WO2021042797A1 - 螺栓与齿联合传力钢木节点最优布齿率的确定方法 - Google Patents

螺栓与齿联合传力钢木节点最优布齿率的确定方法 Download PDF

Info

Publication number
WO2021042797A1
WO2021042797A1 PCT/CN2020/095304 CN2020095304W WO2021042797A1 WO 2021042797 A1 WO2021042797 A1 WO 2021042797A1 CN 2020095304 W CN2020095304 W CN 2020095304W WO 2021042797 A1 WO2021042797 A1 WO 2021042797A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
teeth
bending moment
node
tooth
Prior art date
Application number
PCT/CN2020/095304
Other languages
English (en)
French (fr)
Inventor
郁有升
周其霖
王轩
于德湖
王燕
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021042797A1 publication Critical patent/WO2021042797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • This application relates to the field of wood structure node design, and in particular to a method for determining the optimal tooth distribution rate of a bolt and tooth joint force transmission steel-wood node.
  • the initial stiffness and bearing capacity of the joint can be improved by arranging steel teeth on the steel splint.
  • the steel teeth are only arranged on the steel splint according to experience, and there is no Research on the influence of the number of steel teeth on the mechanical properties of the joints.
  • this application provides a method for determining the optimal tooth distribution rate of the bolt and tooth joint force transmission steel-wood node.
  • this application includes the following steps:
  • the first step Taking the tooth distribution rate as a variable and keeping other parameters unchanged, design a group of bolt and tooth joint force transmission steel-wood joint flexural members;
  • Step 2 Establish a finite element model through the finite element software ABAQUS. All elements are C3D8R. In the model, the normal and tangential relations of each contact pair are defined to simulate the interaction between the components. The normal action is hard Contact, tangential action is Coulomb friction;
  • Step 3 Obtain the bending moment-angle curve of the bending member of the steel-wood node through the force analysis, and obtain the limit bending moment M of the bending member of each steel-wood node from the curve;
  • the fourth step According to the bending moment value of 10% of the ultimate bending moment, the value of 40% of the bending moment and the corresponding turning angle, use formula (1) to calculate the initial stiffness k of the node:
  • M 40% is the bending moment value of the ultimate bending moment 40%
  • M 10% is the bending moment value of the ultimate bending moment 10%
  • ⁇ 40% is the angle corresponding to M 40%
  • ⁇ 10% is the corresponding angle of M 10% .
  • Step 5 Calculate the ratio R k of the initial stiffness of the node with teeth and the node without teeth, and draw the relationship curve between R k and the tooth distribution rate;
  • Step 6 Fit the calculation formula (2)-formula (5) of the ultimate bending moment M of the joint force transmission steel-wood joint of the bolt and the tooth when the wooden member fails:
  • Z t is the bearing capacity of a single shear surface of the steel tooth
  • Z b is the shear bearing capacity of a single shear surface of the bolt
  • f c is the compressive strength of the glulam wood along the grain
  • b is the width of the wood member
  • h is the equivalent end face of the wood member
  • n is the number of bolts on the tension side
  • e is the distance from the lower bolt force line to the center of the compression zone section
  • k c is the effective reduction factor for the compression stress distribution of the bolt holes in the glulam member, Take 0.45
  • l s is the length of the bearing surface of the pin groove
  • d is the bolt diameter
  • f em is the bearing strength of the glulam pin groove
  • is the force adjustment coefficient of the steel teeth, which is taken as 0.35
  • Step 7 Calculate the ratio R M of the limit bending moment of the node with teeth and the node without teeth, and draw the relationship curve between R M and the tooth distribution rate;
  • Step 8 Determine the optimal tooth distribution rate according to the critical points of the curves obtained in Steps 5 and 7.
  • the tooth distribution ratio is the ratio of the total cross-sectional area of the steel teeth to the area of the contact surface between the web of the splint and the wooden beam.
  • the steel teeth should be evenly distributed on the splint.
  • the minimum values of the arrangement end distance, side distance, row distance and center distance shall be taken respectively: 7d t , 4d t , 5d t and 4d t , where d t is the diameter of the steel tooth, and the diameter of the steel tooth is 3-6mm.
  • Figure 1 is a schematic diagram of the connection structure of a steel-wood node with bolt and tooth co-transmission
  • Figure 2 is the size drawing of the flexural member of the steel-wood joint
  • Figure 3 is a sectional view of A-A in Figure 2;
  • Figures 4(a)-4(e) are the schematic diagrams of the steel splint arrangement of the test piece ST1 ⁇ ST5 in sequence;
  • Figures 5(a)-5(e) are the cross-sectional views of the steel splints of test piece ST1 ⁇ ST5 in sequence;
  • Figure 6 is the relationship curve between R k and tooth distribution rate
  • Figure 7 is the relationship curve between R M and tooth distribution.
  • Step 1 Perform bending load on the bolt and tooth joint force transmission steel-wood node.
  • the connection structure of the node is shown in Figure 1, and the size of the node is shown in Figure 2 and Figure 3.
  • the node is composed of the glued wood member 1, the steel splint 2 and the bolt 3. , Design five steel splint 2 tooth distribution ratios as variable, as shown in Figure 4 and Figure 5.
  • the steel splint 2 tooth distribution ratios of these five test pieces are 0%, 0.28%, 0.46%, 0.65% and 0.80%, respectively.
  • the diameter of the steel teeth is 4.5mm
  • the embedded depth of the steel teeth is 5.6mm
  • the wooden components are Douglas fir laminated plywood.
  • Table 1 The specific parameters of this group of test pieces are shown in Table 1;
  • Step 2 Establish a finite element model through the finite element software ABAQUS. All elements are C3D8R. In the model, the normal and tangential relations of each contact pair are defined to simulate the interaction between the components. The normal action is hard Contact, tangential action is Coulomb friction;
  • Step 3 Obtain the bending moment-angle curve of the bending member of the steel-wood node through the force analysis, and the limit bending moment M of the bending member of the steel-wood node can be obtained from the curve, as shown in Table 1;
  • the fourth step According to the bending moment value of 10% of the ultimate bending moment, the value of 40% of the bending moment and the corresponding turning angle, use formula (1) to calculate the initial stiffness k of the node, as shown in Table 1;
  • Step 5 Calculate the ratio R k of the initial stiffness of the node with teeth and the node without teeth, as shown in Table 1, and draw the relationship curve between R k and the tooth distribution rate. It can be seen from Figure 6 that when the steel splint 2 has the tooth distribution rate After increasing to 0.65%, the initial stiffness of the joint is no longer significantly improved;
  • Step 6 Calculate the ultimate bending moment M of the joint force transmission steel-wood node of bolts and teeth from formula (2)-formula (5), as shown in Table 1;
  • Step 7 Comparing the finite element simulation of the third step and the limit bending moment of the node calculated in the sixth step, it can be seen that the limit bending moment of the node can be calculated more accurately by formula (2)-formula (5);
  • the eighth step According to the calculation results of the fifth and seventh steps, the tooth distribution rate is taken as 0.65%.
  • the tooth distribution ratio is the ratio of the total cross-sectional area of the steel teeth to the area of the contact surface between the web of the steel splint 2 and the wood member 1.
  • the steel teeth are evenly distributed on the steel splint 2.
  • the minimum value of spacing, line spacing and center spacing is 40mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种螺栓与齿联合传力钢木节点最优布齿率的确定方法,采用如下步骤:以夹板布齿率为参数设计一组受弯构件;利用有限元软件ABAQUS进行弹塑性受力分析并拟合出构件极限弯矩计算公式;绘制各构件的初始刚度以及极限弯矩随布齿率的变化曲线;根据曲线的临界点确定最优布齿率。

Description

螺栓与齿联合传力钢木节点最优布齿率的确定方法
本申请要求在2019年09月06日提交中国专利局、申请号为201910839561.3、申请名称为“一种螺栓与齿联合传力钢木节点最优布齿率的确定方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及木结构节点设计领域,具体涉及一种螺栓与齿联合传力钢木节点最优布齿率的确定方法。
背景技术
随着绿色节能建筑的发展以及政策的鼓励,木结构在我国逐步得到发展。在木结构螺栓连接中,螺栓孔附近木材应力状态复杂,节点处木材易发生开裂从而导致节点承载力下降,同时木结构螺栓孔与螺栓之间存在初始间隙,影响节点刚度。
目前针对上述问题可通过在钢夹板上布设钢齿来提高节点的初始刚度和承载力,而在该类节点的设计中,缺乏理论依据,仅按照经验在钢夹板上布设钢齿,并且尚无对于钢齿布置数量对节点力学性能影响的研究。
发明内容
本申请针对螺栓与齿联合传力钢木节点钢齿布置技术研究的不完善,提供了一种螺栓与齿联合传力钢木节点最优布齿率的确定方法。
为实现上述目的,本申请包括以下步骤:
第一步:以布齿率为变量,其他参数保持不变,设计一组螺栓与齿联合传力钢木节点受弯构件;
第二步:通过有限元软件ABAQUS建立有限元模型,所有单元均为C3D8R,模型中对各接触对的法向和切向关系进行定义来模拟各部件之间的相互作用,法向作用为硬接触,切向作用为库伦摩擦;
第三步:通过受力分析得到钢木节点受弯构件的弯矩-转角曲线,由曲线求得各个钢木节点受弯构件的极限弯矩M;
第四步:根据极限弯矩10%的弯矩值、40%的弯矩值与对应的转角,利用公式(1)计算节点的初始刚度k:
Figure PCTCN2020095304-appb-000001
式中M 40%为极限弯矩40%的弯矩值,M 10%为极限弯矩10%的弯矩值,θ 40%为M 40%对应的转角,θ 10%为M 10%对应的转角;
第五步:计算带齿节点与不带齿节点初始刚度的比值R k,并绘制R k与布齿率的关系曲线;
第六步:拟合出木构件破坏时螺栓与齿联合传力钢木节点极限弯矩M计算公式(2)-公式(5):
f cbh=2(nZ b+n tγZ t)        (2)
M w=2(nZ b+n tγZ t)e         (3)
Z b=k cl sdf em               (4)
Z t=l td tf em                (5)
式中Z t为钢齿单个受剪面承载力;Z b为螺栓单个剪面受剪承载力;f c为胶合木顺纹抗压强度;b为木构件宽度;h为木构件端面等效受压区高度;n为受拉侧螺栓个数;e为下部螺栓合力作用线到受压区截面中心的距离;k c为胶合木 构件内螺栓孔承压应力分布情况的有效折减系数,取0.45;l s为销槽承压面长度;d为螺栓直径;f em为胶合木销槽承压强度;γ为钢齿受力调整系数,取0.35;n t为夹板钢齿数量,当γ×n t>7时取γ×n t=7;l t为钢齿嵌入深度;d t为钢齿直径;
第七步:计算带齿节点与不带齿节点极限弯矩的比值R M,并绘制R M与布齿率的关系曲线;
第八步:根据第五步和第七步所得曲线的临界点确定最优布齿率。
本申请所涉及到的最优布齿率的确定方法:布齿率为钢齿总截面面积与夹板腹板与木梁接触面的面积之比,钢齿应均匀分布于夹板上,钢齿的布置端距、边距、行距及中距的最小值应分别取:7d t、4d t、5d t及4d t,其中d t为钢齿直径,钢齿直径取3-6mm。
本申请的有益效果:在螺栓与齿共同传力钢木节点在受力过程中,布齿率较小时钢齿对节点力学性能的提升较小,当布齿率较大时又对构件的加工带来不便,合理的布齿率可以有效提高节点的初始刚度与极限承载力,且具有较好的经济性。
附图说明
图1为螺栓与齿共同传力钢木节点连接构造示意图;
图2为钢木节点受弯构件尺寸图;
图3为图2中A-A剖面图;
图4(a)-4(e)依次为试件ST1~试件ST5钢夹板布齿情况示意图;
图5(a)-5(e)依次为试件ST1~试件ST5钢夹板剖面图;
图6为R k与布齿率的关系曲线;
图7为R M与布齿率的关系曲线。
具体实施方式
以下结合具体实施方式对本申请的技术方案进行详实的阐述,然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。下面结合附图,对螺栓与齿联合传力钢木节点的实例对本申请做进一步说明。
实施例
第一步:对螺栓与齿联合传力钢木节点进行受弯加载,节点连接构造见图1,节点尺寸见图2、图3,该节点由胶合木构件1、钢夹板2和螺栓3构成,设计五个以钢夹板2布齿率为变量,见图4、图5,这五个试件的钢夹板2布齿率分别为0%、0.28%、0.46%、0.65%和0.80%,钢齿直径为4.5mm,钢齿嵌入深度为5.6mm,木构件为花旗松层板胶合木,该组试件的具体参数见表1;
第二步:通过有限元软件ABAQUS建立有限元模型,所有单元均为C3D8R,模型中对各接触对的法向和切向关系进行定义来模拟各部件之间的相互作用,法向作用为硬接触,切向作用为库伦摩擦;
第三步:通过受力分析得到钢木节点受弯构件的弯矩-转角曲线,由曲线可得钢木节点受弯构件的极限弯矩M,如表1所示;
第四步:根据极限弯矩10%的弯矩值、40%的弯矩值与对应的转角,利用公式(1)计算节点的初始刚度k,如表1所示;
第五步:计算带齿节点与不带齿节点初始刚度的比值R k,如表1所示,并绘制R k与布齿率的关系曲线,由图6可见,当钢夹板2布齿率增加到0.65%以后,对节点初始刚度的提升不再明显;
第六步:由公式(2)-公式(5)计算螺栓与齿联合传力钢木节点的极限弯 矩M,如表1所示;
第七步:对比第三步有限元模拟以及第六步计算所得节点的极限弯矩可知,通过公式(2)-公式(5)可以较准确的计算节点的极限弯矩;
根据第六步的计算结果计算带齿节点与不带齿节点极限弯矩的比值R M,并绘制R M与布齿率的关系曲线,由图7可见,当钢夹板2布齿率增加到0.65%以后,对节点极限弯矩的提升不再明显;
第八步:根据第五步和第七步的计算结果可知,布齿率取0.65%。
表1:试件的具体参数与计算结果
Figure PCTCN2020095304-appb-000002
其中,布齿率为钢齿总截面面积与钢夹板2腹板与木构件1接触面的面积之比,钢齿均匀分布于钢夹板2上,各试件中钢齿的布置端距、边距、行距及中距的最小值为40mm。
上述虽然结合附图对本申请的具体实施方式进行了描述,但并非对本申请保护范围的限制,所属领域技术人员应该明白,在本申请技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本申请的保护范围内。

Claims (2)

  1. 一种螺栓与齿联合传力钢木节点最优布齿率的确定方法,其特征在于,包括如下步骤:
    第一步:以布齿率为变量,其他参数保持不变,设计一组螺栓与齿联合传力钢木节点受弯构件;
    第二步:通过有限元软件ABAQUS建立有限元模型,所有单元均为C3D8R,模型中对各接触对的法向和切向关系进行定义来模拟各部件之间的相互作用,法向作用为硬接触,切向作用为库伦摩擦;
    第三步:通过受力分析得到钢木节点受弯构件的弯矩-转角曲线,由曲线求得钢木节点受弯构件的极限弯矩M;
    第四步:根据极限弯矩10%的弯矩值、40%的弯矩值与对应的转角,利用公式(1)计算节点的初始刚度k:
    Figure PCTCN2020095304-appb-100001
    式中M 40%为极限弯矩40%的弯矩值,M 10%为极限弯矩10%的弯矩值,θ 40%为M 40%对应的转角,θ 10%为M 10%对应的转角;
    第五步:计算带齿节点与不带齿节点初始刚度的比值R k,并绘制R k与布齿率的关系曲线;
    第六步:拟合出木构件破坏时螺栓与齿联合传力钢木节点极限弯矩M的计算公式(2)-公式(5):
    f cbh=2(nZ b+n tγZ t)  (2)
    M w=2(nZ b+n tγZ t)e  (3)
    Z b=k cl sdf em  (4)
    Z t=l td tf em  (5)
    式中Z t为钢齿单个受剪面承载力;Z b为螺栓单个剪面受剪承载力;f c为胶合木顺纹抗压强度;b为木构件宽度;h为木构件端面等效受压区高度;n为受拉侧螺栓个数;e为下部螺栓合力作用线到受压区截面中心的距离;k c为胶合木构件内螺栓孔承压应力分布情况的有效折减系数,取0.45;l s为销槽承压面长度;d为螺栓直径;f em为胶合木销槽承压强度;γ为钢齿受力调整系数,取0.35;n t为夹板钢齿数量,当γ×n t>7时取γ×n t=7;l t为钢齿嵌入深度;d t为钢齿直径;
    第七步:计算带齿节点与不带齿节点极限弯矩的比值R M,并绘制R M与布齿率的关系曲线;
    第八步:根据第五步和第七步所得曲线的临界点确定最优布齿率。
  2. 根据权利要求1所述的确定方法,其特征在于,所述第一步中,布齿率为钢齿总截面面积与夹板腹板与木梁接触面的面积之比,钢齿应均匀分布于夹板上,钢齿的布置端距、边距、行距及中距的最小值应分别取:7d t、4d t、5d t及4d t,其中d t为钢齿直径,钢齿直径取3-6mm。
PCT/CN2020/095304 2019-09-06 2020-06-10 螺栓与齿联合传力钢木节点最优布齿率的确定方法 WO2021042797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910839561.3A CN110705144B (zh) 2019-09-06 2019-09-06 一种螺栓与齿联合传力钢木节点最优布齿率的确定方法
CN201910839561.3 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021042797A1 true WO2021042797A1 (zh) 2021-03-11

Family

ID=69194600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095304 WO2021042797A1 (zh) 2019-09-06 2020-06-10 螺栓与齿联合传力钢木节点最优布齿率的确定方法

Country Status (2)

Country Link
CN (1) CN110705144B (zh)
WO (1) WO2021042797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639917A (zh) * 2021-07-19 2021-11-12 江苏徐工工程机械研究院有限公司 一种螺栓拧紧力矩的确定装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116956443B (zh) * 2023-09-19 2023-12-01 中国建筑西南设计研究院有限公司 木结构节点半刚性梁的性能确定方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317523A (ja) * 2001-04-20 2002-10-31 Nippon Light Metal Co Ltd 複数の部材の接合構造
CN107605043A (zh) * 2017-09-15 2018-01-19 青岛腾远设计事务所有限公司 一种内环加肋大跨木结构装配式节点
CN107688691A (zh) * 2017-08-01 2018-02-13 中国林业科学研究院木材工业研究所 一种木结构用齿板连接节点受力性能的数值模拟方法
CN108608171A (zh) * 2018-04-26 2018-10-02 青岛理工大学 一种带齿钢夹板的制作方法
JP2018156630A (ja) * 2017-03-17 2018-10-04 ネットイーグル株式会社 木造建築物の構造設計装置および構造設計プログラム
CN109505358A (zh) * 2017-09-15 2019-03-22 青岛理工大学 一种大跨木结构装配式节点
CN109815529A (zh) * 2018-12-13 2019-05-28 重庆顺泰铁塔制造有限公司 角钢-节点板连接节点的设计方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030172615A1 (en) * 2002-03-13 2003-09-18 Glenn Joseph K. Methods for automated assembly of roof panel structures
US8772407B2 (en) * 2007-09-17 2014-07-08 Ppg Industries Ohio, Inc. One component polysiloxane coating compositions and related coated substrates
CN101979798A (zh) * 2010-01-28 2011-02-23 汪超 一种易于建筑物产业化的生态新型建筑结构体系
CN102635160B (zh) * 2012-01-06 2015-01-28 浙江大学 一种半刚性节点初始刚度的组件式获取方法
CN103862654A (zh) * 2012-12-17 2014-06-18 陈克俭 平行异向旋转互啮合双螺杆挤出机
CN105912800B (zh) * 2016-04-27 2018-12-18 重庆大学 低层建筑全装配式框架的设计方法
CN106650132B (zh) * 2016-12-28 2020-11-06 盛瑞传动股份有限公司 一种齿轮组传动仿真优化方法
CN108370708A (zh) * 2018-02-01 2018-08-07 宁波大叶园林设备股份有限公司 一种草坪割草机用传感智能自动避转超薄割草刀
CN108416120B (zh) * 2018-02-12 2021-10-22 武汉理工大学 一种直齿圆柱齿轮双齿啮合区载荷分配率的确定方法
CN109838132B (zh) * 2019-03-06 2020-09-11 东南大学 一种自定位安装钢木耗能组合节点
CN110186759A (zh) * 2019-06-06 2019-08-30 西南林业大学 一种检测调节腹杆间距对平行弦木桁架承载力的影响的方法
CN110158863A (zh) * 2019-06-28 2019-08-23 青岛理工大学 一种钢筋扁平头螺栓连接方式
CN110195427A (zh) * 2019-07-01 2019-09-03 青岛理工大学 装配式铝管-约束混凝土-钢管组合导管架海洋平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317523A (ja) * 2001-04-20 2002-10-31 Nippon Light Metal Co Ltd 複数の部材の接合構造
JP2018156630A (ja) * 2017-03-17 2018-10-04 ネットイーグル株式会社 木造建築物の構造設計装置および構造設計プログラム
CN107688691A (zh) * 2017-08-01 2018-02-13 中国林业科学研究院木材工业研究所 一种木结构用齿板连接节点受力性能的数值模拟方法
CN107605043A (zh) * 2017-09-15 2018-01-19 青岛腾远设计事务所有限公司 一种内环加肋大跨木结构装配式节点
CN109505358A (zh) * 2017-09-15 2019-03-22 青岛理工大学 一种大跨木结构装配式节点
CN108608171A (zh) * 2018-04-26 2018-10-02 青岛理工大学 一种带齿钢夹板的制作方法
CN109815529A (zh) * 2018-12-13 2019-05-28 重庆顺泰铁塔制造有限公司 角钢-节点板连接节点的设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN JUNLIANG: "Experimental Study and Finite Element Analysis on Mechanical Behavior of Steel Splint Connection with Teeth in Glulam Shells", CHINESE MASTER'S THESES FULL-TEXT DATABASE, SHAANXI NORMAL UNIVERSITY, CN, 15 May 2019 (2019-05-15), CN, XP055788967, ISSN: 1674-0246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639917A (zh) * 2021-07-19 2021-11-12 江苏徐工工程机械研究院有限公司 一种螺栓拧紧力矩的确定装置及方法

Also Published As

Publication number Publication date
CN110705144B (zh) 2023-03-14
CN110705144A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021042797A1 (zh) 螺栓与齿联合传力钢木节点最优布齿率的确定方法
US7141137B2 (en) Method of making laminated wood beams with varying lamination thickness throughout the thickness of the beam
KR101708670B1 (ko) 프리스트레스 긴장재를 도입한 구조용 집성목부재 및 이를 이용한 구조물
CN116791779A (zh) 一种竖向空间桁架式搭接柱及其设计方法
WO2013044505A1 (zh) 预应力钢-混组合桥梁影响线弯矩调幅方法
Li et al. Bending performance of nail-laminated bamboo-timber panels made with glubam and fast-grown plantation Chinese fir
Lothers Elastic restraint equations for semi-rigid connections
WO2023231932A1 (zh) 轴拉构件钢筋应力的确定方法及轴拉构件的配筋方法
WO2024113693A1 (zh) 一种采用组合件连接的重组竹梁柱框架节点及设计方法
TWI780013B (zh) 梳狀切削鋼板
CN208578251U (zh) 箱梁可调齿槽式连接节点
CN115525958A (zh) 上承式拱桥拱脚加固的拉索截面确定方法
CN104777289A (zh) 高效准确地确定结构用集成材木梁抗弯刚度的方法
CN115030384A (zh) 正交胶合木/竹板材—混凝土双向组合楼板、制造方法以及孔洞和自攻螺丝数量的计算方法
Yang et al. Experimental study and theoretical analysis on mechanical behavior of timber-concrete composite beam-to-column joints
CN208884337U (zh) 一种用于木-混凝土组合构件的抗剪连接件
JPH06229065A (ja) 大スパン用の集成材梁
CN208815685U (zh) 一种钢梁贯通式的钢梁与混凝土柱的刚接节点
CN209780039U (zh) 钢木组合柱
CN209941900U (zh) 一种钢夹板接长竹集成材梁
CN218562706U (zh) 正交胶合木板材或竹板材和混凝土双向组合楼板
CN113076585A (zh) 一种木结构钢夹板销栓连接承载力的计算方法
CN108457385B (zh) 一种用于装配式建筑的连接部件
Lapusta et al. An analytical model for periodic α°-layer cracking in composite laminates
Hu et al. Test analysis on prestressed concrete composite beams with steel boxes subjected to torsion and combined flexure and torsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859930

Country of ref document: EP

Kind code of ref document: A1