WO2021047088A1 - 一种柔性光纤带的制造装置及其制造方法 - Google Patents

一种柔性光纤带的制造装置及其制造方法 Download PDF

Info

Publication number
WO2021047088A1
WO2021047088A1 PCT/CN2019/124861 CN2019124861W WO2021047088A1 WO 2021047088 A1 WO2021047088 A1 WO 2021047088A1 CN 2019124861 W CN2019124861 W CN 2019124861W WO 2021047088 A1 WO2021047088 A1 WO 2021047088A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
optical fiber
fiber ribbon
feeding
pipe
Prior art date
Application number
PCT/CN2019/124861
Other languages
English (en)
French (fr)
Inventor
姚頔
赵梓森
钱峰
祁庆庆
刘晓红
何茂友
胡国华
Original Assignee
烽火通信科技股份有限公司
新疆烽火光通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司, 新疆烽火光通信有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2021047088A1 publication Critical patent/WO2021047088A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the invention relates to the technical field of optical fiber cables, in particular to a manufacturing device and a manufacturing method of a flexible optical fiber ribbon.
  • the non-continuous fixed flexible optical fiber ribbon is a new type of densely packed optical fiber ribbon, which is obtained by discontinuously fixing a plurality of single optical fibers into a ribbon.
  • the flexible optical fiber ribbon can be flexibly wound and arranged and separated quickly due to the non-continuous fixed state between the optical fibers.
  • the optical fiber cable has a non-continuous fixed flexible optical fiber ribbon.
  • the fiber density can be greatly increased, that is, the same fiber optic cable outer diameter can accommodate more fiber cores.
  • a rotating cutter is used to cut the coating material of the optical fiber ribbon at intervals to realize the non-continuous fixation of the optical fiber ribbon.
  • the gear-shaped periodic block structure is used to block the uncured adhesive resin coated with multiple optical fiber core wires at intervals, which not only is not easy to adjust the coating interval, but also easily causes the problem of low utilization and waste of adhesive resin;
  • the vertically rotating guide roller is immersed in uncured adhesive resin while rotating, and the optical fiber is coated with the adhesive resin held in the gap part of the partition plate on the guide wheel. Although the resin can be coated at intervals, the gap part
  • the adhesive resin stored in a single storage is quantitative and limited, and its coating pitch adjustability is also very limited.
  • the purpose of the present invention is to provide a flexible optical fiber ribbon manufacturing device and manufacturing method thereof, which can quickly coat the bonding resin at intervals to avoid damage to the optical fiber, and the coating of the bonding resin It is convenient to adjust the covering distance.
  • the first aspect of the present invention provides a device for manufacturing a flexible optical fiber ribbon, which includes:
  • a plurality of spaced coating assemblies for coating a plurality of parallel-arranged optical fibers with adhesive resin at intervals along the length direction thereof includes a coating die and a feeding shaft arranged in the coating die, The two are tightly connected in rotation, the coating die is provided with a coating channel, and the feed shaft is provided with a feed pipe;
  • the above-mentioned interval coating component coats the optical fiber at the exit of the coating channel with adhesive resin
  • a banding assembly is used to band a plurality of optical fibers coated with adhesive resin at intervals to form an optical fiber ribbon.
  • the above-mentioned feed pipe includes a horizontal pipe and a vertical pipe that are vertically connected to each other.
  • the above-mentioned vertical pipe is arranged along the axial direction of the feed shaft and has a diameter larger than the diameter of the above-mentioned horizontal pipe.
  • the tube and the coating channel are connected after the coating die and the feeding shaft rotate relatively;
  • the diameter of the horizontal tube is 1-10 times the diameter of the coating hole, and the length of the coating hole is 2.5-50 times the hole diameter.
  • the feeding shaft is a fixed part, and the outlet of the feeding pipe is set toward the optical fiber;
  • the feeding shaft is a rotating part, and the outlet of the coating channel is set toward the optical fiber.
  • the coating die includes a sleeve and a ring of bosses arranged on the outer peripheral surface of the sleeve, the sleeve is sleeved on the feeding shaft, and the outer peripheral surface of the boss is provided with a Loop the limiting groove, the coating channel is connected with the limiting groove, and the optical fiber is at least partially located in the limiting groove and has a gap with the inner wall of the limiting groove.
  • it further includes a speed sensor that monitors the travel speed of the optical fiber, the speed sensor is connected to a power control drive system, and the power control drive system is connected to a plurality of coating motors, each The coating motor is connected to a rotating part through a transmission pulley and a belt respectively.
  • the above-mentioned coating die is tightly rotatably connected with the feed shaft through two bearings, and the two bearings are respectively adjacent to the two ends of the feed shaft, and two seals are provided between the two bearings.
  • Two sealing rings are embedded in the inner wall of the coating film and located on both sides of the coating channel, and the inner wall of the sealing ring is attached to the outer wall of the feeding shaft.
  • the aforementioned spacer coating assembly further includes a base, and the spacer coating assembly is fixed in the side-by-side guide rail mold through the base, and the aforementioned side-by-side guide rail mold is used to arrange a plurality of optical fibers in parallel Travel in the same direction;
  • a feeding pipe is connected to one end of the feeding pipe, a through hole for the feeding pipe to pass through is opened on the base, and the feeding pipe is connected to a feeding system.
  • a resin removal baffle is further included, which is arranged between the interval coating assembly and the belt tying assembly, and the resin removal baffle is connected to the resin recovery system.
  • the curing and fiber-retracting component is used to cure the adhesive resin on the optical fiber ribbon and wind the cured optical fiber ribbon.
  • the second aspect of the present invention provides a method for manufacturing a flexible optical fiber ribbon based on the above manufacturing device, which includes the steps:
  • the optical fiber passes through the interval coating assembly
  • the multiple spaced coating components alternate between the open state and the closed state, and intermittently coat multiple optical fibers traveling side by side;
  • the coating channel is in communication with the feed pipe
  • the coating channel is not connected to the feed pipe
  • the ribbon ribbon assembly combines a plurality of optical fibers coated with adhesive resin to form an optical fiber ribbon.
  • the feeding pipe is always in a pressure-maintaining feeding state.
  • the number and placement positions of the spaced coating components, as well as between the coating die and the feed shaft are determined ⁇ rpm ⁇
  • the manufacturing device of the flexible optical fiber ribbon of the present invention through the relative rotation of the coating die and the feeding shaft, enables the coating channel and the feeding pipe to be continuously switched between the connected state and the non-connected state at a high speed, so as to realize the coating channel
  • the optical fiber at the exit is quickly coated with adhesive resin at intervals; a plurality of optical fibers coated with adhesive resin are taped to form an optical fiber ribbon, and adjacent optical fibers are fixedly connected to each other at predetermined intervals, which is relative to the existing interval
  • this embodiment can avoid damaging the optical fiber, and by adjusting the rotation speed between the coating die and the feeding shaft, the coating interval of the adhesive resin can be conveniently adjusted.
  • the manufacturing device of the flexible optical fiber ribbon of the present invention utilizes the holding pressure and feeding pressure of the adhesive resin feeding system to squeeze the adhesive resin into the coating channel from the feeding pipe, and the coating channel has a flat and slender structure It can effectively balance the holding pressure and feeding pressure of the bonding resin, so that the bonding resin is evenly coated on the surface of the optical fiber to ensure the uniformity of the coating length; by controlling the ratio of the long diameter of the coating channel to the diameter of the horizontal tube, and coating The ratio of the length of the channel to its short diameter is used to further adjust the coating length and coating spacing of the adhesive resin.
  • a plurality of optical fibers pass through a preset path composed of the side-by-side guide rail mold and the interval coating component in the side-by-side guide rail mold, the resin removal baffle, the banding component, and the curing and fiber collecting component
  • the high-speed movement is carried out, and the manufacture of the optical fiber ribbon is completed during the movement, and the manufacturing efficiency is high.
  • the manufacturing method of the flexible optical fiber ribbon of the present invention can change different adjacent optical fibers by adjusting the number and placement position of the interval coating components in the side-by-side guide rail mold, and the rotation speed between the coating mold and the feeding shaft. The relative position of the bonding resin between the two to obtain the desired bonding position of the optical fiber ribbon.
  • FIG. 1 is a schematic structural diagram of a manufacturing device for a flexible optical fiber ribbon in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the first structure of the spacer coating assembly according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an open state of the first interval coating assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a closed state of the first interval coating assembly according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the second structure of the spacer coating assembly according to the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a closed state of a second interval coating assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the interval coating components according to the embodiment of the present invention arranged in a net shape
  • FIG. 8 is a schematic diagram of the interval coating components arranged in a V shape according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the spacing coating components according to the embodiment of the present invention arranged in a square shape.
  • 1-interval coating component 11-coating die, 111-coating channel, 12-feeding shaft, 121-feeding pipe, 1211-horizontal pipe, 1212-vertical pipe, 13-limiting groove , 14-bearing, 15-base, 2-fiber, 20-discharge shaft group, 3- and ribbon assembly, 4-fiber ribbon, 5-side-by-side rail mold, 6-feeding system, 61-feeding tube, 7 -Resin removal baffle, 71-Resin recovery system, 8-curing and fiber-rewinding component, 81-curing component, 82-rewinding spool, 9-electric control drive system, 91-speed sensor, 92-transmission pulley, 93- Belt, 94-coated motor.
  • the present invention provides an embodiment of a manufacturing device of a flexible optical fiber ribbon.
  • the manufacturing device of the above-mentioned flexible optical fiber ribbon includes a plurality of space coating components 1 and a ribbon doubling component 3.
  • the plurality of space coating assemblies 1 are used for coating a plurality of optical fibers 2 arranged in parallel with an adhesive resin at intervals along the length direction thereof.
  • the above-mentioned ribbon doubling assembly 3 is used for horizontally densely arranging a plurality of optical fibers 2 coated with adhesive resin at intervals, and accurately controlling the spacing distance between adjacent optical fibers to form an optical fiber ribbon 4.
  • Each optical fiber ribbon 4 may include 6 optical fibers 2, 12 optical fibers 2 or 24 optical fibers 2.
  • each spaced coating assembly 1 includes a coating die 11 and a feed shaft 12 arranged in the coating die 11.
  • the coating die 11 and the feed shaft 12 are in a tightly rotating connection, which is optional Ground, one of the coating mold 11 and the feeding shaft 12 is a rotating part, and the other is a fixed part.
  • the coating die 11 is used to coat the optical fiber 2 with adhesive resin at intervals, and a coating hole 111 is provided therein, and the supply shaft 12 is used to provide adhesive resin to the coating die 11, which is provided with adhesive resin.
  • the feed pipe 121 is used to provide adhesive resin to the coating die 11, which is provided with adhesive resin.
  • the interval coating assembly 1 When the above-mentioned coating channel 111 and the supply pipe 121 are connected after being rotated, the interval coating assembly 1 is in an open state, and the adhesive resin enters the coating channel 111 from the supply pipe 121, and then faces the exit of the coating channel 111.
  • the optical fiber 2 is coated with a certain length of adhesive resin.
  • the spacer coating assembly 1 When the above-mentioned coating channel 111 and the supply pipe 121 are not connected after being rotated, the spacer coating assembly 1 is in a closed state, and no adhesive resin flows out at the exit of the coating channel 111. Therefore, the surface of the optical fiber 2 is not sticky at this time. Connect the resin.
  • the proportion of time that the interval coating assembly 1 is in the open state is relatively small, and a single interval coating
  • the coating length of the adhesive resin is relatively small, and the time in the closed state is relatively large, so the coating interval of the adhesive resin is relatively large.
  • the number and placement positions of the spaced coating components 1 for coating a single optical fiber can be set, and then the surface of multiple side-by-side optical fibers 2 can be arranged along the Coating the required length and spacing of adhesive resin in the axial direction.
  • the coating channel 111 and the feeding pipe 121 are continuously switched between the connected state and the non-connected state at a high speed, so as to realize the exit of the coating channel 111
  • the optical fibers at the position are quickly coated with adhesive resin at intervals; then a plurality of optical fibers 2 coated with adhesive resin at intervals are taped to form an optical fiber ribbon 4.
  • Adjacent optical fibers are fixedly connected to each other at predetermined intervals, which is relative to the existing
  • the above-mentioned supply pipe 121 includes a horizontal tube 1211 and a vertical tube 1212 that are vertically connected to each other.
  • the above-mentioned vertical tube 1212 is arranged along the axial direction of the supply shaft 12 and has a diameter larger than The diameter of the above-mentioned horizontal tube 1211, the above-mentioned horizontal tube 1211 and the coating channel 111 are communicated with each other after the coating die 11 and the feeding shaft 12 are relatively rotated.
  • the cross-section of the coating channel 111 is circular, the diameter of the horizontal tube 1211 is 1-10 times the diameter of the coating channel 111, and the length of the coating channel 111 is 2.5-50 times the diameter of the hole.
  • the length of the coating channel 111 is 5-50 mm, and the diameter of the coating channel 111 is 1-2 mm.
  • the coating length and coating interval of the adhesive resin can be further adjusted.
  • a feeding pipe 61 is connected to one end of the feeding pipe 121, and the feeding pipe 61 is connected to the feeding system 6 of the adhesive resin.
  • the adhesive resin is squeezed into the coating tunnel 111 from the supply pipe 121 by the pressure holding and feeding pressure of the adhesive resin supply system 6, and the flat structure of the coating tunnel 111 can effectively balance the adhesion.
  • the pressure maintaining and feeding pressure of the bonding resin keeps the flow rate of the bonding resin uniform, and the bonding resin is evenly coated on the surface of the optical fiber 2 to ensure the uniformity of the coating pitch and coating length.
  • the coating die 11 is a rotating part
  • the feeding shaft 12 is a fixed part
  • the outlet of the feeding pipe 121 is set toward the optical fiber 2.
  • the rotation of the coating die 11 drives the coating channel 111 to rotate, and when the coating channel 111 is rotated to communicate with the feed pipe 121, the spacer coating assembly 1 is in an open state, and the outlet of the coating channel 111 is traveling directly. , So that the adhesive resin in the supply pipe 121 enters the coating tunnel 111, and then is coated on the surface of the optical fiber 2.
  • the interval coating assembly 1 is in a closed state. At this time, no adhesive resin flows out from the outlet of the coating channel 111.
  • the coating die 11 is a fixed part
  • the feed shaft 12 is a rotating part
  • the outlet of the coating channel 111 is set toward the optical fiber 2.
  • the rotation of the supply shaft 12 drives the rotation of the supply pipe 121.
  • the supply pipe 121 rotates to communicate with the coating channel 111, the same as shown in FIG. 3, the interval coating assembly 1 is in an open state, and the outlet of the supply pipe 121 Facing the optical fiber 2, at this time, the adhesive resin in the supply pipe 121 is coated on the surface of the optical fiber 2 after passing through the coating hole 111.
  • the coating die 11 includes a sleeve and a ring of bosses arranged on the outer peripheral surface of the sleeve.
  • the sleeve is sleeved on the outer surface of the feeding shaft 12, and the convex
  • the outer peripheral surface of the table is provided with a circle of limiting grooves 13, and the coating channel 111 is in communication with the limiting groove 13.
  • the high-speed optical fiber 2 is at least partially located in the above-mentioned limiting groove 13, and has a gap with the inner wall of the limiting groove 13, and the adhesive resin in the coating hole 111 is coated through the gap. Cover the surface of the optical fiber 2.
  • the above-mentioned coating mold 11 is provided with two bearing holes, and bearings 14 are installed in the two bearing holes, and the coating mold 11 is tightly rotatably connected with the feeding shaft 12 through the two bearings 14.
  • Two bearings 14 are respectively adjacent to the two ends of the feeding shaft 12, two sealing rings are arranged between the two bearings 14, the two sealing rings are embedded in the inner wall of the coating film 11 and are located on both sides of the coating hole 111, and the above sealing rings
  • the inner wall and the outer wall of the feeding shaft 12 are attached to further increase the sealing performance between the coating die 11 and the feeding shaft 12 described above.
  • the above-mentioned interval coating assembly 1 further includes a base 15.
  • a plurality of interval coating assemblies 1 are fixed in a side-by-side rail mold 5 through the base 15.
  • the above-mentioned side-by-side rail mold 5 It is used to make a plurality of optical fibers 2 travel side by side in the same direction.
  • the adhesive resin can be applied at intervals by the interval coating assembly 1.
  • the base 15 is also provided with a through hole for the feeding pipe 61 to pass through.
  • the feeding pipe 121 is rotatably connected with the feeding pipe 61; when the feeding shaft 12 is a fixed part, the feeding pipe 121 is fixedly connected with the feeding pipe 61.
  • the manufacturing apparatus of this embodiment further includes a resin removal baffle 7, which is disposed between the above-mentioned spacer coating assembly 1 and the banding assembly 3, and is coated and bonded at intervals.
  • a resin removal baffle 7 is disposed between the above-mentioned spacer coating assembly 1 and the banding assembly 3, and is coated and bonded at intervals.
  • the excess adhesive resin coated on the optical fibers 2 with a thickness greater than the set thickness can be scraped off by the resin removal baffle 7, and the resin removal baffle 7 is connected with resin
  • the recycling system 71 can recycle the scraped resin and avoid the waste of bonding resin.
  • the manufacturing device of this embodiment further includes a curing and fiber collecting assembly 8.
  • the curing and fiber collecting assembly 8 includes a curing assembly 81 and a fiber collecting spool 82 arranged in sequence.
  • the curing component 81 is arranged between the resin removal baffle 7 and the take-up spool 82.
  • the curing component 81 is used to cure the bonding resin on the optical fiber ribbon 4 formed by the tape, and the take-up spool 82 is used to cure the cured optical fiber ribbon. 4 Rewinding.
  • the manufacturing device of this embodiment also includes a speed sensor 91 that monitors the traveling speed of the optical fiber 2 described above.
  • a speed sensor 91 is provided on each optical fiber 2.
  • Each speed sensor 91 is connected to a power control driving system 9, and the power control driving system 9 is connected to and controls a plurality of coating motors 94, and each coating motor 94 is connected to a rotating part through a transmission pulley 92 and a belt 93 respectively.
  • Each speed sensor 91 separately monitors the travel speed of its corresponding optical fiber 2 and feeds it back to the electric control drive system 9.
  • the electric control drive system 9 controls the coating motor 94 according to the feedback speed, thereby realizing the control of the rotation speed of the rotating part adjust.
  • the speed sensor 91, the electric control drive system 9 and the coating motor 94 form a closed loop system, which can automatically adjust the rotation speed of the rotating part according to the traveling speed of each optical fiber 2 in real time to further ensure the coating of the adhesive resin on the surface of each optical fiber 2 Uniformity of spacing and coating length.
  • the manufacturing apparatus of this embodiment further includes a fiber release shaft group 20, and the number of fiber release shafts in the fiber release shaft group 20 is the same as the number of the optical fibers 2 and corresponds to each other one to one.
  • a plurality of optical fibers 2 are arranged in parallel through the fiber release shaft group 20, and then sequentially pass through the side-by-side guide rail mold 5 and the interval coating component 1, the resin removal baffle 7, and the banding component 3 and the curing and fiber collecting component in the side-by-side guide rail mold 5 8. Realize the manufacture of optical fiber ribbons in the process of high-speed movement.
  • the present invention also provides an embodiment of a method for manufacturing a flexible optical fiber ribbon based on the above manufacturing device, which includes the steps:
  • the traveling optical fiber 2 passes through the interval coating assembly 1.
  • the plurality of spaced coating assemblies 1 are alternately performed between the open state and the closed state, and the plurality of optical fibers 2 traveling side by side are intermittently coated.
  • the coating die 11 and the feeding shaft 12 rotate until the coating channel 111 communicates with the feeding pipe 121; when the interval coating assembly 1 is in the closed state, the coating mold 11 It rotates with the feeding shaft 12 until the coating channel 111 is not connected with the feeding pipe 121.
  • the excess adhesive resin coated on the optical fibers 2 with a thickness greater than the set thickness can be scraped off by the resin removal baffle 7.
  • the scraped resin can be recycled to avoid sticking Waste of resin.
  • a plurality of optical fibers 2 coated with an adhesive resin are combined and ribboned to form an optical fiber ribbon 4 through the ribbon ribbon assembly 3.
  • the optical fiber ribbon 4 formed by a horizontal close arrangement of a plurality of optical fibers 2 enters the curing and fiber collecting assembly 8.
  • the adhesive resin on the optical fiber ribbon 4 is cured by the curing assembly 81, and then the cured optical fiber ribbon is applied to the cured optical fiber ribbon through the fiber winding spool 82. 4Tight winding and rewinding.
  • the material supply pipe 121 when the intermittent coating is performed, the material supply pipe 121 is always in a pressure-maintained material supply state.
  • the adhesive resin in the coating tunnel 111 can be uniformly coated on the traveling optical fiber 2 because the supply pipe is in a pressure-maintained feeding state.
  • the method further includes: recycling the excess resin on the multiple optical fibers 2 coated with adhesive resin to the resin recycling system 71 through the resin removal baffle 7.
  • the manufacturing method of this embodiment further includes determining the number and placement positions of the spaced coating components 1 according to the designed bonding positions between adjacent optical fibers 2 and the traveling speed of the optical fibers 2. And the rotation speed between the coating die 11 and the feed shaft 12. That is, by changing the number and placement position of the spacer coating assembly 1 in the side-by-side guide rail mold 5, and the rotation speed between the coating mold 11 and the feed shaft 12, the bonding resin between different adjacent optical fibers 2 can be changed. Relative position, the optical fiber ribbon 4 of the desired bonding position is obtained.
  • the relative positions of the adhesive resin on the surface of a plurality of optical fibers 2 are also arranged in net shape, that is, the bonding position of the obtained optical fiber ribbon 4 Arranged in a net shape.
  • three parallel optical fibers 2 pass through five spaced coating assemblies 1, and two optical fibers 2 on both sides pass through two spaced coating assemblies 1 respectively, and the connections of the four spaced coating assemblies 1 It is rectangular, and the optical fiber 2 in the middle position passes through a spacer coating assembly 1 and is located in the center of the rectangle.
  • the relative positions of the adhesive resin on the surface of a plurality of optical fibers 2 are arranged in a zigzag pattern, that is, the obtained optical fiber ribbon 4 is arranged in a zigzag pattern.
  • the bonding positions are arranged in a zigzag pattern.
  • the manufacturing method of this embodiment is applicable to the above-mentioned manufacturing device.
  • a plurality of optical fibers 2 pass through the fiber release shaft group 20, the side-by-side guide rail mold 5, and the spaced coating assembly 1, the resin removal baffle 7, and the banding assembly in the side-by-side guide rail mold 5.
  • the preset path composed of 3 and the curing and fiber collecting assembly 8 moves at a high speed, and the manufacture of the optical fiber ribbon 4 is completed during the moving process, and the manufacturing efficiency is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种柔性光纤带(4)的制造装置及其制造方法,该制造装置包括:多个间隔涂覆组件(1),其用于对多个并行排列行进的光纤(2)沿其长度方向间隔涂覆粘接树脂,间隔涂覆组件(1)包括涂覆模(11)和设置于涂覆模(11)内的供料轴(12),二者紧密转动连接,涂覆模(11)内设有涂覆孔道(111),供料轴(12)内设有供料管道(121);当涂覆孔道(111)与供料管道(121)经转动后连通时,间隔涂覆组件(1)对涂覆孔道(111)出口处的光纤(2)涂覆粘接树脂;一个并带组件(3),其用于将多个间隔涂覆粘接树脂的光纤(2)并带形成光纤带(4)。通过涂覆孔道(111)与供料管道(121)在连通状态和非连通状态之间高速连续切换,实现对涂覆孔道(111)出口处的光纤(2)进行快速地间隔涂覆粘接树脂,避免损伤光纤(2),还可方便调整粘接树脂的涂覆间距。

Description

一种柔性光纤带的制造装置及其制造方法 技术领域
本发明涉及光纤光缆技术领域,具体涉及一种柔性光纤带的制造装置及其制造方法。
背景技术
非连续固定型柔性光纤带作为一种新型的密排光纤带,是将多个单根光纤通过非连续固定成带得到。柔性光纤带因其各根光纤之间呈非连续固定状态,因此可以进行柔性卷绕排布并可快速分离,较之传统的层绞式散纤光缆,具有非连续固定型柔性光纤带的光缆可大幅提高光纤密度,即相同光缆外径可容纳更多的光纤芯数。
现有的光纤并带设备中,采用旋转刀具间隔切断光纤带涂覆的包覆材料以实现光纤带的非连续固定,存在精密控制失稳的潜在缺陷,光纤存在较大误伤受损的风险;采用齿轮状周期性挡块结构对多根光纤芯线涂布的未固化粘接树脂进行间隔性阻挡,不仅涂覆间距不便于调整,还容易造成粘接树脂利用率较低且浪费的问题;采用垂直旋转导轮一边旋转、一边浸渍于没有硬化的粘接树脂,并通过导轮上间隔板的空隙部内保持的粘接树脂对光纤进行涂覆,虽然可以实现间隔涂覆树脂,但空隙部内单次存贮的粘接树脂定量且有限,其涂覆间距可调整性也十分局限。
发明内容
针对现有技术中存在的缺陷之一,本发明的目的在于提供一种柔性光纤带的制造装置及其制造方法,可快速地间隔涂覆粘接树脂,避 免损伤光纤,且粘接树脂的涂覆间距调整方便。
本发明第一方面提供一种柔性光纤带的制造装置,其包括:
多个间隔涂覆组件,其用于对多个并行排列行进的光纤沿其长度方向间隔涂覆粘接树脂,上述间隔涂覆组件包括涂覆模和设置于涂覆模内的供料轴,二者紧密转动连接,上述涂覆模内设有涂覆孔道,上述供料轴内设有供料管道;
当上述涂覆孔道与供料管道经转动后连通时,上述间隔涂覆组件对涂覆孔道出口处的光纤涂覆粘接树脂;
一个并带组件,其用于将多个间隔涂覆粘接树脂的光纤并带形成光纤带。
基于第一方面,在可能的实施例中,上述供料管道包括相互垂直连通的横管和竖管,上述竖管沿供料轴的轴向设置,且其直径大于上述横管直径,上述横管与涂覆孔道经过涂覆模和供料轴相对转动后连通;
上述横管的管径为上述涂覆孔道孔径的1-10倍,上述涂覆孔道的长度为其孔径的2.5-50倍。
基于第一方面,在可能的实施例中,当上述涂覆模为转动件时,上述供料轴为固定件,上述供料管道的出口朝向光纤设置;
当上述涂覆模为固定件时,上述供料轴为转动件,上述涂覆孔道的出口朝向光纤设置。
基于第一方面,在可能的实施例中,上述涂覆模包括套筒和设置于套筒外周面的一圈凸台,上述套筒套设于上述供料轴,上述凸台外周面设有一圈限位凹槽,上述涂覆孔道与上述限位凹槽连通,上述光纤至少部分位于限位凹槽内,且与限位凹槽的内壁具有间隙。
基于第一方面,在可能的实施例中,还包括对上述光纤的行进速 度进行监测的测速传感器,上述测速传感器连接电力控制驱动系统,上述电力控制驱动系统连接有多个涂覆电机,每个涂覆电机分别通过传动带轮和皮带连接一个转动件。
基于第一方面,在可能的实施例中,上述涂覆模通过两个轴承与供料轴紧密转动连接,两个轴承分别邻近供料轴两端,上述两个轴承之间设有两个密封圈,两个密封圈嵌入涂覆膜内壁且位于涂覆孔道两侧,且上述密封圈的内壁与供料轴外壁相贴合。
基于第一方面,在可能的实施例中,上述间隔涂覆组件还包括基座,间隔涂覆组件通过基座固定于并排导轨模具内,上述并排导轨模具用于使多个光纤沿并行排列并沿同一方向行进;
上述供料管道一端连接有送料管,上述基座开设有供上述送料管穿设的通孔,上述送料管连接供料系统。
基于第一方面,在可能的实施例中,还包括树脂去除挡片,其设置于上述间隔涂覆组件与并带组件之间,上述树脂去除挡片连接树脂回收系统。
基于第一方面,在可能的实施例中,还包括固化及收纤组件,上述固化及收纤组件用于将上述光纤带上的粘接树脂固化,并将固化后的光纤带收卷。
本发明第二方面提供一种基于上述制造装置的柔性光纤带的制造方法,其包括步骤:
光纤经过间隔涂覆组件;
通过涂覆模和供料轴之间转动,使多个间隔涂覆组件在开启状态和闭合状态之间交替进行,对多个并排行进的光纤进行间断性涂覆;
当上述间隔涂覆组件处于开启状态时,上述涂覆孔道与供料管道连通;
当上述间隔涂覆组件处于闭合状态时,上述涂覆孔道与供料管道不连通;
并带组件将涂覆粘接树脂的多个光纤并带形成光纤带。
基于第二方面,在可能的实施例中,进行间断性涂覆时,供料管道一直处于保压供料状态。
基于第二方面,在可能的实施例中,根据设计的相邻光纤之间的粘接位置和光纤行进速度,确定间隔涂覆组件的数量和布放位置、以及涂覆模和供料轴之间的转速。
与现有技术相比,本发明的优点在于:
(1)本发明的柔性光纤带的制造装置,通过涂覆模和供料轴相对转动,使涂覆孔道与供料管道在连通状态和非连通状态之间高速连续切换,实现对涂覆孔道出口处的光纤进行快速地间隔涂覆粘接树脂;将多个间隔涂覆过粘接树脂的光纤并带形成光纤带,相邻光纤彼此每隔预设间隔固定连接,相对于现有的间隔切断光纤包覆材料的方式,本实施例可避免损伤光纤,且通过调节涂覆模和供料轴之间的转速,可方便调整粘接树脂的涂覆间距。
(2)本发明的柔性光纤带的制造装置,利用粘接树脂供料系统的保压供料压力将粘接树脂由供料管道挤入涂覆孔道中,涂覆孔道扁平且细长的结构可有效平衡粘接树脂的保压供料压力,使粘接树脂均匀涂覆在光纤表面,保证涂覆长度的均匀性;通过控制涂覆孔道长径与横管管径的比例,以及涂覆孔道长度与其短径的比例,进一步调整粘接树脂的涂覆长度以及涂覆间距。
(3)本发明的柔性光纤带的制造装置,多个光纤经由并排导轨模具及并排导轨模具内的间隔涂覆组件、树脂去除挡片、并带组件和固化及收纤组件组成的预设路径进行高速移动,移动过程中完成光纤 带的制造,制造效率高。
(4)本发明的柔性光纤带的制造方法,通过调整间隔涂覆组件在并排导轨模具内的数量和布放位置,以及涂覆模和供料轴之间的转速,可改变不同的相邻光纤之间的粘接树脂的相对位置,得到所需粘接位置的光纤带。
附图说明
图1为本发明实施例中柔性光纤带的制造装置的结构示意图;
图2为本发明实施例的间隔涂覆组件的第一种结构示意图;
图3为本发明实施例的第一种间隔涂覆组件开启状态的示意图;
图4为本发明实施例的第一种间隔涂覆组件闭合状态的示意图;
图5为本发明实施例的间隔涂覆组件的第二种结构示意图;
图6为本发明实施例的第二种间隔涂覆组件闭合状态的示意图;
图7为本发明实施例的间隔涂覆组件呈网状排布的示意图;
图8为本发明实施例的间隔涂覆组件呈V字状排布的示意图;
图9为本发明实施例的间隔涂覆组件呈田字状排布的示意图。
图中:1-间隔涂覆组件,11-涂覆模,111-涂覆孔道,12-供料轴,121-供料管道,1211-横管,1212-竖管,13-限位凹槽,14-轴承,15-基座,2-光纤,20-放纤轴组,3-并带组件,4-光纤带,5-并排导轨模具,6-供料系统,61-送料管,7-树脂去除挡片,71-树脂回收系统,8-固化及收纤组件,81-固化组件,82-收纤线轴,9-电力控制驱动系统,91-测速传感器,92-传动带轮,93-皮带,94-涂覆电机。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1所示,本发明提供一种柔性光纤带的制造装置的实施例,上述柔性光纤带的制造装置包括多个间隔涂覆组件1和一个并带组件3。
多个间隔涂覆组件1用于对多个并行排列行进的光纤2沿其长度方向间隔涂覆粘接树脂。上述并带组件3用于将多个间隔涂覆粘接树脂的光纤2进行水平密集排列,并精确控制相邻光纤之间的间隔距离,以形成光纤带4。每个光纤带4可包括6个光纤2、12个光纤2或24个光纤2。
参见图2-6所示,每个间隔涂覆组件1包括涂覆模11和设置于涂覆模11内的供料轴12,涂覆模11与供料轴12为紧密转动连接,可选地,涂覆模11与供料轴12,其一为转动件,另一为固定件。上述涂覆模11用于对光纤2间隔涂覆粘接树脂,其内设有涂覆孔道111,上述供料轴12用于向涂覆模11提供粘接树脂,其内设有粘接树脂的供料管道121。
当上述涂覆孔道111与供料管道121经转动后连通时,间隔涂覆组件1处于开启状态,粘接树脂由供料管道121进入涂覆孔道111,然后对行进至涂覆孔道111出口的光纤2涂覆一定长度的粘接树脂。当上述涂覆孔道111与供料管道121经转动后不连通时,间隔涂覆组件1处于闭合状态,涂覆孔道111出口处并无粘接树脂流出,因此,此时的光纤2表面无粘接树脂。
由于涂覆孔道111与供料管道121连通时重合部分的长度相对于整个涂覆模11的外圆周长较小,因此间隔涂覆组件1处于开启状态的时间占比相对较小,单个间隔涂覆组件1对光纤2表面涂覆时,粘接树脂的涂覆长度相对较小,而处于闭合状态的时间占比相对较大,因此粘接树脂的涂覆间距较大。
本实施例中,可根据单个光纤所需的涂覆位置和涂覆间距,设置涂覆单个光纤的间隔涂覆组件1的数量和布放位置,进而在多个并排的光纤2表面,实现沿其轴向涂覆所需长度和间距的粘接树脂。
本实施例的制造装置,通过涂覆模11和供料轴12相对转动,使涂覆孔道111与供料管道121在连通状态和非连通状态之间高速连续切换,实现对涂覆孔道111出口处的光纤进行快速地间隔涂覆粘接树脂;然后将多个间隔涂覆过粘接树脂的光纤2并带形成光纤带4,相邻光纤彼此每隔预设间隔固定连接,相对于现有的间隔切断光纤包覆材料的方式,本实施例可避免损伤光纤,且通过调节涂覆模和供料轴之间的转速,可方便调整粘接树脂的涂覆间距。
在上一个实施例的基础上,本实施例中,上述供料管道121包括相互垂直连通的横管1211和竖管1212,上述竖管1212沿供料轴12的轴向设置,且其直径大于上述横管1211直径,上述横管1211与涂覆孔道111经过涂覆模11和供料轴12相对转动后连通。
本实施例中,上述涂覆孔道111的截面为圆形,横管1211的管径为涂覆孔道111孔径的1-10倍,涂覆孔道111的长度为其孔径的2.5-50倍。可选地,涂覆孔道111的长度为5-50mm,涂覆孔道111的孔径为1-2mm。
通过调节涂覆孔道111的孔径与横管1211管径的比例,以及涂覆孔道111的长度与其孔径的比例,可进一步调整粘接树脂的涂覆长度以及涂覆间距。
本实施例中,供料管道121一端连接有送料管61,该送料管61连接粘接树脂的供料系统6。在光纤2的高速运动中,利用粘接树脂供料系统6的保压供料压力将粘接树脂由供料管道121挤入涂覆孔道111中,涂覆孔道111的扁平结构可有效平衡粘接树脂的保压供料压 力,保持粘接树脂的流速均匀,并使粘接树脂均匀涂覆在光纤2表面,以保证涂覆间距和涂覆长度的均匀性。
参见图2所示,在第二个实施例的基础上,本实施例中,上述涂覆模11为转动件,上述供料轴12为固定件,且供料管道121的出口朝向光纤2设置。参见图3所示,涂覆模11转动带动涂覆孔道111旋转,涂覆孔道111旋转至与供料管道121连通时,间隔涂覆组件1处于开启状态,涂覆孔道111的出口正对行进的光纤2,以便于供料管道121内的粘接树脂进入涂覆孔道111,随即涂覆在光纤2表面。
参见图4所示,涂覆孔道111转动至与供料管道121不连通时,间隔涂覆组件1处于闭合状态,此时,涂覆孔道111出口处并无粘接树脂流出。
参见图5所示,在第二个实施例的基础上,本实施例中,上述涂覆模11为固定件,上述供料轴12为转动件,且涂覆孔道111的出口朝向光纤2设置。上述供料轴12转动带动供料管道121旋转,供料管道121旋转至与涂覆孔道111连通时,与图3所示相同,上述间隔涂覆组件1处于开启状态,供料管道121的出口朝向光纤2,此时,供料管道121内的粘接树脂经过涂覆孔道111后涂覆在光纤2表面。
参见图6所示,供料管道121转动至与涂覆孔道111不连通时,间隔涂覆组件1处于闭合状态,此时,涂覆孔道111出口处无粘接树脂流出。
在上述实施例的基础上,本实施例中,上述涂覆模11包括套筒和设置于套筒外周面的一圈凸台,上述套筒套设于供料轴12的外表面,该凸台外周面设有一圈限位凹槽13,上述涂覆孔道111与上述限位凹槽13连通。在光纤带3的制造过程中,高速行进的光纤2至少部分位于上述限位凹槽13内,且与限位凹槽13的内壁具有间隙, 涂覆孔道111内的粘接树脂经过该间隙涂覆在光纤2表面。
本实施例中,上述涂覆模11设有两个轴承孔,两个轴承孔内均安装有轴承14,涂覆模11通过两个轴承14与供料轴12紧密转动连接。两个轴承14分别邻近供料轴12两端,上述两个轴承14之间设有两个密封圈,两个密封圈嵌入涂覆膜11内壁且位于涂覆孔道111两侧,且上述密封圈的内壁与供料轴12外壁相贴合,以进一步增加上述涂覆模11与供料轴12之间的密封性。
在上述实施例的基础上,本实施例中,上述间隔涂覆组件1还包括基座15,多个间隔涂覆组件1通过基座15固定在一个并排导轨模具5内,上述并排导轨模具5用于使多个光纤2沿同一方向并排行进,在该过程中,即可通过间隔涂覆组件1间隔涂覆粘接树脂。
由于供料管道121一端通过送料管61连接供料系统6,因此,上述基座15还开设有供送料管61穿设的通孔。当供料轴12为转动件时,供料管道121与送料管61转动连接;当供料轴12为固定件时,供料管道121与送料管61固定连接。
参见图1所示,优选地,本实施例的制造装置还包括树脂去除挡片7,该树脂去除挡片7设置在上述间隔涂覆组件1与并带组件3之间,间隔涂覆粘接树脂后的多个光纤2在进入并带组件3之前,可通过树脂去除挡片7将光纤2上涂覆厚度大于设定厚度的多余粘接树脂刮除,且树脂去除挡片7连接有树脂回收系统71,可对刮除的树脂进行回收利用,避免粘接树脂的浪费。
本实施例的制造装置还包括固化及收纤组件8,上述固化及收纤组件8包括依次设置的固化组件81和收纤线轴82。固化组件81设置在树脂去除挡片7与收纤线轴82之间,固化组件81用于将并带形成的光纤带4上的粘接树脂固化,收纤线轴82用于将固化后的光纤 带4收卷。
本实施例的制造装置还包括对上述光纤2的行进速度进行监测的测速传感器91,优选地,每个光纤2上均设置一个测速传感器91。每个测速传感器91均连接电力控制驱动系统9,电力控制驱动系统9连接并控制多个涂覆电机94,每个涂覆电机94分别通过传动带轮92和皮带93连接一个转动件。每个测速传感器91分别监测其对应的光纤2的行进速度,并反馈给电力控制驱动系统9,电力控制驱动系统9根据反馈的速度对涂覆电机94进行控制,进而实现对转动件转速的控制调节。
通过测速传感器91、电力控制驱动系统9与涂覆电机94组成一个闭环系统,实时根据每个光纤2的行进速度自动调节转动件的转速,以进一步保证每个光纤2表面粘接树脂的涂覆间距和涂覆长度的均匀性。
本实施例的制造装置还包括放纤轴组20,放纤轴组20中的放纤轴数量与光纤2数量相同且一一对应。多个光纤2通过放纤轴组20实现并行排列,随后依次经过并排导轨模具5及并排导轨模具5内的间隔涂覆组件1、树脂去除挡片7、并带组件3和固化及收纤组件8,实现在高速移动过程中完成光纤带的制造。
本发明还提供一种基于上述制造装置的柔性光纤带的制造方法的实施例,其包括步骤:
S1.行进的光纤2经过间隔涂覆组件1。
S2.通过涂覆模11和供料轴12之间转动,使多个间隔涂覆组件1在开启状态和闭合状态之间交替进行,对多个并排行进的光纤2进行间断性涂覆。
当间隔涂覆组件1处于开启状态时,涂覆模11和供料轴12之间 转动至涂覆孔道111与供料管道121连通;当间隔涂覆组件1处于闭合状态时,涂覆模11和供料轴12之间转动至涂覆孔道111与供料管道121不连通。
间断性涂覆粘接树脂后的多个光纤2,可通过树脂去除挡片7将光纤2上涂覆厚度大于设定厚度的多余粘接树脂刮除,刮除的树脂可回收利用,避免粘接树脂的浪费。
S3.通过并带组件3将涂覆粘接树脂的多个光纤2并带形成光纤带4。随后,多个光纤2水平密排形成的光纤带4进入固化及收纤组件8,首先通过固化组件81将光纤带4上的粘接树脂固化,然后通过收纤线轴82对固化后的光纤带4紧绕收卷。
本实施例中,进行间断性涂覆时,供料管道121一直处于保压供料状态。当供料管道121和涂覆孔道111经转动后连通时,由于供料管处于保压供料状态,使得涂覆孔道111内的粘接树脂可均匀地涂覆于行进的光纤2上。
本实施例中,将多个光纤2并带形成光纤带4之前,还包括:通过树脂去除挡片7将涂覆粘接树脂的多个光纤2上多余的树脂回收至树脂回收系统71。
在上述实施例中的基础上,本实施例的制造方法,还包括根据设计的相邻光纤2之间的粘接位置和光纤2的行进速度,确定间隔涂覆组件1的数量和布放位置、以及涂覆模11和供料轴12之间的转速。即,通过改变间隔涂覆组件1在并排导轨模具5内的数量和布放位置、及涂覆模11和供料轴12之间的转速,来改变不同相邻光纤2之间的粘接树脂的相对位置,得到所需粘接位置的光纤带4。
参见图7所示,当一组间隔涂覆组件1呈网状水平排布时,多个光纤2表面粘接树脂的相对位置同样呈网状排布,即得到的光纤带4 的粘接位置呈网状排布。本实施例中,三根并行的光纤2共经过5个间隔涂覆组件1,位于两侧的两个光纤2分别经过两个间隔涂覆组件1,且该四个间隔涂覆组件1的连线呈矩形,处于中间位置的光纤2经过一个间隔涂覆组件1,且位于矩形中心。
参见图8所示,当一组间隔涂覆组件1呈V字状水平排布时,多个光纤2表面粘接树脂的相对位置呈“之”字状排布,即得到的光纤带4的粘接位置呈“之”字状排布。
参见图9所示,当一组间隔涂覆组件1呈“田”字状水平排布时,多个光纤2表面粘接树脂的相对位置同样呈“田”字状排布,即得到的光纤带4的粘接位置呈“田”字状排布。
本实施例的制造方法,适用于上述制造装置,多个光纤2经由放纤轴组20、并排导轨模具5及并排导轨模具5内的间隔涂覆组件1、树脂去除挡片7、并带组件3和固化及收纤组件8组成的预设路径进行高速移动,移动过程中完成光纤带4的制造,制造效率高。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (12)

  1. 一种柔性光纤带的制造装置,其特征在于,其包括:
    多个间隔涂覆组件(1),其用于对多个并行排列行进的光纤(2)沿其长度方向间隔涂覆粘接树脂,所述间隔涂覆组件(1)包括涂覆模(11)和设置于涂覆模(11)内的供料轴(12),二者紧密转动连接,所述涂覆模(11)内设有涂覆孔道(111),所述供料轴(12)内设有供料管道(121);
    当所述涂覆孔道(111)与供料管道(121)经转动后连通时,所述间隔涂覆组件(1)对涂覆孔道(111)出口处的光纤(2)涂覆粘接树脂;
    一个并带组件(3),其用于将多个间隔涂覆粘接树脂的光纤(2)并带形成光纤带(4)。
  2. 如权利要求1所述的柔性光纤带的制造装置,其特征在于:
    所述供料管道(121)包括相互垂直连通的横管(1211)和竖管(1212),所述竖管(1212)沿供料轴(12)的轴向设置,且其直径大于所述横管(1211)直径,所述横管(1211)与涂覆孔道(111)经过涂覆模(11)和供料轴(12)相对转动后连通;
    所述横管(1211)的管径为所述涂覆孔道(111)孔径的1-10倍,所述涂覆孔道(111)的长度为其孔径的2.5-50倍。
  3. 如权利要求1或2所述的柔性光纤带的制造装置,其特征在于:当所述涂覆模(11)为转动件时,所述供料轴(12)为固定件,所述供料管道(121)的出口朝向光纤(2)设置;
    当所述涂覆模(11)为固定件时,所述供料轴(12)为转动件,所述涂覆孔道(111)的出口朝向光纤(2)设置。
  4. 如权利要求3所述的柔性光纤带的制造装置,其特征在于: 所述涂覆模(11)包括套筒和设置于套筒外周面的一圈凸台,所述套筒套设于所述供料轴(12),所述凸台外周面设有一圈限位凹槽(13),所述涂覆孔道(111)与所述限位凹槽(13)连通,所述光纤(2)至少部分位于限位凹槽(13)内,且与限位凹槽(13)的内壁具有间隙。
  5. 如权利要求3所述的柔性光纤带的制造装置,其特征在于:还包括对所述光纤(2)的行进速度进行监测的测速传感器(91),所述测速传感器(91)连接电力控制驱动系统(9),所述电力控制驱动系统(9)连接有多个涂覆电机(94),每个涂覆电机(94)分别通过传动带轮(92)和皮带(93)连接一个转动件。
  6. 如权利要求1所述的柔性光纤带的制造装置,其特征在于:所述涂覆模(11)通过两个轴承(14)与供料轴(12)紧密转动连接,两个轴承(14)分别邻近供料轴(12)两端,所述两个轴承(14)之间设有两个密封圈,两个密封圈嵌入涂覆膜(11)内壁且位于涂覆孔道(111)两侧,且所述密封圈的内壁与供料轴(12)外壁相贴合。
  7. 如权利要求1所述的柔性光纤带的制造装置,其特征在于:所述间隔涂覆组件(1)还包括基座(15),所述间隔涂覆组件(1)通过基座(15)固定于并排导轨模具(5)内,所述并排导轨模具(5)用于使多个光纤(2)沿并行排列并沿同一方向行进;
    所述供料管道(121)一端连接有送料管(61),所述基座(15)开设有供所述送料管(61)穿设的通孔,所述送料管(61)连接供料系统(6)。
  8. 如权利要求1所述的柔性光纤带的制造装置,其特征在于:还包括树脂去除挡片(7),其设置于所述间隔涂覆组件(1)与并带组件(3)之间,所述树脂去除挡片(7)连接树脂回收系统(71)。
  9. 如权利要求1所述的柔性光纤带的制造装置,其特征在于: 还包括固化及收纤组件(8),所述固化及收纤组件(8)用于将所述光纤带(4)上的粘接树脂固化,并将固化后的光纤带(4)收卷。
  10. 一种基于权利要求1所述的制造装置的柔性光纤带的制造方法,其特征在于,其包括:
    光纤(2)经过间隔涂覆组件(1);
    通过涂覆模(11)和供料轴(12)之间转动,使多个间隔涂覆组件(1)在开启状态和闭合状态之间交替进行,对多个并排行进的光纤(2)进行间断性涂覆;
    当所述间隔涂覆组件(1)处于开启状态时,所述涂覆孔道(111)与供料管道(121)连通;
    当所述间隔涂覆组件(1)处于闭合状态时,所述涂覆孔道(111)与供料管道(121)不连通;
    并带组件(3)将涂覆粘接树脂的多个光纤(2)并带形成光纤带(4)。
  11. 如权利要求10所述的柔性光纤带的制造方法,其特征在于:所述进行间断性涂覆时,供料管道(121)一直处于保压供料状态。
  12. 如权利要求10所述的柔性光纤带的制造方法,其特征在于:
    根据设计的相邻光纤(2)之间的粘接位置和光纤(2)行进速度,确定间隔涂覆组件(1)的数量和布放位置、以及涂覆模(11)和供料轴(12)之间的转速。
PCT/CN2019/124861 2019-09-10 2019-12-12 一种柔性光纤带的制造装置及其制造方法 WO2021047088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910849850.1 2019-09-10
CN201910849850.1A CN110673281B (zh) 2019-09-10 2019-09-10 一种柔性光纤带的制造装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2021047088A1 true WO2021047088A1 (zh) 2021-03-18

Family

ID=69076755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124861 WO2021047088A1 (zh) 2019-09-10 2019-12-12 一种柔性光纤带的制造装置及其制造方法

Country Status (2)

Country Link
CN (1) CN110673281B (zh)
WO (1) WO2021047088A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114055689A (zh) * 2020-08-05 2022-02-18 武汉光谷长盈通计量有限公司 在线变径涂覆模具及拉丝塔
CN114265162B (zh) * 2021-12-20 2023-02-28 长飞光纤光缆股份有限公司 一种柔性光纤带及其制造设备和制造方法
CN114217397B (zh) * 2021-12-20 2023-03-21 长飞光纤光缆股份有限公司 光纤带的成型方法及专用于实施该成型方法的点胶设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003516A (ja) * 2011-06-21 2013-01-07 Furukawa Electric Co Ltd:The 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置および光ファイバテープ心線
CN103587018A (zh) * 2013-10-21 2014-02-19 广东亨通光电科技有限公司 一种束状光纤成型所用模具系统及成型方法
JP2016080849A (ja) * 2014-10-16 2016-05-16 古河電気工業株式会社 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置
CN106890755A (zh) * 2015-12-18 2017-06-27 中烟机械技术中心有限责任公司 带状材料的涂胶装置
CN108780203A (zh) * 2016-03-23 2018-11-09 住友电气工业株式会社 光纤带状芯线的制造方法及制造装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201614348U (zh) * 2010-01-25 2010-10-27 北京冠华东方玻璃科技有限公司 点式中空玻璃孔位注胶头
CN102501678B (zh) * 2011-11-25 2014-12-24 平湖英厚机械有限公司 带断丝回收和自动清洗的喷胶机构及回收清洗方法
JP2014122586A (ja) * 2012-12-21 2014-07-03 Three Bond Co Ltd 粘性材料供給装置
CN103143480B (zh) * 2013-03-28 2015-07-29 柳州五菱汽车有限责任公司 一种后桥壳涂胶机
CN104549882B (zh) * 2013-10-22 2017-01-25 袁文兵 喷胶装置及喷胶方法
CN204641001U (zh) * 2015-04-22 2015-09-16 福建省精泰设备制造有限公司 一种用于非连续柔性材料的取料装置及上胶复合设备
CN105216340B (zh) * 2015-10-13 2018-03-30 山东柏远复合材料科技有限公司 纤维增强热固性塑料管道连续压密、高效生产线及工艺
WO2018002975A1 (ja) * 2016-06-28 2018-01-04 株式会社プラ技研 フレキシブルチューブ及びその製造装置
CN206139436U (zh) * 2016-09-23 2017-05-03 惠州比亚迪电池有限公司 一种点胶阀
CN106622838A (zh) * 2016-12-12 2017-05-10 深圳市华星光电技术有限公司 一种树脂胶转印机构及涂布机
KR101846936B1 (ko) * 2017-03-31 2018-04-09 (주) 마을소프트 토출 장치 및 제어 방법
BR202017015800U2 (pt) * 2017-07-24 2019-03-19 Edilton Da Costa Rego Disposição aplicada em protetor de roda automotiva

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003516A (ja) * 2011-06-21 2013-01-07 Furukawa Electric Co Ltd:The 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置および光ファイバテープ心線
CN103587018A (zh) * 2013-10-21 2014-02-19 广东亨通光电科技有限公司 一种束状光纤成型所用模具系统及成型方法
JP2016080849A (ja) * 2014-10-16 2016-05-16 古河電気工業株式会社 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置
CN106890755A (zh) * 2015-12-18 2017-06-27 中烟机械技术中心有限责任公司 带状材料的涂胶装置
CN108780203A (zh) * 2016-03-23 2018-11-09 住友电气工业株式会社 光纤带状芯线的制造方法及制造装置

Also Published As

Publication number Publication date
CN110673281B (zh) 2020-07-31
CN110673281A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021047088A1 (zh) 一种柔性光纤带的制造装置及其制造方法
US3239396A (en) Methods of and apparatus for laminating elongated members
CN111267369B (zh) 一种玻璃纤维增强塑料电缆导管及其生产方法
JP2003241041A (ja) 光ファイバテープ心線の製造方法および製造装置
JPS5898104A (ja) 多流路拡散装置
CN113789623B (zh) 一步法制浸胶纱装置
JP2012252196A (ja) 光ファイバテープ心線の製造方法
JP2015007714A (ja) 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
US3943224A (en) Method and apparatus for making continuous lengths of resin tubes
JP2012022061A (ja) 光ファイバユニットの製造方法及び製造装置
CN212764878U (zh) 一种玻璃纤维增强塑料电缆导管的生产装置
CA1083393A (en) Load bearing optical fiber cables
CN104085740A (zh) 一种应用于纤维涂覆设备的开卷及张力调整装置
JP5721543B2 (ja) 光ファイバテープ心線の製造方法及び製造装置
CN112078161B (zh) 内衬软管的生产装置
CN114217397B (zh) 光纤带的成型方法及专用于实施该成型方法的点胶设备
CN113320138B (zh) 一种连续生产复合塑料管的编管机及其使用方法
JPS6291905A (ja) 光フアイバケ−ブル素子及びその製造方法及び製造装置
CN113443505B (zh) 一种骨架式光缆的缆芯成缆设备及方法
JPS60263109A (ja) 光テ−プ型ユニツトの製造方法
CN210467439U (zh) 一种用于新型材料电线电缆编织机
KR102469597B1 (ko) 전기 공사용 전선 가공장치 및 가공방법
JP6819064B2 (ja) 光ファイバテープ心線の製造方法および製造装置
CN214377818U (zh) 一种新型包带机装置
JP2980622B2 (ja) 分割型光ファイバテープ心線の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944854

Country of ref document: EP

Kind code of ref document: A1