WO2021049271A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2021049271A1
WO2021049271A1 PCT/JP2020/031451 JP2020031451W WO2021049271A1 WO 2021049271 A1 WO2021049271 A1 WO 2021049271A1 JP 2020031451 W JP2020031451 W JP 2020031451W WO 2021049271 A1 WO2021049271 A1 WO 2021049271A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
motor
pattern
stagnation
phase
Prior art date
Application number
PCT/JP2020/031451
Other languages
English (en)
French (fr)
Inventor
坂口 浩二
誠二 中山
山田 純
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020004279.0T priority Critical patent/DE112020004279T5/de
Priority to CN202080062846.1A priority patent/CN114365415B/zh
Publication of WO2021049271A1 publication Critical patent/WO2021049271A1/ja
Priority to US17/685,524 priority patent/US12119762B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/029Restarting, e.g. after power failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details of stopping control
    • H02P3/025Details of stopping control holding the rotor in a fixed position after deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • F16H2061/326Actuators for range selection, i.e. actuators for controlling the range selector or the manual range valve in the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3458Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire
    • F16H63/3466Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire using electric motors

Definitions

  • This disclosure relates to a motor control device.
  • Patent Document 1 the number of energizing phases that are energized at the same time is kept constant so as to suppress the torque fluctuation of the motor.
  • An object of the present disclosure is to provide a motor control device capable of appropriately controlling the drive of a motor.
  • the motor control device of the present disclosure controls a motor having a motor winding, and includes an energization control unit and a stagnation determination unit.
  • the energization control unit controls energization of the motor winding according to the detection value of the rotation position sensor that detects the rotation position of the motor.
  • the stagnation determination unit determines the stagnation of the motor.
  • the energization control unit controls energization with a change pattern that is a different energization pattern from the regular pattern preset according to the detection value of the rotation position sensor.
  • FIG. 1 is a perspective view showing a shift-by-wire system according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a shift range control device according to the first embodiment.
  • FIG. 4A is a diagram showing an energization pattern and an energization phase according to the first embodiment.
  • FIG. 4B is a diagram showing the relationship between the electric angle and the motor torque according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating control when the motor is stagnant according to the first embodiment.
  • FIG. 6 is an explanatory diagram illustrating control when the motor is stagnant according to the first embodiment.
  • FIG. 7 is a flowchart illustrating the energization control process according to the first embodiment.
  • FIG. 8 is a flowchart illustrating the energization control process according to the first embodiment.
  • FIG. 9 is a time chart illustrating the energization control process according to the first embodiment.
  • FIG. 10 is a time chart illustrating the energization control process according to the first embodiment.
  • FIG. 11 is an explanatory diagram illustrating control when the motor is stagnant according to the second embodiment.
  • FIG. 12 is a flowchart illustrating the energization control process according to the second embodiment.
  • FIG. 13 is a flowchart illustrating the energization control process according to the second embodiment.
  • FIG. 14 is a time chart illustrating the energization control process according to the second embodiment.
  • FIG. 15 is an explanatory diagram illustrating control when the motor is stagnant according to the third embodiment.
  • FIG. 16 is a flowchart illustrating the energization control process according to the third embodiment.
  • FIG. 17 is a flowchart illustrating the energization control process according to the third embodiment.
  • FIG. 18 is a time chart illustrating the energization control process according to the third embodiment.
  • FIG. 19 is an explanatory diagram illustrating control when the motor is stagnant according to the fourth embodiment.
  • FIG. 20A is a diagram showing an energization pattern and an energization phase according to the fifth embodiment.
  • FIG. 20B is a diagram showing the relationship between the electric angle and the motor torque according to the fifth embodiment.
  • FIG. 21 is an explanatory diagram illustrating control when the motor is stagnant according to the fifth embodiment.
  • FIG. 22A is a diagram showing an energization pattern and an energization phase according to the sixth embodiment.
  • FIG. 22B is a diagram showing the relationship between the electric angle and the motor torque according to the sixth embodiment.
  • FIG. 23 is an explanatory diagram illustrating control when the motor is stagnant according to the sixth embodiment.
  • FIG. 24 is an explanatory diagram illustrating control when the motor is stagnant according to the seventh embodiment.
  • FIG. 25A is a diagram showing an energization pattern and an energization phase according to the eighth embodiment.
  • FIG. 25B is a diagram showing the relationship between the electric angle and the motor torque according to the eighth embodiment.
  • FIG. 26 is an explanatory diagram illustrating control when the motor is stagnant according to the eighth embodiment.
  • FIG. 27 is an explanatory diagram illustrating control when the motor is stagnant according to the ninth embodiment.
  • FIG. 28A is a diagram showing an energization pattern and an energization phase according to the tenth embodiment.
  • FIG. 28B is a diagram showing the relationship between the electric angle and the motor torque according to the tenth embodiment.
  • FIG. 29 is an explanatory diagram illustrating control when the motor is stagnant according to the tenth embodiment.
  • FIG. 30 is an explanatory diagram illustrating control when the motor is stagnant according to the eleventh embodiment.
  • the shift-by-wire system 1 which is a motor drive system includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40 as a motor control device, and the like. ..
  • the motor 10 rotates by being supplied with electric power from a battery 90 mounted on a vehicle (not shown), and functions as a drive source for the shift range switching mechanism 20.
  • the motor 10 is, for example, a switched reluctance motor.
  • the motor 10 has a motor winding 11 wound around a salient pole of a stator (not shown).
  • the motor winding 11 has a U-phase winding 111, a V-phase winding 112, and a W-phase winding 113.
  • a rotor By controlling the energization of the motor winding 11, a rotor (not shown) is rotated.
  • the number of salient poles of the stator is 12, and the number of salient poles of the rotor is 8.
  • the encoder 13 which is a rotation position sensor detects the rotation position of a rotor (not shown) of the motor 10.
  • the encoder 13 is, for example, a magnetic rotary encoder, which is composed of a magnet that rotates integrally with the rotor, a Hall IC for magnetic detection, and the like.
  • the encoder 13 outputs an encoder signal which is a phase A and phase B pulse signal at predetermined angles in synchronization with the rotation of the rotor.
  • the speed reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and decelerates the rotation of the motor 10 to output to the output shaft 15. As a result, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20.
  • the output shaft 15 is provided with an output shaft sensor 16 that detects the angle of the output shaft 15.
  • the output shaft sensor 16 is, for example, a potentiometer.
  • the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and applies the rotational driving force output from the speed reducer 14 to the manual valve 28 and the parking lock mechanism 30. Communicate to.
  • the detent plate 21 is fixed to the output shaft 15 and driven by the motor 10.
  • the detent plate 21 is provided with a pin 24 that projects parallel to the output shaft 15.
  • the pin 24 is connected to the manual valve 28.
  • the shift range switching mechanism 20 converts the rotational motion of the motor 10 into a linear motion and transmits it to the manual valve 28.
  • the manual valve 28 is provided on the valve body 29.
  • valleys 211 and 212 are provided on the detent spring 25 side of the detent plate 21.
  • the valley portion 211 corresponds to the P range
  • the valley portion 212 corresponds to the NotP range, which is a range other than the P range.
  • the detent spring 25 is a plate-shaped member that can be elastically deformed, and a detent roller 26 is provided at the tip thereof.
  • the detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21.
  • the detent spring 25 is elastically deformed, and the detent roller 26 moves between the valleys 211 and 212.
  • the swing of the detent plate 21 is regulated, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and the automatic transmission is performed.
  • the shift range of the transmission 5 is fixed.
  • the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft portion 34, and a parking gear 35.
  • the parking rod 31 is formed in a substantially L shape, and one end 311 side is fixed to the detent plate 21.
  • a cone 32 is provided on the other end 312 side of the parking rod 31.
  • the cone 32 is formed so that the diameter is reduced toward the other end 312 side.
  • the parking lock pole 33 comes into contact with the conical surface of the conical body 32 and is provided so as to be swingable around the shaft portion 34.
  • a convex portion 331 that can mesh with the parking gear 35 is provided.
  • the parking lock pole 33 is pushed up and the convex portion 331 and the parking gear 35 mesh with each other.
  • the cone 32 moves in the direction of the arrow NotP, the meshing between the convex portion 331 and the parking gear 35 is released.
  • the parking gear 35 is provided on an axle (not shown) so as to be able to mesh with the convex portion 331 of the parking lock pole 33.
  • the rotation of the axle is restricted.
  • the shift range is the NotP range, which is a range other than P
  • the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30.
  • the shift range is the P range
  • the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
  • the shift range control device 40 includes a drive circuit unit 41, a current detection unit 45, an ECU 50, and the like.
  • the drive circuit unit 41 has three switching elements 411, 412, and 413.
  • the drive circuit unit 41 is provided between the windings 111 to 113 of each phase and the ground.
  • the switching elements 411 to 413 are provided corresponding to the windings 111 to 113 of each phase, and switch the energization of the corresponding phase.
  • the switching elements 411 to 413 of this embodiment are MOSFETs, but may be IGBTs or the like.
  • the windings 111 to 113 of the motor winding 11 are connected by the connection portion 115. Power is supplied to the connection portion 115 from the battery 90 via the power supply line 901.
  • the power supply line 901 is provided with a relay unit 91, and when the relay unit 91 is turned on, power is supplied to the connection unit 115.
  • the current detection unit 45 is provided in the collective wiring 451 connecting the source and the ground of the switching elements 411 to 413, and detects the collective current Ia, which is the sum of the currents flowing in the windings 111 to 113.
  • the ECU 50 is internally provided with a CPU, ROM, RAM, I / O, and a bus line connecting these configurations, which are not shown.
  • Each process in the ECU 50 may be a software process by executing a program stored in advance in a physical memory device such as a ROM (that is, a readable non-temporary tangible recording medium) on the CPU, or a dedicated process. It may be hardware processing by an electronic circuit.
  • the ECU 50 controls the switching of the shift range by controlling the drive of the motor 10 based on the shift signal according to the driver required shift range, the signal from the brake switch, the vehicle speed, and the like. Further, the ECU 50 controls the drive of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening degree, the driver required shift range, and the like.
  • the shift stage is controlled by controlling the shift hydraulic control solenoid 6.
  • the number of shifting hydraulic control solenoids 6 is provided according to the number of shifting stages and the like. In the present embodiment, one ECU 50 controls the drive of the motor 10 and the solenoid 6, but the motor ECU for controlling the motor 10 and the AT-ECU for solenoid control may be separated.
  • the drive control of the motor 10 will be mainly described.
  • the ECU 50 has an energization control unit 51 and a stagnation determination unit 53.
  • the energization control unit 51 commands the energization phase based on the encoder count value Cent according to the encoder signal from the encoder 13, and controls the energization of the motor winding 11.
  • the encoder count value Cen is counted up or down each time the edge of the encoder signal is detected. In the present embodiment, the encoder count value Cen is counted up at the time of forward rotation and is counted down at the time of reverse rotation. Further, the current is limited so that the gathering current Ia does not exceed the current limit value.
  • the stagnation determination unit 53 determines the stagnation of the motor 10.
  • the relationship between the energization pattern number and the energization phase is stored in a storage unit (not shown). Let the stored correspondence be a normal pattern. Under normal conditions, each time the pulse edge of the encoder signal is detected, the energization pattern is shifted by +1 during forward rotation and -1 during reverse rotation. The motor 10 is rotated by switching the energizing phase according to the energizing pattern.
  • the energization patterns P0 to P11 are defined as one cycle corresponding to one electric angle cycle, and the phases energized in each energization pattern are indicated by circles. The same applies to FIGS. 20A, 22A, 25A and 28A, which will be described later. In the figure, in order to avoid complication, the description of the symbol "P" indicating the pattern number is omitted, and only the number is described.
  • the motor 10 is rotated by repeating the two-phase energization that energizes the two phases of the windings 111 to 113 without using the one-phase energization that energizes the one phase of the windings 111 to 113.
  • the horizontal axis represents the electric angle and the vertical axis represents the motor torque, and the motor torque corresponding to the energized phase for one cycle of the electric angle is shown. The motor torque is described assuming that each phase current is constant.
  • the torque generated during one-phase energization is indicated by a one-dot chain line
  • the torque generated during two-phase energization is indicated by a two-dot chain line
  • the encoder edge generation location is indicated by a triangular mark
  • the energization pattern is also shown.
  • hatching was performed at the locations where the energized phase is switched in the normal pattern. The same applies to the figures according to the embodiments described later.
  • the case where the motor 10 is rotating in the forward direction will be mainly described.
  • the WU phase is energized by turning on the switching elements 411 and 413, and when the encoder edge is detected in the energization pattern P2, switching is performed.
  • the elements 411 and 412 are turned on and switched to UV phase energization.
  • UV phase energization is continued.
  • the switching elements 412 and 413 are turned on to switch to VW phase energization.
  • VW phase energization is continued.
  • the encoder edge is detected in the energization pattern P10, the energization is switched to WU phase energization.
  • a predetermined range including a cross position where the magnitude relation between the torque of the energized phase before switching and the torque of the energized phase after switching is exchanged can be regarded as a “torque reduction region”.
  • the energized phase is switched on the front side of the cross position where the magnitude relation between the torque of the energized phase before switching and the torque of the energized phase after switching is exchanged. In other words, on the front side of the cross position, the energization pattern before switching can output a larger torque.
  • energization in the energization pattern corresponding to n is “energization in the regular pattern”
  • energization in the energization pattern corresponding to (n-1) is “energization pattern”.
  • "Returning one” and energizing with the energization pattern corresponding to (n + 1) are defined as "advancing the energization pattern by one”. That is, in the example of FIG.
  • the energization pattern is changed when the energization off duration T11 elapses from the motor stagnation. Return one. Further, when the energization return duration T12 elapses after returning one energization pattern, the energization pattern is returned to the normal pattern.
  • the lines are separated as appropriate to the extent that they can be distinguished.
  • step S101 is omitted and simply referred to as the symbol “S”.
  • S the motor 10 will be described as rotating in the forward direction except for the return due to the power off.
  • the motor 10 is rotated in the opposite direction, the positive / negative relationship of the encoder count value Cent is reversed. That is, when the motor 10 rotates in the reverse direction, "+1" may be read as "-1" and "-1" may be read as "+1".
  • the stagnation determination unit 53 determines whether or not the encoder count value Cent is stagnation. In the present embodiment, when the encoder count value Cen does not change over the stagnation determination time T10, it is determined that the encoder count value Cen is stagnant. When it is determined that the encoder count value Cen is not stagnant (S101: NO), the process proceeds to S111, and the energizing phase of the normal pattern corresponding to the current encoder pattern is energized. When it is determined that the encoder count value Cen is stagnant (S101: YES), the process proceeds to S102.
  • the stagnation status includes “no processing” when no processing is performed during stagnation, “energization off” when the switching elements 411 to 413 are off, and “energization return” when one energization pattern is returned.
  • “waiting for end” is included in the state after the end of processing at the time of stagnation. If the stagnation status is "no processing”, it shifts to S103, if it is “power off”, it shifts to S106, if it "returns power”, it shifts to S109, and if it is "waiting for completion", it shifts to S111.
  • the ECU 50 determines whether or not the stagnant position of the motor 10 is the torque drop position.
  • the motor torque drops. Therefore, here, the energization patterns corresponding to the current encoder count value Cen are P3, P7, and P11. Make a positive decision when, and make a negative decision in other cases.
  • the motor torque drops when the energization pattern is P2, P6, P10. Therefore, when the motor 10 rotates in the reverse direction, an affirmative judgment is made when the energization pattern is P2, P6, P10, and in other cases. Make a negative decision.
  • the energization control unit 51 sets the stagnation status to "energization off” and turns off the switching elements 411 to 413. In addition, the time elapsed since the stagnation status is set to "energization off” is started.
  • the ECU 50 holds the current encoder count value Cen as the stagnation count value Cst in a storage unit such as a RAM (not shown).
  • the current encoder count value will be referred to as the “current counter” as appropriate.
  • the ECU 50 determines whether or not the energization off duration T11 has elapsed after setting the stagnation status to "energized off". If it is determined that the energization off duration T11 has not elapsed (S106: NO), the energization off is continued without performing the processing after S107. When it is determined that the energization off duration T11 has elapsed (S106: YES), the process proceeds to S107, the stagnation status is set to "energization return", and the elapsed time from the stagnation status to "energization return” is counted. Further, the energization control unit 51 returns one energization pattern in S108. If one energization pattern has already been returned, that state is continued.
  • the ECU 50 determines whether or not the duration T12 of returning power has elapsed after setting the stagnation status to "returning power". When it is determined that the energization return duration T12 has not elapsed (S109: NO), the process proceeds to S108, and the state in which the energization pattern is returned by one is continued. When it is determined that the energization return duration T12 has elapsed (S109: YES), the process proceeds to S110, and the stagnation status is set to "waiting for end”. In S111, the ECU 50 energizes the energizing phase of the normal pattern corresponding to the current encoder count value Ce.
  • the ECU 50 updates the encoder count value Ce.
  • the ECU 50 determines whether or not the energization status is processed. When it is determined that the stagnation status is "no processing" (S152: YES), the process proceeds to S156. When it is determined that the stagnation status is other than "no processing" (S152: NO), the process proceeds to S153.
  • the ECU 50 determines whether the stagnation status is waiting for the end. When it is determined that the stagnation status is "waiting for end” (S153: YES), the process proceeds to S155. When it is determined that the stagnation status is "energization off” or “energization return” (S153: NO), the process proceeds to S154.
  • the ECU 50 determines whether or not the current encoder count value Cen is the stagnation count value Cst + 1. When it is determined that the current encoder count value Cen is not the stagnation count value Cst + 1 (S154: NO), the process proceeds to S157. When it is determined that the current encoder count value Cen is the stagnation count value Cst + 1 (S154: YES), the process proceeds to S155.
  • the ECU 50 switches the stagnation status to "no processing".
  • the energization control unit 51 energizes the energization phase of the normal pattern corresponding to the current encoder count value Cen.
  • the ECU 50 sets the stagnation status to energization return.
  • the energization control unit 51 returns one energization pattern. If one energization pattern has already been returned, that state is continued.
  • FIG. 9 the encoder edge, the motor angle, the current counter, the stagnation status, and the energization pattern are shown from the top. The same applies to the time chart according to FIG. 10 and the embodiment described later.
  • the value corresponding to the energization pattern P0 is set to A, and the "k" portion in (A + k) is described so as to correspond to the normal energization pattern. Further, in FIG. 9
  • the encoder edge is detected at time x11, the current counter is updated from A + 2 to A + 3, and the motor 10 is stopped at time x12 when the current counter is A + 3.
  • the energization pattern at this time is the pattern P3, which is the torque drop position.
  • the motor 10 When the energization is turned off, the motor 10 is returned in the direction opposite to the rotation direction before the stagnation due to the load torque.
  • the current counter When the encoder edge is detected at time x14, the current counter is set to A + 2, the stagnation status is switched from “energization off” to "energization return", and the energization pattern is returned by one. That is, since the counter is currently A + 2, the pattern P1 which is the energization pattern corresponding to (A + 2) -1, that is, the WU phase energization is used.
  • the energization pattern is set to the pattern P2 corresponding to (A + 3) -1. Since the patterns P1 and P2 are both WU phase energized, WU phase energization is continued.
  • the current counter is updated to A + 4.
  • the energization pattern is set to the regular pattern pattern P4, and the WU phase energization is switched to the UV phase energization.
  • time x21 to time x23 in FIG. 10 is the same as the processing of time x11 to time x13 in FIG.
  • the motor 10 is returned by turning off the power, but if the return is slow, for example, when the friction is large, it takes time for the motor 10 to return to the encoder edge.
  • the stagnation status is switched from "energization off” to "energization return” at the time x24 when the energization off duration time T11 elapses after the stagnation status is set to energization off. Since the current counter at this time is A + 3, the pattern P2, which is the energization pattern corresponding to (A + 3) -1, that is, the WU phase energization is used.
  • the energization status is switched from "energization return" to "waiting for end", and the energization pattern is the regular pattern pattern P3. That is, it switches to UV phase energization.
  • the encoder edge is detected at time x26 while the stagnant stator is in the "waiting for end” state, the current counter is updated to A + 4, and the energization status is switched from "waiting for end” to "no processing". Further, the energization pattern is set to pattern P4. Since the patterns P3 and P4 are both UV phase energized, the UV phase energization is continued. If the encoder edge is detected before the time x25 when the energization return duration T12 elapses and the current count is updated to A + 4, the normal return may be performed at a timing before the time x25.
  • the motor 10 can be appropriately restarted by making the energizing phase different from the normal pattern and selecting an energizing pattern that produces more torque. If the motor 10 cannot be driven to the advance angle side from the stagnation position even with such control, it is determined that the motor 10 is stopped due to other factors (for example, the wall position during wall contact control, mechanical lock abnormality, etc.). Separate processing may be performed as appropriate.
  • the shift range control device 40 controls the drive of the motor 10 having the motor winding 11, and the ECU 50 includes an energization control unit 51 and a stagnation determination unit 53.
  • the energization control unit 51 controls energization of the motor winding 11 according to the detection value of the encoder 13 that detects the rotation position of the motor 10.
  • the stagnation determination unit 53 detects the stagnation of the motor 10.
  • the energization control unit 51 controls energization with a change pattern that is a different energization pattern from the preset normal pattern according to the detection value of the encoder 13.
  • a regular pattern is set according to the encoder count value Cent.
  • the energization control unit 51 turns off the energization and then restarts the energization in a change pattern.
  • the motor 10 can be restarted more reliably from the rotation position where a relatively large torque can be output. Can be done.
  • the energization control unit 51 resumes energization in a change pattern.
  • the energization restart position is a position where the encoder edge is detected on the retard side from the stagnation position. As a result, the motor 10 can be restarted at the optimum position.
  • the energization control unit 51 resumes energization in a change pattern when the energization off duration T11 elapses after the energization is turned off. As a result, even when the return of the motor 10 is slow, such as when the load torque is large, the change pattern can be appropriately switched.
  • the change pattern is an energization pattern on the retard side of the stagnation position of the motor 10.
  • the rotation direction side before the motor 10 stagnates is referred to as a reference rotation direction
  • the side advancing in the reference rotation direction from the stagnant position is referred to as the "advance angle side”
  • the returning side is referred to as the "lag angle side”.
  • the energization control unit 51 returns to the normal pattern when it advances to the return position on the advance angle side from the stagnation position of the motor 10 after starting the energization in the change pattern.
  • the return position is a position where the encoder edge is detected on the advance angle side of the stagnation position.
  • the energization control unit 51 returns to the normal pattern when the energization return duration T12 elapses after starting the energization in the changed pattern. As a result, it is possible to return to the normal pattern at an appropriate timing other than the encoder edge where the angle can be detected.
  • the energization control unit 51 changes the energization pattern when the stagnation position of the motor 10 is in the torque reduction region, and does not change the energization pattern when the stagnation position of the motor 10 is not in the torque reduction region. In other words, the control for changing the energization pattern is not performed in the region where the stagnation position is not the torque reduction region and the effect of changing the energization pattern is not recognized. As a result, change control of the energization pattern can be appropriately performed.
  • the regions of the energization patterns P3, P7, and P11 when the motor rotates in the forward direction correspond to the "torque reduction region”. Further, the regions of the energization patterns P2, P6, and P10 during the reverse rotation of the motor correspond to the "torque reduction region".
  • the second embodiment is shown in FIGS. 11 to 14.
  • the energization pattern in the normal state is the same as that in the first embodiment.
  • the energization pattern is returned by one without turning off the energization.
  • the motor 10 advances to the stagnation count value Cst + 1
  • the energization pattern is returned to the normal pattern.
  • the stagnation status of this embodiment is "no processing" or "returning power", and "off power” and "waiting for end” are omitted.
  • FIGS. 12 and 13 The energization control process of this embodiment is shown in FIGS. 12 and 13. This process is performed by the ECU 50, in which FIG. 12 is performed at a predetermined cycle (for example, 1 [ms]) and FIG. 13 is performed by encoder edge interrupt.
  • a predetermined cycle for example, 1 [ms]
  • FIG. 13 is performed by encoder edge interrupt.
  • the process of S201 in FIG. 12 is the same as the process of S101 in FIG. 7, and the process of S202 is the same as the process of S111.
  • the ECU 50 determines whether or not the stagnation status is "no processing". When the stagnation status is determined to be "no processing" (S203: YES), the process proceeds to S204, and when it is determined to be "return to power" (S203: NO), the process proceeds to S206.
  • the ECU 50 switches the energization status from "no processing” to "return to energization” in S204, and holds the current encoder count value Cen as the stagnation count value Cst in a storage unit such as a RAM in S205.
  • the energization control unit 51 returns one energizing phase. If one energization pattern has already been returned, that state is continued.
  • the process of S251 in FIG. 13 is the same as the process of S151 in FIG. In S252, the ECU 50 determines whether the stagnation status is "no processing". When it is determined that the stagnation status is "no processing" (S252: YES), the process proceeds to S255 and the normal pattern is energized. When it is determined that the stagnation status is "return to power" (S252: NO), the process proceeds to S253.
  • S253 The processing of S253 is the same as that of S154 in FIG. 8, and when it is determined that the current encoder count value Cen is the stagnation count value Cst + 1 (S253: YES), the process shifts to S254 and the current encoder count value. When it is determined that Cent is not the stagnation count value Cst + 1 (S253: NO), the process proceeds to S256.
  • S254 to S257 is the same as the processing of S155 to S158.
  • the energization control process of this embodiment will be described with reference to the time chart of FIG.
  • the processing from time x31 to time x32 is the same as the process from time x11 to time x12 in FIG. If the state in which the encoder count value Cen is not updated from A + 3 continues for the stagnation determination time T10 at time x33, the stagnation status is switched from "no processing" to "return to energization", and one energization pattern is returned. That is, since the counter is currently A + 3, the pattern P2, which is the energization pattern corresponding to (A + 3) -1, that is, the WU phase energization is used. Further, the stagnation count value Cst is set to (A + 3).
  • the encoder count value Cen is updated from A + 3 to A + 4.
  • the stagnation status is switched from "energization return" to "no processing”.
  • the energization pattern is set to pattern P4, which is a normal pattern, and the WU phase energization is switched to the UV phase energization. Even with this configuration, the same effect as that of the above embodiment can be obtained.
  • FIGS. 15 to 18 The third embodiment is shown in FIGS. 15 to 18.
  • the stagnation status of this embodiment is "no processing", “returning power” or “waiting for completion", and "off power" is omitted.
  • S301 in FIG. 16 is the same as the processing of S101 in FIG. In S302, the ECU 50 determines the stagnation status.
  • the stagnant stator is "no processing", it shifts to S302, when it is "returning power”, it shifts to S306, and when it is "waiting for completion", it shifts to S308.
  • the ECU 50 sets the stagnation status to "return to power" in S303, and holds the current encoder count value Cen as the stagnation count value Cst in S304.
  • the energization control unit 51 returns one energization pattern.
  • the processing of S306 to S308 is the same as the processing of S109 to S111. If a negative judgment is made in S306, the process shifts to S305 and the energization pattern is returned by one.
  • the process of FIG. 17 is the same as that of FIG. 8 except that the process of S157 in FIG. 8 is omitted.
  • the energization control process of this embodiment will be described with reference to the time chart of FIG.
  • the processing of time x41 to time x43 is the same as the processing of time x31 to time x33 in FIG.
  • the stagnation status is set to "waiting for end” and the energization pattern is returned to the normal pattern pattern P3.
  • the current counter is updated to A + 4 and the stagnation status is switched to "no processing”. Further, the energization pattern is set to pattern P4. Even with this configuration, the same effect as that of the above embodiment can be obtained.
  • FIG. 19 A fourth embodiment is shown in FIG. As shown in FIG. 19, in the present embodiment, when the motor 10 is stopped at a position where the motor torque drops, the current-carrying phase in which the torque in the opposite direction is generated is energized. Then, the rotor is returned to the lock position where the motor torque becomes 0, and the energization pattern is returned to the normal pattern.
  • the lock position is a position where the energizing phase and the rotor face each other according to the number of magnetic poles of the stator and the rotor. In addition, the lock position can generate a relatively large torque by energizing an energization pattern other than the pattern in which the lock current flows.
  • the VW phase energization is changed from the normal pattern UV phase energization to the VW phase energization which is an energization pattern in which torque is generated in the opposite direction.
  • the rotor returns to the electric angle ⁇ 2, which is the lock position at.
  • the motor 10 can be restarted with a relatively large torque by switching to the WU phase energization which is a normal pattern.
  • the motor can be rotated with momentum to pass the position where the motor 10 is stopped by the load torque, the driving of the motor 10 can be appropriately continued.
  • the change pattern is an energization pattern that generates torque in the opposite direction at the stagnant position with respect to the rotation direction before the motor 10 stagnates.
  • the energization control unit 51 returns the energization pattern to the normal pattern after returning the motor 10 to the locked position.
  • the motor 10 can be reliably returned to an angle at which torque is generated, and the motor 10 can be restarted from a position where a relatively large torque can be output.
  • the same effect as that of the above-described embodiment is obtained.
  • FIGS. 20A, 20B and 21 A fifth embodiment is shown in FIGS. 20A, 20B and 21.
  • the energization pattern is different from that of the above embodiment.
  • the energization patterns P0 to P3 are WU phase energization
  • the energization patterns P4 to P7 are UV phase energization
  • the energization patterns P8 to P11 are VW phase energization.
  • the WU phase energization is switched to the UV phase energization
  • the UV phase energization is switched to the VW phase energization
  • the VW phase energization is switched to the WU phase energization.
  • the motor 10 when the motor 10 is stopped, the motor 10 is restarted by returning the energized phase. As shown in FIG. 21, in the present embodiment, when the motor 10 is stopped at the equilibrium point B, the energized phase does not change even if one energized phase is returned. On the other hand, by advancing the energizing phase by one, it is possible to output a motor torque that is relatively larger than the normal pattern.
  • the motor 10 when the motor 10 is stagnant in the energization pattern in which the motor torque drops, the motor 10 is restarted by advancing the energization phase by one.
  • the encoder edge is detected, the energization pattern is returned to the normal pattern.
  • the energization pattern may be returned to the normal pattern by the first encoder edge detection, and no timekeeping or other measures are required to return the energization pattern to the normal pattern.
  • the change pattern is an energization pattern on the advance angle side of the stagnation position of the motor 10. Specifically, assuming that the energization pattern is advanced by one and the current counter is n, energization is performed in the energization pattern corresponding to (n + 1). As a result, the generated torque can be changed and the motor 10 can be restarted appropriately. Moreover, the same effect as that of the above-described embodiment is obtained.
  • the sixth and seventh embodiments are shown in FIGS. 22A, 22B, 23 and 24.
  • the energization patterns P0 to P1, P10 to P11 are WU phase energization
  • the energization patterns P2 to P5 are UV phase energization
  • the energization patterns P6 to P9 are VW phase energization. To do.
  • the WU phase energization is switched to the UV phase energization
  • the UV phase energization is switched to the VW phase energization
  • the VW phase energization is switched to the WU phase energization.
  • the energization pattern when the motor 10 advances to the stagnation count value Cst + 1, the energization pattern is returned to the normal pattern. Further, in the seventh embodiment, the energization pattern is the same as that in the sixth embodiment, and as shown in FIG. 24, when the energization return duration T12 elapses after returning one energization pattern, the energization pattern is changed. Return to the regular pattern. Even with this configuration, the same effect as that of the above embodiment can be obtained.
  • the eighth and ninth embodiments are shown in FIGS. 25A, 25B, 26 and 27.
  • the motor 10 is rotated by repeating the one-phase energization without using the two-phase energization.
  • the energization patterns P1 to P4 are U-phase energization
  • the energization patterns P5 to P8 are V-phase energization
  • the energization patterns P9 to P11 and P0 are W-phase energization.
  • the W phase energization is switched to the U phase energization
  • the U phase energization is switched to the V phase energization.
  • the V-phase energization is switched to the W-phase energization.
  • the energization pattern when the motor 10 advances to the stagnation count value Cst + 1, the energization pattern is returned to the normal pattern. Further, in the ninth embodiment, the energization pattern is the same as that in the eighth embodiment, and as shown in FIG. 27, when the energization return duration T12 elapses after returning one energization pattern, the energization pattern is changed. Return to the regular pattern. Even with this configuration, the same effect as that of the above embodiment can be obtained.
  • an example of returning one energization pattern has been described, but even in the case of one-phase energization, if it is possible to generate torque by advancing one energization pattern as in the fifth embodiment, one energization pattern is used. You may proceed. The same applies to the two-phase one-phase energization described later.
  • FIGS. 28A, 28B, 29 and 30 The tenth and eleventh embodiments are shown in FIGS. 28A, 28B, 29 and 30.
  • the motor 10 is rotated by two-phase one-phase energization in which two-phase energization and one-phase energization are alternately repeated.
  • the energization patterns P0 to P1 energize the WU phase
  • the energization patterns P2 to P3 energize the U phase
  • the energization patterns P4 to P5 energize the UV phase
  • the energization patterns P6 to P7 energize the V phase.
  • the energization patterns P8 to P9 are VW phase energization
  • the energization patterns P10 to 11 are W phase energization.
  • the motor torque drops at the point where the energization pattern is switched.
  • the motor torque fluctuates because each phase current differs between the one-phase energization and the two-phase energization. More specifically, the torque during one-phase energization is larger than that during two-phase energization as compared with the case where each phase current is constant. In this case, the motor torque drops when switching from one-phase energization to two-phase energization.
  • the energization pattern is switched to the energization pattern in which the torque can be output more than the normal pattern in the region.
  • one energization pattern is returned.
  • the energization pattern when the motor 10 advances to the stagnation count value Cs + 1, the energization pattern is returned to the normal pattern. Further, in the eleventh embodiment, the energization pattern is the same as that in the tenth embodiment, and as shown in FIG. 30, when the energization return duration T12 elapses after returning one energization pattern, the energization pattern is changed. Return to the regular pattern. Even with this configuration, the same effect as that of the above embodiment can be obtained.
  • the shift range control device 40 corresponds to the "motor control device”
  • the encoder 13 corresponds to the "rotation position sensor”
  • the encoder count value Cen corresponds to the "detection value of the rotation position sensor”.
  • the energization return duration T12 corresponds to the "change pattern duration”.
  • the motor is a switched reluctance motor.
  • the motor may be a motor other than the switched reluctance motor, such as a DC brushless motor, and the number of magnetic poles and the like can be arbitrarily set.
  • the configuration of the drive circuit unit may be different depending on the motor used.
  • the rotation position sensor is an encoder. In other embodiments, the rotation position sensor may use something other than an encoder, such as a resolver.
  • the rotation position sensor is a linear sensor, for example, a position rotated by a predetermined angle from the stagnation position may be used as the energization restart position or the return position.
  • a potentiometer is exemplified as an output shaft sensor. In other embodiments, the output shaft sensor may be something other than a potentiometer, or the output shaft sensor may be omitted.
  • the energization pattern is changed in the torque reduction region, and the energization pattern is not changed in the region other than the torque reduction region.
  • S103 in FIG. 7 may be omitted, and when the motor 10 is stagnant, the energization pattern may be changed in a region other than the torque reduction region.
  • the energization pattern when the motor 10 is stagnant, the energization pattern may be changed in the torque reduction region, and the energization pattern may not be changed in other than the torque reduction region.
  • the detent plate is provided with two recesses.
  • the number of recesses is not limited to two, and recesses may be provided for each range, for example.
  • the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
  • a speed reducer is provided between the motor shaft and the output shaft.
  • the details of the speed reducer are not mentioned in the above embodiment, but for example, cycloid gears, planetary gears, spur gears that transmit torque from a speed reduction mechanism substantially coaxial with the motor shaft to the drive shaft, and these. Any configuration may be used, such as a combination of the above.
  • the speed reducer between the motor shaft and the output shaft may be omitted, or a mechanism other than the speed reducer may be provided.
  • the motor control device is applied to the shift range switching system. In other embodiments, the motor control device may be applied to devices other than the shift range switching system.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ制御装置(40)は、モータ巻線(11)を有するモータ(10)の駆動を制御するものであって、通電制御部(51)と、停滞判定部(53)と、を備える。通電制御部(51)は、モータ(10)の回転位置を検出する回転位置センサ(13)の検出値に応じ、モータ巻線(11)への通電を制御する。停滞判定部(53)は、モータ(10)の停滞を判定する。通電制御部(51)は、モータ(10)の停滞が検出された場合、回転位置センサ(13)の検出値に応じて予め設定されている正規パターンとは異なる通電パターンである変更パターンにて通電を制御する。

Description

モータ制御装置 関連出願の相互参照
 本出願は、2019年9月10日に出願された特許出願番号2019-164478号に基づくものであり、ここにその記載内容を援用する。
 本開示は、モータ制御装置に関する。
 従来、モータの駆動を制御するモータ制御装置が知られている。例えば特許文献1では、モータのトルク変動を抑えるように、同時に通電する通電相の数を一定にするようにしている。
特許第6097056号公報
 ここで通電相を切り替えるとき、通電を切り替える角度付近でトルクが落ち込みやすい。このようなトルクが落ち込む角度位置において、負荷トルク等によりモータが停止した場合、トルク不足により、モータが再度動き出せない虞がある。本開示の目的は、モータの駆動を適切に制御可能なモータ制御装置を提供することにある。
 本開示のモータ制御装置は、モータ巻線を有するモータを制御するものであって、通電制御部と、停滞判定部と、を備える。通電制御部は、モータの回転位置を検出する回転位置センサの検出値に応じ、モータ巻線への通電を制御する。停滞判定部は、モータの停滞を判定する。通電制御部は、モータの停滞が検出された場合、回転位置センサの検出値に応じて予め設定されている正規パターンとは異なる通電パターンである変更パターンにて通電を制御する。これにより、例えばトルク不足等によりモータが停滞した場合であっても、モータを適切に再始動させることができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す斜視図であり、 図2は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、 図3は、第1実施形態によるシフトレンジ制御装置を示す回路図であり、 図4Aは、第1実施形態による通電パターンと通電相を示す図であり、 図4Bは、第1実施形態による電気角とモータトルクとの関係を示す図であり、 図5は、第1実施形態によるモータ停滞時の制御を説明する説明図であり、 図6は、第1実施形態によるモータ停滞時の制御を説明する説明図であり、 図7は、第1実施形態による通電制御処理を説明するフローチャートであり、 図8は、第1実施形態による通電制御処理を説明するフローチャートであり、 図9は、第1実施形態による通電制御処理を説明するタイムチャートであり、 図10は、第1実施形態による通電制御処理を説明するタイムチャートであり、 図11は、第2実施形態によるモータ停滞時の制御を説明する説明図であり、 図12は、第2実施形態による通電制御処理を説明するフローチャートであり、 図13は、第2実施形態による通電制御処理を説明するフローチャートであり、 図14は、第2実施形態による通電制御処理を説明するタイムチャートであり、 図15は、第3実施形態によるモータ停滞時の制御を説明する説明図であり、 図16は、第3実施形態による通電制御処理を説明するフローチャートであり、 図17は、第3実施形態による通電制御処理を説明するフローチャートであり、 図18は、第3実施形態による通電制御処理を説明するタイムチャートであり、 図19は、第4実施形態によるモータ停滞時の制御を説明する説明図であり、 図20Aは、第5実施形態による通電パターンと通電相を示す図であり、 図20Bは、第5実施形態による電気角とモータトルクとの関係を示す図であり、 図21は、第5実施形態によるモータ停滞時の制御を説明する説明図であり、 図22Aは、第6実施形態による通電パターンと通電相を示す図であり、 図22Bは、第6実施形態による電気角とモータトルクとの関係を示す図であり、 図23は、第6実施形態によるモータ停滞時の制御を説明する説明図であり、 図24は、第7実施形態によるモータ停滞時の制御を説明する説明図であり、 図25Aは、第8実施形態による通電パターンと通電相を示す図であり、 図25Bは、第8実施形態による電気角とモータトルクとの関係を示す図であり、 図26は、第8実施形態によるモータ停滞時の制御を説明する説明図であり、 図27は、第9実施形態によるモータ停滞時の制御を説明する説明図であり、 図28Aは、第10実施形態による通電パターンと通電相を示す図であり、 図28Bは、第10実施形態による電気角とモータトルクとの関係を示す図であり、 図29は、第10実施形態によるモータ停滞時の制御を説明する説明図であり、 図30は、第11実施形態によるモータ停滞時の制御を説明する説明図である。
 以下、本開示によるモータ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
   (第1実施形態)
 第1実施形態を図1~図10に示す。図1および図2に示すように、モータ駆動システムであるシフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、モータ制御装置としてのシフトレンジ制御装置40等を備える。
 モータ10は、図示しない車両に搭載されるバッテリ90から電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。モータ10は、例えばスイッチトリラクタンスモータである。図3に示すように、モータ10は、図示しないステータの突極に巻回されるモータ巻線11を有する。モータ巻線11は、U相巻線111、V相巻線112およびW相巻線113を有する。モータ巻線11への通電を制御することで、図示しないロータを回転させる。例えば、ステータの突極数は12、ロータの突極数は8である。
 図2に示すように、回転位置センサであるエンコーダ13は、モータ10の図示しないロータの回転位置を検出する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転する磁石と、磁気検出用のホールIC等により構成される。エンコーダ13は、ロータの回転に同期して、所定角度ごとにA相およびB相のパルス信号であるエンコーダ信号を出力する。
 減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。出力軸センサ16は、例えばポテンショメータである。
 図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。
 ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
 ディテントプレート21のディテントスプリング25側には、2つの谷部211、212が設けられる。本実施形態では、谷部211がPレンジに対応し、谷部212がPレンジ以外のレンジであるNotPレンジに対応する。
 ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部211、212間を移動する。ディテントローラ26が谷部211、212のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。
 パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントローラ26がPレンジに対応する谷部211に嵌まり込む方向にディテントプレート21が回転すると、円錐体32が矢印Pの方向に移動する。
 パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる。パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21の回転により、円錐体32が矢印P方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、円錐体32が矢印NotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。
 パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがP以外のレンジであるNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
 図2および図3に示すように、シフトレンジ制御装置40は、駆動回路部41、電流検出部45、および、ECU50等を備える。図3に示すように、駆動回路部41は、3つのスイッチング素子411、412、413を有する。本実施形態では、駆動回路部41は、各相の巻線111~113とグランドとの間に設けられる。スイッチング素子411~413は、各相の巻線111~113と対応して設けられ、対応する相の通電を切り替える。本実施形態のスイッチング素子411~413は、MOSFETであるが、IGBT等であってもよい。
 モータ巻線11の巻線111~113は、結線部115で結線される。結線部115には、電源ライン901を経由して、バッテリ90から電力が供給される。電源ライン901には、リレー部91が設けられ、リレー部91がオンされているとき、結線部115に電力が供給される。電流検出部45は、スイッチング素子411~413のソースとグランドとを接続する集合配線451に設けられ、巻線111~113に流れる電流の和である集合部電流Iaを検出する。
 ECU50は、内部にいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
 図2に示すように、ECU50は、ドライバ要求シフトレンジに応じたシフト信号、ブレーキスイッチからの信号および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替えを制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT-ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。
 ECU50は、通電制御部51、および、停滞判定部53を有する。通電制御部51は、エンコーダ13からのエンコーダ信号に応じたエンコーダカウント値Cenに基づいて通電相を指令し、モータ巻線11の通電を制御する。エンコーダカウント値Cenは、エンコーダ信号のエッジ検出ごとにカウントアップまたはカウントダウンされる。本実施形態では、エンコーダカウント値Cenは、正回転時にカウントアップされ、逆回転時にカウントダウンされる。また、集合部電流Iaが電流制限値を超えないように、電流制限を行う。停滞判定部53は、モータ10の停滞を判定する。
 図4Aに示すように、通電パターン番号と通電相と関係は、図示しない記憶部に記憶されている。記憶されている対応関係を、正規パターンとする。正常時、エンコーダ信号のパルスエッジが検出されるごとに、正回転時+1、逆回転時-1ずつ通電パターンをずらす。通電パターンに応じて通電相を切り替えていくことでモータ10を回転させる。図4Aでは、通電パターンP0~P11を電気角1周期に対応する1サイクルとし、各通電パターンのときに通電する相を丸印で示した。後述の図20A、図22A、図25Aおよび図28Aも同様である。なお、図中では、煩雑になることを避けるため、パターン番号を示す記号の「P」の記載を省略し、番号のみを記載した。
 本実施形態では、巻線111~113の1相に通電する1相通電を用いず、巻線111~113の2相に通電する2相通電の繰り返しによりモータ10を回転させる。図4Bは、横軸を電気角、縦軸をモータトルクとし、電気角1周期分の通電相に応じたモータトルクを示した。なお、モータトルクは、各相電流が一定であるものとして記載した。また、1相通電時の発生トルクを一点鎖線、2相通電時の発生トルクを二点鎖線で示し、エンコーダエッジ発生箇所を三角印で示すとともに、通電パターンを併記した。また、エンコーダエッジ発生箇所を示す記号のうち、正規パターンにて通電相が切り替わる箇所にはハッチングを施した。後述の実施形態に係る図も同様である。以下、モータ10が正回転している場合を中心に説明する。
 本実施形態では、実線で示すように、通電パターンP0~P2、P11ではスイッチング素子411、413をオンにすることでWU相に通電し、通電パターンP2にてエンコーダエッジが検出されると、スイッチング素子411、412をオンにし、UV相通電に切り替える。通電パターンP3~P6では、UV相通電を継続する。通電パターンP6にてエンコーダエッジが検出されると、スイッチング素子412、413をオンにし、VW相通電に切り替える。通電パターンP7~P10では、VW相通電を継続する。通電パターンP10にてエンコーダエッジが検出されると、WU相通電に切り替える。
 通電パターン切替直後の通電パターンP3、P7、P11において、モータトルクが落ち込む領域が存在する。ここで、切替前の通電相のトルクと、切替後の通電相のトルクとの大小関係が入れ替わるクロス位置を含む所定範囲を「トルク低下領域」と捉えることができる。本実施形態では、切替前の通電相のトルクと、切替後の通電相のトルクとの大小関係が入れ替わるクロス位置よりも手前側にて通電相を切り替えている。換言すると、クロス位置よりも手前側においては、切替前の通電パターンの方が大きなトルクを出力可能である。
 ここで、負荷トルクとモータトルクとが釣り合う釣り合い点Bにてモータ10が停止すると、正規パターンに通電しても、トルク不足によりモータ10が再始動できない虞がある。例えば、低速で回転している場合、ロータが停止しやすい。また、ロータが減速する要因としては、ディテントトルクやフリクションによる負荷トルクの増大、電源電圧の変化、ブレーキ制御等が含まれる。
 そこで本実施形態では、図5に示すように、モータトルクが落ち込む通電パターンのときにモータ10が停滞した場合、通電をオフにすることで、負荷トルクを利用し、確実にトルクの出る角度までモータ10を戻す。そして、エンコーダエッジが検出された場合、通電パターンを1つ戻すことで、正規パターンとは異なる通電パターンにて通電を再開する。また、モータ停滞時のエンコーダカウント値を停滞カウント値Cstとすると、Cst+1までモータ10が進んだら、通電パターンを正規パターンに戻す。
 本実施形態では、エンコーダカウント値Cenがnのとき、nに対応する通電パターンでの通電を「正規パターンでの通電」、(n-1)に対応する通電パターンで通電することを「通電パターンを1つ戻す」、(n+1)に対応する通電パターンで通電することを「通電パターンを1つ進める」とする。すなわち図5の例では、電気角θ1のとき、「正規パターンでの通電」は、通電パターンP3に対応するUV相通電であり、「通電パターンを1つ戻す」とは、通電パターンP2に対応するWU相通電である。
 また、図6に示すように、例えばフリクションが大きい場合、通電をオフにしてもモータ10の戻りが遅く、エンコーダエッジが検出されない場合、モータ停滞から通電オフ継続時間T11が経過すると、通電パターンを1つ戻す。また、通電パターンを1つ戻してから通電戻し継続時間T12が経過した場合、通電パターンを正規パターンに戻す。なお、説明のため、線が判別可能な程度、適宜離して記載した。
 本実施形態の通電制御処理を図7および図8のフローチャートに基づいて説明する。この処理は、ECU50にて実施される処理であって、図7が所定周期(例えば1[ms])で実施され、図8がエンコーダエッジ割込にて実施される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。本実施形態では、通電オフによる戻りを除き、モータ10を正方向に回転させるものとして説明する。なお、モータ10を逆方向に回転させる場合、エンコーダカウント値Cenの正負の関係が逆転する。すなわち、モータ10の逆回転時には、「+1」を「-1」、「-1」を「+1」と読み替えればよい。
 S101では、停滞判定部53は、エンコーダカウント値Cenが停滞しているか否か判断する。本実施形態では、停滞判定時間T10に亘ってエンコーダカウント値Cenが変化しない場合、エンコーダカウント値Cenが停滞していると判定する。エンコーダカウント値Cenが停滞していないと判断された場合(S101:NO)、S111へ移行し、現在のエンコーダパターンに対応する正規パターンの通電相に通電する。エンコーダカウント値Cenが停滞していると判断された場合(S101:YES)、S102へ移行する。
 S102では、ECU50は、停滞ステータスを判定する。停滞ステータスには、停滞時処理を行っていない場合の「処理なし」、スイッチング素子411~413がオフ状態である「通電オフ」、通電パターンを1つ戻している状態である「通電戻し」、および、停滞時処理終了後の状態を「終了待ち」が含まれる。停滞ステータスが「処理なし」の場合はS103、「通電オフ」の場合はS106、「通電戻し」の場合はS109、「終了待ち」の場合はS111へ移行する。
 S103では、ECU50は、モータ10の停滞位置がトルク落ち込み位置か否か判断する。図4Aおよび図4Bにて説明したように、通電パターンがP3、P7、P11のとき、モータトルクの落ち込みが生じるため、ここでは現在のエンコーダカウント値Cenに応じた通電パターンがP3、P7、P11のときに肯定判断し、その他の場合に否定判断する。また、モータ10の逆回転時、通電パターンがP2、P6、P10にてモータトルクの落ち込みが生じるため、逆回転時は通電パターンがP2、P6、P10のときに肯定判断し、その他の場合に否定判断する。モータ10の停滞位置がトルク落ち込み位置ではないと判断された場合(S103:NO)、S111へ移行し、現在のエンコーダカウント値Cenに対応する正規パターンの通電相に通電する。モータ10の停滞位置がトルク落ち込み位置であると判断された場合(S103:YES)、S104へ移行する。
 S104では、通電制御部51は、停滞ステータスを「通電オフ」とし、スイッチング素子411~413をオフにする。また、停滞ステータスを「通電オフ」としてからの経過時間の計時を開始する。S105では、ECU50は、現在のエンコーダカウント値Cenを、停滞カウント値Cstとして、図示しないRAM等の記憶部に保持する。以下適宜、現在のエンコーダカウント値を「現在カウンタ」とする。
 停滞ステータスが通電オフの場合に移行するS106では、ECU50は、停滞ステータスを「通電オフ」としてから、通電オフ継続時間T11が経過したか否か判断する。通電オフ継続時間T11が経過していないと判断された場合(S106:NO)、S107以降の処理を行わず、通電オフを継続する。通電オフ継続時間T11が経過したと判断された場合(S106:YES)、S107へ移行し、停滞ステータスを「通電戻し」とし、停滞ステータスを「通電戻し」としてからの経過時間を計時する。また、通電制御部51は、S108にて、通電パターンを1つ戻す。すでに通電パターンを1つ戻している場合はその状態を継続する。
 停滞ステータスが「通電戻し」の場合に移行するS109では、ECU50は、停滞ステータスを「通電戻し」としてから、通電戻し継続時間T12が経過したか否か判断する。通電戻し継続時間T12が経過していないと判断された場合(S109:NO)、S108へ移行し、通電パターンを1つ戻している状態を継続する。通電戻し継続時間T12が経過したと判断された場合(S109:YES)、S110へ移行し、停滞ステータスを「終了待ち」とする。S111では、ECU50は、現在のエンコーダカウント値Cenに対応する正規パターンの通電相に通電する。
 エンコーダエッジ割込による通電制御処理を図8のフローチャートに基づいて説明する。S151では、ECU50は、エンコーダカウント値Cenを更新する。S152では、ECU50は、通電ステータスが処理なしか否か判断する。停滞ステータスが「処理なし」であると判断された場合(S152:YES)、S156へ移行する。停滞ステータスが「処理なし」以外であると判断された場合(S152:NO)、S153へ移行する。
 S153では、ECU50は、停滞ステータスが終了待ちか否か判断する。停滞ステータスが「終了待ち」であると判断された場合(S153:YES)、S155へ移行する。停滞ステータスが「通電オフ」または「通電戻し」であると判断された場合(S153:NO)、S154へ移行する。
 S154では、ECU50は、現在のエンコーダカウント値Cenが、停滞カウント値Cst+1か否か判断する。現在のエンコーダカウント値Cenが停滞カウント値Cst+1ではないと判断された場合(S154:NO)、S157へ移行する。現在のエンコーダカウント値Cenが停滞カウント値Cst+1であると判断された場合(S154:YES)、S155へ移行する。
 S155では、ECU50は、停滞ステータスを「処理なし」に切り替える。S156では、通電制御部51は、現在のエンコーダカウント値Cenに対応する正規パターンの通電相に通電する。
 現在のエンコーダカウント値Cenが停滞カウント値Cst+1ではないと判断された場合(S154:NO)に移行するS157では、ECU50は、停滞ステータスを通電戻しとする。S158では、通電制御部51は、通電パターンを1つ戻す。すでに通電パターンを1つ戻している場合はその状態を継続する。
 本実施形態の通電制御処理を図9および図10のタイムチャートに基づいて説明する。図9では、上段から、エンコーダエッジ、モータ角度、現在カウンタ、停滞ステータス、通電パターンを示す。図10および後述の実施形態に係るタイムチャートも同様である。現在カウンタは、通電パターンP0に対応する値をAとし、(A+k)における「k」の部分が正規の通電パターンと対応するように記載する。また、図4B等では正規パターンにて通電相が変わる箇所のエンコーダエッジにハッチングを施したが、通電戻し制御では、通電相の切り替えがエンコーダエッジタイミングと必ずしも一致しないため、タイムチャートではハッチングの記載を行っていない。
 図9に示すように、時刻x11にてエンコーダエッジが検出され、現在カウンタがA+2からA+3に更新され、時刻x12にて、現在カウンタがA+3にて、モータ10が停止する。このときの通電パターンはパターンP3であって、トルク落ち込み位置である。エンコーダカウント値CenがA+3から更新されない状態が停滞判定時間T10に亘って継続すると、時刻x13にて停滞ステータスを「処理なし」から「通電オフ」に切り替え、スイッチング素子411~413をオフにする。また、停滞カウント値Cstを、A+3とする。
 通電をオフにすると、負荷トルクによりモータ10が停滞前の回転方向と逆方向に戻される。時刻x14にて、エンコーダエッジが検出されると、現在カウンタをA+2とし、停滞ステータスを「通電オフ」から「通電戻し」に切り替え、通電パターンを1つ戻す。すなわち、現在カウンタがA+2であるので、(A+2)-1に対応する通電パターンであるパターンP1、すなわちWU相通電とする。
 また、時刻x15にてエンコーダエッジが検出され、現在カウンタがA+3に更新されると、通電パターンを(A+3)-1に対応するパターンP2とする。パターンP1、P2は、いずれもWU相通電であるので、WU相通電を継続する。
 時刻x16にてエンコーダエッジが検出されると、現在カウンタがA+4に更新される。ここで、停滞カウント値Cst=A+3であり、現在カウンタが停滞カウント値Cst+1(=A+3+1)となっているので、停滞ステータスを「通電戻し」から「処理なし」に切り替える。また、通電パターンを、正規パターンであるパターンP4とし、WU相通電からUV相通電に切り替える。
 図10中の時刻x21~時刻x23の処理は、図9中の時刻x11~時刻x13の処理と同様である。時刻x23にて、通電オフによりモータ10が戻されるが、例えばフリクションが大きい場合等、戻りが遅い場合、エンコーダエッジまでモータ10が戻るのに時間がかかる。その場合、停滞ステータスを通電オフとしてから通電オフ継続時間T11が経過した時刻x24にて、停滞ステータスを「通電オフ」から「通電戻し」に切り替える。このときの現在カウンタはA+3であるので、(A+3)-1に対応する通電パターンであるパターンP2、すなわちWU相通電とする。
 通電ステータスを通電戻しに切り替えた時刻x24から、通電戻し継続時間T12が経過した時刻x25にて、通電ステータスを「通電戻し」から「終了待ち」に切り替え、通電パターンを正規パターンであるパターンP3、すなわちUV相通電に切り替える。
 停滞ステータが「終了待ち」の状態にて、時刻x26にてエンコーダエッジが検出されると、現在カウンタがA+4に更新され、通電ステータスを「終了待ち」から「処理なし」に切り替える。また、通電パターンをパターンP4とする。パターンP3、P4は、いずれもUV相通電であるので、UV相通電を継続する。通電戻し継続時間T12が経過する時刻x25以前にエンコーダエッジが検出され、現在カウントがA+4に更新された場合、時刻x25よりも前のタイミングにて正規復帰させればよい。
 これにより、モータ10が止まってしまった場合であっても、通電相を正規パターンとは異ならせ、よりトルクが出る通電パターンを選択することにより、モータ10を適切に再始動することができる。なお、このように制御してもモータ10を停滞位置よりも進角側に駆動できない場合、他の要因(例えば壁当て制御時の壁位置や、メカロック異常等)による停止であると判定し、適宜別途の処理を行ってもよい。
 以上説明したように、シフトレンジ制御装置40は、モータ巻線11を有するモータ10の駆動を制御するものであって、ECU50は、通電制御部51と、停滞判定部53と、を備える。通電制御部51は、モータ10の回転位置を検出するエンコーダ13の検出値に応じ、モータ巻線11への通電を制御する。停滞判定部53は、モータ10の停滞を検出する。
 通電制御部51は、モータ10の停滞が検出された場合、エンコーダ13の検出値に応じて予め設定されている正規パターンとは異なる通電パターンである変更パターンにて通電を制御する。本実施形態では、エンコーダカウント値Cenに応じて正規パターンが設定されている。これにより、例えばトルク不足等によりモータ10が停滞した場合であっても、通電パターンを変更し、発生するトルクを変更することで、モータ10を再始動させることができる。
 通電制御部51は、モータ10の停滞が検出された場合、通電をオフした後、変更パターンにて通電を再開する。通電をオフにし、負荷トルクを利用してモータ10の回転位置を戻してから通電パターンを変更することで、比較的大きなトルクを出力可能な回転位置から、より確実にモータ10を再始動させることができる。
 通電制御部51は、通電をオフにしてから回転位置が通電再開位置まで戻った場合、変更パターンにて通電を再開する。本実施形態では、通電再開位置は、停滞位置から遅角側にてエンコーダエッジが検出される位置である。これにより、最適な位置にてモータ10を再始動させることができる。
 通電制御部51は、通電をオフにしてから通電オフ継続時間T11が経過した場合、変更パターンにて通電を再開する。これにより、例えば負荷トルクが大きい場合等、モータ10の戻りが遅い場合であっても、適切に変更パターンに切り替えることができる。
 本実施形態では、変更パターンは、モータ10の停滞位置よりも遅角側の通電パターンである。本明細書では、モータ10が停滞する前の回転方向側を基準回転方向とし、停滞位置よりも基準回転方向に進める側を「進角側」、戻す側を「遅角側」とする。具体的には、通電パターンを1つ戻し、現在カウンタをnとすると、(n-1)に対応する通電パターンで通電する。これにより、発生するトルクを変更し、モータ10を適切に再始動させることができる。
 通電制御部51は、変更パターンでの通電を開始してから、モータ10の停滞位置よりも進角側の復帰位置まで進んだ場合、正規パターンに復帰させる。本実施形態では、復帰位置は、停滞位置よりも進角側にてエンコーダエッジが検出される位置である。これにより、モータ10の停滞により変更した通電パターンを適切に正規パターンに復帰させることができる。
 また、通電制御部51は、変更パターンでの通電を開始してから通電戻し継続時間T12が経過した場合、正規パターンに復帰させる。これにより、角度検出可能なエンコーダエッジ以外の適切なタイミングにて正規パターンに復帰させることができる。
 通電制御部51は、モータ10の停滞位置がトルク低下領域である場合、通電パターンの変更を行い、モータ10の停滞位置がトルク低下領域ではない場合、通電パターンの変更を行わない。換言すると、停滞位置がトルク低下領域ではなく、通電パターンの変更による効果が認められない領域では、通電パターンを変更する制御を行わない。これより、通電パターンの変更制御を適切に行うことができる。なお本実施形態では、モータ正回転時の通電パターンP3、P7、P11となる領域が「トルク低下領域」に対応する。また、モータ逆回転時の通電パターンP2、P6、P10となる領域が「トルク低下領域」に対応する。
   (第2実施形態)
 第2実施形態を図11~図14に示す。第2実施形態~第4実施形態では、正常時の通電パターンは、第1実施形態と同様とする。図11に示すように、本実施形態では、モータトルクが落ち込む通電パターンのときにモータ10が停滞した場合、通電をオフにすることなく、通電パターンを1つ戻す。また、停滞カウント値Cst+1までモータ10が進んだら、通電パターンを正規パターンに戻す。本実施形態の停滞ステータスは、「処理なし」または「通電戻し」であり、「通電オフ」および「終了待ち」が省略される。
 本実施形態の通電制御処理を図12および図13に示す。この処理は、ECU50にて実施される処理であって、図12が所定周期(例えば1[ms])で実施され、図13がエンコーダエッジ割込にて実施される。
 図12中のS201の処理は図7中のS101の処理と同様であり、S202の処理はS111の処理と同様である。S203では、ECU50は、停滞ステータスが「処理なし」か否か判断する。停滞ステータスが「処理なし」であると判断された場合(S203:YES)、S204へ移行し、「通電戻し」であると判断された場合(S203:NO)、S206へ移行する。
 ECU50は、S204にて通電ステータスを「処理なし」から「通電戻し」に切り替え、S205にて現在のエンコーダカウント値Cenを停滞カウント値Cstとして、RAM等の記憶部に保持する。S206では、S108と同様、通電制御部51は、通電相を1つ戻す。すでに通電パターンを1つ戻している場合はその状態を継続する。
 図13のS251の処理は、図8中のS151の処理と同様である。S252では、ECU50は、停滞ステータスが「処理なし」か否か判断する。停滞ステータスが「処理なし」であると判断された場合(S252:YES)、S255へ移行し、正規パターンに通電する。停滞ステータスが「通電戻し」であると判断された場合(S252:NO)、S253へ移行する。
 S253の処理は、図8中のS154と同様であって、現在のエンコーダカウント値Cenが停滞カウント値Cst+1であると判断された場合(S253:YES)、S254へ移行し、現在のエンコーダカウント値Cenが停滞カウント値Cst+1ではないと判断された場合(S253:NO)、S256へ移行する。S254~S257の処理は、S155~S158の処理と同様である。
 本実施形態の通電制御処理を図14のタイムチャートに基づいて説明する。時刻x31~時刻x32までの処理は、図9中の時刻x11~時刻x12と同様である。時刻x33にて、エンコーダカウント値CenがA+3から更新されない状態が停滞判定時間T10に亘って継続すると、停滞ステータスを「処理なし」から「通電戻し」に切り替え、通電パターンを1つ戻す。すなわち、現在カウンタがA+3であるので、(A+3)-1に対応する通電パターンであるパターンP2、すなわちWU相通電とする。また、停滞カウント値Cstを、(A+3)とする。
 時刻x34にて、エンコーダエッジが検出されると、エンコーダカウント値CenがA+3からA+4に更新される。ここで、停滞カウント値Cst=A+3であり、現在カウンタが停滞カウント値Cst+1(=A+3+1)となっているので、停滞ステータスを「通電戻し」から「処理なし」に切り替える。また、通電パターンを正規パターンであるパターンP4とし、WU相通電からUV相通電切り替える。このように構成しても、上記実施形態と同様の効果を奏する。
   (第3実施形態)
 第3実施形態を図15~図18に示す。図15に示すように、本実施形態では第2実施形態と同様、モータトルクが落ち込む通電パターンのときにモータ10が停滞した場合、通電パターンを1つ戻し、停滞ステータスを「通電戻し」とする。また、通電戻し継続時間T12が経過したら、通電パターンを正規パターンに戻す。本実施形態の停滞ステータスは、「処理なし」、「通電戻し」または「終了待ち」であり、「通電オフ」が省略されている。
 図16中のS301の処理は図7中のS101の処理と同様である。S302では、ECU50は、停滞ステータスを判定する。停滞ステータが「処理なし」の場合はS302、「通電戻し」の場合はS306、「終了待ち」の場合はS308へ移行する。
 ECU50は、S303にて停滞ステータスを「通電戻し」とし、S304にて現在のエンコーダカウント値Cenを停滞カウント値Cstとして保持する。S305では、通電制御部51は、通電パターンを1つ戻す。S306~S308の処理は、S109~S111の処理と同様である。なお、S306にて否定判断された場合、S305へ移行し、通電パターンを1つ戻す。図17の処理は、図8中のS157の処理が省略されている点を除き、図8と同様である。
 本実施形態の通電制御処理を図18のタイムチャートに基づいて説明する。時刻x41~時刻x43の処理は、図14中の時刻x31~時刻x33の処理と同様である。時刻x43にて通電パターンを1つ戻してから通電戻し継続時間T12が経過した時刻x44では、停滞ステータスを「終了待ち」とし、通電パターンを正規パターンであるパターンP3に戻す。また、時刻x45にて、エンコーダエッジが検出されると、現在カウンタがA+4に更新され、停滞ステータスを「処理なし」に切り替える。また、通電パターンをパターンP4とする。このように構成しても、上記実施形態と同様の効果を奏する。
   (第4実施形態)
 第4実施形態を図19に示す。図19に示すように、本実施形態では、モータトルクが落ち込む位置にてモータ10が停止した場合、逆向きのトルクが発生する通電相に通電する。そして、モータトルクが0となるロック位置までロータを戻し、通電パターンを正規パターンに戻す。ロック位置は、ステータとロータの磁極数等に応じ、通電相とロータとが対向する位置である。また、ロック位置は、ロック電流が流れるパターン以外の通電パターン通電することで、相対的に大きなトルクを発生させることができるため、
 例えば、通電パターンP3である電気角θ1にてモータ10が停止した場合、正規パターンであるUV相通電から、逆向きのトルクが発生する通電パターンであるVW相通電にすることで、VW相通電でのロック位置である電気角θ2までロータが戻る。そして、VW相通電により電気角θ2にてモータロックした後、正規パターンであるWU相通電に切り替えることで、比較的大きなトルクにてモータ10を再始動させることができる。また、勢いをつけてモータを回すことで、負荷トルクにて停止した位置を通過できれば、モータ10の駆動を適切に継続することができる。
 本実施形態では、変更パターンは、モータ10が停滞する前の回転方向に対し、停滞位置にて逆向きのトルクを発生させる通電パターンである。また、通電制御部51は、モータ10をロック位置まで戻した後、通電パターンを正規パターンに復帰させる。これにより、確実にトルクの出る角度までモータ10を戻し、比較的大きいトルクを出力可能な位置からモータ10を再始動させることができる。また上記実施形態と同様の効果を奏する。
   (第5実施形態)
 第5実施形態を図20A、図20Bおよび図21に示す。本実施形態では、上記実施形態と通電パターンが異なっている。図20Aおよび図20Bに示すように、本実施形態では、通電パターンP0~P3がWU相通電、通電パターンP4~P7がUV相通電、通電パターンP8~P11がVW相通電とする。また、モータ正回転時、通電パターンP3にてエンコーダエッジが検出されるとWU相通電からUV相通電に切り替え、通電パターンP7にてエンコーダエッジが検出されるとUV相通電からVW相通電に切り替え、通電パターンP11にてエンコーダエッジが検出されるとVW相通電からWU相通電に切り替える。
 ここで、本実施形態では、通電パターン切替直後の通電パターンP0、P4、P8において、モータトルクが落ち込む領域が存在する。上記実施形態では、モータ10が停止した場合、通電相を戻すことでモータ10を再始動させる。図21に示すように、本実施形態では、釣り合い点Bにてモータ10が停止した場合、通電相を1つ戻しても通電相が変わらない。一方、通電相を1つ進めることで、正規パターンより相対的に大きなモータトルクを出力することができる。
 そこで本実施形態では、モータトルクが落ち込む通電パターンのときにモータ10が停滞した場合、通電相を1つ進めることで、モータ10を再始動させる。また、エンコーダエッジが検出されたら、通電パターンを正規パターンに戻す。この例では、再始動後、最初のエンコーダエッジ検出にて通電パターンを正規パターンに戻せばよく、通電パターンを正規パターンに戻すための計時等の処置が不要である。
 本実施形態では、変更パターンは、モータ10の停滞位置よりも進角側の通電パターンである。具体的には、通電パターンを1つ進め、現在カウンタをnとすると、(n+1)に対応する通電パターンで通電する。これにより、発生するトルクを変更し、モータ10を適切に再始動させることができる。また上記実施形態と同様の効果を奏する。
   (第6、7実施形態)
 第6実施形態および第7実施形態を図22A、図22B、図23および図24に示す。図22Aおよび図22Bに示すように、第6実施形態では、通電パターンP0~P1、P10~P11ではWU相通電、通電パターンP2~P5ではUV相通電、通電パターンP6~P9ではVW相通電とする。また、モータ正回転時、通電パターンP1にてエンコーダエッジが検出されるとWU相通電からUV相通電に切り替え、通電パターンP5にてエンコーダエッジが検出されるとUV相通電からVW相通電に切り替え、通電パターンP9にてエンコーダエッジが検出されるとVW相通電からWU相通電に切り替える。
 ここで、通電パターン切替直後の通電パターンP2、P6、P10において、モータトルクが落ち込む領域が存在する。そこで、図23に示すように、第2実施形態と同様、モータトルクが落ち込む領域にてモータ10が停止した場合、通電パターンを1つ戻すことでモータ10を再始動させる。
 第6実施形態では、停滞カウント値Cst+1までモータ10が進んだら、通電パターンを正規パターンに戻す。また、第7実施形態では、通電パターンは第6実施形態と同様であって、図24に示すように、通電パターンを1つ戻してから、通電戻し継続時間T12が経過した場合、通電パターンを正規パターンに戻す。このように構成しても、上記実施形態と同様の効果を奏する。
   (第8、9実施形態)
 第8実施形態および第9実施形態を図25A、図25B、図26および図27に示す。図25Aおよび図25Bに示すように、第8実施形態では、2相通電を用いず、1相通電の繰り返しによりモータ10を回転させる。第8実施形態では、通電パターンP1~P4ではU相通電、通電パターンP5~P8ではV相通電、通電パターンP9~P11、P0ではW相通電とする。また、モータ正回転時、通電パターンP0にてエンコーダエッジが検出されるとW相通電からU相通電に切り替え、通電パターンP4にてエンコーダエッジが検出されるとU相通電からV相通電に切り替え、通電パターンP8にてエンコーダエッジが検出されるとV相通電からW相通電に切り替える。
 ここで、通電パターン切替直後の通電パターンP1、P5、P9において、モータトルクが落ち込む領域が存在する。そこで、図26に示すように、モータトルクが落ち込む領域にてモータ10が停止した場合、当該領域にて正規パターンよりもトルクが出せる通電パターンに切り替える。本実施形態では、モータ10が停止した場合、通電パターンを1つ戻す。
 第8実施形態では、停滞カウント値Cst+1までモータ10が進んだら、通電パターンを正規パターンに戻す。また、第9実施形態では、通電パターンは第8実施形態と同様であって、図27に示すように、通電パターンを1つ戻してから、通電戻し継続時間T12が経過した場合、通電パターンを正規パターンに戻す。このように構成しても、上記実施形態と同様の効果を奏する。なお、ここでは、通電パターンを1つ戻す例について説明したが、1相通電においても、第5実施形態のように、通電パターンを1つ進めた方がトルクを出せる場合、通電パターンを1つ進めるようにしてもよい。後述の2相1相通電も同様である。
   (第10、11実施形態)
 第10実施形態および第11実施形態を図28A、図28B、図29および図30に示す。図28Aおよび図28Bに示すように、第10実施形態では、2相通電および1相通電を交互に繰り返す2相1相通電により、モータ10を回転させる。第10実施形態および第11実施形態では、通電パターンP0~P1ではWU相通電、通電パターンP2~P3ではU相通電、通電パターンP4~P5ではUV相通電、通電パターンP6~P7ではV相通電、通電パターンP8~P9ではVW相通電、通電パターンP10~11ではW相通電とする。また、通電パターンが切り替わる箇所にて、モータトルクが落ち込む。
 ここで、集合部電流Iaが一定となるように電流制御を行うと、各相電流が1相通電時と2相通電時とで異なるため、モータトルクが変動する。詳細には、各相電流を一定とする場合と比較し、1相通電時のトルクが2相通電時より大きくなる。この場合、1相通電から2相通電へ切り替える際、モータトルクが落ち込む。
 そこで、図29に示すように、モータトルクが落ち込む領域にてモータ10が停止した場合、当該領域にて正規パターンよりもトルクが出せる通電パターンに切り替える。本実施形態では、モータ10が停止した場合、通電パターンを1つ戻す。
 第10実施形態では、停滞カウント値Cs+1までモータ10が進んだら、通電パターンを正規パターンに戻す。また、第11実施形態では、通電パターンは第10実施形態と同様であって、図30に示すように、通電パターンを1つ戻してから、通電戻し継続時間T12が経過した場合、通電パターンを正規パターンに戻す。このように構成しても、上記実施形態と同様の効果を奏する。
 上記実施形態では、シフトレンジ制御装置40が「モータ制御装置」に対応し、エンコーダ13が「回転位置センサ」に対応し、エンコーダカウント値Cenが「回転位置センサの検出値」に対応する。また、通電戻し継続時間T12が「変更パターン継続時間」に対応する。
   (他の実施形態)
 上記実施形態では、モータはスイッチトリラクタンスモータである。他の実施形態では、モータは、例えばDCブラシレスモータ等、スイッチトリラクタンスモータ以外のものを用いてもよく、磁極数等も任意に設定可能である。また、用いるモータに応じ、駆動回路部の構成が異なっていてもよい。
  上記実施形態では、回転位置センサはエンコーダである。他の実施形態では、回転位置センサは、レゾルバ等、エンコーダ以外のものを用いてもよい。また、回転位置センサがリニアセンサの場合、例えば停滞位置から所定角度回転した位置を通電再開位置、あるいは、復帰位置としてもよい。上記実施形態では、出力軸センサとしてポテンショメータを例示した。他の実施形態では、出力軸センサは、ポテンショメータ以外のものであってもよいし、出力軸センサを省略してもよい。
 第1実施形態では、トルク低下領域にて通電パターンの変更を行い、トルク低下領域以外では通電パターンの変更を行わない。他の実施形態では、図7中のS103を省略し、モータ10が停滞した場合、トルク低下領域以外においても通電パターンを変更してもよい。また、第2実施形態~第10実施形態において、モータ10が停滞した場合、トルク低下領域にて通電パターンの変更を行い、トルク低下領域以外では通電パターンの変更を行わないようにしてもよい。
 上記実施形態では、ディテントプレートには2つの凹部が設けられる。他の実施形態では、凹部の数は2つに限らず、例えばレンジ毎に凹部が設けられていてもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
 上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。上記実施形態では、モータ制御装置は、シフトレンジ切替システムに適用される。他の実施形態では、モータ制御装置をシフトレンジ切替システム以外の装置に適用してもよい。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。

Claims (10)

  1.  モータ巻線(11)を有するモータ(10)の駆動を制御するモータ制御装置であって、
     前記モータの回転位置を検出する回転位置センサ(13)の検出値に応じ、前記モータ巻線への通電を制御する通電制御部(51)と、
     前記モータの停滞を判定する停滞判定部(53)と、
     を備え、
     前記通電制御部は、前記モータの停滞が検出された場合、前記回転位置センサの検出値に応じて予め設定されている正規パターンとは異なる通電パターンである変更パターンにて通電を制御するモータ制御装置。
  2.  前記通電制御部は、前記モータの停滞が検出された場合、通電をオフにした後、前記変更パターンにて通電を再開する請求項1に記載のモータ制御装置。
  3.  前記通電制御部は、通電をオフにしてから前記回転位置が通電再開位置まで戻った場合、前記変更パターンにて通電を再開する請求項2に記載のモータ制御装置。
  4.  前記通電制御部は、通電をオフにしてから通電オフ継続時間が経過した場合、前記変更パターンにて通電を再開する請求項2に記載のモータ制御装置。
  5.  前記変更パターンは、前記モータの停滞位置よりも遅角側の通電パターンである請求項1~4のいずれか一項に記載のモータ制御装置。
  6.  前記変更パターンは、前記モータの停滞位置よりも進角側の通電パターンである請求項1~4のいずれか一項に記載のモータ制御装置。
  7.  前記通電制御部は、前記変更パターンでの通電を開始してから、前記モータの停滞位置よりも進角側の復帰位置まで進んだ場合、前記正規パターンに復帰させる請求項1~6のいずれか一項に記載のモータ制御装置。
  8.  前記通電制御部は、前記変更パターンでの通電を開始してから変更パターン継続時間が経過した場合、前記正規パターンに復帰させる請求項1~6のいずれか一項に記載のモータ制御装置。
  9.  前記変更パターンは、前記モータが停滞する前の回転方向に対し、停滞位置にて逆向きのトルクを発生させる通電パターンであって、
     前記通電制御部は、前記モータをロック位置まで戻した後、通電パターンを前記正規パターンに復帰させる請求項1~4のいずれか一項に記載のモータ制御装置。
  10.  前記通電制御部は、前記モータの停滞位置がトルク低下領域である場合、通電パターンの変更を行い、前記モータの停滞位置が前記トルク低下領域ではない場合、通電パターンの変更を行わない請求項1~9のいずれか一項に記載のモータ制御装置。
PCT/JP2020/031451 2019-09-10 2020-08-20 モータ制御装置 WO2021049271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020004279.0T DE112020004279T5 (de) 2019-09-10 2020-08-20 Motorsteuervorrichtung
CN202080062846.1A CN114365415B (zh) 2019-09-10 2020-08-20 电机控制装置
US17/685,524 US12119762B2 (en) 2019-09-10 2022-03-03 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-164478 2019-09-10
JP2019164478A JP7272192B2 (ja) 2019-09-10 2019-09-10 モータ制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/685,524 Continuation US12119762B2 (en) 2019-09-10 2022-03-03 Motor control device

Publications (1)

Publication Number Publication Date
WO2021049271A1 true WO2021049271A1 (ja) 2021-03-18

Family

ID=74864406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031451 WO2021049271A1 (ja) 2019-09-10 2020-08-20 モータ制御装置

Country Status (5)

Country Link
US (1) US12119762B2 (ja)
JP (1) JP7272192B2 (ja)
CN (1) CN114365415B (ja)
DE (1) DE112020004279T5 (ja)
WO (1) WO2021049271A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287330B2 (ja) 2020-04-01 2023-06-06 株式会社デンソー モータ制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071726A (ja) * 2017-10-10 2019-05-09 株式会社デンソー シフトレンジ制御装置
JP2019088074A (ja) * 2017-11-06 2019-06-06 株式会社デンソー シフトレンジ制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023889A (ja) * 2002-06-17 2004-01-22 Denso Corp モータ制御装置
JP6097056B2 (ja) 2012-11-16 2017-03-15 株式会社デンソー モータ制御装置
CN103269198B (zh) * 2013-05-17 2015-06-03 浙江大学 一种基于编码器自动调零的永磁同步电机控制方法及系统
JP5762582B1 (ja) * 2014-02-04 2015-08-12 三菱電機株式会社 シフトレンジ切り替え装置
JP6558291B2 (ja) 2016-04-01 2019-08-14 株式会社デンソー モータ制御装置
WO2017179337A1 (ja) * 2016-04-15 2017-10-19 株式会社デンソー シフトレンジ制御装置
JP6899319B2 (ja) * 2017-12-20 2021-07-07 ミネベアミツミ株式会社 モータ駆動制御装置及びモータの制御方法
JP7098983B2 (ja) 2018-03-19 2022-07-12 沖電気工業株式会社 硬貨収納排出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071726A (ja) * 2017-10-10 2019-05-09 株式会社デンソー シフトレンジ制御装置
JP2019088074A (ja) * 2017-11-06 2019-06-06 株式会社デンソー シフトレンジ制御装置

Also Published As

Publication number Publication date
US12119762B2 (en) 2024-10-15
CN114365415B (zh) 2024-10-15
CN114365415A (zh) 2022-04-15
JP7272192B2 (ja) 2023-05-12
US20220190750A1 (en) 2022-06-16
DE112020004279T5 (de) 2022-06-15
JP2021044903A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6583052B2 (ja) モータ制御装置
WO2020158434A1 (ja) シフトレンジ制御装置
JP7009936B2 (ja) シフトレンジ制御装置
WO2019098317A1 (ja) シフトレンジ切替システム
WO2021049271A1 (ja) モータ制御装置
CN111512074B (zh) 换挡挡位控制装置
JP6985108B2 (ja) シフトレンジ制御装置
JP6992481B2 (ja) モータ制御装置
WO2021065530A1 (ja) シフトレンジ制御装置
WO2020100521A1 (ja) シフトレンジ制御装置
WO2021075365A1 (ja) モータ制御装置
US20210180690A1 (en) Shift range control device
JP7021045B2 (ja) シフトレンジ制御装置
WO2020050161A1 (ja) シフトレンジ制御装置
WO2021200204A1 (ja) モータ制御装置
JP7067382B2 (ja) シフトレンジ制御装置
WO2021205997A1 (ja) モータ制御装置
JP7036050B2 (ja) シフトレンジ制御装置
JP7230674B2 (ja) モータ制御装置
WO2021039504A1 (ja) シフトレンジ制御装置
JP2020114126A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863884

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20863884

Country of ref document: EP

Kind code of ref document: A1