可能となる。そして、圧縮された屈曲部21の占積率が96%以上の場合、巻鉄心1の騒音をさらに低減することが可能となる。なお、圧縮された屈曲部21の占積率の上限値は100%である。
 なお、圧縮手段3は、少なくとも1つの屈曲部21に設けられればよいが、より多くの屈曲部21に設けられることが好ましい。圧縮手段3がより多くの屈曲部21に設けられることで、積層体2における屈曲部21全体の隙間が小さくなり、騒音を低減することが可能となる。また、圧縮手段3は、すべての屈曲部21に設けられることがより好ましい。圧縮手段3がすべての屈曲部21に設けられることで、積層体2全体として、電磁鋼板Sの隙間が小さくなり、交流磁場が加えられた巻鉄心1の騒音をより一層低減することが可能となる。
 また、外板31、内板32、ボルト33又はナット34は、非磁性体によって形成されている。非磁性体としては、例えば、木材、樹脂、銅又は真鍮等を用いることが好ましい。外板31、内板32、ボルト33又はナット34が非磁性体であれば、圧縮手段3における渦電流の発生を防止でき、その結果、鉄損の増大を防止することが可能となる。
 また、圧縮手段3は、図示しない絶縁性のワッシャーを有することが好ましい。圧縮手段3が絶縁性のワッシャーを有することで、外板31、内板32、ボルト33及びナット34を回路とした電流が流れることが防止される。これにより、この電流による磁場の発生が防止されるため、安定した磁場を形成することが可能となる。その結果、鉄損の増大が防止される。圧縮手段3が絶縁性のワッシャーを有しない場合、外板31、内板32、ボルト33又はナット34の少なくともいずれかが絶縁体であることが好ましい。外板31、内板32、ボルト33又はナット34の少なくともいずれかに絶縁体を用いることで、圧縮手段3へ電流が流れず、安定した磁場とすることができるため、鉄損の増大を防止することが可能となる。絶縁性の素材として、例えば、天然ゴム、エポキシ樹脂、ポリ塩化ビニル又はポリウレタン絶縁材等、各種公知の絶縁体を使用することができる。
 以上、本実施形態によれば、複数の屈曲部21のうち少なくとも1つの屈曲部21が、圧縮手段3によって屈曲部21における電磁鋼板Sの積層方向に圧縮されることで、圧縮された屈曲部21における電磁鋼板S間の隙間が小さくなる。その結果、交流磁場が巻鉄心1に加えられたときに、この隙間から発生する騒音を低減することが可能となる。
 本実施形態に係る巻鉄心1は、例えば、変圧器に適用可能である。本実施形態に係る変圧器は、本実施形態に係る巻鉄心1と、1次巻線と、2次巻線とを備える。1次巻線に交流電圧が印加されることにより、巻鉄心1に磁束が生じ、生じた磁束の変化により、2次巻線に電圧が生じる。当該巻鉄心が有する積層体2は、屈曲部21のうちの少なくとも1つのが、圧縮手段3によって屈曲部21における電磁鋼板Sの積層方向に圧縮されている。そのため、圧縮された屈曲部21における電磁鋼板S間の隙間が小さくなる。その結果、変圧器の騒音を抑制することが可能となる。
<第2の実施形態>
 続いて、第2の実施形態に係る巻鉄心1Aについて図4を参照しながら説明する。図4は、本実施形態に係る巻鉄心の一例を示す側面図である。巻鉄心1Aは、図4に示したように、積層体2A及び圧縮手段3Aを備える。積層体2Aは、直線状の4つの隅部21Aを有する点で第1の実施形態に係る積層体2とは異なるが、第1の実施形態において説明した積層体2と基本構成が同じため、ここでの詳細な説明は省略する。なお、第1実施形態と同一の構成に関しては、同一の符号を付して、その説明を省略する。
 第1の実施形態では、圧縮手段3が第1当接部及び第2当接部が連結部による拘束力を受けて、電磁鋼板Sの積層方向に屈曲部21を圧縮することについて説明したが、圧縮手段は上記構成に限定されない。圧縮手段は、例えば、図4に示す態様であってもよい。図4に示すように、巻鉄心1Aの積層体2Aは、側面視で積層体2Aの中心軸Cを介して対向する位置に屈曲部21をそれぞれ有している。圧縮手段3Aは、隅部21Aから屈曲部21に力を加えて屈曲部21を圧縮する。具体的には、圧縮手段3Aは、側面視で積層体2Aの中心軸Cを介して対向する2つの屈曲部21を隅部21Aから圧縮する複数の圧縮部材35を備える。圧縮部材35は、例えば、略棒状の伸縮調整可能な部材であり、任意に長さ調節可能な部材又は弾性体で構成された部材である。圧縮部材35は、例えば、ターンバックルを有する部材である。圧縮部材35は、積層体2Aの内側において、側面視で中心軸Cを介して対向する2つの隅部21Aを結ぶ直線上に配置されている。そして、圧縮部材35を伸長させることで、中心軸Cを介して対向する2つの屈曲部21が圧縮される。具体的には、圧縮部材35は、側面視で中心軸Cを介して対向する2つの隅部21Aを介して対向する2つの屈曲部21を内周側から外周側へそれぞれ押圧する。これにより、対向する2つの屈曲部21が電磁鋼板Sの積層方向にそれぞれ圧縮される。これにより、圧縮された2つの屈曲部21における電磁鋼板S間の隙間が小さくなるため、交流磁場が加えられた巻鉄心の騒音を低減することが可能となる。
 圧縮部材35は、積層体2Aを構成する電磁鋼板Sの板幅方向に複数設けられることが好ましい。すなわち、側面視で中心軸Cを介して対向する2つの隅部21Aを結ぶ直線上に配置された圧縮部材35が、積層体2Aを構成する電磁鋼板Sの板幅方向に複数配置されることで、中心軸Cを介して対向する2つの屈曲部21は、積層体2Aを構成する電磁鋼板Sの板幅方向に均一圧縮される。これにより、交流磁場が加えられた巻鉄心の騒音をより一層低減することが可能となる。
 圧縮手段3Aは、側面視で中心軸Cを介して対向する2対の屈曲部21を圧縮する複数の圧縮部材35A、35Bを有することが好ましい。これにより、巻鉄心全体として電磁鋼板S間の隙間をより小さくすることができ、その結果、交流磁場が加えられた巻鉄心1Aの騒音をより一層低減することが可能となる。さらに、圧縮手段3Aは、側面視で中心軸Cを介して対向する一対の隅部21Aを結ぶ直線上に配置される複数の圧縮部材35Aと、他の一対の隅部21Aを結ぶ直線上に配置される複数の圧縮部材35Bとを有し、複数の圧縮部材35Aと、複数の圧縮部材35Bとが、電磁鋼板Sの板幅方向に交互に配置されることが好ましい。これにより、屈曲部21が高さ方向に均一に圧縮され、占積率を高めることができる。
 なお、圧縮手段3Aは、非磁性体又は絶縁体であることが好ましい。圧縮手段3Aが非磁性体であれば、圧縮手段3における渦電流の発生を防止でき、その結果、鉄損の増大を防止することが可能となる。また、圧縮手段3Aが絶縁体であれば、圧縮手段3Aに電流が流れないため、安定した磁場を形成することが可能となる。その結果、鉄損の増大が防止される。
<変形例>
 以下では、本開示の上記実施形態の幾つかの変形例を説明する。なお、以下に説明する各変形例は、単独で本開示の上記実施形態に適用されてもよいし、組み合わせで本開示の上記実施形態に適用されてもよい。また、各変形例は、本開示の上記実施形態で説明した構成に代えて適用されてもよいし、本開示の上記実施形態で説明した構成に対して追加的に適用されてもよい。
 積層体2、2Aにおいて、4つの辺部22における電磁鋼板Sの平均占積率(%)をBとしたとき、複数の屈曲部21における電磁鋼板Sの平均占積率Aは(B-4.0)%以上であることが好ましい。平均占積率Aが(B-4.0)%以上であれば、巻鉄心の騒音を低減することが可能となる。
 屈曲部21に加えられる圧力は、圧縮手段の態様にかかわらず、好ましくは、0.2MPa以上4.0MPa以下の範囲内である。屈曲部21に加えられる圧力が上記範囲であれば、騒音が低減し、鉄損も悪化しない状況となる。なお、例えば、第1の実施形態に係る巻鉄心1であれば、屈曲部21に加えられる圧力は、ボルト33及びナット34の締め付けトルクにより管理可能である。
 積層体2、2Aにおいて、4つの辺部22における電磁鋼板Sの平均占積率(%)をBとしたとき、複数の屈曲部21のうちの少なくとも1つの屈曲部21における電磁鋼板Sの占積率Cは、圧縮手段の態様にかかわらず、B%以上(B+1)%以下であることが好ましい。占積率CがB%以上(B+1)%以下であれば、電磁鋼板Sが塑性変形することなく、屈曲部21における占積率を高めることができる。電磁鋼板Sが塑性変形しないため、乱れのない磁場が生成され、漏れ磁束の増大を抑制することが可能となる。その結果、鉄損の増大を抑制することが可能となる。また、屈曲部21における電磁鋼板Sの層間の振動が抑えられるため、騒音も抑制することが可能になる。
 また、上記の各実施形態では、積層体における外周が八角形の場合を説明したが、本開示は、これに限定されない。積層体における外周は、多角形、角丸方形、長円形、又は楕円形等であってもよい。例えば、長円形の積層体は、電磁鋼板を巻き回して製造される。一方、八角形の積層体は、環状に折り曲げた複数の電磁鋼板を板厚方向に積層して製造される。環状に折り曲げた複数の電磁鋼板を板厚方向に積層して製造した積層体は、電磁鋼板を巻き回して製造した積層体と比較して、屈曲部における占積率が小さくなり易い。そのため、圧縮手段を積層体に適用する場合は、電磁鋼板を巻き回して製造した積層体に圧縮手段を適用した場合と比較して、環状に折り曲げた複数の電磁鋼板を板厚方向に積層して製造した積層体に圧縮手段を適用した方が、高い騒音低減効果が得られやすい。また、電磁鋼板の折り曲げ回数が多いほど、屈曲部における占積率が小さくなる。そのため、圧縮手段による屈曲部の占積率向上効果が大きくなるため、圧縮手段は、八角形の積層体に適用されることが好ましい。
 上述した実施形態では、積層体2、2Aにおける内周が四角形又は八角形の場合を説明したが、本開示は、これに限定されず、積層体2、2Aにおける内周は、その他の多角形、角丸方形、長円形、又は楕円形等とすることができる。例えば、積層体2、2Aにおける内周が八角形の場合、八角形の隣り合う2つの頂点を結ぶ部分が隅部となり、積層体2、2Aにおける内周が長円形の場合は、弧状の部分が隅部となる。積層体2、2Aにおける内周が、多角形、角丸方形、長円形、又は楕円形等の場合において、屈曲部21は、隣り合う一の辺部と他の辺部との間に位置し、一の辺部における電磁鋼板S及び他の辺部における電磁鋼板Sの延在方向に対して、電磁鋼板Sが屈曲して積層された部分である。なお、第2の実施形態で説明した圧縮手段3Aの端部の形状は、隅部21Aの形状に応じた形状とすることができる。これにより、屈曲部を均一に圧縮することができる。
 また、積層体2、2Aの内周は、外周の形状に応じた形状であってもよい。例えば、積層体2、2Aの外周が八角形の場合は、内周は八角形であってもよいし、積層体2、2Aの外周が角丸方形の場合は、内周は角丸方形であってもよい。
 図1に示した圧縮手段3及び図4に示した圧縮手段3Aは、あくまでも一例であり、圧縮手段は、屈曲部21を圧縮することが可能であれば上記の態様に限定されない。
 また、積層体2、2Aの複数の辺部22のうちの少なくとも一つの辺部22の占積率を低くしてもよい。具体的には、一つの辺部22における電磁鋼板S間にスペーサ等を配置することで、辺部22における電磁鋼板S間の隙間を大きくすることができる。これにより、積層体2、2Aの放熱面積を大きくすることができる。
 なお、変形例として示した巻鉄心は、第1の実施形態の巻鉄心1と同様に、変圧器に適用可能である。本変形例で示した巻鉄心を適用した変圧器は、巻鉄心1を適用した変圧器と同様に、屈曲部における電磁鋼板間の隙間が小さくなるため、変圧器の騒音が抑制される。
 次に、本開示の試験例について説明する。本試験例での条件は、本開示の実施可能性及び効果を確認するために採用した一条件例であり、本開示は、この一条件例に限定されるものではない。本開示は、本開示の要旨を逸脱せず、本開示の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(試験例1)
 厚みが0.20mmの方向性電磁鋼板を積層し、4つの屈曲部を有する積層体を作製した。4つの屈曲部のうちの1つの屈曲部が木製の圧縮手段を用いて表1に示す圧力で圧縮された巻鉄心を製造した。製造した巻鉄心は、図1に例示したものと同じ構成である。作製した巻鉄心を用いて容量が20kVAの変圧器を製造した。製造した変圧器に用いた巻鉄心について、JIS C 2550-5:2011に基づいて占積率を算出した。また、製造した変圧器について、JEC-2200に基づいて鉄損(無負荷損)及び音圧を測定した。を測定した。表1に、圧縮力、占積率、音圧及び鉄損の値を示す。なお、表1中の占積率Cは、圧縮手段により圧縮された屈曲部における電磁鋼板の占積率を示し、占積率Aは、4つの屈曲部における電磁鋼板の平均占積率を示し、占積率Bは、4つの辺部における電磁鋼板の平均占積率を示す。なお、表1中の発明例は本開示を適用した実施例を指し、比較例は本開示を適用していない例を指す。
Figure JPOXMLDOC01-appb-T000001
 複数の屈曲部のうちの1つの屈曲部の占積率が、4つの辺部における電磁鋼板の平均占積率よりも高くなることで、音圧が小さくなり、かつ、鉄損が低減された。
(試験例2)
 厚みが0.23mmの方向性電磁鋼板を積層し、4つの屈曲部を有する積層体を作製した。この積層体の4つの屈曲部それぞれを木製の圧縮手段を用いて表2に示す圧力で圧縮し巻鉄心を製造した。製造した巻鉄心は、図1に例示したものと同じ構成である。この巻鉄心を用いて容量が20kVAの変圧器を製造した。製造した変圧器に用いた巻鉄心について、JIS C 2550-5:2011に基づいて占積率を算出した。また、製造した変圧器に用いた巻鉄心について、試験例1と同様に鉄損(無負荷損)及び音圧を測定した。表2に、圧縮力、占積率、音圧及び鉄損の値を示す。なお、表2中の平均占積率Aは、4つの屈曲部における電磁鋼板の平均占積率を示し、平均占積率Bは、4つの辺部における電磁鋼板の平均占積率を示す。また、図5に、平均占積率Aと音圧との関係を示す。なお、表2中の発明例は本開示を適用した実施例を指し、比較例は本開示を適用していない例を指す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、4つの屈曲部における電磁鋼板の平均占積率である平均占積率Aが(B-4.0)%以上であると、音圧が小さくなり、かつ、鉄損が低減された。また、図5に示したように、平均占積率Aが96.0%以上である場合、音圧はより小さくなった。
(試験例3)
 厚みが0.20mmの方向性電磁鋼板を用い、試験例1と同様の方法で巻鉄心を作製し、作製した巻鉄心を用いて容量が1kVAの変圧器を製造した。製造した巻鉄心は、図1に例示したものと同じ構成である。この巻鉄心の4つの屈曲部それぞれを木製の圧縮手段を用いて表3に示す圧力で圧縮した。製造した変圧器に用いた巻鉄心について、JIS C 2550-5:2011に基づいて占積率を算出した。また、製造した変圧器に用いた巻鉄心について、試験例1と同様に鉄損(無負荷損)及び音圧を測定した。表3に、圧縮力、占積率、音圧及び鉄損の値を示す。なお、表3中の平均占積率Aは、4つの屈曲部における電磁鋼板の平均占積率を示し、平均占積率Bは、4つの辺部における電磁鋼板の占積率を示す。また、図6に、平均占積率Aと音圧との関係を示す。なお、表3中の発明例は本開示を適用した実施例を指し、比較例は本開示を適用していない例を指す。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、4つの屈曲部における電磁鋼板の平均占積率である平均占積率Aが(B-4.0)%以上であると、音圧が小さくなり、かつ、鉄損が低減された。また、図6に示したように、占積率Aが96.0%以上である場合、音圧はより小さくなった。
 以上、本開示によれば、鉄損が低減され、かつ、騒音が抑制された巻鉄心を提供することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態及び実施例について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記1)
 複数の電磁鋼板が側面視で環状に積層された積層体を備え、
 前記積層体は、複数の屈曲部と、隣り合う前記屈曲部の間に位置する複数の辺部と、を有し、
 複数の前記屈曲部のうちの少なくとも1つの前記屈曲部は、当該屈曲部における前記電磁鋼板の占積率が前記複数の辺部における前記電磁鋼板の平均占積率よりも高い高占積率屈曲部である、巻鉄心。
 (付記2)
 前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記複数の屈曲部における前記電磁鋼板の平均占積率Aが(B-4.0)%以上である、付記1に記載の巻鉄心。
 (付記3)
 前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する圧縮手段を備える、付記1又は付記2に記載の巻鉄心。
 (付記4)
 前記圧縮手段は、
 前記高占積率屈曲部の外周側に配置され、該高占積率屈曲部に当接する第1当接部と、
 前記高占積率屈曲部の内周側に配置され、該高占積率屈曲部に当接する第2当接部と、
 前記第1当接部と前記第2当接部とを連結する連結部と、を有し、
 前記第1当接部及び第2当接部は、前記連結部による拘束力を受けて、前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する、付記3に記載の巻鉄心。
 (付記5)
 前記第1当接部及び前記第2当接部、又は、前記連結部は、非磁性体によって形成されている、付記4に記載の巻鉄心。
 (付記6)
 側面視で前記積層体の中心を介して対向する前記屈曲部を有し、
 対向する前記屈曲部は、それぞれ前記高占積率屈曲部であり、
 前記圧縮手段は、側面視で前記積層体の中心を介して対向する前記高占積率屈曲部を圧縮する圧縮部材を備える、付記3に記載の巻鉄心。
 (付記7)
 前記圧縮部材は、伸縮調整可能な棒状部材であり、前記積層体の内側で且つ側面視で対向する前記高占積率屈曲部のそれぞれの隅部を結ぶ直線上に配置され、伸長状態で対向する前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する、付記6に記載の巻鉄心。
 (付記8)
 前記圧縮部材は、非磁性体によって形成されている、付記6又は付記7に記載の巻鉄心。
 (付記9)
 前記高占積率屈曲部が、0.2MPa以上4.0MPa以下の圧力で圧縮されている、付記1~付記8のいずれか1項に記載の巻鉄心。
 (付記10)
 前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記高占積率屈曲部における前記電磁鋼板の占積率Cは、B%以上(B+1)%以下である、付記1~付記9のいずれか1項に記載の巻鉄心。
 (付記11)
 すべての前記屈曲部が前記高占積率屈曲部である、付記1~付記10のいずれか1項に記載の巻鉄心。
 (付記12)
 側面から見たときの前記積層体の形状は、4つの前記辺部と4つの前記屈曲部とを有する八角形である、付記1~付記11のいずれか1項に記載の巻鉄心。
 (付記13)
 複数の電磁鋼板が側面視で環状に積層され、複数の屈曲部と、隣り合う前記屈曲部の間に位置する複数の辺部と、を有する積層体を備え、
 複数の前記屈曲部のうちの少なくとも1つの前記屈曲部は、当該屈曲部における前記電磁鋼板の占積率が前記複数の辺部における前記電磁鋼板の平均占積率以上の高占積率屈曲部である、巻鉄心。
(付記14)
 前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記複数の屈曲部における前記電磁鋼板の平均占積率Aが(B-4.0)%以上である、付記13に記載の巻鉄心。
(付記15)
 前記高占積率屈曲部は、当該高占積率屈曲部における前記電磁鋼板の積層方向に圧縮する圧縮手段を備える、付記13又は付記14に記載の巻鉄心。
(付記16)
 前記圧縮手段は、
 前記高占積率屈曲部の外周側及び内周側において前記高占積率屈曲部に当接した当接部と、
 前記外周側に配置された前記当接部と前記内周側に配置された前記当接部とを連結する連結部と、を有し、
 前記当接部は、前記連結部による付勢力を受けて、前記電磁鋼板の積層方向に前記屈曲部を圧縮する、付記15に記載の巻鉄心。
(付記17)
 前記当接部又は前記連結部は、非磁性の部材を有する、付記16に記載の巻鉄心。
(付記18)
 前記圧縮手段は、側面視で前記積層体の中心を介して対向する前記高占積率屈曲部を圧縮する圧縮部材を備える、付記15に記載の巻鉄心。
(付記19)
 前記圧縮部材は、非磁性体である、付記18に記載の巻鉄心。
(付記20)
 前記高占積率屈曲部が、0.2MPa以上4.0MPa以下の圧力で圧縮された、付記13~付記19のいずれか1項に記載の巻鉄心。
(付記21)
 前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記高占積率屈曲部における前記電磁鋼板の占積率Cは、B%以上(B+1)%以下である、付記13~付記20のいずれか1項に記載の巻鉄心。
(付記22)
 側面から見たときの前記積層体の形状は、八角形である、付記13~付記21のいずれか1項に記載の巻鉄心。
 なお、2019年9月10日に出願された日本国特許出願2019-164446号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  複数の電磁鋼板が側面視で環状に積層された積層体を備え、
     前記積層体は、複数の屈曲部と、隣り合う前記屈曲部の間に位置する複数の辺部と、を有し、
     複数の前記屈曲部のうちの少なくとも1つの前記屈曲部は、当該屈曲部における前記電磁鋼板の占積率が前記複数の辺部における前記電磁鋼板の平均占積率よりも高い高占積率屈曲部である、巻鉄心。
  2.  前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記複数の屈曲部における前記電磁鋼板の平均占積率Aが(B-4.0)%以上である、請求項1に記載の巻鉄心。
  3.  前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する圧縮手段を備える、請求項1又は2に記載の巻鉄心。
  4.  前記圧縮手段は、
     前記高占積率屈曲部の外周側に配置され、該高占積率屈曲部に当接する第1当接部と、
     前記高占積率屈曲部の内周側に配置され、該高占積率屈曲部に当接する第2当接部と、
     前記第1当接部と前記第2当接部とを連結する連結部と、を有し、
     前記第1当接部及び第2当接部は、前記連結部による拘束力を受けて、前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する、請求項3に記載の巻鉄心。
  5.  前記第1当接部及び前記第2当接部、又は、前記連結部は、非磁体によって形成されている、請求項4に記載の巻鉄心。
  6.  側面視で前記積層体の中心を介して対向する前記屈曲部を有し、
     対向する前記屈曲部は、それぞれ前記高占積率屈曲部であり、
     前記圧縮手段は、側面視で前記積層体の中心を介して対向する前記高占積率屈曲部を圧縮する圧縮部材を備える、請求項3に記載の巻鉄心。
  7.  前記圧縮部材は、伸縮調整可能な棒状部材であり、前記積層体の内側で且つ側面視で対向する前記高占積率屈曲部のそれぞれの隅部を結ぶ直線上に配置され、伸長状態で対向する前記高占積率屈曲部における前記複数の電磁鋼板を該電磁鋼板の積層方向に圧縮する 請求項6に記載の巻鉄心。
  8.  前記圧縮部材は、非磁性体によって形成されている、請求項6又は請求項7に記載の巻鉄心。
  9.  前記高占積率屈曲部が、0.2MPa以上4.0MPa以下の圧力で圧縮されている、請求項1~8のいずれか1項に記載の巻鉄心。
  10.  前記複数の辺部における前記電磁鋼板の平均占積率(%)をBとしたとき、前記高占積率屈曲部における前記電磁鋼板の占積率Cは、B%以上(B+1)%以下である、請求項1~9のいずれか1項に記載の巻鉄心。
  11.  すべての前記屈曲部が前記高占積率屈曲部である、請求項1~10のいずれか1項に記載の巻鉄心。
  12.  側面から見たときの前記積層体の形状は、4つの前記辺部と4つの前記屈曲部とを有する八角形である、請求項1~11のいずれか1項に記載の巻鉄心。
PCT/JP2020/033490 2019-09-10 2020-09-03 巻鉄心 WO2021049419A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3153414A CA3153414A1 (en) 2019-09-10 2020-09-03 Wound core
AU2020345300A AU2020345300B2 (en) 2019-09-10 2020-09-03 Wound core
US17/641,103 US20220285074A1 (en) 2019-09-10 2020-09-03 Wound core
KR1020227011236A KR20220058932A (ko) 2019-09-10 2020-09-03 권철심
BR112022004233A BR112022004233A2 (pt) 2019-09-10 2020-09-03 Núcleo enrolado
EP20863154.9A EP4030447A4 (en) 2019-09-10 2020-09-03 WRAPPED CORE
MX2022002869A MX2022002869A (es) 2019-09-10 2020-09-03 Nucleo devanado.
JP2021545499A JP7288213B2 (ja) 2019-09-10 2020-09-03 巻鉄心
CN202080062833.4A CN114342020A (zh) 2019-09-10 2020-09-03 卷绕铁芯

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-164446 2019-09-10
JP2019164446 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021049419A1 true WO2021049419A1 (ja) 2021-03-18

Family

ID=74866595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033490 WO2021049419A1 (ja) 2019-09-10 2020-09-03 巻鉄心

Country Status (10)

Country Link
US (1) US20220285074A1 (ja)
EP (1) EP4030447A4 (ja)
JP (1) JP7288213B2 (ja)
KR (1) KR20220058932A (ja)
CN (1) CN114342020A (ja)
AU (1) AU2020345300B2 (ja)
BR (1) BR112022004233A2 (ja)
CA (1) CA3153414A1 (ja)
MX (1) MX2022002869A (ja)
WO (1) WO2021049419A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124222A (en) * 1978-03-20 1979-09-27 Hitachi Ltd Three-leg winding iron core manufacturing method
JPS6083307A (ja) * 1983-10-14 1985-05-11 Toshiba Corp 巻鉄心型静止誘導電器
JPH07106156A (ja) * 1993-10-01 1995-04-21 Kyoto Daihen Kk 巻鉄心変圧器
JPH0878265A (ja) * 1994-08-31 1996-03-22 Aichi Electric Co Ltd 巻鉄心の成形保持装置
JP2015141930A (ja) * 2014-01-27 2015-08-03 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
CN106526335A (zh) * 2016-12-31 2017-03-22 西南交通大学 径向压力可变的卷铁心损耗测试系统及测试方法
JP2017157789A (ja) * 2016-03-04 2017-09-07 株式会社日立産機システム 静止誘導電器
JP2019016446A (ja) 2017-07-04 2019-01-31 日東電工株式会社 透明導電性フィルム及びタッチパネル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092791B2 (ja) * 1998-10-06 2008-05-28 住友金属工業株式会社 低損失低騒音積み鉄心およびその製造方法
US6473961B1 (en) * 2000-11-13 2002-11-05 Abb Inc. Method of manufacturing magnetic cores for power transformers
JP2006351679A (ja) * 2005-06-14 2006-12-28 Sumitomo Electric Ind Ltd リアクトル装置
US9013263B2 (en) * 2008-09-03 2015-04-21 Hitachi Industrial Equipment Systems Co., Ltd. Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
WO2013099160A1 (ja) * 2011-12-26 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板
CN103996500A (zh) * 2014-06-05 2014-08-20 刘林 卷绕式铁芯及铁芯电抗器
JP2016111216A (ja) * 2014-12-08 2016-06-20 株式会社東芝 静止誘導電器およびその製造方法
CN106298187B (zh) * 2015-06-05 2018-01-12 齐会南 连续卷绕的单相大型铁芯及其制造方法
JP6531613B2 (ja) * 2015-10-26 2019-06-19 日本製鉄株式会社 低騒音巻きトランスおよびその製造方法
JP6819136B2 (ja) * 2016-08-24 2021-01-27 日本製鉄株式会社 トランス
US20220351890A1 (en) * 2019-09-03 2022-11-03 Nippon Steel Corporation Wound core

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124222A (en) * 1978-03-20 1979-09-27 Hitachi Ltd Three-leg winding iron core manufacturing method
JPS6083307A (ja) * 1983-10-14 1985-05-11 Toshiba Corp 巻鉄心型静止誘導電器
JPH07106156A (ja) * 1993-10-01 1995-04-21 Kyoto Daihen Kk 巻鉄心変圧器
JPH0878265A (ja) * 1994-08-31 1996-03-22 Aichi Electric Co Ltd 巻鉄心の成形保持装置
JP2015141930A (ja) * 2014-01-27 2015-08-03 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
JP2017157789A (ja) * 2016-03-04 2017-09-07 株式会社日立産機システム 静止誘導電器
CN106526335A (zh) * 2016-12-31 2017-03-22 西南交通大学 径向压力可变的卷铁心损耗测试系统及测试方法
JP2019016446A (ja) 2017-07-04 2019-01-31 日東電工株式会社 透明導電性フィルム及びタッチパネル

Also Published As

Publication number Publication date
CN114342020A (zh) 2022-04-12
BR112022004233A2 (pt) 2022-05-31
EP4030447A4 (en) 2022-11-30
EP4030447A1 (en) 2022-07-20
CA3153414A1 (en) 2021-03-18
AU2020345300B2 (en) 2023-12-07
JP7288213B2 (ja) 2023-06-07
AU2020345300A1 (en) 2022-04-14
US20220285074A1 (en) 2022-09-08
JPWO2021049419A1 (ja) 2021-03-18
MX2022002869A (es) 2022-04-26
KR20220058932A (ko) 2022-05-10

Similar Documents

Publication Publication Date Title
US9263181B2 (en) Multi-phase transformer and transformation system
JP4504426B2 (ja) 平面高電圧変圧器デバイス
WO2012169325A1 (ja) 高周波トランス
EP2873078B1 (en) Hybrid transformer cores
JP7047931B2 (ja) 巻鉄心及び変圧器
WO2021166314A1 (ja) 静止誘導機器および変圧器
JP6819136B2 (ja) トランス
JP4092791B2 (ja) 低損失低騒音積み鉄心およびその製造方法
KR100299893B1 (ko) 트랜스
WO2021049419A1 (ja) 巻鉄心
CN105895335B (zh) 线圈组件及包括该线圈组件的高电流电感器和高电流反应器
WO2021045169A1 (ja) 巻鉄心
JP2002353045A (ja) パワートランス及びこれを用いた電力変換装置
RU2796922C1 (ru) Ленточный сердечник
CN101447314A (zh) 胶水涂层降噪的非晶双线圈单铁心装置
JP5288228B2 (ja) リアクトル磁心およびリアクトル
JPH03280409A (ja) 平面トランス
WO2022064662A1 (ja) トランス及びコンバータ
JP2017162902A (ja) インダクタ
JP2602682Y2 (ja) 変成器
JP2011138941A (ja) 変圧器および変圧システム
AU2022374437A1 (en) Magnetic core
CN117461099A (zh) 变压器的铁芯及其制造方法
CN101447302A (zh) 环氧树脂涂层降噪的非晶双线圈单铁心装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3153414

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004233

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227011236

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020345300

Country of ref document: AU

Date of ref document: 20200903

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020863154

Country of ref document: EP

Effective date: 20220411

ENP Entry into the national phase

Ref document number: 112022004233

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220308

WWE Wipo information: entry into national phase

Ref document number: 522431899

Country of ref document: SA