WO2021039755A1 - 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体 - Google Patents

電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体 Download PDF

Info

Publication number
WO2021039755A1
WO2021039755A1 PCT/JP2020/031937 JP2020031937W WO2021039755A1 WO 2021039755 A1 WO2021039755 A1 WO 2021039755A1 JP 2020031937 W JP2020031937 W JP 2020031937W WO 2021039755 A1 WO2021039755 A1 WO 2021039755A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
unit
magnetic sensors
code
measured
Prior art date
Application number
PCT/JP2020/031937
Other languages
English (en)
French (fr)
Inventor
一馬 竹中
美菜子 寺尾
晃太朗 小河
紗希 小箱
直記 野口
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to US17/637,895 priority Critical patent/US11927647B2/en
Priority to EP20857332.9A priority patent/EP4024055A4/en
Publication of WO2021039755A1 publication Critical patent/WO2021039755A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0283Electrodynamic magnetometers in which a current or voltage is generated due to relative movement of conductor and magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Definitions

  • the present invention relates to a current measuring device, a current measuring method, and a computer-readable non-temporary recording medium.
  • Typical examples of such a current measuring device include a CT (Current Transformer) type current measuring device, a zero flux type current measuring device, a Rogowski type current measuring device, and a Hall element type. Examples of current measuring devices and the like.
  • a magnetic core in which a winding is wound is provided around the conductor to be measured, and the magnetic flux generated in the magnetic core by the current flowing through the conductor to be measured (primary side) is canceled.
  • the current flowing in the winding (secondary side) is measured.
  • the voltage induced by the magnetic field generated by the alternating current flowing through the conductor to be measured interlinks with the Rogowski coil (air core coil) provided around the conductor to be measured. By detecting, the current flowing through the conductor to be measured is measured.
  • Patent Document 1 discloses an example of a zero flux type current measuring device.
  • Patent Document 2 below discloses a current measuring device using a plurality of magnetic sensors. Specifically, in the current measuring device disclosed in Patent Document 2 below, two magnetic sensors are arranged at different distances from each conductor to be measured, and the magnetic sensor and the conductor to be measured are obtained from the outputs of these magnetic sensors. The distance from and is obtained, and the magnitude of the current flowing through the conductor to be measured is obtained using the obtained distance.
  • a process of removing noise included in the detection result of the magnetic sensor may be performed.
  • the processing for removing noise for example, a process of averaging the absolute value of the detection result of the magnetic sensor (averaging process), a process of obtaining the square root of the sum of squares of the detection result of the magnetic sensor (sum of square root process), and the like are performed. Can be mentioned.
  • the sign of the detection result of the magnetic sensor is always positive, so the information indicating the direction of the magnetic field may be lost. If the information indicating the direction of the magnetic field is lost, it is possible that an erroneous value will be measured, and in some cases, the current measurement itself will not be possible.
  • the present invention has been made in view of the above circumstances, and is readable by a current measuring device, a current measuring method, and a computer that can accurately measure the current flowing through the conductor to be measured regardless of direct current or alternating current.
  • the purpose is to provide a non-temporary recording medium.
  • the current measuring device is a current measuring device (1, 2) for measuring the current (I) flowing through the conductors to be measured (MC1, MC2), and is magnetically sensitive.
  • a plurality of triaxial magnetic sensors (11, 12, 13) arranged so that the directions and relative positions have a predetermined relationship, and a noise component included in the detection results of the plurality of triaxial magnetic sensors.
  • a code is added to the detection result from which the noise component is removed.
  • a code addition unit (25b) is provided, and a current calculation unit (25c, 25d) for obtaining a current flowing through the conductor to be measured by using the detection result to which a code is added by the code addition unit.
  • the current measuring device further includes a storage unit (23) for accumulating the detection results of the plurality of triaxial magnetic sensors for a predetermined period
  • the code addition unit is the storage unit. Detection in which the noise component is removed based on the code information of each of the detection results of the plurality of triaxial magnetic sensors at the time when the detection result having the maximum absolute value is obtained among the detection results accumulated in Add a code to the result.
  • the current measuring device is a zero setting unit (25e) that sets the value to zero when the value is equal to or less than the preset threshold value among the detection results of the plurality of triaxial magnetic sensors. ) Is further provided.
  • the noise removing unit performs averaging processing on the detection results of each axis of the plurality of three-axis magnetic sensors obtained at predetermined fixed periods. Alternatively, by individually performing the sum of squares square root processing, the noise components included in the detection results of the plurality of triaxial magnetic sensors are removed.
  • the current calculation unit uses the detection result to which the code is added by the code adding unit to determine the predetermined reference position of the current measuring device and the measured object. It includes a distance estimation unit (25c) that estimates the distance to the conductor, and a current calculation unit (25d) that obtains the current flowing through the conductor to be measured using the distance estimated by the distance estimation unit.
  • the current measuring device includes a sensor head (10) including the plurality of three-axis magnetic sensors, and a circuit unit including at least the noise removing unit, the code addition unit, and the current calculation unit (the current calculation unit). 20) and.
  • the sensor head has a first triaxial magnetic sensor (11), a second triaxial magnetic sensor (12), and a third triaxial magnetic sensor. (13) is provided, and the first three-axis magnetic sensor, the second three-axis magnetic sensor, and the third three-axis magnetic sensor have magnetic sensitivity directions on three axes orthogonal to each other. It is a magnetic sensor, and the first three-axis magnetic sensor, the second three-axis magnetic sensor, and the third three-axis magnetic sensor have a relationship in which the magnetic sensitivity direction and the relative position are predetermined. It is arranged like this.
  • the current measuring method has a plurality of three-axis magnetic sensors (11, 12) arranged so that the magnetic sensitivity direction and the relative position have a predetermined relationship. , 13), a noise removing unit (25a), a code adding unit (25b), and a current calculation unit (25c, 25d), and measuring the current (I) flowing through the conductors to be measured (MC1, MC2).
  • a code is added to the detection result from which the noise component has been removed, and the code is added by the current calculation unit.
  • the current flowing through the conductor to be measured is obtained by using the detection result to which the code is added by the addition unit.
  • the current measuring device further includes a storage unit (23), and the storage unit obtains detection results of the plurality of three-axis magnetic sensors for a predetermined period.
  • the current measuring device further includes a zero setting unit (25e), and the value of the detection results of the plurality of three-axis magnetic sensors is set by the zero setting unit. The value is set to zero for those below the preset threshold.
  • the detection results of each axis of the plurality of three-axis magnetic sensors obtained by the noise removing unit at predetermined fixed periods are averaged.
  • the noise components included in the detection results of the plurality of triaxial magnetic sensors are removed.
  • the current calculation unit includes a distance estimation unit (25c) and a current calculation unit (25d), and the distance estimation unit provides a code by the code addition unit. Using the added detection result, the distance between the predetermined reference position of the current measuring device and the conductor to be measured is estimated, and the current calculation unit uses the distance estimated by the distance estimation unit. The current flowing through the conductor to be measured is obtained.
  • the current measuring device includes a sensor head (10) including the plurality of three-axis magnetic sensors, at least the noise removing unit, the coding addition unit, and the current calculation.
  • a circuit unit (20) including the unit is provided.
  • the sensor head has a first triaxial magnetic sensor (11), a second triaxial magnetic sensor (12), and a third triaxial magnetic sensor. (13) is provided, and the first three-axis magnetic sensor, the second three-axis magnetic sensor, and the third three-axis magnetic sensor have magnetic sensitivity directions on three axes orthogonal to each other. It is a magnetic sensor, and the first three-axis magnetic sensor, the second three-axis magnetic sensor, and the third three-axis magnetic sensor have a relationship in which the magnetic sensitivity direction and the relative position are predetermined. It is arranged like this.
  • the computer-readable non-temporary recording medium has a plurality of three axes arranged so that the magnetic field direction and the relative position have a predetermined relationship.
  • a magnetic sensor (11, 12, 13), a noise removing unit (25a), a code adding unit (25b), and a current calculation unit (25c, 25d) are provided, and a current flowing through a conductor to be measured (MC1, MC2) is provided.
  • the noise component included in the detection results of the plurality of triaxial magnetic sensors is removed, and the code addition unit is based on the code information of each of the detection results of the plurality of triaxial magnetic sensors obtained at a specific time point.
  • a code is added to the detection result from which the noise component has been removed, and the current calculation unit is made to obtain the current flowing through the conductor to be measured by using the detection result to which the code is added by the code addition unit.
  • the current measuring device further includes a storage unit (23), and the one or more programs are defined in the storage unit in advance.
  • the detection results of the plurality of triaxial magnetic sensors are accumulated, and the plurality of detection results at the time when the detection result having the maximum absolute value among the detection results accumulated in the storage unit is obtained in the code addition unit.
  • a code is added to the detection result from which the noise component has been removed.
  • the current measuring device further includes a zero setting unit (25e), and the one or more programs are provided in the zero setting unit.
  • the value is set to zero if the value is less than or equal to the preset threshold value.
  • the plurality of triaxial magnetisms wherein the one or more programs are obtained in the noise removing unit at predetermined fixed periods.
  • the noise components included in the detection results of the plurality of three-axis magnetic sensors are removed.
  • the current calculation unit includes a distance estimation unit (25c) and a current calculation unit (25d), and the one or more programs can be used.
  • the detection result in which the code is added by the code addition unit to the distance estimation unit the distance between the predetermined reference position of the current measuring device and the conductor to be measured is estimated, and the current calculation unit is used to estimate the distance.
  • the current flowing through the conductor to be measured is obtained by using the distance estimated by the distance estimation unit.
  • the current measuring device includes a sensor head (10) including the plurality of three-axis magnetic sensors, at least the noise removing unit, and the code addition.
  • a unit and a circuit unit (20) including the current calculation unit are provided.
  • the present invention there is an effect that the current flowing through the conductor to be measured can be measured accurately in a non-contact manner regardless of direct current or alternating current.
  • the embodiment of the present invention makes it possible to accurately measure the current flowing through the conductor to be measured in a non-contact manner regardless of direct current or alternating current.
  • the embodiment of the present invention can be installed in a minute space at the time of current measurement, and can measure a direct current and an alternating current up to about several hundred [Hz] with high accuracy without contact. To do.
  • the embodiment of the present invention also makes it possible to flexibly set the installation position and the installation direction with respect to the conductor to be measured.
  • a direct current supplied from a battery or an alternating current flowing through a motor is handled, so that a compact current measuring device capable of measuring the direct current and the alternating current in a non-contact manner is desired. ..
  • the zero flux type current measuring device disclosed in Patent Document 1 described above it is necessary to provide a magnetic core having a certain size (for example, about several tens [cm]) around the conductor to be measured. Therefore, it is difficult to install it in a narrow space. Further, since the Rogoski-type current measuring device described above detects the voltage induced in the Rogoski coil, it is not possible to measure the direct current in principle. Further, in the low frequency region, the output signal is weak and the phase shifts, so that the measurement accuracy is poor. Further, the current measuring device disclosed in Patent Document 2 described above is flexible because the arrangement of the magnetic sensor is limited because it is necessary to match the magnetic sensing direction of the magnetic sensor with the circumferential direction of the conductor to be measured. Placement is difficult.
  • a certain size for example, about several tens [cm]
  • a plurality of triaxial magnetic sensors arranged so that the magnetic sensitivity direction and the relative position have a predetermined relationship, and a noise component included in the detection results of the plurality of triaxial magnetic sensors.
  • a noise removing unit is provided to remove the noise. Then, based on the code information of each of the detection results of the plurality of triaxial magnetic sensors obtained at a specific time point, a code is added to the detection result from which the noise component has been removed, and the coded detection result is obtained. It is used to obtain the current flowing through the conductor to be measured. As a result, the current flowing through the conductor to be measured can be measured accurately in a non-contact manner regardless of direct current or alternating current.
  • FIG. 1 is a diagram schematically showing a current measuring device according to the first embodiment of the present invention.
  • the current measuring device 1 of the present embodiment includes a sensor head 10 and a circuit unit 20 connected by a cable CB, and does not have a current I flowing through either of the conductors MC1 and MC2 to be measured. Measure by contact.
  • a case where the current I flowing through the conductor MC1 to be measured is measured will be described as an example.
  • the conductors MC1 and MC2 to be measured are arbitrary conductors such as pins and bus bars of power semiconductors.
  • the conductors MC1 and MC2 to be measured are assumed to be cylindrical conductors.
  • the currents I flowing through the conductors MC1 and MC2 to be measured have opposite directions.
  • the current path of the current flowing through the conductor MC1 to be measured may be referred to as an “outward path”, and the current path of the current flowing through the conductor MC2 to be measured may be referred to as a “return path”.
  • the sensor head 10 is a member arranged at an arbitrary position and in an arbitrary posture with respect to the conductor MC1 to be measured in order to measure the current I flowing through the conductor MC1 to be measured in a non-contact manner.
  • the sensor head 10 is formed of a material (for example, resin) that does not block the magnetic field (for example, the magnetic fields H1, H2, H3 shown in FIG. 1) generated by the current I flowing through the conductors MC1 and MC2 to be measured. There is.
  • the sensor head 10 is used as a probe for measuring the current I flowing through the conductor MC1 to be measured in a non-contact manner.
  • the sensor head 10 is provided with three three-axis magnetic sensors 11, 12, and 13.
  • the three-axis magnetic sensors 11, 12, and 13 are magnetic sensors having magnetic sensing directions on three axes orthogonal to each other.
  • the three-axis magnetic sensors 11, 12, and 13 are arranged so that the magnetic sensitivity direction and the relative position have a predetermined relationship.
  • the first axes of the three-axis magnetic sensors 11, 12, and 13 are parallel to each other
  • the second axes of the three-axis magnetic sensors 11, 12, and 13 are parallel to each other
  • the three-axis magnetic sensors 11, 12, 13 are parallel to each other.
  • the third axes of the magnets are arranged so as to be parallel to each other and separated by a predetermined distance in a predetermined direction.
  • the three-axis magnetic sensors 11 and 12 are arranged so as to be separated by a predetermined distance in the first axis direction, and the three-axis magnetic sensors 11 and 13 are separated by a predetermined distance in the third axis direction. It is assumed that they are arranged as follows.
  • the signal indicating the detection result of the triaxial magnetic sensors 11, 12, 13 may be either an analog signal or a digital signal, but when the signal indicating the detection result of the triaxial magnetic sensors 11, 12, 13 is a digital signal. Can reduce the number of cable CBs connecting the sensor head 10 and the circuit unit 20. For example, when the signal indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 is an analog signal, three cables that output the three-axis detection results for each of the three-axis magnetic sensors 11, 12, and 13. Since each CB is required, a total of nine cable CBs are required, but if the signal indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 is a digital signal, only one cable CB is required. Is fine. When the number of cable CBs is small, the flexibility of the cable CBs is improved, so that handling becomes easy, for example, when the sensor head 10 is arranged in a narrow space.
  • the circuit unit 20 measures the current I flowing through the conductor MC1 to be measured based on the detection results output from the sensor head 10 (detection results of the three-axis magnetic sensors 11, 12, and 13).
  • the circuit unit 20 displays the measurement result of the current I or outputs it to the outside.
  • the circuit unit 20 is realized by, for example, an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a microcontroller, or the like. Any cable CB can be used to connect the sensor head 10 and the circuit unit 20, but it is desirable that the cable CB has flexibility, is easy to handle, and is unlikely to break.
  • FIG. 2 is a block diagram showing a main configuration of a current measuring device according to the first embodiment of the present invention.
  • the same reference numerals are given to the blocks corresponding to the configurations shown in FIG.
  • the details of the internal configuration of the circuit unit 20 will be mainly described with reference to FIG.
  • the circuit unit 20 includes an operation unit 21, a display unit 22, a memory 23 (storage unit), and a calculation unit 25.
  • the operation unit 21 is provided with various buttons such as a power button and a setting button, and outputs signals indicating operation instructions for the various buttons to the calculation unit 25.
  • the display unit 22 includes, for example, a display device such as a 7-segment LED (Light Emitting Diode) display and a liquid crystal display device, and flows through various information output from the calculation unit 25 (for example, the conductor MC1 to be measured). Information indicating the measurement result of the current I) is displayed.
  • the operation unit 21 and the display unit 22 may be physically separated, and may be physically integrated like a touch panel type liquid crystal display device having both a display function and an operation function. There may be.
  • the memory 23 includes, for example, a volatile or non-volatile semiconductor memory, and includes detection results of the three-axis magnetic sensors 11, 12, and 13 output from the sensor head 10, and calculation results of the calculation unit 25 (on the conductor MC1 to be measured). The measurement result of the flowing current I) and the like are stored.
  • the memory 23 may be provided with an auxiliary storage device such as an HDD (hard disk drive) or SSD (solid state drive) in addition to the above-mentioned semiconductor memory (or instead of the above-mentioned semiconductor memory).
  • the calculation unit 25 stores the detection results of the three-axis magnetic sensors 11, 12, and 13 output from the sensor head 10 in the memory 23. Specifically, the calculation unit 25 sets the time information indicating the detection time, the information indicating the sensor numbers of the triaxial magnetic sensors 11, 12 and 13 and the axis (for the detection results of the triaxial magnetic sensors 11, 12 and 13). Information indicating the distinction between the first axis, the second axis, and the third axis) is added and stored in the memory 23.
  • the calculation unit 25 reads out the detection results of the three-axis magnetic sensors 11, 12, and 13 stored in the memory 23, and performs a calculation to obtain the current I flowing through the conductor MC1 to be measured.
  • the calculation unit 25 includes a noise removal unit 25a, a code addition unit 25b, a distance estimation unit 25c (current calculation unit), and a current calculation unit 25d (current calculation unit).
  • the noise removing unit 25a removes noise components included in the detection results of the three-axis magnetic sensors 11, 12, and 13. Specifically, the noise removing unit 25a averages the detection results of each of the three axes magnetic sensors 11, 12, and 13 obtained at predetermined fixed periods (for example, about 1 to several seconds). By individually performing the processing or the square root processing of the sum of squares, the noise components included in the detection results of the three-axis magnetic sensors 11, 12, and 13, respectively, are removed.
  • the above averaging process is a process of obtaining the average value of the absolute values of a plurality of detection results obtained from each of the three-axis magnetic sensors 11, 12, and 13.
  • the averaging process may be a simple averaging process, a moving averaging process, or a weighted averaging process.
  • the three-axis magnetic sensors 11, 12, and 13 output the detection results of the three axes, respectively, but the noise component is removed by the noise removing unit 25a individually for the detection results of each axis.
  • the reason for performing such noise removal is to improve the SN ratio (signal-to-noise ratio) of the triaxial magnetic sensors 11, 12, and 13 to improve the measurement accuracy of the current I.
  • the code addition unit 25b adds a code to the detection result in which the noise component is removed by the noise removal unit 25a. Specifically, the code addition unit 25b is based on the code information of each of the detection results of the triaxial magnetic sensors 11, 12, and 13 obtained at a specific time point among the detection results of the triaxial magnetic sensors 11, 12, and 13. Then, a code is added to the detection result in which the noise component is removed by the noise removing unit 25a. In the detection result in which the noise component is removed by the noise removing unit 25a, the information indicating the direction of the magnetic field may be lost. In order to restore the information indicating the direction of the lost magnetic field, the code addition unit 25b performs a process of adding a code.
  • the above specific time point may be any time point while the sensor head 10 can be regarded as not moving during the measurement of the current.
  • the detection result values (absolute values) of the three-axis magnetic sensors 11, 12, and 13 are small, it is possible that an erroneous code is added due to the influence of noise. Therefore, for example, the detection of the three-axis magnetic sensors 11, 12, and 13 stored in the memory 23 during a predetermined period (for example, between 1 and several seconds) while the sensor head 10 can be regarded as not moving.
  • a predetermined period for example, between 1 and several seconds
  • the distance estimation unit 25c uses the detection results of the three-axis magnetic sensors 11, 12, and 13 and the positional relationship of the three-axis magnetic sensors 11, 12, and 13 to measure a predetermined reference position of the current measuring device 1.
  • the distance information indicating the distance from the conductor MC1 is calculated.
  • the reference position of the current measuring device 1 may be any position, but for example, it may be the mounting position of the three-axis magnetic sensors 11, 12, and 13 in the sensor head 10.
  • the reason for estimating such a distance is to measure the current I flowing through the conductor MC1 to be measured. The details of the processing performed by the distance estimation unit 25c will be described later.
  • the current calculation unit 25d obtains the current I flowing through the conductor MC1 to be measured by using the distance information calculated by the distance estimation unit 25c. Specifically, the current calculation unit 25d obtains the current I flowing through the conductor MC1 to be measured according to Ampere's law based on the estimated distance of the triaxial magnetic sensor 11 and the detection result of the triaxial magnetic sensor 11. The details of the processing performed by the current calculation unit 25d will be described later.
  • the circuit unit 20 is separated from the sensor head 10 and is connected to the sensor head 10 via the cable CB.
  • the magnetic field detection function triaxial magnetic sensors 11, 12, 13
  • the calculation function calculation unit 25
  • the calculation unit 25 is provided in the sensor head 10. It is possible to avoid various problems (for example, temperature characteristics, insulation resistance) and the like that occur when the current measuring device 1 is used, thereby expanding the applications of the current measuring device 1.
  • FIG. 3 is a diagram for explaining a current measuring principle in the current measuring device according to the first embodiment of the present invention.
  • two coordinate systems are set: a coordinate system related only to the sensor head 10 (xyz orthogonal coordinate system) and a coordinate system related to the conductors MC1 and MC2 to be measured (XYZ orthogonal coordinate system).
  • the xyz orthogonal coordinate system is a coordinate system defined according to the position and orientation of the sensor head 10.
  • the origin is set at the position of the triaxial magnetic sensor 11, and x in the first axis direction of the triaxial magnetic sensors 11, 12 and 13 (arrangement direction of the triaxial magnetic sensors 11 and 12).
  • the axes are set, the y-axis is set in the second axis direction of the triaxial magnetic sensors 11, 12, and 13, and the y-axis is set in the third axis direction of the triaxial magnetic sensors 11, 12, and 13 (triaxial magnetic sensor 11). , 13 (arrangement direction) is set to the z-axis.
  • Pi is a vector. That is, the position of the triaxial magnetic sensor 11 is represented by P1, the position of the triaxial magnetic sensor 12 is represented by P2, and the position of the triaxial magnetic sensor 13 is represented by P3.
  • the XYZ coordinate system is a coordinate system defined according to the conductors MC1 and MC2 to be measured.
  • the X-axis is set in the longitudinal direction (direction of the current I) of the conductors MC1 and MC2 to be measured
  • the Y-axis is set in the alignment direction of the conductors MC1 and MC2 to be measured.
  • the Z axis is set in a direction orthogonal to the X axis and the Y axis.
  • the origin position of the XYZ Cartesian coordinate system can be set to any position.
  • the distance of the triaxial magnetic sensor 11 to the conductor MC1 to be measured is r1
  • the distance of the triaxial magnetic sensor 12 to the conductor MC1 to be measured is r2
  • the distance of the triaxial magnetic sensor 13 to the conductor MC1 to be measured is r2.
  • the distance r1 is the length of the line drawn from the triaxial magnetic sensor 11 perpendicular to the conductor MC1 to be measured
  • the distance r2 is perpendicular to the conductor MC1 to be measured from the triaxial magnetic sensor 12.
  • the distance r3 is the length of the line drawn from the triaxial magnetic sensor 13 perpendicular to the conductor MC1 to be measured. Note that the distances r1, r2, and r3 cannot be detected.
  • HAi 1, 2, 3
  • H A1 the magnetic field formed at the position of the three-axis magnetic sensor 11 by a current I flowing through the measured conductor MC1 as H A1
  • H A2 the magnetic field formed at the position of the three-axis magnetic sensor 12 by a current I flowing through the measured conductor MC1 the expressed as H A2
  • H A3 the magnetic field formed at the position of the three-axis magnetic sensor 13 by a current I flowing through the measured conductor MC1 as H A3.
  • the magnetic field formed by the current I flowing through the conductor MC2 to be measured is triaxial magnetic. It can be considered to act approximately uniformly on the sensors 11, 12, and 13.
  • This magnetic field is represented as H B.
  • H B is a vector.
  • To. Hi is a vector.
  • the direction of the current I (direction of the X axis in FIG. 3) is obtained.
  • the magnetic field H B formed by the current I flowing through the conductor MC2 to be measured is approximated to be uniform, the magnetic field H B is canceled when the difference between the detection results of the three-axis magnetic sensors 11, 12, and 13 is taken. can do.
  • the unit vector j in the direction of the current I (the direction of the X-axis in FIG. 3) is the following (magnetic fields H1, H2, H3) using the detection results (magnetic fields H1, H2, H3) of the three-axis magnetic sensors 11, 12, and 13. It is expressed by equation 2).
  • FIG. 4 is a view of the conductor to be measured and the triaxial magnetic sensor as viewed from the direction D1 in FIG. The direction D1 in FIG.
  • FIG. 3 is a direction along the longitudinal direction of the conductors MC1 and MC2 to be measured (a direction opposite to the direction of the current I flowing through the conductor MC1 to be measured, and a direction along the direction of the current I flowing through the conductor MC2 to be measured).
  • the conductors MC1 and MC2 to be measured and the triaxial magnetic sensors 11, 12, and 13 are shown by omitting the illustration of the sensor head 10 for easy understanding.
  • Various vectors represented by the xyz Cartesian coordinate system are represented by the XYZ Cartesian coordinate system.
  • the magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 by the current I flowing in the X direction ( ⁇ X direction) perpendicular to the paper surface is orthogonal to the X axis. Become. Therefore, the magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 can be projected onto the plane ⁇ orthogonal to the direction in which the current I flows without changing its magnitude.
  • pi p A is a two-dimensional vector.
  • H Ai and h B in the following equation (3) are projections of HA i and H B in the above equation (1) on the plane ⁇ , respectively.
  • hi is a two-dimensional vector.
  • the magnetic field H B formed by the current I flowing through the conductor MC2 to be measured is estimated.
  • the magnetic field h A1 is orthogonal to the line segment perpendicularly drawn from the triaxial magnetic sensor 11 to the conductor MC1 to be measured.
  • the magnetic field h A2 is orthogonal to the line segment perpendicularly drawn from the triaxial magnetic sensor 12 to the conductor MC1 to be measured.
  • the magnetic field h A3 is orthogonal to the line segment perpendicularly drawn from the triaxial magnetic sensor 13 to the conductor MC1 to be measured. Therefore, since the inner product of the vector showing these line segments and the magnetic fields h A1 , h A2 , and h A3 becomes zero, the following equation (4) holds.
  • R in the above equation (6) is a 90 ° rotation matrix in the two-dimensional coordinate plane, and is represented by the following equation (7).
  • the magnetic field h B projected onto the plane ⁇ can be obtained from the following equations (8) obtained by using the above equations (4) and (6).
  • the X component (the component in the direction in which the current I flows) is lost in the magnetic field h B that projects the magnetic field H B formed by the current I flowing through the conductor MC2 on the plane ⁇ .
  • Magnetic field H Ai formed by a current I flowing through the measured conductor MC1 since X component is never occurs, the X component of the magnetic field Hi to be formed by a current I flowing through the measured conductor MC1, MC2, a magnetic field H B Is equivalent to the X component of. Therefore, the magnetic field H B can be obtained by adding the X component (j T Hi) of the magnetic field Hi to the magnetic field h B. In this way, the magnetic field H B formed by the current I flowing through the conductor MC2 to be measured can be estimated.
  • Position p A of the measured conductor MC1 in the upper plane gamma is determined from the following equation (10) obtained using the equation (8).
  • the distance estimation unit 25c obtains (estimates) the distances r1, r2, and r3 of the three-axis magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured.
  • the current I can be measured from Ampere's law using any of the combinations shown below. -Combination of distance r1 and detection result of triaxial magnetic sensor 11 (magnetic field H1) -Combination of distance r2 and detection result of triaxial magnetic sensor 12 (magnetic field H2) -Detection result of distance r3 and triaxial magnetic sensor 13 Combination with (magnetic field H3)
  • the magnetic field H B estimated by using the above equation (8) or the like is subtracted from the detection results (magnetic field Hi) of the three-axis magnetic sensors 11, 12, and 13, and the current flowing through the conductor MC1 to be measured
  • the magnetic field HAi formed at the positions of the three-axis magnetic sensors 11, 12, and 13 is obtained by I.
  • the triaxial magnetic sensors 11, 12, 13 distances r1, r2, r3 for the conductor MC1 to be measured are required. Therefore, the current I flowing through the conductor MC1 to be measured can be obtained by using the following equation (11).
  • the sensor head 10 close to the conductor MC1 to be measured so that the distance of the sensor head 10 to the conductor MC2 to be measured can be regarded as sufficiently larger than the distance of the sensor head 10 to the conductor MC1 to be measured. is there.
  • the conductor MC2 to be measured is movable, the distance of the sensor head 10 to the conductor MC2 to be measured can be regarded as sufficiently larger than the distance of the sensor head 10 to the conductor MC1 to be measured.
  • the measuring conductor MC2 is arranged far from the conductor MC1 to be measured.
  • FIG. 5 is a flowchart showing an outline of the operation of the current measuring device according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing details of the process of step S14 in FIG.
  • the flowchart shown in FIG. 5 is started at a fixed cycle (for example, about 1 to several seconds).
  • the triaxial magnetic sensors 11, 12, and 13 first detect the magnetic field formed by the current I flowing through the conductors MC1 and MC2 to be measured (step S11).
  • the magnetic field is detected by the three-axis magnetic sensors 11, 12, and 13, for example, about 1000 times per second.
  • the calculation unit 25 of the circuit unit 20 stores the detection data indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 in the memory 23 (step S12). Specifically, the calculation unit 25 refers to the detection data of the three-axis magnetic sensors 11, 12, and 13 with time information indicating the detection time, information indicating the sensor numbers of the three-axis magnetic sensors 11, 12, and 13, and an axis. Information indicating the distinction between (first axis, second axis, and third axis) is added and stored in the memory 23. By performing this processing, for example, detection data (9000 detection data) for 1000 times in each axis of the three-axis magnetic sensors 11, 12, and 13 are stored in the memory 23.
  • FIG. 7 is a diagram for explaining the process performed in the first embodiment of the present invention.
  • the memory 23 stores the detection data for 1000 times from the time t0 to the time t999 (not shown).
  • the detection data of each axis (first axis, second axis, third axis) of the three-axis magnetic sensors 11, 12, and 13 at time t0 is as follows.
  • Triaxial magnetic sensor 11 “+ Da10", “+ Da20", “+ Da30”
  • Triaxial magnetic sensor 12 “+ Db10", “-Db20”, “-Db30”
  • Triaxial magnetic sensor 13 “-Dc10", "-Dc20", "-Dc30”
  • the value of the detected data (for example, “Da10”) is set as an absolute value, and the code of the detected data is clearly indicated.
  • the sign of each axis of the three-axis magnetic sensors 11, 12, and 13 is determined by the positional relationship of the three-axis magnetic sensors 11, 12, and 13 with respect to the conductors MC1 and MC2 to be measured.
  • the sensor head 10 does not move (the position and orientation of the sensor head 10 with respect to the conductor MC1 to be measured do not change) during the measurement of the current flowing through the conductor MC1 to be measured.
  • the relationship between is as follows. Since the sensor head 10 does not move during the current measurement, the relationship between the codes of the axes of the three-axis magnetic sensors 11, 12, and 13 is related to the detection data for 1000 times from the time t0 to the time t999 (not shown). , There are only the following two ways. Since the following two methods are caused by the reversal of the direction of the current, the distance estimation gives the same result regardless of which of the two methods is selected.
  • Times t0 to t4 “+""+”"+”,”+”"-""-",”-""-"”-” Times t5 to t9: "-""-""-",”-""+”"+”,”+""+”"+"
  • the noise removing unit 25a removes the noise component from the detected data (step S13). Specifically, the noise removing unit 25a reads out the detection data stored in the memory 23 and performs averaging processing or square sum square root processing on the read detection data to generate noise contained in the detection data. Remove the ingredients.
  • the three-axis magnetic sensors 11, 12, and 13 output three types of detection data indicating the detection results of the three axes, respectively. The noise component is removed by the noise removing unit 25a individually for the detection data of each axis.
  • the detection data of each axis (first axis, second axis, third axis) of the three-axis magnetic sensor 11 from which the noise component has been removed is the noise removal detection data “D11”, “D12”, Let it be "D13".
  • the detection data of each axis of the triaxial magnetic sensor 12 from which the noise component has been removed is referred to as noise removal detection data "D21”, “D22”, and “D23”.
  • the detection data of each axis of the three-axis magnetic sensor 13 from which the noise component has been removed are referred to as noise removal detection data “D31”, “D32”, and “D33”.
  • the code addition unit 25b adds a code to the detection result in which the noise component is removed by the noise removal unit 25a (step S14).
  • the coding addition unit 25b identifies the detection data having the maximum absolute value among the detection data stored in the memory 23 (step S21). ..
  • the sign addition unit 25b takes the absolute value of the detection data read from the memory 23 and arranges it in ascending or descending order, and specifies the last value of the absolute value arranged in ascending order or the first value of the absolute value arranged in descending order. To do.
  • the detection data “+ Db12” of the first axis of the triaxial magnetic sensor 12 obtained at time t2 is specified.
  • the code addition unit 25b extracts the detection data detected at the same time as the above-specified detection data (step S22).
  • "-Db22”, “-Db32”, and the detection data "-Dc12”, “-Dc22”, “-Dc32” of each axis of the triaxial magnetic sensor 13 are extracted.
  • the code addition unit 25b adds the code of the detection data extracted in the process of step S22 to the detection data from which the noise component has been removed in the process of step S13 (step S23). Specifically, the code addition unit 25b adds detection data “+ Da12” for each axis of the three-axis magnetic sensor 11 extracted to the noise removal detection data “D11”, “D12”, and “D13” shown in FIG. The codes “+ Da22” and "+ Da32" are added.
  • the code addition unit 25b adds detection data “+ Db12”, “ ⁇ Db22” for each axis of the triaxial magnetic sensor 12 extracted from the noise removal detection data “D21”, “D22”, “D23” shown in FIG. , "-Db32" are added.
  • the code addition unit 25b uses the noise removal detection data “D31”, “D32”, and “D33” shown in FIG. 7 as the detection data “ ⁇ Dc12” and “ ⁇ Dc12” of each axis of the triaxial magnetic sensor 13.
  • the codes of "-Dc22” and "-Dc32" are added.
  • code-added detection data in which the code of the extracted detection data is added to the noise removal detection data which is the detection result from which the noise component has been removed can be obtained.
  • the code addition detection data “+ D11”, “+ D12”, “+ D13”, “+ D21”, “-D22”, “-D23”, “-D31”, “-D32” , "-D33” is obtained.
  • the distance estimation unit 25c estimates the distances r1, r2, and r3 of the triaxial magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured (step S15). Specifically, first, the distance estimation unit 25c describes the positions pi of the three-axis magnetic sensors 11, 12, and 13 on the plane ⁇ shown in FIG. 4, the magnetic field hi projected on the plane ⁇ , and the above-mentioned (8), Using the magnetic field h B calculated using the equation (9), the calculation shown in the above equation (10) is performed to obtain the position p A of the conductor MC1 to be measured on the plane ⁇ .
  • the distance estimation unit 25c from the position p A of the measured conductor MC1 in the upper plane gamma, the position pi of the three-axis magnetic sensor 11, 12 and 13 in the upper plane gamma, three-axis magnetic sensor for measured conductor MC1
  • the distances r1, r2, and r3 of 11, 12, and 13 are estimated.
  • the code addition detection data for each axis of the triaxial magnetic sensor 11 indicates the magnetic field H1 formed at the position of the triaxial magnetic sensor 11. Further, the code addition detection data of each axis of the triaxial magnetic sensor 12 indicates the magnetic field H2 formed at the position of the triaxial magnetic sensor 12. Further, the code addition detection data of each axis of the triaxial magnetic sensor 13 indicates the magnetic field H3 formed at the position of the triaxial magnetic sensor 13.
  • the above magnetic field hi is obtained by projecting the magnetic fields Hi (magnetic fields H1, H2, H3) indicated by these code-added detection data onto the plane ⁇ .
  • the current calculation unit 25d of the calculation unit 25 calculates the current I flowing through the conductor MC1 (outward path) to be measured (step S16). Specifically, the current calculating portion 25d of the processor 25, the detection result (magnetic field H1, H2, H3) of the three-axis magnetic sensor 11, 12, 13, the estimated magnetic field H B, and estimated in step S15 Using the distances r1, r2, and r3, the calculation shown in the above equation (11) is performed to calculate the current I flowing through the conductor MC1 to be measured.
  • the magnetic field H B is estimated by calculating the magnetic field h B using the above equations (8) and (9) and adding the X component (j T Hi) of the magnetic field Hi to the magnetic field h B. be able to.
  • the current calculation unit 25d subtracts the magnetic field H B estimated from the detection results (magnetic fields H1, H2, H3) of the three-axis magnetic sensors 11, 12, and 13, and subtracts the magnetic field H B in the equation (11).
  • HAi magnetic field formed at the positions of the triaxial magnetic sensors 11, 12, and 13 by the current I flowing through the conductor MC1 to be measured
  • the current calculation unit 25d performs an operation shown in by (11) using the magnitude of the distance r1, r2, r3 and a magnetic field H Ai estimated in step S15. In this way, the influence of the magnetic field formed by the current I flowing through the conductor MC2 to be measured is eliminated, and then the current I flowing through the conductor MC1 to be measured is measured in a non-contact manner.
  • the detection data (noise) from which the noise component is removed is based on the code information of the detection data of the triaxial magnetic sensors 11, 12, and 13 obtained at the specific time point (time t2).
  • a code is added to the removal detection data), and the current I flowing through the conductor MC1 to be measured is measured by using the code-added detection data (code addition detection data).
  • the sensor head 10 provided with the triaxial magnetic sensors 11, 12, and 13 and the circuit unit 20 provided with the calculation unit 25 are separated and connected by a cable CB.
  • the sensor head 10 can be easily handled, and the sensor head 10 can be easily installed in a narrow place, for example, so that the sensor head 10 can be arranged more flexibly.
  • the current I flowing through the measured conductor MC1 includes a detection result of the three-axis magnetic sensor 11, 12, 13 (magnetic field H1, H2, H3 those in which the influence of the magnetic field H B from), the estimated It is not always necessary to use all the distances r1, r2, and r3.
  • the current I flowing through the conductor MC1 to be measured can be measured.
  • FIG. 8 is a block diagram showing a main configuration of the current measuring device according to the second embodiment of the present invention.
  • the same reference numerals are given to the blocks corresponding to the configurations shown in FIG.
  • the current measuring device 2 according to the present embodiment has a configuration in which a circuit unit 20A is provided in place of the circuit unit 20 of the current measuring device 1 shown in FIG.
  • the circuit unit 20A is a calculation unit 25 to which a zero setting unit 25e is added.
  • the zero setting unit 25e performs a process of setting the value to zero for the detection results of the three-axis magnetic sensors 11, 12, and 13 whose value is equal to or less than the preset noise threshold (threshold value).
  • the detection results of the three-axis magnetic sensors 11, 12, and 13 are stored in the memory 23 by the calculation unit 25 after being processed by the zero setting unit 25e.
  • the reason for providing such a zero setting unit 25e is to improve the measurement accuracy of the current I.
  • FIG. 9 is a diagram showing an example of discontinuity of current measurement values to be eliminated in the second embodiment of the present invention.
  • a zero setting unit 25e is provided in order to prevent such a decrease in measurement accuracy.
  • the noise threshold value set in the zero setting unit 25e is set in consideration of the noise component affecting the detection results of the three-axis magnetic sensors 11, 12 and 13 and the required measurement accuracy.
  • FIG. 10 is a flowchart showing an outline of the operation of the current measuring device according to the second embodiment of the present invention.
  • the flowchart shown in FIG. 10 is obtained by adding step S17 between steps S11 and S12 of the flowchart shown in FIG.
  • the triaxial magnetic sensors 11, 12, and 13 first detect the magnetic field formed by the current I flowing through the conductors MC1 and MC2 to be measured (step S11).
  • the zero setting unit 25e performs zero setting processing on the detection data indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 (step S17). Specifically, the zero setting unit 25e compares the value (absolute value) of the detection result of the triaxial magnetic sensors 11, 12, and 13 with the preset noise threshold value, and if the value is equal to or less than the noise threshold value, , Performs the process of setting the value to zero. The zero setting process by the zero setting unit 25e is performed individually for the detection data of each axis.
  • the calculation unit 25 of the circuit unit 20 stores the detection data in which the above zero setting process has been performed in the memory 23 (step S12). Since the processing after step S12 in FIG. 10 is the same processing as the processing after step S12 shown in FIG. 5, detailed description thereof will be omitted.
  • the zero setting unit 25e performs zero setting processing on the detection data indicating the detection results of the three-axis magnetic sensors 11, 12, and 13, and the value (absolute value) is set in advance.
  • the value is set to zero for those below the noise threshold.
  • a code is added to the detection data from which the noise component has been removed (noise removal detection data), and the code-added detection data (code addition detection data) is used to use the conductor to be measured.
  • the current I flowing through the MC1 is measured.
  • the present invention is not limited to the above embodiment and can be freely changed within the scope of the present invention.
  • the sensor head 10 is provided with three three-axis magnetic sensors 11, 12, and 13 has been described.
  • the number of the three-axis magnetic sensors provided in the sensor head 10 may be two or four or more.
  • the detection results of the triaxial magnetic sensors 11, 12, and 13 are used to estimate the distance of the triaxial magnetic sensors 11, 12, and 13 to the conductor MC1 to be measured, and the conductor MC1 to be measured is used.
  • An example of measuring the flowing current I has been described.
  • a configuration may be provided in which a dedicated magnetic sensor for current measurement whose relative positional relationship with respect to the triaxial magnetic sensors 11, 12, 13 is known.
  • the distances of the triaxial magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured are estimated, and the magnetism for measuring the current with respect to the conductor MC1 to be measured.
  • the distance of the sensor is also estimated.
  • the current I flowing through the conductor MC1 to be measured is measured using the estimated distance (distance of the magnetic sensor for current measurement with respect to the conductor MC1 to be measured) and the detection result of the magnetic sensor for current measurement. Is also good.
  • the magnetic fields are detected by the three-axis magnetic sensors 11, 12, and 13 at the same time (at the same timing) has been described as an example, but the magnetic fields may be detected at different timings.
  • the number information indicating the detection order may be added to the detection data and stored in the memory 23 instead of the time information indicating the detection time.
  • the measurement target is an alternating current
  • the number of accumulated data is sufficiently large (at least for half a cycle or more of the alternating current of the measurement target), and the number information indicating the detection order is added to the detection data to the memory. It is preferable to store it in 23.
  • the code addition unit 25b specifies the time point at which the detection result having the maximum absolute value is obtained among the detection results of the three-axis magnetic sensors 11, 12, and 13 stored in the memory 23.
  • a threshold value is set according to the magnitude of the noise component, and among the detection results of the three-axis magnetic sensors 11, 12, and 13 stored in the memory 23, the detection result whose absolute value is larger than the threshold value is found. Any time point obtained may be a specific time point.
  • the threshold value according to the magnitude of the noise component is, for example, the noise component superimposed on the detection data output from the triaxial magnetic sensors 11, 12, 13 in a state where it is not affected by the magnetic field due to the current. It is set to a value that exceeds the magnitude (amplitude and effective value).
  • the noise threshold value set in the zero setting unit 25e takes into consideration the noise component affecting the detection results of the triaxial magnetic sensors 11, 12, 13 and the required measurement accuracy. It was explained as being set.
  • the noise threshold value may be set by the same pointer as the threshold value set by the code addition unit 25b. That is, the noise threshold is, for example, the magnitude (amplitude or effective value) of the noise component superimposed on the detection data output from the triaxial magnetic sensors 11, 12, 13 in a state where it is not affected by the magnetic field due to the current. It may be set to a value exceeding the value.
  • the three-axis magnetic sensors 11 and 12 are separated by the interval d [m] in the first axis direction (x-axis direction), and the three-axis magnetic sensors 11 and 13 are separated in the third axis direction (z-axis direction).
  • d [m] in the first axis direction x-axis direction
  • z-axis direction z-axis direction
  • the three-axis magnetic sensors 11, 12, and 13 may be arranged so that the magnetic sensitivity direction and the relative position have a predetermined relationship.
  • a program for realizing a part or all of the functions of the circuit units 20 and 20A described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer system.
  • the above-mentioned various processes of the present embodiment may be performed by reading and executing the process.
  • the "computer system” referred to here may include hardware such as an OS and peripheral devices.
  • the "computer system” shall also include a homepage providing environment (or display environment) if a WWW system is used.
  • the "computer-readable recording medium” is a flexible disk, a magneto-optical disk, a ROM, a writable non-volatile memory such as a flash memory, a portable medium such as a CD-ROM, or a hard disk built in a computer system. It refers to a device.
  • the "computer-readable recording medium” is a volatile memory (for example, DRAM (Dynamic)) inside a computer system that serves as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It also includes those that hold the program for a certain period of time, such as Random Access Memory)).
  • the program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the above-mentioned functions.
  • a so-called difference file difference program
  • difference program difference program
  • the word “composed” is configured to perform the function of the present invention, or is used to indicate the configuration, elements, or parts of a device.
  • unit is used to refer to a component, unit, hardware or piece of software programmed to perform a desired function. Typical examples of hardware are devices and circuits, but are not limited to these.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流測定装置は、被測定導体(MC1、MC2)に流れる電流(I)を測定する電流測定装置(1、2)であって、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ(11、12、13)と、複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(25a)と、特定時点で得られた複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、雑音成分が除去された検出結果に対して符号を付加する符号付加部(25b)と、符号付加部によって符号が付加された検出結果を用いて、被測定導体に流れる電流を求める電流演算部(25c、25d)と、を備える。

Description

電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
 本発明は、電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体に関する。
 従来から、被測定導体に流れる電流を非接触で測定することが可能な様々な電流測定装置が開発されている。このような電流測定装置の代表的なものとしては、例えば、CT(Current Transformer:変流器)方式の電流測定装置、ゼロフラックス方式の電流測定装置、ロゴスキー方式の電流測定装置、ホール素子方式の電流測定装置等が挙げられる。
 例えば、CT方式及びゼロフラックス方式の電流測定装置は、巻線が巻回された磁気コアを被測定導体の周囲に設け、被測定導体(一次側)に流れる電流によって磁気コアに生ずる磁束を打ち消すように巻線(二次側)に流れる電流を検出することで、被測定導体に流れる電流を測定する。また、ロゴスキー方式の電流測定装置は、被測定導体に流れる交流電流によって生ずる磁界が、被測定導体の周囲に設けられたロゴスキーコイル(空芯コイル)と鎖交することで誘起される電圧を検出することにより、被測定導体に流れる電流を測定する。
 以下の特許文献1には、ゼロフラックス方式の電流測定装置の一例が開示されている。また、以下の特許文献2には、複数の磁気センサを用いた電流測定装置が開示されている。具体的に、以下の特許文献2に開示された電流測定装置は、被測定導体に対してそれぞれ異なる距離をとって2つの磁気センサを配置し、これら磁気センサの出力から磁気センサと被測定導体との距離を求め、求めた距離を用いて被測定導体に流れる電流の大きさを求めている。
特開2005-55300号公報 特開2011-164019号公報
 ところで、磁気センサを用いる電流測定装置では、電流の測定精度を向上させるために、磁気センサの検出結果に含まれる雑音を除去する処理が行われることがある。雑音を除去する処理としては、例えば、磁気センサの検出結果の絶対値を平均化する処理(平均化処理)、又は磁気センサの検出結果の二乗和平方根を求める処理(二乗和平方根処理)等が挙げられる。
 このような雑音除去処理が行われると、磁気センサの検出結果の符号は必ず正になるから、磁界の向きを示す情報が失われる場合がある。磁界の向きを示す情報が失われてしまうと、誤った値が測定されてしまったり、場合によっては電流の測定自体ができなくなってしまったりすることが考えられる。
 本発明は上記事情に鑑みてなされたものであり、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体を提供することを目的とする。
 上記課題を解決するために、本発明の一態様による電流測定装置は、被測定導体(MC1、MC2)に流れる電流(I)を測定する電流測定装置(1、2)であって、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ(11、12、13)と、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(25a)と、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する符号付加部(25b)と、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める電流演算部(25c、25d)と、を備える。
 また、本発明の一態様による電流測定装置は、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積する蓄積部(23)を更に備え、前記符号付加部が、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する。
 また、本発明の一態様による電流測定装置は、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する零設定部(25e)を更に備える。
 また、本発明の一態様による電流測定装置は、前記雑音除去部が、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する。
 また、本発明の一態様による電流測定装置は、前記電流演算部が、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定する距離推定部(25c)と、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める電流算出部(25d)と、を備える。
 また、本発明の一態様による電流測定装置は、前記複数の三軸磁気センサを備えるセンサヘッド(10)と、少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部(20)と、を備える。
 また、本発明の一態様による電流測定装置は、前記センサヘッドには、第1の三軸磁気センサ(11)と、第2の三軸磁気センサ(12)と、第3の三軸磁気センサ(13)とが設けられており、前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサが、互いに直交する三軸に感磁方向を有する磁気センサであり、前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサが、感磁方向及び相対的な位置が予め規定された関係となるように配置されている。
 上記課題を解決するために、本発明の一態様による電流測定方法は、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ(11、12、13)と、雑音除去部(25a)と、符号付加部(25b)と、電流演算部(25c、25d)とを備え、被測定導体(MC1、MC2)に流れる電流(I)を測定する電流測定装置(1、2)によって実行される電流測定方法であって、前記雑音除去部によって、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去し、前記符号付加部によって、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加し、前記電流演算部によって、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める。
 また、本発明の一態様による電流測定方法は、前記電流測定装置が、蓄積部(23)を更に備え、前記蓄積部によって、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積し、前記符号付加部によって、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する。
 また、本発明の一態様による電流測定方法は、前記電流測定装置が、零設定部(25e)を更に備え、前記零設定部によって、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する。
  また、本発明の一態様による電流測定方法は、前記雑音除去部によって、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する。
 また、本発明の一態様による電流測定方法は、前記電流演算部が、距離推定部(25c)と、電流算出部(25d)とを備え、前記距離推定部によって、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定し、前記電流算出部によって、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める。
 また、本発明の一態様による電流測定方法は、前記電流測定装置が、前記複数の三軸磁気センサを備えるセンサヘッド(10)と、少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部(20)と、を備える。
 また、本発明の一態様による電流測定方法は、前記センサヘッドには、第1の三軸磁気センサ(11)と、第2の三軸磁気センサ(12)と、第3の三軸磁気センサ(13)とが設けられており、前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサが、互いに直交する三軸に感磁方向を有する磁気センサであり、前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサが、感磁方向及び相対的な位置が予め規定された関係となるように配置されている。
 上記課題を解決するために、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ(11、12、13)と、雑音除去部(25a)と、符号付加部(25b)と、電流演算部(25c、25d)とを備え、被測定導体(MC1、MC2)に流れる電流(I)を測定する電流測定装置(1、2)に実行させる一以上のプログラムを記録したコンピュータ読み取り可能な非一時的記録媒体であって、前記一以上のプログラムが、前記雑音除去部に、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去させ、前記符号付加部に、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加させ、前記電流演算部に、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求めさせる。
 また、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、前記電流測定装置が、蓄積部(23)を更に備え、前記一以上のプログラムが、前記蓄積部に、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積させ、前記符号付加部に、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加させる。
 また、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、前記電流測定装置が、零設定部(25e)を更に備え、前記一以上のプログラムが、前記零設定部に、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定させる。
 また、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、前記一以上のプログラムが、前記雑音除去部に、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去させる。
 また、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、前記電流演算部が、距離推定部(25c)と、電流算出部(25d)とを備え、前記一以上のプログラムが、前記距離推定部に、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定させ、前記電流算出部に、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求めさせる。
 また、本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、前記電流測定装置が、前記複数の三軸磁気センサを備えるセンサヘッド(10)と、少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部(20)と、を備える。
 本発明によれば、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができるという効果がある。
本発明の第1実施形態による電流測定装置を模式的に示す図である。 本発明の第1実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の第1実施形態による電流測定装置における電流の測定原理を説明するための図である。 被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。 本発明の第1実施形態による電流測定装置の動作の概要を示すフローチャートである。 図5中のステップS14の処理の詳細を示すフローチャートである。 本発明の第1実施形態で行われる処理を説明するための図である。 本発明の第2実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の第2実施形態で解消しようとしている電流測定値の不連続性の一例を示す図である。 本発明の第2実施形態による電流測定装置の動作の概要を示すフローチャートである。
 以下、図面を参照して本発明の実施形態による電流測定装置について詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の実施形態の詳細について説明する。
〔概要〕
 本発明の実施形態は、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することを可能とする。具体的には、本発明の実施形態は、電流測定時に微小空間への設置が可能であり、直流電流及び数百[Hz]程度までの交流電流を非接触で精度良く測定することを可能とする。また、本発明の実施形態は、被測定導体に対する設置位置や設置方向を柔軟に行えるようにするものでもある。
 近年、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)の開発工程において、SiC(シリコンカーバイド)等のパワー半導体のピンに流れる電流や、組み立て後のバスバーに流れる電流を測定したいという要求がある。パワー半導体はピンのピッチが狭いものが多く、バスバーは周辺のスペースが限られている場所に設置されることがある。このため、このようなパワー半導体やバスバー等に対して、電流測定時の設置を柔軟に行うことが可能な電流測定装置が望まれている。また、ハイブリッド自動車や電気自動車では、例えばバッテリから供給される直流電流やモータに流れる交流電流が取り扱われるため、小型で直流電流及び交流電流を非接触で測定可能な電流測定装置が望まれている。
 しかしながら、上述した特許文献1に開示されたゼロフラックス方式の電流測定装置は、ある程度の大きさ(例えば、数十[cm]程度)を有する磁気コアを被測定導体の周囲に設ける必要があることから、狭い場所への設置が困難である。また、上述したロゴスキー方式の電流測定装置は、ロゴスキーコイルに誘起される電圧を検出していることから、原理的に直流電流の測定を行うことはできない。また低周波領域では、出力信号が微弱であるとともに位相がずれるため、測定精度が悪い。また、上述した特許文献2に開示された電流測定装置は、磁気センサの感磁方向を被測定導体の円周方向に一致させる必要があることから、磁気センサの配置が制限されてしまい柔軟な配置が困難である。
 本発明の実施形態では、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部とを設けている。そして、特定時点で得られた複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、雑音成分が除去された検出結果に対して符号を付加し、符号が付加された検出結果を用いて、被測定導体に流れる電流を求めるようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
〔第1実施形態〕
 〈電流測定装置の構成〉
 図1は、本発明の第1実施形態による電流測定装置を模式的に示す図である。図1に示す通り、本実施形態の電流測定装置1は、ケーブルCBによって接続されたセンサヘッド10及び回路部20を備えており、被測定導体MC1,MC2の何れか一方に流れる電流Iを非接触で測定する。尚、本実施形態では、被測定導体MC1に流れる電流Iを測定する場合を例に挙げて説明する。
 尚、被測定導体MC1,MC2は、例えばパワー半導体のピンやバスバー等の任意の導体である。以下では、説明を簡単にするために、被測定導体MC1,MC2は、円柱形状の導体であるとする。被測定導体MC1,MC2に流れる電流Iは、その流れの方向が互いに逆である。以下、被測定導体MC1を流れる電流の電流経路を「往路」といい、被測定導体MC2を流れる電流の電流経路を「復路」ということがある。
 センサヘッド10は、被測定導体MC1に流れる電流Iを非接触で測定するために、被測定導体MC1に対して任意の位置に任意の姿勢で配置される部材である。このセンサヘッド10は、被測定導体MC1,MC2に流れる電流Iによって生成される磁界(例えば、図1中に示す磁界H1,H2,H3)を遮らない材質(例えば、樹脂等)によって形成されている。このセンサヘッド10は、いわば被測定導体MC1に流れる電流Iを非接触で測定するためのプローブとして用いられる。
 センサヘッド10には、3つの三軸磁気センサ11,12,13が設けられている。三軸磁気センサ11,12,13は、互いに直交する三軸に感磁方向を有する磁気センサである。三軸磁気センサ11,12,13は、感磁方向及び相対的な位置が予め規定された関係となるように配置されている。例えば、三軸磁気センサ11,12,13の第1軸が互いに平行になり、三軸磁気センサ11,12,13の第2軸が互いに平行になり、且つ三軸磁気センサ11,12,13の第3軸が互いに平行になるように、所定の方向に所定の距離だけ離間するように配置されている。尚、以下では、三軸磁気センサ11,12が、第1軸方向に所定の距離だけ離間するように配列され、三軸磁気センサ11,13が、第3軸方向に所定の距離だけ離間するように配列されているとする。
 三軸磁気センサ11,12,13の検出結果を示す信号は、アナログ信号及びディジタル信号の何れでも良いが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、センサヘッド10と回路部20とを接続するケーブルCBの本数を少なくすることができる。例えば、三軸磁気センサ11,12,13の検出結果を示す信号がアナログ信号である場合には、三軸磁気センサ11,12,13の各々について三軸の検出結果を出力する3本のケーブルCBがそれぞれ必要になるため、計9本のケーブルCBが必要になるが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、1本のケーブルCBのみで良い。ケーブルCBの本数が少ないと、ケーブルCBの屈曲性が向上するため、例えばセンサヘッド10を狭い空間内に配置する際にハンドリングが容易になる。
 回路部20は、センサヘッド10から出力される検出結果(三軸磁気センサ11,12,13の検出結果)に基づいて、被測定導体MC1に流れる電流Iを測定する。回路部20は、電流Iの測定結果を表示し、或いは外部に出力する。回路部20は、例えば、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、マイクロコントローラ等によって実現される。センサヘッド10と回路部20とを接続するケーブルCBとしては任意のものを用いることができるが、可撓性を有し、取り回しが用意であり、且つ断線が生じ難いものが望ましい。
 図2は、本発明の第1実施形態による電流測定装置の要部構成を示すブロック図である。尚、図2では、図1に示した構成に対応するブロックについては、同一の符号を付してある。以下では、主に、図2を参照して回路部20の内部構成の詳細について説明する。図2に示す通り、回路部20は、操作部21、表示部22、メモリ23(蓄積部)、及び演算部25を備える。
 操作部21は、例えば電源ボタン、設定ボタン等の各種ボタンを備えており、各種ボタンに対する操作指示を示す信号を演算部25に出力する。表示部22は、例えば7セグメントLED(Light Emitting Diode:発光ダイオード)表示器、液晶表示装置等の表示装置を備えており、演算部25から出力される各種情報(例えば、被測定導体MC1に流れる電流Iの測定結果を示す情報)を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良く、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。
 メモリ23は、例えば揮発性又は不揮発性の半導体メモリを備えており、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果、演算部25の演算結果(被測定導体MC1に流れる電流Iの測定結果)等を記憶する。尚、メモリ23は、上記の半導体メモリとともに(或いは、上記の半導体メモリに代えて)、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えていても良い。
 演算部25は、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果をメモリ23に記憶させる。具体的に、演算部25は、三軸磁気センサ11,12,13の検出結果に対し、検出時間を示す時間情報、三軸磁気センサ11,12,13のセンサ番号を示す情報、及び軸(第1軸、第2軸、第3軸)の別を示す情報を付加してメモリ23に記憶させる。
 また、演算部25は、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果を読み出して、被測定導体MC1に流れる電流Iを求める演算を行う。図2に示す通り、演算部25は、雑音除去部25a、符号付加部25b、距離推定部25c(電流演算部)、及び電流算出部25d(電流演算部)を備える。
 雑音除去部25aは、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分を除去する。具体的に、雑音除去部25aは、予め規定された一定の期間(例えば、1~数秒程度)毎に得られる、三軸磁気センサ11,12,13の各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分をそれぞれ除去する。
 上記の平均化処理は、三軸磁気センサ11,12,13の各々から得られる複数の検出結果の絶対値の平均値を求める処理である。平均化処理は、単純平均処理であっても良く、移動平均処理や加重平均処理であっても良い。尚、三軸磁気センサ11,12,13からは三軸の検出結果がそれぞれ出力されるが、雑音除去部25aによる雑音成分の除去は、各軸の検出結果に対して個別に行われる。このような雑音除去を行うのは、三軸磁気センサ11,12,13のSN比(信号対雑音比)を向上させて、電流Iの測定精度を高めるためである。
 符号付加部25bは、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する。具体的に、符号付加部25bは、三軸磁気センサ11,12,13の検出結果のうち、特定時点で得られた三軸磁気センサ11,12,13の検出結果の各々の符号情報に基づいて、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する。雑音除去部25aで雑音成分が除去された検出結果は、磁界の向きを示す情報が失われていることがある。失われた磁界の向きを示す情報を復元するために、符号付加部25bで符号を付加する処理を行うようにしている。
 上記の特定時点は、電流の測定中において、センサヘッド10が動いていないとみなせる間の任意の時点であって良い。但し、三軸磁気センサ11,12,13の検出結果の値(絶対値)が小さい場合には、雑音の影響を受けて、誤った符号が付加される虞が考えられる。このため、例えば、センサヘッド10が動いていないとみなせる間の予め規定された期間(例えば、1~数秒程度の間)に、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が最大となる検出結果が得られた時点を上記の特定時点とすることが望ましい。尚、符号付加部25bで行われる処理の詳細については後述する。
 距離推定部25cは、三軸磁気センサ11,12,13の検出結果と三軸磁気センサ11,12,13の位置関係とを用いて、電流測定装置1の予め規定された基準位置と被測定導体MC1との距離を示す距離情報を算出する。尚、電流測定装置1の基準位置としては任意の位置であって良いが、例えば、センサヘッド10における三軸磁気センサ11,12,13の取り付け位置とすることができる。このような距離の推定を行うのは、被測定導体MC1に流れる電流Iを測定するためである。尚、距離推定部25cで行われる処理の詳細については後述する。
 電流算出部25dは、距離推定部25cによって算出された距離情報を用いて、被測定導体MC1に流れる電流Iを求める。具体的に、電流算出部25dは、推定された三軸磁気センサ11の距離と、三軸磁気センサ11の検出結果とに基づいて、アンペールの法則により被測定導体MC1に流れる電流Iを求める。尚、電流算出部25dで行われる処理の詳細については後述する。
 ここで、図1,図2に示す通り、回路部20は、センサヘッド10と分離されており、ケーブルCBを介してセンサヘッド10に接続されている。このような構成にすることで、磁界検出機能(三軸磁気センサ11,12,13)と演算機能(演算部25)とを分離することができ、演算部25がセンサヘッド10内に設けられている場合に生ずる諸問題(例えば、温度特性、絶縁耐性)等を回避することができ、これにより電流測定装置1の用途を拡げることができる。
 〈電流の測定原理〉
 次に、電流測定装置1による電流の測定原理について説明する。図3は、本発明の第1実施形態による電流測定装置における電流の測定原理を説明するための図である。まず、図3に示す通り、センサヘッド10のみに係る座標系(xyz直交座標系)と、被測定導体MC1,MC2に係る座標系(XYZ直交座標系)との2つの座標系を設定する。
 xyz直交座標系は、センサヘッド10の位置及び姿勢に応じて規定される座標系である。このxyz直交座標系は、三軸磁気センサ11の位置に原点が設定されており、三軸磁気センサ11,12,13の第1軸方向(三軸磁気センサ11,12の配列方向)にx軸が設定されており、三軸磁気センサ11,12,13の第2軸方向にy軸が設定されており、三軸磁気センサ11,12,13の第3軸方向(三軸磁気センサ11,13の配列方向)にz軸が設定されている。
 ここで、三軸磁気センサ11,12,13の位置をPi(i=1,2,3)として表す。尚、Piはベクトルである。つまり、三軸磁気センサ11の位置をP1で表し、三軸磁気センサ12の位置をP2で表し、三軸磁気センサ13の位置をP3で表すとする。例えば、図3に示す通り、三軸磁気センサ11,12のx方向の間隔、及び三軸磁気センサ11,13のz方向の間隔がd[m]であるとすると、三軸磁気センサ11,12,13の位置は以下の通りに表される。
  三軸磁気センサ11の位置:P1=(0,0,0)
  三軸磁気センサ12の位置:P2=(d,0,0)
  三軸磁気センサ13の位置:P3=(0,0,d)
 XYZ座標系は、被測定導体MC1,MC2に応じて規定される座標系である。このXYZ直交座標系は、被測定導体MC1,MC2の長手方向(電流Iの方向)にX軸が設定されており、被測定導体MC1,MC2の並び方向にY軸が設定されている。Z軸は、X軸及びY軸に直交する方向に設定される。尚、XYZ直交座標系の原点位置は、任意の位置に設定可能である。
 図3に示す通り、被測定導体MC1に対する三軸磁気センサ11の距離をr1とし、被測定導体MC1に対する三軸磁気センサ12の距離をr2とし、被測定導体MC1に対する三軸磁気センサ13の距離をr3とする、尚、距離r1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分の長さであり、距離r2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分の長さであり、距離r3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分の長さである。尚、距離r1,r2,r3は、検出できない点に注意されたい。
 また、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界をHAi(i=1,2,3)として表す。尚、HAiはベクトルである。つまり、被測定導体MC1に流れる電流Iによって三軸磁気センサ11の位置に形成される磁界をHA1として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ12の位置に形成される磁界をHA2として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ13の位置に形成される磁界をHA3として表す。
 また、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとすると、被測定導体MC2に流れる電流Iによって形成される磁界は、三軸磁気センサ11,12,13に近似的に均一に作用するとみなすことができる。この磁界をHとして表す。尚、Hはベクトルである。すると、被測定導体MC1,MC2に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界Hi(i=1,2,3)は、以下の(1)式によって表される。尚、Hiはベクトルである。
Figure JPOXMLDOC01-appb-M000001
 次に、センサヘッド10のみに係るxyz直交座標系と、被測定導体MC1,MC2に係るXYZ直交座標系とを関連付けるために、電流Iの方向(図3中のX軸の方向)を求める。前述の通り、被測定導体MC2に流れる電流Iによって形成される磁界Hを均一と近似しているため、三軸磁気センサ11,12,13の検出結果の差分をとると磁界Hをキャンセルすることができる。また、電流Iの方向は、磁界の方向と直交するため、三軸磁気センサ11,12,13の検出結果の差分の外積の方向は、電流Iの方向と一致する。このため、電流Iの方向(図3中のX軸の方向)の単位ベクトルjは、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)を用いて、以下の(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 次いで、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表すために、図4に示す通り、電流Iに対して垂直な平面Γを考える。つまり、上記(2)式を用いて求められる単位ベクトルjに垂直な平面Γを考える。尚、平面Γは、YZ平面に平行な平面であるということもできる。図4は、被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。図3中の方向D1は、被測定導体MC1,MC2の長手方向に沿う方向(被測定導体MC1に流れる電流Iの方向とは反対の方向、被測定導体MC2に流れる電流Iの方向に沿う方向)である。尚、図4においては、理解を容易にするためにセンサヘッド10の図示を省略して、被測定導体MC1,MC2及び三軸磁気センサ11,12,13を図示している。
 図4に示す平面Γに対して、被測定導体MC1,MC2、三軸磁気センサ11,12,13、及び三軸磁気センサ11,12,13の位置に形成される磁界を射影することにより、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表す。図4に示す通り、紙面に対して垂直なX方向(±X方向)に流れる電流Iによって、三軸磁気センサ11,12,13の位置に形成される磁界は、X軸に直交するものになる。従って、電流Iが流れる方向と直交する平面Γに、三軸磁気センサ11,12,13の位置に形成される磁界を、その大きさを変えることなく射影することができる。
 ここで、平面Γ上における三軸磁気センサ11,12,13の位置をpi(i=1,2,3)として表し、平面Γ上における被測定導体MC1の位置をpとして表す。尚、pi,pは、2次元のベクトルである。また、平面Γ上に射影された磁界hi(i=1,2,3)を、以下の(3)式で表す。以下の(3)式中のhAi,hはそれぞれ、上記(1)式中のHAi,Hを平面Γに射影したものである。尚、hiは2次元のベクトルである。
Figure JPOXMLDOC01-appb-M000003
 続いて、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定する。まず、図4に示す通り、平面Γ上において、磁界hA1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分に直交する。また、平面Γ上において、磁界hA2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分に直交する。同様に、平面Γ上において、磁界hA3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分に直交する。従って、これら線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるため、以下の(4)式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 次に、上記線分の長さと、磁界hA1,hA2,hA3の大きさとの関係に着目すると、アンペールの法則から以下の(5)式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 ここで、前述の通り、三軸磁気センサ11,12,13から被測定導体MC1に垂直に下ろした線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるが、各々の線分を示すベクトルを平面Γ内で90°回転させてから磁界hA1,hA2,hA3との内積をとると、以下の(6)式が成り立つ。
Figure JPOXMLDOC01-appb-M000006
 但し、上記(6)式中のRは、二次元座標平面内における90°回転行列であり、以下の(7)式で示される。
Figure JPOXMLDOC01-appb-M000007
 平面Γに射影した磁界hは、上記(4),(6)式を用いて得られる以下の(8)式から求められる。
Figure JPOXMLDOC01-appb-M000008
 但し、上記(8)式中のp,h,c,cは、以下の(9)式に示される通りである。
Figure JPOXMLDOC01-appb-M000009
 ここで、被測定導体MC2に流れる電流Iによって形成される磁界Hを平面Γに射影した磁界hは、X成分(電流Iが流れる方向の成分)が失われている。被測定導体MC1に流れる電流Iによって形成される磁界HAiは、X成分が生ずることはないため、被測定導体MC1,MC2に流れる電流Iによって形成される磁界HiのX成分は、磁界HのX成分と等価になる。このため、磁界HiのX成分(jHi)を磁界hに追加することで、磁界Hを求めることができる。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定することができる。
 続いて、平面Γ上における被測定導体MC1の位置pを求める。被測定導体MC1の位置pは、上記(4),(6),(8)式を用いて得られる以下の(10)式から求められる。
Figure JPOXMLDOC01-appb-M000010
 平面Γ上における被測定導体MC1の位置pが分かると、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を求める(推定する)ことができる。距離推定部25cは、このようにして、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を求めている(推定している)。
 そして、距離r1,r2,r3を求める(推定する)ことができれば、以下に示す組み合わせの何れかを用いて、アンペールの法則から電流Iを測定することができる。
  ・距離r1と三軸磁気センサ11の検出結果(磁界H1)との組み合わせ
  ・距離r2と三軸磁気センサ12の検出結果(磁界H2)との組み合わせ
  ・距離r3と三軸磁気センサ13の検出結果(磁界H3)との組み合わせ
 具体的には、まず、三軸磁気センサ11,12,13の検出結果(磁界Hi)から、上記(8)式等を用いて推定された磁界Hを差し引き、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界HAiを求める。そして、上記(9)式等を用いて被測定導体MC1に対する三軸磁気センサ11,12,13距離r1,r2,r3が求められている。このため、以下の(11)式を用いて、被測定導体MC1に流れる電流Iが求められる。
Figure JPOXMLDOC01-appb-M000011
 〈電流測定装置の動作〉
 次に、電流測定装置1を用いて被測定導体MC1(往路)に流れる電流Iを測定する際の動作について説明する。まず、電流測定装置1のユーザは、被測定導体MC1に流れる電流Iを測定するために、センサヘッド10を被測定導体MC1に近接配置させる。尚、被測定導体MC1に対するセンサヘッド10の位置及び姿勢は任意である。
 但し、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC1に対してセンサヘッド10を近接配置させる必要がある。尚、被測定導体MC2が移動可能なものである場合には、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC2を被測定導体MC1に対して遠方に配置させる。
 図5は、本発明の第1実施形態による電流測定装置の動作の概要を示すフローチャートである。図6は、図5中のステップS14の処理の詳細を示すフローチャートである。図5に示すフローチャートは、例えば一定周期(例えば、1~数秒程度)で開始される。図5に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13は、被測定導体MC1,MC2に流れる電流Iによって形成される磁界を検出する(ステップS11)。尚、三軸磁気センサ11,12,13による磁界の検出は、例えば1秒間に1000回程度行われる。
 次に、回路部20の演算部25は、三軸磁気センサ11,12,13の検出結果を示す検出データを、メモリ23に記憶させる(ステップS12)。具体的には、演算部25は、三軸磁気センサ11,12,13の検出データに対し、検出時間を示す時間情報、三軸磁気センサ11,12,13のセンサ番号を示す情報、及び軸(第1軸、第2軸、第3軸)の別を示す情報を付加してメモリ23に記憶させる。この処理が行われることによって、メモリ23には、例えば、三軸磁気センサ11,12,13の各軸における1000回分の検出データ(9000個の検出データ)が記憶される。
 図7は、本発明の第1実施形態で行われる処理を説明するための図である。図7に示す通り、メモリ23には、時刻t0から始まって時刻t999(図示省略)までの、1000回分の検出データが記憶される。例えば、時刻t0における三軸磁気センサ11,12,13の各軸(第1軸、第2軸、第3軸)の検出データは、以下の通りである。
  三軸磁気センサ11:「+Da10」,「+Da20」,「+Da30」
  三軸磁気センサ12:「+Db10」,「-Db20」,「-Db30」
  三軸磁気センサ13:「-Dc10」,「-Dc20」,「-Dc30」
 尚、図7では、理解を容易にするために、検出データの値(例えば、「Da10」)を絶対値としており、検出データの符号を明示するようにしている。三軸磁気センサ11,12,13の各軸の符号は、被測定導体MC1,MC2に対する三軸磁気センサ11,12,13の位置関係によって決まる。ここで、被測定導体MC1に流れる電流の測定中は、センサヘッド10が動かない(被測定導体MC1に対するセンサヘッド10の位置や姿勢が変化しない)ものとする。
 ここで、図7に示す例において、時刻t0~t4に得られた検出データと、時刻t5~t9に得られた検出データとを比較すると、符号が反転しているのが分かる。これは、時刻t4と時刻t5との間で、被測定導体MC1に流れる電流の向きが変わったためである。また、三軸磁気センサ11,12,13の各軸の符号の関係は、電流の向きが同じであれば同じであり、電流の向きが変わると反転することが分かる。
 例えば、時刻t0~t4に得られた三軸磁気センサ11,12,13の各軸の符号の関係、及び時刻t5~t9に得られた三軸磁気センサ11,12,13の各軸の符号の関係は、以下の通りである。尚、電流の測定中はセンサヘッド10が動かないため、時刻t0から時刻t999(図示省略)までの1000回分の検出データについて、三軸磁気センサ11,12,13の各軸の符号の関係は、以下の2通りのみである。以下の2通りは電流の向きの反転により生じているため、2通りのどちらを選んでも距離推定は同じ結果となる。
  時刻t0~t4:「+」「+」「+」,「+」「-」「-」,「-」「-」「-」
  時刻t5~t9:「-」「-」「-」,「-」「+」「+」,「+」「+」「+」
 次いで、雑音除去部25aは、検出データから雑音成分を除去する(ステップS13)。具体的には、雑音除去部25aは、メモリ23に記憶された検出データを読み出し、読み出された検出データに対して平均化処理又は二乗和平方根処理を行うことで、検出データに含まれる雑音成分を除去する。ここで、三軸磁気センサ11,12,13からは、三軸の検出結果を示す3種類の検出データがそれぞれ出力される。雑音除去部25aによる雑音成分の除去は、各軸の検出データに対して個別に行われる。
 図7に示す通り、雑音成分が除去された三軸磁気センサ11の各軸(第1軸、第2軸、第3軸)の検出データを、雑音除去検出データ「D11」,「D12」,「D13」とする。また、雑音成分が除去された三軸磁気センサ12の各軸の検出データを、雑音除去検出データ「D21」,「D22」,「D23」とする。同様に、雑音成分が除去された三軸磁気センサ13の各軸の検出データを、雑音除去検出データ「D31」,「D32」,「D33」とする。
 続いて、符号付加部25bは、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する(ステップS14)。ステップS14の処理が開始されると、まず、図6に示す通り、符号付加部25bは、メモリ23に記憶された検出データのうち、絶対値が最大となる検出データを特定する(ステップS21)。
 例えば、符号付加部25bは、メモリ23から読み出した検出データの絶対値をとって昇順又は降順に並べ、昇順に並べた絶対値の最後の値又は降順に並べた絶対値の最初の値を特定する。ここでは、時刻t2で得られた三軸磁気センサ12の第1軸の検出データ「+Db12」が特定されたものとする。
 次に、符号付加部25bは、上記の特定した検出データと同時刻に検出された検出データを抽出する(ステップS22)。図7に示す例では、時刻t2で得られた、三軸磁気センサ11の各軸の検出データ「+Da12」,「+Da22」,「+Da32」、三軸磁気センサ12の各軸の検出データ「+Db12」,「-Db22」,「-Db32」、三軸磁気センサ13の各軸の検出データ「-Dc12」,「-Dc22」,「-Dc32」が抽出される。
 そして、符号付加部25bは、ステップS13の処理で雑音成分が除去された検出データに、ステップS22の処理で抽出された検出データの符号を付加する(ステップS23)。具体的には、符号付加部25bは、図7に示す雑音除去検出データ「D11」,「D12」,「D13」に、抽出された三軸磁気センサ11の各軸の検出データ「+Da12」,「+Da22」,「+Da32」の符号を付加する。
 また、符号付加部25bは、図7に示す雑音除去検出データ「D21」,「D22」,「D23」に、抽出された三軸磁気センサ12の各軸の検出データ「+Db12」,「-Db22」,「-Db32」の符号を付加する。同様に、符号付加部25bは、図7に示す雑音除去検出データ「D31」,「D32」,「D33」に、抽出された三軸磁気センサ13の各軸の検出データ「-Dc12」,「-Dc22」,「-Dc32」の符号を付加する。
 以上の処理が行われることで、雑音成分が除去された検出結果である雑音除去検出データに、抽出された検出データの符号が付加された符号付加検出データが得られる。具体的には、図7に示す通り、符号付加検出データ「+D11」,「+D12」,「+D13」,「+D21」,「-D22」,「-D23」,「-D31」,「-D32」,「-D33」が得られる。
 続いて、距離推定部25cは、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する(ステップS15)。具体的には、まず、距離推定部25cは、図4に示す平面Γ上における三軸磁気センサ11,12,13の位置pi、平面Γ上に射影された磁界hi、前述した(8),(9)式を用いて算出される磁界hを用い、前述した(10)式に示される演算を行って、平面Γ上における被測定導体MC1の位置pを求める。そして、距離推定部25cは、平面Γ上における被測定導体MC1の位置pと、平面Γ上における三軸磁気センサ11,12,13の位置piとから、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する。
 ここで、三軸磁気センサ11の各軸の符号付加検出データは、三軸磁気センサ11の位置に形成される磁界H1を示す。また、三軸磁気センサ12の各軸の符号付加検出データは、三軸磁気センサ12の位置に形成される磁界H2を示す。また、三軸磁気センサ13の各軸の符号付加検出データは、三軸磁気センサ13の位置に形成される磁界H3を示す。上記の磁界hiは、これら符号付加検出データで示される磁界Hi(磁界H1,H2,H3)を平面Γ上に射影することによって得られる。
 以上の処理が終了すると、演算部25の電流算出部25dは、被測定導体MC1(往路)に流れる電流Iを算出する(ステップS16)。具体的には、演算部25の電流算出部25dは、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)、推定された磁界H、及びステップS15で推定された距離r1,r2,r3を用い、前述した(11)式に示される演算を行って、被測定導体MC1に流れる電流Iを算出する。尚、上記の磁界Hは、前述した(8),(9)式を用いて磁界hを算出し、磁界HiのX成分(jHi)を磁界hに追加することで推定することができる。
 より具体的には、電流算出部25dは、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)から推定された磁界Hを差し引いて、(11)式中の磁界HAi(被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界)を求める。そして、電流算出部25dは、ステップS15で推定された距離r1,r2,r3と磁界HAiの大きさとを用いて(11)式に示される演算を行う。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界の影響が排除された上で、被測定導体MC1に流れる電流Iが非接触で測定される。
 以上の通り、本実施形態では、特定時点(時刻t2)で得られた三軸磁気センサ11,12,13の検出データの各々の符号情報に基づいて、雑音成分が除去された検出データ(雑音除去検出データ)に対して符号を付加し、符号が付加された検出データ(符号付加検出データ)を用いて、被測定導体MC1に流れる電流Iを測定するようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
 また、本実施形態では、三軸磁気センサ11,12,13が設けられたセンサヘッド10と、演算部25が設けられた回路部20とが分離されてケーブルCBによって接続されている。これにより、センサヘッド10の取り回しが容易になり、例えば狭い場所へのセンサヘッド10の設置も容易に行うことができるため、より柔軟な配置が可能である。
 尚、被測定導体MC1に流れる電流Iを測定する場合には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3から磁界Hの影響を排除したもの)と、推定された距離r1,r2,r3とを全て用いる必要は必ずしも無い。以下の組み合わせの何れかを用いれば、被測定導体MC1に流れる電流Iを測定することができる。
  ・距離r1と三軸磁気センサ11の検出結果との組み合わせ
  ・距離r2と三軸磁気センサ12の検出結果との組み合わせ
  ・距離r3と三軸磁気センサ13の検出結果との組み合わせ
〔第2実施形態〕
 〈電流測定装置の構成〉
 図8は、本発明の第2実施形態による電流測定装置の要部構成を示すブロック図である。尚、図8では、図2に示した構成に対応するブロックについては、同一の符号を付してある。図8に示す通り、本実施形態による電流測定装置2は、図2に示す電流測定装置1の回路部20に代えて回路部20Aを設けた構成である。回路部20Aは、演算部25に零設定部25eを追加したものである。
 零設定部25eは、三軸磁気センサ11,12,13の検出結果のうち、値が予め設定された雑音閾値(閾値)以下のものについては、値を零に設定する処理を行う。尚、三軸磁気センサ11,12,13の検出結果は、零設定部25eによる処理を行われた後に、演算部25によってメモリ23に記憶される。このような零設定部25eを設けるのは、電流Iの測定精度を高めるためである。
 具体的に、三軸磁気センサ11,12,13の検出結果のうち、値(絶対値)が小さなものは、雑音成分の影響によって符号がランダムに変化する場合がある。このような符号の変化(ランダムな変化)が生ずると、電流Iの測定値もランダムに変化してしまい、図9に示す通り、電流Iの測定値が不連続になって測定精度が低下する。図9は、本発明の第2実施形態で解消しようとしている電流測定値の不連続性の一例を示す図である。このような測定精度の低下を防止するために零設定部25eが設けられている。尚、零設定部25eに設定される雑音閾値は、三軸磁気センサ11,12,13の検出結果に影響を及ぼす雑音成分及び必要となる測定精度等を考慮して設定される。
  〈電流測定装置の動作〉
 図10は、本発明の第2実施形態による電流測定装置の動作の概要を示すフローチャートである。図10に示すフローチャートは、図5に示すフローチャートのステップS11とステップS12との間に、ステップS17を追加したものである。図10に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13は、被測定導体MC1,MC2に流れる電流Iによって形成される磁界を検出する(ステップS11)。
 次に、零設定部25eは、三軸磁気センサ11,12,13の検出結果を示す検出データに対する零設定処理を行う(ステップS17)。具体的には、零設定部25eは、三軸磁気センサ11,12,13の検出結果の値(絶対値)と予め設定された雑音閾値とを比較し、値が雑音閾値以下のものについては、値を零に設定する処理を行う。零設定部25eによる零設定処理は、各軸の検出データに対して個別に行われる。
 続いて、回路部20の演算部25は、上記の零設定処理が行われた検出データを、メモリ23に記憶させる(ステップS12)。尚、図10におけるステップS12以後の処理は、図5に示すステップS12以降の処理と同様の処理であるため、詳細な説明を省略する。
 以上の通り、本実施形態では、零設定部25eによって、三軸磁気センサ11,12,13の検出結果を示す検出データに対して零設定処理を行って、値(絶対値)が予め設定された雑音閾値以下のものについては値を零に設定するようにしている。これにより、検出データの符号がランダムに変化しなくなり、電流Iの測定値が不連続になることを防止することができるから、電流Iの測定精度を高めることができる。
 また、本実施形態においても、雑音成分が除去された検出データ(雑音除去検出データ)に対して符号を付加し、符号が付加された検出データ(符号付加検出データ)を用いて、被測定導体MC1に流れる電流Iを測定するようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
 以上、本発明の実施形態による電流測定装置について説明したが、本発明は上記実施形態に制限されることなく本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、センサヘッド10に3つの三軸磁気センサ11,12,13が設けられている例について説明した。しかしながら、センサヘッド10に設けられる三軸磁気センサは、2つであっても良く、4つ以上であっても良い。
 また、上述した実施形態では、三軸磁気センサ11,12,13の検出結果を用いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離の推定、及び、被測定導体MC1に流れる電流Iの測定を行う例について説明した。しかしながら、三軸磁気センサ11,12,13以外に、三軸磁気センサ11,12,13に対する相対的な位置関係が既知である電流測定用の専用の磁気センサを備える構成にしても良い。
 この構成の場合には、例えば、三軸磁気センサの検出結果を用いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離を推定し、被測定導体MC1に対する電流測定用の磁気センサの距離も推定する。そして、推定された距離(被測定導体MC1に対する電流測定用の磁気センサの距離)と電流測定用の磁気センサの検出結果とを用いて被測定導体MC1に流れる電流Iの測定を行うようにしても良い。
 また、上述した実施形態では、三軸磁気センサ11,12,13による磁界の検出が同時に(同じタイミングで)行われる場合を例に挙げて説明したが、異なるタイミングで行われても良い。磁界の検出が異なるタイミングで行われる場合には、検出時間を示す時間情報に代えて、検出順番を示す番号情報を検出データに付加してメモリ23に記憶させれば良い。このとき、測定対象が交流の場合には、蓄積データ数を十分に大きく(少なくとも測定対象の交流の半周期分以上)とったうえで、検出順番を示す番号情報を検出データに付加してメモリ23に記憶させることが好ましい。
 また、上記実施形態では、符号付加部25bが、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が最大となる検出結果が得られた時点を特定時点とする例について説明した。しかしながら、例えば、雑音成分の大きさに応じた閾値を設定しておき、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が閾値よりも大きな検出結果が得られる任意の時点を特定時点としても良い。尚、上記の雑音成分の大きさに応じた閾値は、例えば電流による磁界の影響を受けない状態で、三軸磁気センサ11,12,13から出力される検出データに重畳されている雑音成分の大きさ(振幅や実効値)を超える値に設定される。
 また、上述した第2実施形態において、零設定部25eに設定される雑音閾値は、三軸磁気センサ11,12,13の検出結果に影響を及ぼす雑音成分及び必要となる測定精度等を考慮して設定されるものとして説明した。しかしながら、雑音閾値は、符号付加部25bで設定される閾値と同じ指針で設定されていても良い。つまり、雑音閾値は、例えば電流による磁界の影響を受けない状態で、三軸磁気センサ11,12,13から出力される検出データに重畳されている雑音成分の大きさ(振幅や実効値)を超える値に設定されていても良い。
 また、上述した実施形態では、三軸磁気センサ11,12が第1軸方向(x軸方向)に間隔d[m]だけ離間し、三軸磁気センサ11,13が第3軸方向(z軸方向)に間隔d[m]だけ離間している例について説明した。しかしながら、三軸磁気センサ11,12,13は、感磁方向及び相対的な位置が予め規定された関係となるように配置されていれば良い。
 なお、本実施形態で説明した回路部20,20Aの一部または全部の機能を実現するためのプログラムを、コンピュータ読取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、本実施形態の上述した種々の処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 本明細書において「前、後ろ、上、下、右、左、垂直、水平、縦、横、行および列」などの方向を示す言葉は、本発明の装置におけるこれらの方向について言及する。従って、本発明の明細書におけるこれらの言葉は、本発明の装置において相対的に解釈されるべきである。
 「構成される」という言葉は、本発明の機能を実行するために構成され、または装置の構成、要素、部分を示すために使われる。
 さらに、クレームにおいて「ミーンズ・プラス・ファンクション」として表現されている言葉は、本発明に含まれる機能を実行するために利用することができるあらゆる構造を含むべきものである。
 「ユニット」という言葉は、構成要素、ユニット、ハードウェアや所望の機能を実行するためにプログラミングされたソフトウェアの一部分を示すために用いられる。ハードウェアの典型例はデバイスや回路であるが、これらに限られない。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 1,2  電流測定装置
 10   センサヘッド
 11   三軸磁気センサ
 12   三軸磁気センサ
 13   三軸磁気センサ
 20   回路部
 23   メモリ
 25a  雑音除去部
 25b  符号付加部
 25c  距離推定部
 25d  電流算出部
 25e  零設定部
 I    電流
 MC1  被測定導体
 MC2  被測定導体

Claims (20)

  1.  被測定導体に流れる電流を測定する電流測定装置であって、
     感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、
     前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部と、
     特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する符号付加部と、
     前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める電流演算部と、
     を備える電流測定装置。
  2.  予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積する蓄積部を更に備え、
     前記符号付加部は、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する、
     請求項1記載の電流測定装置。
  3.  前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する零設定部を更に備える、請求項1又は請求項2記載の電流測定装置。
  4.  前記雑音除去部は、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する、請求項1から請求項3の何れか一項に記載の電流測定装置。
  5.  前記電流演算部は、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定する距離推定部と、
     前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める電流算出部と、
     を備える請求項1から請求項4の何れか一項に記載の電流測定装置。
  6.  前記複数の三軸磁気センサを備えるセンサヘッドと、
     少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部と、
     を備える請求項1か請求項5の何れか一項に記載の電流測定装置。
  7.  前記センサヘッドには、第1の三軸磁気センサと、第2の三軸磁気センサと、第3の三軸磁気センサとが設けられており、
     前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサは、互いに直交する三軸に感磁方向を有する磁気センサであり、
     前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサは、感磁方向及び相対的な位置が予め規定された関係となるように配置されている、
     請求項6記載の電流測定装置。
  8.  感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、雑音除去部と、符号付加部と、電流演算部とを備え、被測定導体に流れる電流を測定する電流測定装置によって実行される電流測定方法であって、
     前記雑音除去部によって、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去し、
     前記符号付加部によって、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加し、
     前記電流演算部によって、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める、
     電流測定方法。
  9.  前記電流測定装置は、蓄積部を更に備え、
     前記蓄積部によって、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積し、
     前記符号付加部によって、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する、
     請求項8記載の電流測定方法。
  10.  前記電流測定装置は、零設定部を更に備え、
     前記零設定部によって、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する、
     請求項8又は請求項9記載の電流測定方法。
  11.  前記雑音除去部によって、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する、
     請求項8から請求項10の何れか一項に記載の電流測定方法。
  12.  前記電流演算部は、距離推定部と、電流算出部とを備え、
     前記距離推定部によって、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定し、
     前記電流算出部によって、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める、
     請求項8から請求項11の何れか一項に記載の電流測定方法。
  13.  前記電流測定装置は、
     前記複数の三軸磁気センサを備えるセンサヘッドと、
     少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部と、
     を備える請求項8か請求項12の何れか一項に記載の電流測定方法。
  14.  前記センサヘッドには、第1の三軸磁気センサと、第2の三軸磁気センサと、第3の三軸磁気センサとが設けられており、
     前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサは、互いに直交する三軸に感磁方向を有する磁気センサであり、
     前記第1の三軸磁気センサ、前記第2の三軸磁気センサ、および前記第3の三軸磁気センサは、感磁方向及び相対的な位置が予め規定された関係となるように配置されている、
     請求項13記載の電流測定方法。
  15.  感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、雑音除去部と、符号付加部と、電流演算部とを備え、被測定導体に流れる電流を測定する電流測定装置に実行させる一以上のプログラムを記録したコンピュータ読み取り可能な非一時的記録媒体であって、
     前記一以上のプログラムは、
     前記雑音除去部に、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去させ、
     前記符号付加部に、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加させ、
     前記電流演算部に、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求めさせる、
     コンピュータ読み取り可能な非一時的記録媒体。
  16.  前記電流測定装置は、蓄積部を更に備え、
     前記一以上のプログラムは、
     前記蓄積部に、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積させ、
     前記符号付加部に、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加させる、
     請求項15記載のコンピュータ読み取り可能な非一時的記録媒体。
  17.  前記電流測定装置は、零設定部を更に備え、
     前記一以上のプログラムは、
     前記零設定部に、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定させる、
     請求項15又は請求項16記載のコンピュータ読み取り可能な非一時的記録媒体。
  18.  前記一以上のプログラムは、
     前記雑音除去部に、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去させる、
     請求項15から請求項17の何れか一項に記載のコンピュータ読み取り可能な非一時的記録媒体。
  19.  前記電流演算部は、距離推定部と、電流算出部とを備え、
     前記一以上のプログラムは、
     前記距離推定部に、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定させ、
     前記電流算出部に、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求めさせる、
     請求項15から請求項18の何れか一項に記載のコンピュータ読み取り可能な非一時的記録媒体。
  20.  前記電流測定装置は、
     前記複数の三軸磁気センサを備えるセンサヘッドと、
     少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部と、
     を備える請求項15か請求項19の何れか一項に記載のコンピュータ読み取り可能な非一時的記録媒体。
PCT/JP2020/031937 2019-08-27 2020-08-25 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体 WO2021039755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/637,895 US11927647B2 (en) 2019-08-27 2020-08-25 Current measurement device, current measurement method, and non-transitory computer readable storage medium
EP20857332.9A EP4024055A4 (en) 2019-08-27 2020-08-25 CURRENT MEASUREMENT DEVICE, CURRENT MEASUREMENT METHOD AND NON-TRANSIENT COMPUTER-READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154561A JP7040503B2 (ja) 2019-08-27 2019-08-27 電流測定装置
JP2019-154561 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039755A1 true WO2021039755A1 (ja) 2021-03-04

Family

ID=74678167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031937 WO2021039755A1 (ja) 2019-08-27 2020-08-25 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Country Status (4)

Country Link
US (1) US11927647B2 (ja)
EP (1) EP4024055A4 (ja)
JP (1) JP7040503B2 (ja)
WO (1) WO2021039755A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220064445A (ko) * 2020-11-11 2022-05-19 현대모비스 주식회사 전동식 조향시스템의 제어 장치 및 방법
JP2022133847A (ja) 2021-03-02 2022-09-14 株式会社東芝 デジタルアイソレータ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395475A (ja) * 1989-08-16 1991-04-19 Philips Gloeilampenfab:Nv 超電導量子干渉デバイス内の電流分布雑音を抑制する方法
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2005055300A (ja) 2003-08-05 2005-03-03 Hioki Ee Corp 電流センサ
JP2005217341A (ja) * 2004-02-02 2005-08-11 Kri Inc 環境磁気雑音遮蔽装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
JP2011164019A (ja) 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
WO2011108169A1 (ja) * 2010-03-03 2011-09-09 株式会社安川電機 インバータ装置及びその制御方法
JP2018007821A (ja) * 2016-07-13 2018-01-18 株式会社アドバンテスト 磁場測定装置及び磁場測定方法
WO2018199067A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2018199068A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095475B2 (ja) 1991-09-27 2000-10-03 株式会社東芝 マスクパターンの検査方法
JP4353465B2 (ja) * 2003-08-22 2009-10-28 独立行政法人交通安全環境研究所 鉄道車両の磁界測定方法および磁界測定装置
EP2811314B1 (de) * 2013-06-06 2016-09-07 Christian-Albrechts-Universität zu Kiel Magnetfeldmessvorrichtung mit Vibrationskompensation
ITTO20130653A1 (it) * 2013-07-31 2015-02-01 Milano Politecnico Sensore magnetico includente un trasduttore basato sulla forza di lorentz pilotato ad una frequenza diversa dalla frequenza di risonanza, e metodo di pilotaggio di un trasduttore basato sulla forza di lorentz
KR101552922B1 (ko) * 2013-08-08 2015-09-15 매그나칩 반도체 유한회사 자기 센서 테스트 장치 및 방법
JP6403086B2 (ja) * 2014-01-21 2018-10-10 日立金属株式会社 電流検出構造
EP3221712A4 (en) * 2014-11-21 2018-08-29 The Regents of The University of California Non-contact electricity meters
JP7114943B2 (ja) 2018-03-06 2022-08-09 横河電機株式会社 電流測定装置
JP7155541B2 (ja) 2018-03-01 2022-10-19 横河電機株式会社 電流測定装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395475A (ja) * 1989-08-16 1991-04-19 Philips Gloeilampenfab:Nv 超電導量子干渉デバイス内の電流分布雑音を抑制する方法
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2005055300A (ja) 2003-08-05 2005-03-03 Hioki Ee Corp 電流センサ
JP2005217341A (ja) * 2004-02-02 2005-08-11 Kri Inc 環境磁気雑音遮蔽装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
JP2011164019A (ja) 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
WO2011108169A1 (ja) * 2010-03-03 2011-09-09 株式会社安川電機 インバータ装置及びその制御方法
JP2018007821A (ja) * 2016-07-13 2018-01-18 株式会社アドバンテスト 磁場測定装置及び磁場測定方法
WO2018199067A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2018199068A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024055A4

Also Published As

Publication number Publication date
US11927647B2 (en) 2024-03-12
JP7040503B2 (ja) 2022-03-23
EP4024055A1 (en) 2022-07-06
US20220283247A1 (en) 2022-09-08
JP2021032765A (ja) 2021-03-01
EP4024055A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
KR102412180B1 (ko) 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체
US10712369B2 (en) Current measurement using magnetic sensors and contour intervals
WO2021039755A1 (ja) 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
CN110645882B (zh) 稳健对抗干扰场的位置传感器系统和方法
KR20180054469A (ko) 절대 각위치 측정
JP7430989B2 (ja) 電流測定装置
CN103502777A (zh) 用于半桥可变差动变压器位置传感系统的设备和方法
JP7155541B2 (ja) 電流測定装置
US11448527B2 (en) Magnetic encoder, method, system for detecting absolute electrical angle, and readable storage medium
JP2007155388A (ja) 移動体位置等推定検出方法、装置及び移動体位置等推定検出方法のプログラム
US20230041763A1 (en) Angle sensor calibration method for safety measure without full rotation
JP7114943B2 (ja) 電流測定装置
JP2018115929A (ja) 電流センサの信号補正方法、及び電流センサ
JP7001079B2 (ja) 電流測定装置
US20170307663A1 (en) Current detection method, current detection device, signal correction method for current detection device, and signal correction device for current detection device
JP2007155399A (ja) 電流センサ、及び、それを有する電流値算出システム
JP2004045118A (ja) 架空配電線の事故点探査方法
JP2611642B2 (ja) 座標位置検出装置
CN115308476A (zh) 不对称负载导致潮流反向的检测方法、装置及计算机设备
CN112033274A (zh) 用于检测杂散磁场的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857332

Country of ref document: EP

Effective date: 20220328