JP2021032765A - 電流測定装置 - Google Patents

電流測定装置 Download PDF

Info

Publication number
JP2021032765A
JP2021032765A JP2019154561A JP2019154561A JP2021032765A JP 2021032765 A JP2021032765 A JP 2021032765A JP 2019154561 A JP2019154561 A JP 2019154561A JP 2019154561 A JP2019154561 A JP 2019154561A JP 2021032765 A JP2021032765 A JP 2021032765A
Authority
JP
Japan
Prior art keywords
current
measured
magnetic sensors
conductor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154561A
Other languages
English (en)
Other versions
JP7040503B2 (ja
Inventor
一馬 竹中
Kazuma Takenaka
一馬 竹中
美菜子 寺尾
Minako Terao
美菜子 寺尾
晃太朗 小河
Kotaro Ogawa
晃太朗 小河
紗希 小箱
Saki KOBAKO
紗希 小箱
直記 野口
Naoki Noguchi
直記 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2019154561A priority Critical patent/JP7040503B2/ja
Priority to EP20857332.9A priority patent/EP4024055A4/en
Priority to US17/637,895 priority patent/US11927647B2/en
Priority to PCT/JP2020/031937 priority patent/WO2021039755A1/ja
Publication of JP2021032765A publication Critical patent/JP2021032765A/ja
Application granted granted Critical
Publication of JP7040503B2 publication Critical patent/JP7040503B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0283Electrodynamic magnetometers in which a current or voltage is generated due to relative movement of conductor and magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる電流測定装置を提供する。【解決手段】電流測定装置1は、被測定導体に流れる電流を測定する電流測定装置であって、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ11、12、13と、複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部25aと、特定時点で得られた複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、雑音成分が除去された検出結果に対して符号を付加する符号付加部25bと、符号付加部25bによって符号が付加された検出結果を用いて、被測定導体に流れる電流を求める電流演算部25dと、を備える。【選択図】図2

Description

本発明は、電流測定装置に関する。
従来から、被測定導体に流れる電流を非接触で測定することが可能な様々な電流測定装置が開発されている。このような電流測定装置の代表的なものとしては、例えば、CT(Current Transformer:変流器)方式の電流測定装置、ゼロフラックス方式の電流測定装置、ロゴスキー方式の電流測定装置、ホール素子方式の電流測定装置等が挙げられる。
例えば、CT方式及びゼロフラックス方式の電流測定装置は、巻線が巻回された磁気コアを被測定導体の周囲に設け、被測定導体(一次側)に流れる電流によって磁気コアに生ずる磁束を打ち消すように巻線(二次側)に流れる電流を検出することで、被測定導体に流れる電流を測定するものである。また、ロゴスキー方式の電流測定装置は、被測定導体に流れる交流電流によって生ずる磁界が、被測定導体の周囲に設けられたロゴスキーコイル(空芯コイル)と鎖交することで誘起される電圧を検出することにより、被測定導体に流れる電流を測定するものである。
以下の特許文献1には、ゼロフラックス方式の電流測定装置の一例が開示されている。また、以下の特許文献2には、複数の磁気センサを用いた電流測定装置が開示されている。具体的に、以下の特許文献2に開示された電流測定装置は、被測定導体に対してそれぞれ異なる距離をとって2つの磁気センサを配置し、これら磁気センサの出力から磁気センサと被測定導体との距離を求め、求めた距離を用いて被測定導体に流れる電流の大きさを求めている。
特開2005−55300号公報 特開2011−164019号公報
ところで、磁気センサを用いる電流測定装置では、電流の測定精度を向上させるために、磁気センサの検出結果に含まれる雑音を除去する処理が行われることがある。雑音を除去する処理としては、例えば、磁気センサの検出結果の絶対値を平均化する処理(平均化処理)、又は磁気センサの検出結果の二乗和平方根を求める処理(二乗和平方根処理)等が挙げられる。
このような雑音除去処理が行われると、磁気センサの検出結果の符号は必ず正になるから、磁界の向きを示す情報が失われる場合がある。磁界の向きを示す情報が失われてしまうと、誤った値が測定されてしまったり、場合によっては電流の測定自体ができなくなってしまったりすることが考えられる。
本発明は上記事情に鑑みてなされたものであり、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる電流測定装置を提供することを目的とする。
上記課題を解決するために、本発明の一態様による電流測定装置は、被測定導体(MC1、MC2)に流れる電流(I)を測定する電流測定装置(1、2)であって、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサ(11、12、13)と、前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(25a)と、特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する符号付加部(25b)と、前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める電流演算部(25c、25d)と、を備える。
また、本発明の一態様による電流測定装置は、予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積する蓄積部(23)を更に備え、前記符号付加部が、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する。
また、本発明の一態様による電流測定装置は、前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する零設定部(25e)を備える。
また、本発明の一態様による電流測定装置は、前記雑音除去部が、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する。
また、本発明の一態様による電流測定装置は、前記電流演算部が、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定する距離推定部(25c)と、前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める電流算出部(25d)と、を備える。
また、本発明の一態様による電流測定装置は、前記複数の三軸磁気センサを備えるセンサヘッド(10)と、少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部(20)と、を備える。
本発明によれば、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができるという効果がある。
本発明の第1実施形態による電流測定装置を模式的に示す図である。 本発明の第1実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の第1実施形態による電流測定装置における電流の測定原理を説明するための図である。 被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。 本発明の第1実施形態による電流測定装置の動作の概要を示すフローチャートである。 図5中のステップS14の処理の詳細を示すフローチャートである。 本発明の第1実施形態で行われる処理を説明するための図である。 本発明の第2実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の第2実施形態で解消しようとしている電流測定値の不連続性の一例を示す図である。 本発明の第2実施形態による電流測定装置の動作の概要を示すフローチャートである。
以下、図面を参照して本発明の実施形態による電流測定装置について詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の実施形態の詳細について説明する。
〔概要〕
本発明の実施形態は、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することを可能とするものである。具体的には、電流測定時に微小空間への設置が可能であり、直流電流及び数百[Hz]程度までの交流電流を非接触で精度良く測定することを可能とするものである。また、被測定導体に対する設置位置や設置方向を柔軟に行えるようにするものでもある。
近年、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)の開発工程において、SiC(シリコンカーバイド)等のパワー半導体のピンに流れる電流や、組み立て後のバスバーに流れる電流を測定したいという要求がある。パワー半導体はピンのピッチが狭いものが多く、バスバーは周辺のスペースが限られている場所に設置されることがあり、このようなパワー半導体やバスバー等に対して、電流測定時の設置を柔軟に行うことが可能な電流測定装置が望まれている。また、ハイブリッド自動車や電気自動車では、例えばバッテリから供給される直流電流やモータに流れる交流電流が取り扱われるため、小型で直流電流及び交流電流を非接触で測定可能な電流測定装置が望まれている。
しかしながら、上述した特許文献1に開示されたゼロフラックス方式の電流測定装置は、ある程度の大きさ(例えば、数十[cm]程度)を有する磁気コアを被測定導体の周囲に設ける必要があることから、狭い場所への設置が困難である。また、上述したロゴスキー方式の電流測定装置は、ロゴスキーコイルに誘起される電圧を検出していることから、原理的に直流電流の測定を行うことはできない。また低周波領域では、出力信号が微弱であるとともに位相がずれるため、測定精度が悪い。また、上述した特許文献2に開示された電流測定装置は、磁気センサの感磁方向を被測定導体の円周方向に一致させる必要があることから、磁気センサの配置が制限されてしまい柔軟な配置が困難である。
本発明の実施形態では、感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部とを設けている。そして、特定時点で得られた複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、雑音成分が除去された検出結果に対して符号を付加し、符号が付加された検出結果を用いて、被測定導体に流れる電流を求めるようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
〔第1実施形態〕
〈電流測定装置の構成〉
図1は、本発明の第1実施形態による電流測定装置を模式的に示す図である。図1に示す通り、本実施形態の電流測定装置1は、ケーブルCBによって接続されたセンサヘッド10及び回路部20を備えており、被測定導体MC1,MC2の何れか一方に流れる電流Iを非接触で測定する。尚、本実施形態では、被測定導体MC1に流れる電流Iを測定する場合を例に挙げて説明する。
尚、被測定導体MC1,MC2は、例えばパワー半導体のピンやバスバー等の任意の導体である。以下では、説明を簡単にするために、被測定導体MC1,MC2は、円柱形状の導体であるとする。被測定導体MC1,MC2に流れる電流Iは、その流れの方向が互いに逆である。以下、被測定導体MC1を流れる電流の電流経路を「往路」といい、被測定導体MC2を流れる電流の電流経路を「復路」ということがある。
センサヘッド10は、被測定導体MC1に流れる電流Iを非接触で測定するために、被測定導体MC1に対して任意の位置に任意の姿勢で配置される部材である。このセンサヘッド10は、被測定導体MC1,MC2に流れる電流Iによって生成される磁界(例えば、図1中に示す磁界H1,H2,H3)を遮らない材質(例えば、樹脂等)によって形成されている。このセンサヘッド10は、いわば被測定導体MC1に流れる電流Iを非接触で測定するためのプローブとして用いられるものである。
センサヘッド10には、3つの三軸磁気センサ11,12,13が設けられている。三軸磁気センサ11,12,13は、互いに直交する三軸に感磁方向を有する磁気センサである。三軸磁気センサ11,12,13は、感磁方向及び相対的な位置が予め規定された関係となるように配置されている。例えば、三軸磁気センサ11,12,13の第1軸が互いに平行になり、三軸磁気センサ11,12,13の第2軸が互いに平行になり、且つ三軸磁気センサ11,12,13の第3軸が互いに平行になるように、所定の方向に所定の距離だけ離間するように配置されている。尚、以下では、三軸磁気センサ11,12が、第1軸方向に所定の距離だけ離間するように配列され、三軸磁気センサ11,13が、第3軸方向に所定の距離だけ離間するように配列されているとする。
三軸磁気センサ11,12,13の検出結果を示す信号は、アナログ信号及びディジタル信号の何れでも良いが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、センサヘッド10と回路部20とを接続するケーブルCBの本数を少なくすることができる。例えば、三軸磁気センサ11,12,13の検出結果を示す信号がアナログ信号である場合には、三軸磁気センサ11,12,13の各々について三軸の検出結果を出力する3本のケーブルCBがそれぞれ必要になるため、計9本のケーブルCBが必要になるが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、1本のケーブルCBのみで良い。ケーブルCBの本数が少ないと、ケーブルCBの屈曲性が向上するため、例えばセンサヘッド10を狭い空間内に配置する際にハンドリングが容易になる。
回路部20は、センサヘッド10から出力される検出結果(三軸磁気センサ11,12,13の検出結果)に基づいて、被測定導体MC1に流れる電流Iを測定する。回路部20は、電流Iの測定結果を表示し、或いは外部に出力する。回路部20は、例えば、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、マイクロコントローラ等によって実現される。センサヘッド10と回路部20とを接続するケーブルCBとしては任意のものを用いることができるが、可撓性を有し、取り回しが用意であり、且つ断線が生じ難いものが望ましい。
図2は、本発明の第1実施形態による電流測定装置の要部構成を示すブロック図である。尚、図2では、図1に示した構成に対応するブロックについては、同一の符号を付してある。以下では、主に、図2を参照して回路部20の内部構成の詳細について説明する。図2に示す通り、回路部20は、操作部21、表示部22、メモリ23(蓄積部)、及び演算部25を備える。
操作部21は、例えば電源ボタン、設定ボタン等の各種ボタンを備えており、各種ボタンに対する操作指示を示す信号を演算部25に出力する。表示部22は、例えば7セグメントLED(Light Emitting Diode:発光ダイオード)表示器、液晶表示装置等の表示装置を備えており、演算部25から出力される各種情報(例えば、被測定導体MC1に流れる電流Iの測定結果を示す情報)を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良く、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。
メモリ23は、例えば揮発性又は不揮発性の半導体メモリを備えており、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果、演算部25の演算結果(被測定導体MC1に流れる電流Iの測定結果)等を記憶する。尚、メモリ23は、上記の半導体メモリとともに(或いは、上記の半導体メモリに代えて)、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えていても良い。
演算部25は、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果をメモリ23に記憶させる。具体的に、演算部25は、三軸磁気センサ11,12,13の検出結果に対し、検出時間を示す時間情報、三軸磁気センサ11,12,13のセンサ番号を示す情報、及び軸(第1軸、第2軸、第3軸)の別を示す情報を付加してメモリ23に記憶させる。
また、演算部25は、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果を読み出して、被測定導体MC1に流れる電流Iを求める演算を行う。図2に示す通り、演算部25は、雑音除去部25a、符号付加部25b、距離推定部25c(電流演算部)、及び電流算出部25d(電流演算部)を備える。
雑音除去部25aは、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分を除去する。具体的に、雑音除去部25aは、予め規定された一定の期間(例えば、1〜数秒程度)毎に得られる、三軸磁気センサ11,12,13の各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分をそれぞれ除去する。
上記の平均化処理は、三軸磁気センサ11,12,13の各々から得られる複数の検出結果の絶対値の平均値を求める処理である。平均化処理は、単純平均処理であっても良く、移動平均処理や加重平均処理であっても良い。尚、三軸磁気センサ11,12,13からは三軸の検出結果がそれぞれ出力されるが、雑音除去部25aによる雑音成分の除去は、各軸の検出結果に対して個別に行われる。このような雑音除去を行うのは、三軸磁気センサ11,12,13のSN比(信号対雑音比)を向上させて、電流Iの測定精度を高めるためである。
符号付加部25bは、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する。具体的に、符号付加部25bは、三軸磁気センサ11,12,13の検出結果のうち、特定時点で得られた三軸磁気センサ11,12,13の検出結果の各々の符号情報に基づいて、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する。雑音除去部25aで雑音成分が除去された検出結果は、磁界の向きを示す情報が失われていることがある。失われた磁界の向きを示す情報を復元するために、符号付加部25bで符号を付加する処理を行うようにしている。
上記の特定時点は、電流の測定中において、センサヘッド10が動いていないとみなせる間の任意の時点であって良い。但し、三軸磁気センサ11,12,13の検出結果の値(絶対値)が小さい場合には、雑音の影響を受けて、誤った符号が付加される虞が考えられる。このため、例えば、センサヘッド10が動いていないとみなせる間の予め規定された期間(例えば、1〜数秒程度の間)に、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が最大となる検出結果が得られた時点を上記の特定時点とすることが望ましい。尚、符号付加部25bで行われる処理の詳細については後述する。
距離推定部25cは、三軸磁気センサ11,12,13の検出結果と三軸磁気センサ11,12,13の位置関係とを用いて、電流測定装置1の予め規定された基準位置と被測定導体MC1との距離を示す距離情報を算出する。尚、電流測定装置1の基準位置としては任意の位置であって良いが、例えば、センサヘッド10における三軸磁気センサ11,12,13の取り付け位置とすることができる。このような距離の推定を行うのは、被測定導体MC1に流れる電流Iを測定するためである。尚、距離推定部25cで行われる処理の詳細については後述する。
電流算出部25dは、距離推定部25cによって算出された距離情報を用いて、被測定導体MC1に流れる電流Iを求める。具体的に、電流算出部25dは、推定された三軸磁気センサ11の距離と、三軸磁気センサ11の検出結果とに基づいて、アンペールの法則により被測定導体MC1に流れる電流Iを求める。尚、電流算出部25dで行われる処理の詳細については後述する。
ここで、図1,図2に示す通り、回路部20は、センサヘッド10と分離されており、ケーブルCBを介してセンサヘッド10に接続されている。このような構成にすることで、磁界検出機能(三軸磁気センサ11,12,13)と演算機能(演算部25)とを分離することができ、演算部25がセンサヘッド10内に設けられている場合に生ずる諸問題(例えば、温度特性、絶縁耐性)等を回避することができ、これにより電流測定装置1の用途を拡げることができる。
〈電流の測定原理〉
次に、電流測定装置1による電流の測定原理について説明する。図3は、本発明の第1実施形態による電流測定装置における電流の測定原理を説明するための図である。まず、図3に示す通り、センサヘッド10のみに係る座標系(xyz直交座標系)と、被測定導体MC1,MC2に係る座標系(XYZ直交座標系)との2つの座標系を設定する。
xyz直交座標系は、センサヘッド10の位置及び姿勢に応じて規定される座標系である。このxyz直交座標系は、三軸磁気センサ11の位置に原点が設定されており、三軸磁気センサ11,12,13の第1軸方向(三軸磁気センサ11,12の配列方向)にx軸が設定されており、三軸磁気センサ11,12,13の第2軸方向にy軸が設定されており、三軸磁気センサ11,12,13の第3軸方向(三軸磁気センサ11,13の配列方向)にz軸が設定されている。
ここで、三軸磁気センサ11,12,13の位置をPi(i=1,2,3)として表す。尚、Piはベクトルである。つまり、三軸磁気センサ11の位置をP1で表し、三軸磁気センサ12の位置をP2で表し、三軸磁気センサ13の位置をP3で表すとする。例えば、図3に示す通り、三軸磁気センサ11,12のx方向の間隔、及び三軸磁気センサ11,13のz方向の間隔がd[m]であるとすると、三軸磁気センサ11,12,13の位置は以下の通りに表される。
三軸磁気センサ11の位置:P1=(0,0,0)
三軸磁気センサ12の位置:P2=(d,0,0)
三軸磁気センサ13の位置:P3=(0,0,d)
XYZ座標系は、被測定導体MC1,MC2に応じて規定される座標系である。このXYZ直交座標系は、被測定導体MC1,MC2の長手方向(電流Iの方向)にX軸が設定されており、被測定導体MC1,MC2の並び方向にY軸が設定されている。Z軸は、X軸及びY軸に直交する方向に設定される。尚、XYZ直交座標系の原点位置は、任意の位置に設定可能である。
図3に示す通り、被測定導体MC1に対する三軸磁気センサ11の距離をr1とし、被測定導体MC1に対する三軸磁気センサ12の距離をr2とし、被測定導体MC1に対する三軸磁気センサ13の距離をr3とする、尚、距離r1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分の長さであり、距離r2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分の長さであり、距離r3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分の長さである。尚、距離r1,r2,r3は、検出できない点に注意されたい。
また、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界をHAi(i=1,2,3)として表す。尚、HAiはベクトルである。つまり、被測定導体MC1に流れる電流Iによって三軸磁気センサ11の位置に形成される磁界をHA1として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ12の位置に形成される磁界をHA2として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ13の位置に形成される磁界をHA3として表す。
また、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとすると、被測定導体MC2に流れる電流Iによって形成される磁界は、三軸磁気センサ11,12,13に近似的に均一に作用するとみなすことができる。この磁界をHとして表す。尚、Hはベクトルである。すると、被測定導体MC1,MC2に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界Hi(i=1,2,3)は、以下の(1)式によって表される。尚、Hiはベクトルである。
次に、センサヘッド10のみに係るxyz直交座標系と、被測定導体MC1,MC2に係るXYZ直交座標系とを関連付けるために、電流Iの方向(図3中のX軸の方向)を求める。前述の通り、被測定導体MC2に流れる電流Iによって形成される磁界Hを均一と近似しているため、三軸磁気センサ11,12,13の検出結果の差分をとると磁界Hをキャンセルすることができる。また、電流Iの方向は、磁界の方向と直交するため、三軸磁気センサ11,12,13の検出結果の差分の外積の方向は、電流Iの方向と一致する。このため、電流Iの方向(図3中のX軸の方向)の単位ベクトルjは、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)を用いて、以下の(2)式で表される。
次いで、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表すために、図4に示す通り、電流Iに対して垂直な平面Γを考える。つまり、上記(2)式を用いて求められる単位ベクトルjに垂直な平面Γを考える。尚、平面Γは、YZ平面に平行な平面であるということもできる。図4は、被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。図3中の方向D1は、被測定導体MC1,MC2の長手方向に沿う方向(被測定導体MC1に流れる電流Iの方向とは反対の方向、被測定導体MC2に流れる電流Iの方向に沿う方向)である。尚、図4においては、理解を容易にするためにセンサヘッド10の図示を省略して、被測定導体MC1,MC2及び三軸磁気センサ11,12,13を図示している。
図4に示す平面Γに対して、被測定導体MC1,MC2、三軸磁気センサ11,12,13、及び三軸磁気センサ11,12,13の位置に形成される磁界を射影することにより、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表す。図4に示す通り、紙面に対して垂直なX方向(±X方向)に流れる電流Iによって、三軸磁気センサ11,12,13の位置に形成される磁界は、X軸に直交するものになる。従って、電流Iが流れる方向と直交する平面Γに、三軸磁気センサ11,12,13の位置に形成される磁界を、その大きさを変えることなく射影することができる。
ここで、平面Γ上における三軸磁気センサ11,12,13の位置をpi(i=1,2,3)として表し、平面Γ上における被測定導体MC1の位置をpとして表す。尚、pi,pは、2次元のベクトルである。また、平面Γ上に射影された磁界hi(i=1,2,3)を、以下の(3)式で表す。以下の(3)式中のhAi,hはそれぞれ、上記(1)式中のHAi,Hを平面Γに射影したものである。尚、hiは2次元のベクトルである。
続いて、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定する。まず、図4に示す通り、平面Γ上において、磁界hA1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分に直交する。また、平面Γ上において、磁界hA2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分に直交する。同様に、平面Γ上において、磁界hA3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分に直交する。従って、これら線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるため、以下の(4)式が成り立つ。
次に、上記線分の長さと、磁界hA1,hA2,hA3の大きさとの関係に着目すると、アンペールの法則から以下の(5)式が成り立つ。
ここで、前述の通り、三軸磁気センサ11,12,13から被測定導体MC1に垂直に下ろした線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるが、各々の線分を示すベクトルを平面Γ内で90°回転させてから磁界hA1,hA2,hA3との内積をとると、以下の(6)式が成り立つ。
但し、上記(6)式中のRは、二次元座標平面内における90°回転行列であり、以下の(7)式で示される。
平面Γに射影した磁界hは、上記(4),(6)式を用いて得られる以下の(8)式から求められる。
但し、上記(8)式中のp,h,c,cは、以下の(9)式に示される通りである。
ここで、被測定導体MC2に流れる電流Iによって形成される磁界Hを平面Γに射影した磁界hは、X成分(電流Iが流れる方向の成分)が失われている。被測定導体MC1に流れる電流Iによって形成される磁界HAiは、X成分が生ずることはないため、被測定導体MC1,MC2に流れる電流Iによって形成される磁界HiのX成分は、磁界HのX成分と等価になる。このため、磁界HiのX成分(jHi)を磁界hに追加することで、磁界Hを求めることができる。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定することができる。
続いて、平面Γ上における被測定導体MC1の位置pを求める。被測定導体MC1の位置pは、上記(4),(6),(8)式を用いて得られる以下の(10)式から求められる。
平面Γ上における被測定導体MC1の位置pが分かると、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を求める(推定する)ことができる。距離推定部25cは、このようにして、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を求めている(推定している)。
そして、距離r1,r2,r3を求める(推定する)ことができれば、以下に示す組み合わせの何れかを用いて、アンペールの法則から電流Iを測定することができる。
・距離r1と三軸磁気センサ11の検出結果(磁界H1)との組み合わせ
・距離r2と三軸磁気センサ12の検出結果(磁界H2)との組み合わせ
・距離r3と三軸磁気センサ13の検出結果(磁界H3)との組み合わせ
具体的には、まず、三軸磁気センサ11,12,13の検出結果(磁界Hi)から、上記(8)式等を用いて推定された磁界Hを差し引き、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界HAiを求める。そして、上記(9)式等を用いて被測定導体MC1に対する三軸磁気センサ11,12,13距離r1,r2,r3が求められている。このため、以下の(11)式を用いて、被測定導体MC1に流れる電流Iが求められる。
〈電流測定装置の動作〉
次に、電流測定装置1を用いて被測定導体MC1(往路)に流れる電流Iを測定する際の動作について説明する。まず、電流測定装置1のユーザは、被測定導体MC1に流れる電流Iを測定するために、センサヘッド10を被測定導体MC1に近接配置させる。尚、被測定導体MC1に対するセンサヘッド10の位置及び姿勢は任意である。
但し、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC1に対してセンサヘッド10を近接配置させる必要がある。尚、被測定導体MC2が移動可能なものである場合には、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC2を被測定導体MC1に対して遠方に配置させる。
図5は、本発明の第1実施形態による電流測定装置の動作の概要を示すフローチャートである。図6は、図5中のステップS14の処理の詳細を示すフローチャートである。図5に示すフローチャートは、例えば一定周期(例えば、1〜数秒程度)で開始される。図5に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13によって、被測定導体MC1,MC2に流れる電流Iによって形成される磁界が検出される(ステップS11)。尚、三軸磁気センサ11,12,13による磁界の検出は、例えば1秒間に1000回程度行われる。
次に、三軸磁気センサ11,12,13の検出結果を示す検出データを、メモリ23に記憶させる処理が、回路部20の演算部25によって行われる(ステップS12)。具体的には、三軸磁気センサ11,12,13の検出データに対し、検出時間を示す時間情報、三軸磁気センサ11,12,13のセンサ番号を示す情報、及び軸(第1軸、第2軸、第3軸)の別を示す情報を付加してメモリ23に記憶させる処理が、演算部25によって行われる。この処理が行われることによって、メモリ23には、例えば、三軸磁気センサ11,12,13の各軸における1000回分の検出データ(9000個の検出データ)が記憶される。
図7は、本発明の第1実施形態で行われる処理を説明するための図である。図7に示す通り、メモリ23には、時刻t0から始まって時刻t999(図示省略)までの、1000回分の検出データが記憶される。例えば、時刻t0における三軸磁気センサ11,12,13の各軸(第1軸、第2軸、第3軸)の検出データは、以下の通りである。
三軸磁気センサ11:「+Da10」,「+Da20」,「+Da30」
三軸磁気センサ12:「+Db10」,「−Db20」,「−Db30」
三軸磁気センサ13:「−Dc10」,「−Dc20」,「−Dc30」
尚、図7では、理解を容易にするために、検出データの値(例えば、「Da10」)を絶対値としており、検出データの符号を明示するようにしている。三軸磁気センサ11,12,13の各軸の符号は、被測定導体MC1,MC2に対する三軸磁気センサ11,12,13の位置関係によって決まる。ここで、被測定導体MC1に流れる電流の測定中は、センサヘッド10が動かない(被測定導体MC1に対するセンサヘッド10の位置や姿勢が変化しない)ものとする。
ここで、図7に示す例において、時刻t0〜t4に得られた検出データと、時刻t5〜t9に得られた検出データとを比較すると、符号が反転しているのが分かる。これは、時刻t4と時刻t5との間で、被測定導体MC1に流れる電流の向きが変わったためである。また、三軸磁気センサ11,12,13の各軸の符号の関係は、電流の向きが同じであれば同じであり、電流の向きが変わると反転することが分かる。
例えば、時刻t0〜t4に得られた三軸磁気センサ11,12,13の各軸の符号の関係、及び時刻t5〜t9に得られた三軸磁気センサ11,12,13の各軸の符号の関係は、以下の通りである。尚、電流の測定中はセンサヘッド10が動かないため、時刻t0から時刻t999(図示省略)までの1000回分の検出データについて、三軸磁気センサ11,12,13の各軸の符号の関係は、以下の2通りのみである。以下の2通りは電流の向きの反転により生じているため、2通りのどちらを選んでも距離推定は同じ結果となる。
時刻t0〜t4:「+」「+」「+」,「+」「−」「−」,「−」「−」「−」
時刻t5〜t9:「−」「−」「−」,「−」「+」「+」,「+」「+」「+」
次いで、検出データから雑音成分を除去する処理が、雑音除去部25aによって行われる(ステップS13)。具体的には、メモリ23に記憶された検出データが雑音除去部25aに読み出され、読み出された検出データに対して平均化処理又は二乗和平方根処理が行われることで、検出データに含まれる雑音成分を除去する処理が行われる。ここで、三軸磁気センサ11,12,13からは、三軸の検出結果を示す3種類の検出データがそれぞれ出力される。雑音除去部25aによる雑音成分の除去は、各軸の検出データに対して個別に行われる。
図7に示す通り、雑音成分が除去された三軸磁気センサ11の各軸(第1軸、第2軸、第3軸)の検出データを、雑音除去検出データ「D11」,「D12」,「D13」とする。また、雑音成分が除去された三軸磁気センサ12の各軸の検出データを、雑音除去検出データ「D21」,「D22」,「D23」とする。同様に、雑音成分が除去された三軸磁気センサ13の各軸の検出データを、雑音除去検出データ「D31」,「D32」,「D33」とする。
続いて、雑音除去部25aで雑音成分が除去された検出結果に対して符号を付加する処理が符号付加部25bで行われる(ステップS14)。ステップS14の処理が開始されと、まず、図6に示す通り、メモリ23に記憶された検出データのうち、絶対値が最大となる検出データを特定する処理が、符号付加部25bで行われる(ステップS21)。
例えば、メモリ23から読み出した検出データの絶対値をとって昇順又は降順に並べ、昇順に並べた絶対値の最後の値又は降順に並べた絶対値の最初の値を特定する処理が、符号付加部25bで行われる。ここでは、時刻t2で得られた三軸磁気センサ12の第1軸の検出データ「+Db12」が特定されたものとする。
次に、上記の特定した検出データと同時刻に検出された検出データを抽出する処理が、符号付加部25bで行われる(ステップS22)。図7に示す例では、時刻t2で得られた、三軸磁気センサ11の各軸の検出データ「+Da12」,「+Da22」,「+Da32」、三軸磁気センサ12の各軸の検出データ「+Db12」,「−Db22」,「−Db32」、三軸磁気センサ13の各軸の検出データ「−Dc12」,「−Dc22」,「−Dc32」が抽出される。
そして、ステップS13の処理で雑音成分が除去された検出データに、ステップS22の処理で抽出された検出データの符号を付加する処理が、符号付加部25bで行われる(ステップS23)。具体的には、図7に示す雑音除去検出データ「D11」,「D12」,「D13」に、抽出された三軸磁気センサ11の各軸の検出データ「+Da12」,「+Da22」,「+Da32」の符号を付加する処理が行われる。
また、図7に示す雑音除去検出データ「D21」,「D22」,「D23」に、抽出された三軸磁気センサ12の各軸の検出データ「+Db12」,「−Db22」,「−Db32」の符号を付加する処理が行われる。同様に、図7に示す雑音除去検出データ「D31」,「D32」,「D33」に、抽出された三軸磁気センサ13の各軸の検出データ「−Dc12」,「−Dc22」,「−Dc32」の符号を付加する処理が行われる。
以上の処理が行われることで、雑音成分が除去された検出結果である雑音除去検出データに、抽出された検出データの符号が付加された符号付加検出データが得られる。具体的には、図7に示す通り、符号付加検出データ「+D11」,「+D12」,「+D13」,「+D21」,「−D22」,「−D23」,「−D31」,「−D32」,「−D33」が得られる。
続いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する処理が、距離推定部25cによって行われる(ステップS15)。具体的には、まず、図4に示す平面Γ上における三軸磁気センサ11,12,13の位置pi、平面Γ上に射影された磁界hi、前述した(8),(9)式を用いて算出される磁界hを用い、前述した(10)式に示される演算を行って、平面Γ上における被測定導体MC1の位置pを求める処理が、距離推定部25cによって行われる。そして、平面Γ上における被測定導体MC1の位置pと、平面Γ上における三軸磁気センサ11,12,13の位置piとから、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する処理が、距離推定部25cによって行われる。
ここで、三軸磁気センサ11の各軸の符号付加検出データは、三軸磁気センサ11の位置に形成される磁界H1を示すものである。また、三軸磁気センサ12の各軸の符号付加検出データは、三軸磁気センサ12の位置に形成される磁界H2示すものである。また、三軸磁気センサ13の各軸の符号付加検出データは、三軸磁気センサ13の位置に形成される磁界H3を示すものである。上記の磁界hiは、これら符号付加検出データで示される磁界Hi(磁界H1,H2,H3)を平面Γ上に射影することによって得られるものである。
以上の処理が終了すると、被測定導体MC1(往路)に流れる電流Iを算出する処理が、演算部25の電流算出部25dによって行われる(ステップS16)。具体的には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)、推定された磁界H、及びステップS15で推定された距離r1,r2,r3を用い、前述した(11)式に示される演算を行って、被測定導体MC1に流れる電流Iを算出する処理が、演算部25の電流算出部25dによって行われる。尚、上記の磁界Hは、前述した(8),(9)式を用いて磁界hを算出し、磁界HiのX成分(jHi)を磁界hに追加することで推定することができる。
より具体的には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)から推定された磁界Hを差し引いて、(11)式中の磁界HAi(被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界)を求める処理が行われる。そして、ステップS15で推定された距離r1,r2,r3と磁界HAiの大きさとを用いて(11)式に示される演算が行われる。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界の影響が排除された上で、被測定導体MC1に流れる電流Iが非接触で測定される。
以上の通り、本実施形態では、特定時点(時刻t2)で得られた三軸磁気センサ11,12,13の検出データの各々の符号情報に基づいて、雑音成分が除去された検出データ(雑音除去検出データ)に対して符号を付加し、符号が付加された検出データ(符号付加検出データ)を用いて、被測定導体MC1に流れる電流Iを測定するようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
また、本実施形態では、三軸磁気センサ11,12,13が設けられたセンサヘッド10と、演算部25が設けられた回路部20とが分離されてケーブルCBによって接続されている。これにより、センサヘッド10の取り回しが容易になり、例えば狭い場所へのセンサヘッド10の設置も容易に行うことができるため、より柔軟な配置が可能である。
尚、被測定導体MC1に流れる電流Iを測定する場合には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3から磁界Hの影響を排除したもの)と、推定された距離r1,r2,r3とを全て用いる必要は必ずしも無い。以下の組み合わせの何れかを用いれば、被測定導体MC1に流れる電流Iを測定することができる。
・距離r1と三軸磁気センサ11の検出結果との組み合わせ
・距離r2と三軸磁気センサ12の検出結果との組み合わせ
・距離r3と三軸磁気センサ13の検出結果との組み合わせ
〔第2実施形態〕
〈電流測定装置の構成〉
図8は、本発明の第2実施形態による電流測定装置の要部構成を示すブロック図である。尚、図8では、図2に示した構成に対応するブロックについては、同一の符号を付してある。図8に示す通り、本実施形態による電流測定装置2は、図2に示す電流測定装置1の回路部20に代えて回路部20Aを設けた構成である。回路部20Aは、演算部25に零設定部25eを追加したものである。
零設定部25eは、三軸磁気センサ11,12,13の検出結果のうち、値が予め設定された雑音閾値(閾値)以下のものについては、値を零に設定する処理を行う。尚、三軸磁気センサ11,12,13の検出結果は、零設定部25eによる処理を行われた後に、演算部25によってメモリ23に記憶される。このような零設定部25eを設けるのは、電流Iの測定精度を高めるためである。
具体的に、三軸磁気センサ11,12,13の検出結果のうち、値(絶対値)が小さなものは、雑音成分の影響によって符号がランダムに変化する場合がある。このような符号の変化(ランダムな変化)が生ずると、電流Iの測定値もランダムに変化してしまい、図9に示す通り、電流Iの測定値が不連続になって測定精度が低下する。図9は、本発明の第2実施形態で解消しようとしている電流測定値の不連続性の一例を示す図である。このような測定精度の低下を防止するために零設定部25eが設けられている。尚、零設定部25eに設定される雑音閾値は、三軸磁気センサ11,12,13の検出結果に影響を及ぼす雑音成分及び必要となる測定精度等を考慮して設定される。
〈電流測定装置の動作〉
図10は、本発明の第2実施形態による電流測定装置の動作の概要を示すフローチャートである。図10に示すフローチャートは、図5に示すフローチャートのステップS11とステップS12との間に、ステップS17を追加したものである。図10に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13によって、被測定導体MC1,MC2に流れる電流Iによって形成される磁界が検出される(ステップS11)。
次に、三軸磁気センサ11,12,13の検出結果を示す検出データに対する零設定処理が、零設定部25eによって行われる(ステップS17)。具体的には、三軸磁気センサ11,12,13の検出結果の値(絶対値)と予め設定された雑音閾値とを比較し、値が雑音閾値以下のものについては、値を零に設定する処理が、零設定部25eによって行われる。零設定部25eによる零設定処理は、各軸の検出データに対して個別に行われる。
続いて、上記の零設定処理が行われた検出データを、メモリ23に記憶させる処理が、回路部20の演算部25によって行われる(ステップS12)。尚、図10におけるステップS12以後の処理は、図5に示すステップS12以降の処理と同様の処理であるため、詳細な説明を省略する。
以上の通り、本実施形態では、零設定部25eによって、三軸磁気センサ11,12,13の検出結果を示す検出データに対して零設定処理を行って、値(絶対値)が予め設定された雑音閾値以下のものについては値を零に設定するようにしている。これにより、検出データの符号がランダムに変化しなくなり、電流Iの測定値が不連続になることを防止することができるから、電流Iの測定精度を高めることができる。
また、本実施形態においても、雑音成分が除去された検出データ(雑音除去検出データ)に対して符号を付加し、符号が付加された検出データ(符号付加検出データ)を用いて、被測定導体MC1に流れる電流Iを測定するようにしている。これにより、直流及び交流に拘わらず、被測定導体に流れる電流を非接触で精度良く測定することができる。
以上、本発明の実施形態による電流測定装置について説明したが、本発明は上記実施形態に制限されることなく本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、センサヘッド10に3つの三軸磁気センサ11,12,13が設けられている例について説明した。しかしながら、センサヘッド10に設けられる三軸磁気センサは、2つであっても良く、4つ以上であっても良い。
また、上述した実施形態では、三軸磁気センサ11,12,13の検出結果を用いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離の推定、及び、被測定導体MC1に流れる電流Iの測定を行う例について説明した。しかしながら、三軸磁気センサ11,12,13以外に、三軸磁気センサ11,12,13に対する相対的な位置関係が既知である電流測定用の専用の磁気センサを備える構成にしても良い。
この構成の場合には、例えば、三軸磁気センサの検出結果を用いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離を推定し、被測定導体MC1に対する電流測定用の磁気センサの距離も推定する。そして、推定された距離(被測定導体MC1に対する電流測定用の磁気センサの距離)と電流測定用の磁気センサの検出結果とを用いて被測定導体MC1に流れる電流Iの測定を行うようにしても良い。
また、上述した実施形態では、三軸磁気センサ11,12,13による磁界の検出が同時に(同じタイミングで)行われる場合を例に挙げて説明したが、異なるタイミングで行われても良い。磁界の検出が異なるタイミングで行われる場合には、検出時間を示す時間情報に代えて、検出順番を示す番号情報を検出データに付加してメモリ23に記憶させれば良い。このとき、測定対象が交流の場合には、蓄積データ数を十分に大きく(少なくとも測定対象の交流の半周期分以上)とったうえで、検出順番を示す番号情報を検出データに付加してメモリ23に記憶させることが好ましい。
また、上記実施形態では、符号付加部25bが、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が最大となる検出結果が得られた時点を特定時点とする例について説明した。しかしながら、例えば、雑音成分の大きさに応じた閾値を設定しておき、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果のうち、絶対値が閾値よりも大きな検出結果が得られる任意の時点を特定時点としても良い。尚、上記の雑音成分の大きさに応じた閾値は、例えば電流による磁界の影響を受けない状態で、三軸磁気センサ11,12,13から出力される検出データに重畳されている雑音成分の大きさ(振幅や実効値)を超える値に設定される。
また、上述した第2実施形態において、零設定部25eに設定される雑音閾値は、三軸磁気センサ11,12,13の検出結果に影響を及ぼす雑音成分及び必要となる測定精度等を考慮して設定されるものとして説明した。しかしながら、雑音閾値は、符号付加部25bで設定される閾値と同じ指針で設定されていても良い。つまり、例えば電流による磁界の影響を受けない状態で、三軸磁気センサ11,12,13から出力される検出データに重畳されている雑音成分の大きさ(振幅や実効値)を超える値に設定されていても良い。
また、上述した実施形態では、三軸磁気センサ11,12が第1軸方向(x軸方向)に間隔d[m]だけ離間し、三軸磁気センサ11,13が第3軸方向(z軸方向)に間隔d[m]だけ離間している例について説明した。しかしながら、三軸磁気センサ11,12,13は、感磁方向及び相対的な位置が予め規定された関係となるように配置されていれば良い。
1,2 電流測定装置
10 センサヘッド
11 三軸磁気センサ
12 三軸磁気センサ
13 三軸磁気センサ
20 回路部
23 メモリ
25a 雑音除去部
25b 符号付加部
25c 距離推定部
25d 電流算出部
25e 零設定部
I 電流
MC1 被測定導体
MC2 被測定導体

Claims (6)

  1. 被測定導体に流れる電流を測定する電流測定装置であって、
    感磁方向及び相対的な位置が予め規定された関係となるように配置された複数の三軸磁気センサと、
    前記複数の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部と、
    特定時点で得られた前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する符号付加部と、
    前記符号付加部によって符号が付加された検出結果を用いて、前記被測定導体に流れる電流を求める電流演算部と、
    を備える電流測定装置。
  2. 予め規定された期間、前記複数の三軸磁気センサの検出結果を蓄積する蓄積部を更に備え、
    前記符号付加部は、前記蓄積部に蓄積された検出結果のうち、絶対値が最大となる検出結果が得られた時点における前記複数の三軸磁気センサの検出結果の各々の符号情報に基づいて、前記雑音成分が除去された検出結果に対して符号を付加する、
    請求項1記載の電流測定装置。
  3. 前記複数の三軸磁気センサの検出結果のうち、値が予め設定された閾値以下のものについては、値を零に設定する零設定部を備える、請求項1又は請求項2記載の電流測定装置。
  4. 前記雑音除去部は、予め規定された一定の期間毎に得られる、前記複数の三軸磁気センサの各軸の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記複数の三軸磁気センサの検出結果に含まれる前記雑音成分をそれぞれ除去する、請求項1から請求項3の何れか一項に記載の電流測定装置。
  5. 前記電流演算部は、前記符号付加部によって符号が付加された検出結果を用いて、前記電流測定装置の予め規定された基準位置と前記被測定導体との距離を推定する距離推定部と、
    前記距離推定部で推定された距離を用いて前記被測定導体に流れる電流を求める電流算出部と、
    を備える請求項1から請求項4の何れか一項に記載の電流測定装置。
  6. 前記複数の三軸磁気センサを備えるセンサヘッドと、
    少なくとも前記雑音除去部、前記符号付加部、及び前記電流演算部を備える回路部と、
    を備える請求項1か請求項5の何れか一項に記載の電流測定装置。
JP2019154561A 2019-08-27 2019-08-27 電流測定装置 Active JP7040503B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019154561A JP7040503B2 (ja) 2019-08-27 2019-08-27 電流測定装置
EP20857332.9A EP4024055A4 (en) 2019-08-27 2020-08-25 CURRENT MEASUREMENT DEVICE, CURRENT MEASUREMENT METHOD AND NON-TRANSIENT COMPUTER-READABLE STORAGE MEDIUM
US17/637,895 US11927647B2 (en) 2019-08-27 2020-08-25 Current measurement device, current measurement method, and non-transitory computer readable storage medium
PCT/JP2020/031937 WO2021039755A1 (ja) 2019-08-27 2020-08-25 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154561A JP7040503B2 (ja) 2019-08-27 2019-08-27 電流測定装置

Publications (2)

Publication Number Publication Date
JP2021032765A true JP2021032765A (ja) 2021-03-01
JP7040503B2 JP7040503B2 (ja) 2022-03-23

Family

ID=74678167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154561A Active JP7040503B2 (ja) 2019-08-27 2019-08-27 電流測定装置

Country Status (4)

Country Link
US (1) US11927647B2 (ja)
EP (1) EP4024055A4 (ja)
JP (1) JP7040503B2 (ja)
WO (1) WO2021039755A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213774A1 (de) 2021-03-02 2022-09-08 Kabushiki Kaisha Toshiba Digital-Isolator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220064445A (ko) * 2020-11-11 2022-05-19 현대모비스 주식회사 전동식 조향시스템의 제어 장치 및 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395475A (ja) * 1989-08-16 1991-04-19 Philips Gloeilampenfab:Nv 超電導量子干渉デバイス内の電流分布雑音を抑制する方法
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2005217341A (ja) * 2004-02-02 2005-08-11 Kri Inc 環境磁気雑音遮蔽装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
WO2011108169A1 (ja) * 2010-03-03 2011-09-09 株式会社安川電機 インバータ装置及びその制御方法
JP2018007821A (ja) * 2016-07-13 2018-01-18 株式会社アドバンテスト 磁場測定装置及び磁場測定方法
WO2018199067A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2018199068A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095475B2 (ja) 1991-09-27 2000-10-03 株式会社東芝 マスクパターンの検査方法
JP2005055300A (ja) 2003-08-05 2005-03-03 Hioki Ee Corp 電流センサ
JP4353465B2 (ja) * 2003-08-22 2009-10-28 独立行政法人交通安全環境研究所 鉄道車両の磁界測定方法および磁界測定装置
JP2011164019A (ja) 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
EP2811314B1 (de) * 2013-06-06 2016-09-07 Christian-Albrechts-Universität zu Kiel Magnetfeldmessvorrichtung mit Vibrationskompensation
ITTO20130653A1 (it) * 2013-07-31 2015-02-01 Milano Politecnico Sensore magnetico includente un trasduttore basato sulla forza di lorentz pilotato ad una frequenza diversa dalla frequenza di risonanza, e metodo di pilotaggio di un trasduttore basato sulla forza di lorentz
KR101552922B1 (ko) * 2013-08-08 2015-09-15 매그나칩 반도체 유한회사 자기 센서 테스트 장치 및 방법
JP6403086B2 (ja) * 2014-01-21 2018-10-10 日立金属株式会社 電流検出構造
WO2016081657A1 (en) * 2014-11-21 2016-05-26 The Regents Of The University Of California Non-contact electricity meters
JP7155541B2 (ja) 2018-03-01 2022-10-19 横河電機株式会社 電流測定装置
JP7114943B2 (ja) 2018-03-06 2022-08-09 横河電機株式会社 電流測定装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395475A (ja) * 1989-08-16 1991-04-19 Philips Gloeilampenfab:Nv 超電導量子干渉デバイス内の電流分布雑音を抑制する方法
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2005217341A (ja) * 2004-02-02 2005-08-11 Kri Inc 環境磁気雑音遮蔽装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
WO2011108169A1 (ja) * 2010-03-03 2011-09-09 株式会社安川電機 インバータ装置及びその制御方法
JP2018007821A (ja) * 2016-07-13 2018-01-18 株式会社アドバンテスト 磁場測定装置及び磁場測定方法
WO2018199067A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2018199068A1 (ja) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 磁気センサー
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213774A1 (de) 2021-03-02 2022-09-08 Kabushiki Kaisha Toshiba Digital-Isolator

Also Published As

Publication number Publication date
WO2021039755A1 (ja) 2021-03-04
US20220283247A1 (en) 2022-09-08
US11927647B2 (en) 2024-03-12
JP7040503B2 (ja) 2022-03-23
EP4024055A1 (en) 2022-07-06
EP4024055A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
KR102412180B1 (ko) 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체
JP7430989B2 (ja) 電流測定装置
JP7040503B2 (ja) 電流測定装置
US20140320125A1 (en) Non-intrusive monitoring
US9354257B2 (en) Systems and methods for use in measuring current through a conductor
CN103502777A (zh) 用于半桥可变差动变压器位置传感系统的设备和方法
JP4757621B2 (ja) 落雷情報収集システム
US9945897B2 (en) Monitoring of insulation conditions during electrical system events using differential current sensor
JP7155541B2 (ja) 電流測定装置
JP7114943B2 (ja) 電流測定装置
US20230041763A1 (en) Angle sensor calibration method for safety measure without full rotation
JP7001079B2 (ja) 電流測定装置
US10996246B2 (en) Current detection method, current detection device, signal correction method for current detection device, and signal correction device for current detection device
JP5447903B2 (ja) 電気駆動機の回転可能な磁性部材の現在角度位置を求める方法及び装置
JP2018165619A (ja) 位置予測装置及び位置検出装置
JP2004045118A (ja) 架空配電線の事故点探査方法
CN112033274A (zh) 用于检测杂散磁场的方法、装置和系统
JP2000065512A5 (ja)
JPH08159771A (ja) 電子方位計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150