WO2021036957A1 - 用于汽车的热管理系统以及基于该系统的热管理方法 - Google Patents

用于汽车的热管理系统以及基于该系统的热管理方法 Download PDF

Info

Publication number
WO2021036957A1
WO2021036957A1 PCT/CN2020/110631 CN2020110631W WO2021036957A1 WO 2021036957 A1 WO2021036957 A1 WO 2021036957A1 CN 2020110631 W CN2020110631 W CN 2020110631W WO 2021036957 A1 WO2021036957 A1 WO 2021036957A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
plate heat
valve
liquid cooling
liquid
Prior art date
Application number
PCT/CN2020/110631
Other languages
English (en)
French (fr)
Inventor
唐唯尔
胡浩茫
林励冠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20858835.0A priority Critical patent/EP4015272A4/en
Priority to MX2022002261A priority patent/MX2022002261A/es
Priority to JP2022512424A priority patent/JP7427771B2/ja
Publication of WO2021036957A1 publication Critical patent/WO2021036957A1/zh
Priority to US17/677,013 priority patent/US20220176774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors

Definitions

  • This application relates to automobile thermal management technology, in particular to a thermal management system for automobiles and a thermal management method based on the system.
  • Electric vehicles usually use motors to drive, which brings challenges to the heating of the car's air-conditioning system.
  • Electric vehicle air conditioners mostly rely on electric heating equipment for heating, but this direct electric heating method has low heating efficiency and high power consumption.
  • electric vehicles its electricity economy is not enough. Due to the relatively high heating efficiency of heat pump technology, more and more automobile manufacturers tend to adopt heat pump technology to improve the electricity economy of the air-conditioning system of electric vehicles.
  • the condenser used for direct heat exchange in the heat pump air conditioning system of automobiles is mainly a parallel flow heat exchanger.
  • the parallel flow heat exchanger usually uses air as the heat transfer medium and introduces air so that the air flows through the heat exchanger.
  • the related modules achieve the purpose of heat dissipation.
  • Parallel flow heat exchangers usually include fans, inlet and outlet air ducts, etc., which are large in size and require high air volume. This makes it difficult for parallel flow heat exchangers to be compatible with other components in the thermal management system in the car, such as Compressors, throttling devices, water pumps, valves, etc. are integrated and arranged. Therefore, the parallel flow heat exchanger is usually installed on the outside of the car's front cabin to better contact with the air.
  • the embodiment of the present application provides a thermal management system for an automobile and a thermal management method based on the system, which is beneficial to saving the space in the front cabin of the automobile and saving the cost of the thermal management system.
  • the present application provides a thermal management system for automobiles, which is characterized by comprising: a refrigerant loop system, a motor liquid cooling loop system, and an air conditioning liquid cooling loop system, wherein the refrigerant
  • the loop system includes: compressor (1), refrigerant four-way reversing valve (2), plate heat exchanger (3), throttle valve (4), plate heat exchanger (5) and gas-liquid separator (6) ); wherein the outlet of the compressor (1) is connected to the first end of the refrigerant four-way reversing valve (2) through a pipe, and the second end of the refrigerant four-way reversing valve (2) Connected to the first end of the refrigerant passage in the plate heat exchanger (3), and the second end of the refrigerant passage in the plate heat exchanger (3) is connected to the first end of the throttle valve (4) One end is connected, the second end of the throttle valve (4) is connected to the first end of the refrigerant channel in the plate heat exchanger (5), and the refrigerant
  • the motor liquid cooling loop system includes a motor liquid cooling loop that circulates coolant flowing through the motor, and the pipes in the motor liquid cooling loop are respectively connected to the liquid in the plate heat exchanger (3).
  • the first end and the second end of the cold passage; the motor liquid cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger (3);
  • the air-conditioning liquid-cooling loop system includes an air-conditioning liquid-cooling loop that circulates cooling liquid flowing through the air-conditioning box, and the pipes in the air-conditioning liquid-cooling loop are respectively connected to the plate heat exchanger (5)
  • the first end and the second end of the liquid cooling channel; the air-conditioning liquid cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger (5).
  • the thermal management system of the embodiment of the present application can be applied to traditional energy vehicles (internal combustion engine vehicles), and may also be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • the refrigerant loop system is simplified by using the refrigerant four-way reversing valve; by using two plate heat exchangers, the refrigerant in the refrigerant loop can pass through The plate heat exchanger (3) exchanges heat with the coolant in the liquid cooling circuit of the motor, and exchanges heat with the coolant in the air conditioning liquid cooling loop through the plate heat exchanger (5), and/or, through the plate heat exchange
  • the heat exchanger (5) exchanges heat with the cooling liquid of the battery liquid cooling loop, thereby avoiding the use of parallel flow heat exchangers. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the thermal management system can be integrated in structure. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the thermal management system further includes: a battery liquid cooling loop system, the battery liquid cooling loop system includes a battery liquid cooling loop that circulates cooling liquid flowing through the battery pack The battery liquid cooling loop and the air-conditioning liquid cooling loop system share pipes connected to the first and second ends of the liquid cooling channel in the plate heat exchanger (5); the battery liquid The cold loop system and the refrigerant loop system exchange heat through the plate heat exchanger (5).
  • the thermal management system of the embodiment of the present application may be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • new energy vehicles such as electric vehicles, hybrid vehicles, etc.
  • the refrigerant loop system is simplified by using the refrigerant four-way reversing valve; by using two plate heat exchangers, the refrigerant in the refrigerant loop can pass through The plate heat exchanger (3) exchanges heat with the coolant in the liquid cooling circuit of the motor, and exchanges heat with the coolant in the air conditioning liquid cooling loop through the plate heat exchanger (5), and/or, through the plate heat exchange
  • the heat exchanger (5) exchanges heat with the cooling liquid of the battery liquid cooling loop, thereby avoiding the use of parallel flow heat exchangers.
  • the structural integration of the thermal management system can be realized, and the electronic control integration of the thermal management system can be implemented. Be realized. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the motor liquid cooling loop system includes: a multifunctional valve (8), a power device (9), a motor controller (10), a motor (11), and a cooling water tank ( 12) and an integrated valve (14), wherein the multifunctional valve (8), power device (9), motor controller (10), motor (11), cooling water tank (12) and integrated valve (14) are connected in series Connected, the multifunctional valve (8) is also connected to the first end of the liquid cooling channel of the plate heat exchanger (3), and the integrated valve (14) is also connected to the plate heat exchanger (3) ) At the second end of the liquid cooling channel; the motor (11) is also directly connected to the integrated valve (14);
  • the multifunctional valve (8) is used to realize the water pump, water flow reversing and water storage functions; the integrated valve (14) is used to realize the water flow reversing function.
  • the air-conditioning liquid cooling loop system includes: an air-conditioning heat exchanger (21), an integrated valve pump (15); the air-conditioning heat exchanger (21) and the integrated valve pump (15);
  • the valve pump (15) is connected, the air conditioner heat exchanger (21) is also connected to the first end of the liquid cooling channel of the plate heat exchanger (5), and the integrated valve pump (15) is also connected to the plate heat exchanger (5).
  • the battery liquid cooling loop system includes: a battery pack (16), an electric heater (17), and an integrated valve pump (15); wherein, the battery pack (16) ), the electric heater (17) and the integrated valve pump (15) are connected in series, the battery pack (16) is also connected to the first end of the liquid cooling channel of the plate heat exchanger (5), the The integrated valve pump (15) is also connected to the second end of the liquid cooling channel of the plate heat exchanger (5); the integrated valve pump (15) is used to realize the water pump and water flow reversing functions.
  • the thermal management system may further include a warm air liquid cooling loop system, and the warm air liquid cooling loop system includes a circulating circulation flowing through the warm air core (20).
  • the cold loop includes an integrated kettle pump (18), an electric heater (19) and the warm air core body (20) connected in series; the integrated kettle pump (18) is used to realize the water pump and water storage functions.
  • the integrated kettle pump (18) includes an expansion kettle (18-1) and a water pump (18-2), the expansion kettle (18-1) and the water pump ( 18-2) connection, the expansion kettle (18-1) is also connected to the warm air core (20), and the water pump (18-2) is also connected to the electric heater (19).
  • the multifunctional valve (8) is an integrated body including a water pump (8-1), an expansion kettle (8-2) and a waterway three-way valve (8-3), wherein, the first end of the waterway three-way valve (8-3) is connected to the expansion kettle (8-2), and the second end of the waterway three-way valve (8-3) is connected to the battery pack (16 ), the third end of the waterway three-way valve (8-3) is connected to the first end of the liquid cooling channel of the plate heat exchanger (3); the expansion kettle (8-2) is connected to the water pump ( 8-1), the water pump (8-1) is connected to the power device (9).
  • the integrated valve (14) is an integrated body including a waterway three-way valve (14-1) and a three-way water pipe, and the waterway three-way valve (14-1) The first end is connected to the motor (11), the second end of the waterway three-way valve (14-1) is connected to the heat dissipation water tank (12), and the third end of the waterway three-way valve (14-1) The first end of the three-way water pipe is connected, the second end of the three-way water pipe is connected to the second end of the liquid cooling channel of the plate heat exchanger (3), and the third end of the three-way water pipe is connected to the The integrated valve pump (15).
  • the integrated valve pump (15) is an integrated body including a water pump (15-1) and a waterway three-way valve (15-2), and the water pump (15-1) Respectively connected to the second end of the liquid cooling channel of the plate heat exchanger (5) and the first end of the waterway three-way valve (15-2), and the first end of the waterway three-way valve (15-2)
  • the two ends are respectively connected to the three-way water pipe of the integrated valve (14) and the electric heater (17), and the third end of the waterway three-way valve (15-2) is connected to the air-conditioning heat exchanger ( twenty one)
  • a plurality of plate heat exchangers (plate heat exchangers 3 and 5) and refrigerant four-way reversing valve (2) and throttle valve (4) can form an integrated body (7)
  • the refrigerant temperature and pressure sensor can be arranged on the pipeline connecting each integrated component.
  • the integrated body (7), the integrated kettle pump (18), the multifunctional valve (8), the integrated valve (14), the integrated valve pump ( At least one of 15) is structurally configured as an integrated structure.
  • the integrated body (7), the multifunctional valve (8), the integrated valve (14), the integrated valve pump (15) and the integrated pot pump (18) can be integrated together to form Thermal management integrated module.
  • the installation volume of the thermal management system of the electric vehicle can be greatly reduced, and the occupied space can be saved; at the same time, the battery and the passenger compartment can be guaranteed under various working conditions.
  • Etc. are operated within a suitable temperature range, reducing the flow resistance in the refrigeration system and improving the energy efficiency of the system.
  • the embodiments of the present application provide a thermal management system for automobiles, including: a refrigerant loop system, a motor liquid cooling loop system, and a warm air liquid cooling loop system, wherein:
  • the refrigerant loop system includes: a compressor (101), a plate heat exchanger (102), a throttle valve (103), a plate heat exchanger (104), a throttle valve (109), and an air conditioner evaporator (110) ) And a gas-liquid separator (107); wherein the compressor (101), the plate heat exchanger (102), the throttle valve (103), the plate heat exchanger (104), the The throttle valve (109), the air conditioner evaporator (110) and the gas-liquid separator (107) are connected in series to form a first refrigerant loop;
  • the motor liquid cooling loop system includes a motor liquid cooling loop that circulates coolant flowing through the motor, and the pipes in the motor liquid cooling loop are respectively connected to the liquid in the plate heat exchanger (104).
  • the first end and the second end of the cold passage; the motor liquid cooling loop system and the first refrigerant loop system exchange heat through the plate heat exchanger (104);
  • the warm-air liquid-cooling loop system includes a warm-air-liquid-cooling loop that circulates cooling liquid flowing through a warm-air core, and the pipes in the warm-air-liquid-cooling loop are respectively connected to the plate heat exchanger The first end and the second end of the liquid cooling channel in (102); the warm air liquid cooling loop system and the first refrigerant loop system exchange heat through the plate heat exchanger (102).
  • the loop of the refrigerant loop system is simplified without using the refrigerant four-way valve, and the heat pump air conditioning system is used when the refrigerant loop has only one flow direction.
  • the refrigerant in the refrigerant circuit can exchange heat with the coolant in the motor liquid cooling circuit through the plate heat exchanger (104), and communicate with the heating system through the plate heat exchanger (102).
  • the cooling liquid in the air-liquid cooling loop performs heat exchange, thereby avoiding the use of parallel flow heat exchangers.
  • the thermal management system can be integrated in structure. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the outlet of the compressor (101) is connected to the first end of the refrigerant channel in the plate heat exchanger (102) through a pipe, and the plate heat exchanger
  • the second end of the refrigerant passage in (102) is connected to the first end of the throttle valve (103), and the second end of the throttle valve (103) is connected to the plate heat exchanger (104).
  • the first end of the refrigerant passage is connected to the first end of the refrigerant passage in the plate heat exchanger (104), and the second end of the refrigerant passage is connected to the first end of the throttle valve (109).
  • the throttle valve (109) Is connected to the first end of the air-conditioning evaporator (110), the second end of the air-conditioning evaporator (110) is connected to the first end of the gas-liquid separator (107), the The second end of the gas-liquid separator (107) is connected to the inlet of the compressor (101).
  • the thermal management system further includes a battery liquid cooling loop system
  • the refrigerant loop system further includes a refrigerant branch, wherein:
  • the refrigerant branch includes a throttle valve (105) and a plate heat exchanger (106), the compressor (101), the plate heat exchanger (102), the throttle valve (103), and the The plate heat exchanger (104), the throttle valve (105), the plate heat exchanger (106) and the gas-liquid separator (107) are connected in series to form a second refrigerant loop;
  • the battery liquid cooling loop system includes a battery liquid cooling loop that circulates cooling liquid flowing through the battery pack, and two sections of pipes in the battery liquid cooling loop are respectively connected to the plate heat exchanger (106) The first end and the second end of the first liquid cooling channel;
  • the battery liquid cooling loop system and the refrigerant loop system exchange heat through a plate heat exchanger (106); or,
  • the warm air liquid cooling loop system and the refrigerant loop system also exchange heat through the plate heat exchanger (106); or,
  • the warm air liquid cooling loop system and the battery liquid cooling loop system exchange heat through the plate heat exchanger (106).
  • the first end of the throttle valve (105) is connected to the second end of the refrigerant channel in the plate heat exchanger (104), and the throttle valve
  • the second end of (105) is connected to the first end of the refrigerant passage of the plate heat exchanger (106), and the second end of the refrigerant passage of the plate heat exchanger (106) is connected to the gas-liquid separator ( 107) The first end of the connection.
  • the motor liquid cooling loop system includes: a power device (117), a motor controller (118), a motor (119), a heat dissipation water tank (115) and a multifunctional valve body (122), wherein the power device (117), the motor controller (118), the motor (119), the heat dissipation water tank (115) and the multifunctional valve body 122 are connected in series, so
  • the multifunctional valve body 122 is respectively connected to the second end of the liquid cooling channel of the plate heat exchanger (102) and the second end of the liquid cooling channel of the plate heat exchanger (104); the power device (117) ) Is also connected to the first end of the liquid cooling channel of the plate heat exchanger (104); the motor is also directly connected to the multifunctional valve body (122);
  • the multifunctional valve body (122) is used to realize the functions of water pump, water flow reversal and water storage.
  • the battery liquid cooling loop system includes: a battery pack (120) and an integrated kettle pump (121; wherein, the battery pack (120) and the integrated kettle pump ( 121) connection, the integrated pot pump (121) is also connected to the first end of the first liquid cooling channel of the plate heat exchanger (106), and the battery pack (120) is also connected to the plate heat exchanger ( 106) the second end of the first liquid cooling channel; the integrated kettle pump (121 is used to realize the water pump and water storage function.
  • the warm air liquid cooling loop system includes: a multifunctional valve body (122, an electric heater (114), and a warm air core (111), wherein the multiple The functional valve body (122), the electric heater (114) and the warm air core body (111) are connected in series, and the multifunctional valve body (122) is also connected to the plate heat exchanger (102) respectively. ) At the second end of the liquid cooling channel, and at the first end and the second end of the second liquid cooling channel of the plate heat exchanger (106).
  • the multifunctional valve body (122) includes: a water pump (122-1) and a water pump (122-6), a three-way water valve (122-2) and a three-way water The valve (122-4), the waterway four-way valve (122-3) and the kettle (122-5); wherein the waterway four-way valve (122-3) is connected to the water pump (122-1) and the water pump (122-1), respectively
  • the three-way water valve (122-2), the three-way water valve (122-4) and the kettle (122-5), the kettle (122-5) is also connected to the water pump (122-6);
  • the three-way water valve (122-2) is also connected to the motor (119) and the heat dissipation water tank (115) respectively;
  • the water pump (122-1) is also connected to the second end of the liquid cooling channel of the plate heat exchanger (102) and the first end of the second liquid cooling channel of the plate heat exchanger (106) respectively;
  • the three-way water valve (122-4) is also connected to the second end of the second liquid cooling channel of the plate heat exchanger (106) and the warm air core (111) respectively;
  • the water pump (122-6) is also connected to the second end of the liquid cooling channel of the plate heat exchanger (104).
  • the integrated kettle pump (121) includes an expansion kettle (121-2) and a water pump (121-12), and the expansion kettle (121-2) and the water pump ( 121-12) connection, the expansion kettle (121-2) is also connected to the battery pack (120), and the water pump (121-12) is also connected to the first liquid cooling channel of the plate heat exchanger (106) The first end.
  • At least one of the multifunctional valve body (122) and the integrated kettle pump (121) is configured as an integrated structure in structure.
  • multiple plate heat exchangers (plate heat exchanger 102, plate heat exchanger 104, and plate heat exchanger 106) and multiple throttle valves (throttle valve 103 and The throttle valve 105) can be integrated into an integrated body (123), wherein the temperature and pressure sensor can also be arranged on the pipeline connecting each integrated component
  • the integrated pot pump (121), the multifunctional valve body (122), the integrated body (123), and the integrated body (124) can also be integrated together to form a thermal management integrated module.
  • the heat pump air conditioning system is used to implement heat pump cooling and/or heating for the passenger compartment when the refrigerant circuit has only one flow direction. Function, and/or, the function of cooling and/or heating the battery pack.
  • the refrigerant in the refrigerant loop can exchange heat with the coolant in the motor liquid cooling loop through the plate heat exchanger (104), and through the plate heat exchanger (102) and the plate heat exchanger.
  • the heat exchanger (106) exchanges heat with the cooling liquid of the warm air liquid cooling loop
  • the plate heat exchanger (106) exchanges heat with the cooling liquid of the battery liquid cooling loop, thereby avoiding the parallel flow heat exchanger. use. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the structural integration of the thermal management system can be realized, and the main components of the system can be integrated in different integrations. In the body.
  • the embodiments of the present application can also be applied to various practical application scenarios, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, and so on. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front cabin, and also conducive to saving the cost of the thermal management system.
  • connection relationship of the refrigerant loop is specifically: the outlet of the compressor (101) is connected to one end of the plate heat exchanger (202), and the other end of the plate heat exchanger (202) is connected to the node.
  • One end of the throttle valve (203) is connected, the other end of the throttle valve (203) is connected to one end of the plate heat exchanger (204), and the other end of the plate heat exchanger (204) is connected to the throttle valve (205) and the throttle valve 209)
  • One end is connected, the other end of the throttle valve (205) is connected to the plate heat exchanger (206), the other end of the throttle valve (209) is connected to one end of the air conditioner evaporator (210), and the other end of the air conditioner evaporator (210) is connected to the plate heat exchanger (206).
  • the other end of the heat exchanger (206) is connected with the inlet of the gas-liquid separator (207).
  • the other end of the plate heat exchanger (204) is connected to one end of the solenoid valve (208), and the other end of the solenoid valve (208) is connected to the inlet of the gas-liquid separator (207).
  • the outlet of the gas-liquid separator 207 is connected with the inlet of the compressor (101) to form a refrigerant loop.
  • connection relationship of the warm air liquid cooling loop is specifically as follows: the A port of the waterway four-way valve (213) is connected to one end of the plate heat exchanger (202), and the B port is connected to the electric heating One end of the electric heater (223) is connected, the other end of the electric heater (223) is connected to the inlet end of the three-way valve (224), the B port of the three-way valve (224) is connected to one end of the heater core (211), A The port is connected with one end of the plate heat exchanger (206), the other end of the plate heat exchanger (206) and the heating core body are both connected with the inlet of the water pump (222), and the outlet of the water pump (222) is connected with the plate heat exchanger ( 202) is connected to the other end.
  • connection relationship of the battery liquid cooling loop is specifically: the outlet B of the water pump (225) is connected to one end of the plate heat exchanger (206), and the other One end is connected with one end of the cooling device of the battery pack (227), the other end of the cooling device of the battery pack (227) is connected with the inlet of the kettle (226), and the outlet of the kettle (226) is connected with the inlet of the water pump (225).
  • the integrated kettle pump (231) is an integrated body composed of a kettle (220), a water pump (221) and a water pump (222), which is used to realize the water pump and water storage functions.
  • the integrated kettle pump (232) is an integrated body composed of a kettle 226 and a water pump (225), which is used to realize the water pump and water storage functions.
  • the integrated body (228) is a combination of multiple plate heat exchangers (plate heat exchanger 202, plate heat exchanger 204, plate heat exchanger 206) and multiple throttle valves (Throttle valve 203 and throttle valve 205) an integrated body, in which temperature and pressure sensors can also be arranged on the pipeline connecting each integrated component;
  • the integrated body (233) is an integrated body that integrates the gas-liquid separator 207) and the solenoid valve 20)8.
  • the integrated kettle pump (231), the integrated kettle pump (232), the integrated body (228), and the integrated body (233) can also be integrated together to form a thermal management integrated module.
  • the heat pump air conditioning system is used to implement heat pump cooling and/or heating for the passenger compartment when the refrigerant circuit has only one flow direction. Function, and/or, the function of cooling and/or heating the battery pack.
  • the cooling liquid can first pass through the plate heat exchanger (204) at the back of the refrigerant circuit and then through the plate heat exchanger (202) at the front in the case of refrigeration. Improve the energy efficiency of the system during cooling and reduce the energy consumption of the system under cooling conditions.
  • the refrigerant in the refrigerant loop can exchange heat through the plate heat exchanger and the coolant in the motor liquid cooling loop, and through the plate heat exchanger and the warm air liquid cooling loop.
  • the cooling liquid exchanges heat through the plate heat exchanger and the cooling liquid of the battery liquid cooling loop, thereby avoiding the use of parallel flow heat exchangers. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the structural integration of the thermal management system can be realized, and the main components of the system can be integrated in different integrations. In the body.
  • the embodiments of the present application can also be applied to various practical application scenarios, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, and so on. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • an embodiment of the present application provides a thermal management method for a thermal management system, the method includes: a controller obtains a sensor signal and a thermal management request; the controller generates a control signal according to the sensor signal and the thermal management request The controller sends the control signal to the drive board; the control signal is used to instruct the drive board to drive multiple components in the thermal management system to work; wherein, the drive board includes the thermal management system
  • the thermal management system is the thermal management system according to any one of the embodiments of the first aspect or the second aspect.
  • the thermal management controller since the electronic control integration integrates the individual drive boards of the thermal management components on a unified drive board, the thermal management controller only needs to send control signals to the unified drive board. (Demand signal), and then the integrated drive board will perform the corresponding signal conversion according to the control signal (demand signal), and simultaneously drive the actuators of multiple components to execute the corresponding instructions. Therefore, the implementation of this application can effectively reduce the length of the wiring harness of the thermal management system, save wiring space, reduce wiring costs, and ensure the normal realization of functions in various specific application scenarios.
  • an embodiment of the present application provides a controller for a thermal management system
  • the controller includes a processing chip and a communication interface, the communication interface is used to obtain sensor signals and thermal management requests; the processing The chip is used to generate a control signal according to the sensor signal and the thermal management request; the communication interface is also used to send the control signal to the drive board; the control signal is used to instruct the drive board to drive thermal management Multiple components in the system work; wherein, the thermal management system is the thermal management system according to any one of the embodiments of the first aspect or the second aspect.
  • an embodiment of the present application provides a drive board for a thermal management system, wherein the drive board includes a communication interface and a drive unit for each of the multiple components in the thermal management system ,
  • the drive units of the various components are respectively used to drive the various components to work;
  • the communication interface is used to receive control signals from the controller of the thermal management system;
  • the drive units of the various components are respectively used to , Drive the various components to work according to the control signal;
  • the thermal management system is the thermal management system according to any one of the embodiments of the first aspect or the second aspect.
  • the drive unit of the component is electronically controlled and integrated, so that the drive board of each component does not need to be connected to the thermal management controller by a separate wire harness, which reduces the length of the bus bundle; at the same time; , Based on the structural integration of thermal management components in the front compartment, the wiring harness between the components and the integrated drive board is also greatly shortened. Therefore, the implementation of this application can effectively reduce the length of the wire harness of the thermal management system, which not only saves wiring space, but also reduces wiring costs.
  • an embodiment of the present invention provides a readable non-volatile storage medium storing computer instructions.
  • the readable non-volatile storage medium includes computer instructions, wherein: the computer instructions are executed to implement the third The method described in the aspect.
  • embodiments of the present invention provide a computer program product, which is executed when the computer program product runs on a computer to implement the method described in the third aspect.
  • the installation volume of the thermal management system of the electric vehicle can be greatly reduced, and the space occupied; at the same time, the battery and the passenger compartment can be guaranteed under various working conditions.
  • All components are operated within a suitable temperature range to reduce the flow resistance in the refrigeration system and improve the energy efficiency of the system; through the electronic control integration of the drive unit of the components, the drive board of each component does not need to be connected with the thermal management controller Implement a separate wiring harness connection, reducing the length of the bus harness.
  • the wiring harness between the components and the integrated drive board is also greatly shortened. Therefore, the implementation of this application can effectively reduce the length of the wire harness of the thermal management system, which not only saves wiring space, but also reduces wiring costs.
  • FIG. 1 is a schematic diagram of structural integration of a thermal management system provided by an embodiment of the present application
  • FIG. 2 is an example diagram of a thermal management integrated module provided by an embodiment of the present application
  • 3A is an example diagram of an integrated valve pump provided by an embodiment of the present application.
  • 3B is an example diagram of an integrated valve pump provided by an embodiment of the present application.
  • 3C is an example diagram of an integrated valve pump provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of electronic control integration of a thermal management system provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • Fig. 7 is a detailed structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 15 is a detailed structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 20 is a detailed structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of related working fluid flow in a thermal management system provided by an embodiment of the present application.
  • FIG. 25 is a schematic flowchart of a thermal management method provided by an embodiment of the present application.
  • the technical solution of this application may be applied to traditional energy vehicles, or may be applied to new energy vehicles.
  • Traditional energy vehicles can be, for example, gasoline vehicles, diesel vehicles and other internal combustion engine vehicles, and new energy vehicles can be, for example, electric vehicles, extended-range electric vehicles, hybrid vehicles, fuel cell electric vehicles, and other new energy vehicles.
  • the electric drive and control system is the core of electric vehicles, and it is also the biggest difference from vehicles with internal combustion engines.
  • the electric drive and control system consists of a drive motor (motor for short), a power supply (or battery pack), and a speed control device for the motor.
  • the other devices of an electric vehicle can be basically the same as those of an internal combustion engine vehicle.
  • the thermal management system in electric vehicles can include compressors, water pumps, condensers, throttling devices, heat exchangers, evaporators, and battery coolers (Chiller), water pumps, valves and other thermal management components. Coordinate work to ensure that the battery and crew compartment are within the appropriate temperature range under various working conditions. Under normal circumstances, these parts are installed in various positions in the front compartment of the car. Because the parts in the thermal management system need to be connected by corresponding pipelines, the dispersion of the installation positions of the parts will cause heat. The pipelines in the management system are intricate and complicated. In addition, when installing each component, the corresponding installation location and installation space need to be considered, which brings a severe test to the installation and layout of the entire vehicle.
  • the embodiment of the present application redesigns the thermal management system, which is beneficial to the integration of thermal management components. Specifically, it can include two aspects of integration: one is the structural integration of thermal management components, and the other is the integration of electrical control of thermal management components.
  • FIG. 1 is a schematic diagram of structural integration of a thermal management system provided by an embodiment of the application.
  • this application combines compressors, heat exchangers (such as the plate heat exchangers described in the following embodiments), water pumps, water valves, etc. that can actively provide the cooling, heat, and water flow required by the thermal management system.
  • the components are structurally integrated into the thermal management integrated module through the compact design and installation of the structure, while other components with thermal management requirements, such as the motor, radiator water tank, battery pack, air-conditioning box, etc., use water pipes Connect it with the thermal management integration module, and realize the function of structural integration of the thermal management system through the flow of cold water and hot water in the connecting water pipe.
  • FIG. 2 is an example diagram of a thermal management integrated module.
  • the thermal management integrated module may include a compressor, a plate heat exchanger, an integrated valve, an integrated valve pump, and more.
  • Functional valves and other components can be connected by pipes between different components.
  • the multifunctional valve may be an integrated body formed by a water pump, an expansion kettle and a waterway three-way valve;
  • the integrated valve may be an integrated body formed by a waterway three-way valve and a three-way water pipe;
  • the integrated valve pump may be a water pump and The integrated body formed by the waterway three-way valve.
  • the above-mentioned components can be arranged together by a fixed frame, thereby forming an integrated structure as a whole.
  • the integrated body structure can be easily installed in the front compartment of the automobile in a modular manner, and on the other hand, the integrated design is beneficial to save space.
  • FIG. 2 is only used to exemplarily explain an integrated solution of the present application, and is not a limitation.
  • the shape, installation position, connection relationship, etc. of each component in the integrated structure are all examples and not limitations.
  • the components in the thermal management integrated module can also be integrated through other methods instead of using a fixed frame.
  • different components can be connected by pipes and are close in distance to achieve integration.
  • different components can also be integrated design to achieve integration, and so on.
  • a number of components such as compressors, throttling devices, heat exchangers, gas-liquid separators, solenoid valves, water pumps, valves, etc., that can actively provide the cooling, heat, and water flow required by the thermal management system can be used.
  • One or more of the management components are integrated.
  • the integration can be achieved by using a fixed frame to fix the components, or by other methods, for example, the integration can be achieved by connecting through a fixed pipe, or for example, the integration can also be achieved by an integrated design.
  • FIG. 3A is an example diagram of an integrated valve pump provided by an embodiment of the application.
  • the water pump and the waterway three-way valve can be fixedly arranged together through a fixed frame, and the water pump The output end of the three-way valve can be connected to one input end of the three-way valve through a soft pipe or a hard pipe.
  • FIG. 3B is an example diagram of an integrated valve pump provided by an embodiment of the application.
  • the water pump and the waterway three-way valve can be fixedly arranged together through an integrated design. That is, the output end of the water pump is directly connected to an input end of the three-way valve.
  • FIG. 3C is an example diagram of another integrated valve pump provided by an embodiment of the application.
  • the water pump and the waterway three-way valve can be set together through a fixed pipeline, namely The output end of the water pump is connected to one end of the fixed pipe, and the other end of the fixed pipe is connected to an input end of the three-way valve.
  • FIG. 3A, FIG. 3B, and FIG. 3C are only used to explain the application solution and not to limit it.
  • the components of the thermal management system of automobiles are dispersedly installed in the front compartment and the passenger compartment, and the positions of the components are relatively divergent.
  • the pipeline of the refrigerant system is longer, and the resistance along the way when the refrigerant flows increases, and the refrigerant flow rate will decrease due to the increase in resistance, resulting in a decrease in the energy efficiency of the system .
  • the installation volume of the thermal management system of the electric vehicle can be greatly reduced, and the occupied space is saved; at the same time, it is ensured that the battery and the passenger compartment are in various working conditions. Operate within a suitable temperature range to reduce the flow resistance in the refrigeration system and improve the energy efficiency of the system.
  • the thermal management system includes a controller (or thermal management controller) for thermal management control.
  • the controller is used to control compressors, heat exchangers, water pumps, water valves, etc., which can actively provide the cooling and heat required by the thermal management system Work with water flow components (such components can also be called controlled components), so as to provide related services for other components with thermal management requirements, such as motors, cooling water tanks, battery packs, and air-conditioning boxes in automobiles.
  • the controller in order to save space in the passenger compartment, the controller can be deployed near the air-conditioning box of the passenger compartment.
  • the drive unit (or drive circuit, or drive element, or drive module, or drive veneer) of controlled components such as water pumps, valves, compressors, and throttling devices can be used. Separate from the actuator, and then integrate the drive units of these controlled components together on a drive board (or integrated drive board, or integrated circuit board), so as to realize the electronic control integration of each controlled component.
  • the drive plate can be installed in the compressor in the front compartment, or separately installed in other places. In this way, the controller only needs to be connected to the drive board in the front compartment through a bus, and the actuators of each controlled component are electrically connected to the drive board. In other words, the controller can uniformly send control instructions to the drive board, so that the drive board can further drive related components to work, thereby realizing the function of the thermal management system.
  • the electronic control components of each component of the thermal management system of automobiles are relatively independent, and the electrical control components of each component and the thermal management controller need to be electrically connected by a wire harness.
  • Some of the components are distributed in the front compartment, mainly water pumps, compressors, valves and some temperature sensors, and others are distributed in the passenger compartment, mainly the actuators in the air conditioning box and cabin sensors, etc.
  • the thermal management controller is Because the traditional air-conditioning controller is located in the passenger compartment, all these controlled components are connected to the thermal management controller, which causes the wiring harness of the electric control system to be too long.
  • the drive single board of each component does not need to be connected to the thermal management controller by a separate wiring harness, which reduces the length of the bus bundle; at the same time, based on the front compartment
  • the integrated structure of the thermal management components makes the connection harness between the components and the integrated drive board also greatly shortened. Therefore, the implementation of this application can effectively reduce the length of the wire harness of the thermal management system, which not only saves wiring space, but also reduces wiring costs.
  • FIG. 5 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • the thermal management system includes: a refrigerant loop system, a motor liquid cooling loop system, and an air conditioning liquid cooling system.
  • Loop system where:
  • the refrigerant loop system includes: a compressor 1, a refrigerant four-way reversing valve 2, a plate heat exchanger 3, a throttle valve 4, a plate heat exchanger 5, and a gas-liquid separator 6. Both the plate heat exchanger 3 and the plate heat exchanger 5 contain two pairs of inlet and outlet passages. One pair of inlet and outlet passages are refrigerant passages for circulating refrigerant, and the other pair of inlet and outlet passages are liquid cooling passages for circulation. Coolant. Heat exchange (referred to as heat exchange, or heat exchange) can be carried out between the refrigerant in the refrigerant channel and the cooling liquid in the liquid cooling channel.
  • the outlet of the compressor 1 is connected to the first end (namely end A) of the refrigerant four-way reversing valve 2 through a pipeline, and the second end (namely end B) of the four-way reversing valve 2 is connected to the plate heat exchanger 3
  • the first end of the refrigerant passage is connected, the second end of the refrigerant passage in the plate heat exchanger 3 is connected to the first end of the throttle valve 4, and the second end of the throttle valve 4 exchanges with the plate heat exchanger
  • the first end of the refrigerant passage in the plate heat exchanger 5 is connected, and the second end of the refrigerant passage in the plate heat exchanger 5 is connected to the third end (namely C end) of the refrigerant four-way reversing valve 2 for cooling
  • the fourth end (that is, the D end) of the four-way reversing valve 2 is connected to the first end of the gas-liquid separator 6, and the second end of the gas-liquid separator 6 is connected to the inlet of the compressor 1
  • the motor liquid cooling loop system includes a motor liquid cooling loop that circulates coolant through the circulation of the motor, and the two pipes in the motor liquid cooling loop are respectively connected to the first end and the first end of the liquid cooling channel in the plate heat exchanger 3
  • the second end; the motor liquid cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger 3, that is, the coolant of the motor liquid cooling loop system and the refrigerant of the refrigerant loop system can be exchanged in the plate type
  • the heat exchanger 3 performs heat exchange.
  • the air-conditioning liquid-cooling loop system includes an air-conditioning liquid-cooling loop that circulates coolant through the air-conditioning box, and the pipes in the air-conditioning liquid-cooling loop are respectively connected to the first end and the second end of the liquid-cooling channel in the plate heat exchanger 5 Two ends; the air-conditioning liquid-cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger 5, that is, the coolant of the air-conditioning liquid-cooling loop system and the refrigerant of the refrigerant loop system can be in the plate heat exchanger In 5, heat exchange is performed.
  • the AB end and CD end of the four-way refrigerant valve are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchanger 3 through the AB end of the four-way refrigerant valve 2 to condense and release heat.
  • the throttle valve 4 After passing through the throttle valve 4, it is throttled into a low-temperature gas-liquid two-phase refrigerant, and then evaporates and absorbs heat through the plate heat exchanger 5, and absorbs the heat in the passenger compartment (the air conditioner is installed in the passenger compartment) from the plate heat exchanger 5 Finally, it enters the gas-liquid separator 6 through the DC end of the refrigerant four-way valve 2, and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6, thereby realizing the circulation of the refrigerant.
  • the coolant of the motor liquid cooling loop system can absorb heat through the plate heat exchanger 3, and heat dissipation is achieved through the motor liquid cooling loop.
  • the AD and BC ends of the four-way refrigerant valve are connected, and the high-temperature refrigerant discharged from the compressor 1 passes through the AD end of the four-way refrigerant valve 2 and enters the plate heat exchanger 5 for condensation and heat release.
  • the heat required for heating the passenger compartment air conditioner is installed in the passenger compartment
  • the BC end of the agent four-way valve 2 enters the gas-liquid separator 6 and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6.
  • the coolant of the motor liquid cooling loop system can absorb heat in the motor liquid cooling loop (for example, motor heat), and release the heat through the plate heat exchanger 3, thereby achieving heat recovery and improving the working efficiency of the refrigerant loop system.
  • the thermal management system of the embodiment of the present application can be applied to traditional energy vehicles (internal combustion engine vehicles), and may also be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • the refrigerant loop system is simplified by using the refrigerant four-way reversing valve; by using two plate heat exchangers, the refrigerant in the refrigerant loop can pass through The plate heat exchanger 3 exchanges heat with the cooling liquid of the motor liquid cooling loop, and exchanges heat with the cooling liquid of the air conditioning liquid cooling loop through the plate heat exchanger 5, thereby avoiding the use of parallel flow heat exchangers. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the structural integration of the thermal management system can be realized, and the electronic control integration of the thermal management system can be implemented. Be realized. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • FIG 6 is a schematic structural diagram of another thermal management system provided by an embodiment of the present application. As shown in Figure 6, the thermal management system differs from the thermal management system shown in Figure 5 in that the thermal management of Figure 6 The system adds a battery liquid cooling loop system to the thermal management system shown in Figure 5.
  • the battery liquid cooling loop system includes a battery liquid cooling loop that circulates cooling liquid through the battery pack, and the battery liquid cooling loop and
  • the aforementioned air-conditioning liquid-cooling loop system common pipe is connected to the first and second ends of the liquid-cooling channel in the plate heat exchanger 5; the battery liquid-cooling loop system and the refrigerant loop system pass through the plate heat exchanger 5 Heat exchange is performed, that is, the cooling liquid of the battery liquid cooling loop system can also exchange heat with the refrigerant of the refrigerant loop system in the plate heat exchanger 5.
  • the AB end and CD end of the four-way refrigerant valve are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchanger 3 through the AB end of the four-way refrigerant valve 2 to condense and release heat.
  • the throttle valve 4 After passing through the throttle valve 4, it is throttled into a low-temperature gas-liquid two-phase refrigerant, and then evaporates and absorbs heat through the plate heat exchanger 5, and absorbs the heat in the passenger compartment (the air conditioner is installed in the passenger compartment) from the plate heat exchanger 5 , And/or, absorb the heat in the battery pack of the battery liquid cooling loop from the plate heat exchanger 5.
  • the coolant of the motor liquid cooling loop system can absorb heat through the plate heat exchanger 3, and heat dissipation is achieved through the motor liquid cooling loop.
  • the AD and BC ends of the four-way refrigerant valve are connected, and the high-temperature refrigerant discharged from the compressor 1 passes through the AD end of the four-way refrigerant valve 2 and enters the plate heat exchanger 5 for condensation and heat release. , Provide the heat required for heating the passenger compartment (air conditioner is installed in the passenger compartment), and/or provide the heat required for heating the battery pack of the battery liquid cooling loop. After passing through the throttle valve 4, it is throttled into a low-temperature gas-liquid two-phase refrigerant, and then evaporates and absorbs heat through the plate heat exchanger 3, and finally enters the gas-liquid separator 6 through the BC end of the refrigerant four-way valve 2.
  • the outlet of the separator 6 enters the suction port of the compressor 1.
  • the coolant of the motor liquid cooling loop system can absorb heat in the motor liquid cooling loop (for example, motor heat), and release the heat through the plate heat exchanger 3, thereby achieving heat recovery and improving the working efficiency of the refrigerant loop system.
  • the thermal management system of the embodiment of the present application may be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • new energy vehicles such as electric vehicles, hybrid vehicles, etc.
  • the refrigerant loop system is simplified by using the refrigerant four-way reversing valve; by using two plate heat exchangers, the refrigerant in the refrigerant loop can pass through The plate heat exchanger 3 exchanges heat with the cooling liquid of the motor liquid cooling loop, and exchanges heat with the cooling liquid of the air conditioning liquid cooling loop through the plate heat exchanger 5, and/or, through the plate heat exchanger 5 and the battery
  • the cooling liquid in the liquid cooling loop performs heat exchange, thereby avoiding the use of parallel flow heat exchangers.
  • the structural integration of the thermal management system can be realized, and the electronic control integration of the thermal management system can be implemented. Be realized. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • FIG. 7 is a detailed structural diagram of a thermal management system provided by an embodiment of the present application.
  • the thermal management system is an integrated thermal management including a refrigerant four-way reversing valve structure. system.
  • an integrated body 7, a multifunctional valve 8, an integrated valve 14, an integrated valve pump 15 and an integrated pot pump 18 are integrated.
  • the integrated body 7 is specifically an integrated body composed of a plurality of plate heat exchangers (plate heat exchangers 3 and 5), a refrigerant four-way reversing valve 2 and a throttle valve 4.
  • the refrigerant temperature and pressure sensor can be arranged in Connect the piping of each integrated component.
  • the multi-function valve 8 is an integrated body composed of a water pump 8-1, an expansion kettle 8-2 and a three-way water valve 8-3.
  • the multi-function valve 8 is used to realize the water pump, water flow reversal (or coolant reversal) and Water storage function.
  • the first end of the waterway three-way valve 8-3 is connected to one end of the expansion kettle 8-2, and the second end of the waterway three-way valve 8-3 provides an external interface (marked as end B in the figure, for example, it can be used to connect a battery Package 16), the third end of the waterway three-way valve 8-3 provides an external interface (marked as the C end in the figure, for example, it can be used to connect to the plate heat exchanger 3); the other end of the expansion kettle 8-2 is connected to the water pump 8- One end of 1 and the other end of the water pump 8-1 provide an external interface (marked as end A in the figure, for example, it can be used to connect the power device 9).
  • the integrated valve 14 is an integrated body composed of a waterway three-way valve 14-1 and a three-way water pipe, and is used to realize the water flow reversing function.
  • the first end of the waterway three-way valve 14-1 provides an external interface (marked as end A in the figure, for example, for connecting to the motor 11)
  • the second end of the waterway three-way valve 14-1 provides an external interface ( In the figure, it is marked as B end, for example, it is used to connect the heat dissipation water tank 12)
  • the third end of the waterway three-way valve 14-1 is connected to the first end of the three-way water pipe
  • the second end of the three-way water pipe provides an external interface (as shown in the figure)
  • the third end of the three-way water pipe provides an external interface (marked as the C end in the figure, for example, for connecting the integrated valve pump 15).
  • the integrated valve pump 15 is an integrated body composed of a water pump 15-1 and a waterway three-way valve 15-2, and is used to realize the water pump and water flow reversing functions.
  • one end of the water pump 15-1 provides an external interface (marked as end A in the figure, for example, for connecting to the plate heat exchanger 5), and the other end of the water pump 15-1 is connected to the first of the waterway three-way valve 15-2
  • the second end of the waterway three-way valve 15-2 can provide two external interfaces.
  • the external interface B and D can be provided through a three-way water pipe.
  • the B end is for example connected to the integrated valve 14, and the D end For example, it is used to connect the electric heater 17; the third end of the waterway three-way valve 15-2 provides an external interface (denoted as the C end in the figure, for example, it is used to connect the air-conditioning heat exchanger 21).
  • the integrated kettle pump 18 is an integrated body composed of a water pump 18-2 and an expansion kettle 18-1, and is used to realize the water pump and water storage functions.
  • One end of the expansion kettle 18-1 is connected to one end of the water pump 18-2, the other end of the expansion kettle 18-1 provides an external interface (for example, for connecting the heater core 20), and the other end of the water pump 18-2 provides an external interface (such as Used to connect electric heater 19).
  • the connection relationship of the refrigerant loop is as follows: the outlet of the compressor 1 is connected to the end A of the four-way refrigerant reversing valve 2, and the end B of the four-way refrigerant reversing valve 2 Connected to one end of the plate heat exchanger 3 (that is, one end of the refrigerant passage of the plate heat exchanger 3), and the other end of the plate heat exchanger 3 (that is, the other end of the refrigerant passage of the plate heat exchanger 3) is connected to the throttle One end of the valve 4 is connected, the other end of the throttle valve 4 is connected to one end of the plate heat exchanger 5 (that is, one end of the refrigerant channel of the plate heat exchanger 5), and the other end of the plate heat exchanger 5 (that is, the plate heat exchanger)
  • the other end of the refrigerant passage of 5) is connected to the D end of the four-way refrigerant reversing valve 2, the C end of the four-
  • connection relationship of the battery liquid cooling loop is as follows: the end A of the integrated valve pump 15 and one end of the plate heat exchanger 5 (that is, one end of the liquid cooling channel of the plate heat exchanger 5)
  • the D terminal is connected to one end of the electric heater 17, and the other end of the electric heater 17 is connected to the inlet of the cooling device of the battery pack 15.
  • the outlet of the cooling device of the battery pack 16 can be connected to the plate through the three-way water pipe.
  • the other end of the heat exchanger 5 that is, the other end of the liquid cooling channel of the plate heat exchanger 5) and the B end of the multifunctional valve 8.
  • the cooling device of the battery pack 15 is a device for heating or cooling the battery pack by circulating a cooling liquid.
  • the cooling device of the battery pack 15 may be a water-cooled coil or a cooling plate in contact with the battery pack, which is not limited herein.
  • the connection relationship of the air-conditioning liquid-cooling loop (also referred to as the passenger compartment liquid-cooling loop) is as follows: the C-end of the integrated valve pump 15 and the heating, ventilation, and air conditioning (Heating One end of the air conditioning heat exchanger 21 in the Ventilation and Air Conditioning (HVAC) system is connected, and the other end of the air conditioning heat exchanger 21 can be connected to the plate heat exchanger after being combined with the outlet of the battery pack 16 through a three-way water pipe 5 at the other end.
  • the HVAC system may specifically include an air-conditioning heat exchanger 21, a heating core 20 and a fan 22.
  • the air-conditioning heat exchanger 21 can be used to realize the cooling function of the passenger compartment
  • the heater core 20 can be used to realize the heating function of the passenger compartment
  • the fan 22 can be used to realize the blowing function of the passenger compartment.
  • the combination of the above devices can also achieve other functions.
  • the air-conditioning heat exchanger 21 and the heater core 20 are used together to achieve the dehumidification function of the passenger compartment.
  • the thermal management system shown in FIG. 7 may also include a warm air liquid cooling loop (also called a passenger compartment warm air loop), and the connection of the warm air liquid cooling loop
  • a warm air liquid cooling loop also called a passenger compartment warm air loop
  • the connection of the warm air liquid cooling loop The relationship is as follows: the outlet of the integrated kettle pump 18 (that is, the outlet of the water pump 18-2) is connected to the electric heater 19, the other end of the electric heater 19 is connected to the heater core 20 in the HVAC, and the other end of the heater core 20 is Connect the inlet of the integrated kettle pump 18 (that is, the inlet of the expansion kettle 18-1).
  • connection relationship of the motor liquid cooling loop (also known as the power system liquid cooling loop) is as follows:
  • the C terminal of the multifunctional valve 8 (that is, the waterway three-way valve 8-3
  • the C terminal, or the third end of the multifunctional valve 8) is connected to one end of the plate heat exchanger 3
  • the A terminal of the multifunctional valve 8 (that is, the A terminal of the water pump 8-1) is connected to one end of the cooling device of the power device 8.
  • the other end of the cooling device of the power device 9 is connected to one end of the cooling device of the motor controller 10
  • the other end of the cooling device of the motor controller 10 is connected to one end of the cooling device of the motor 11, and the other end of the cooling device of the motor 11 is connected to the heat sink respectively.
  • the cooling device of the power device 9 is a device for heating or cooling the power device by circulating a cooling liquid
  • the cooling device of the motor controller 10 is a device for heating or cooling the motor controller by circulating a cooling liquid
  • the cooling device of the motor 11 is a device for heating or cooling the motor by circulating a cooling liquid.
  • the integrated body 7, the multifunctional valve 8, the integrated valve 14, the integrated valve pump 15, and the integrated pot pump 18 can also be integrated together to become the thermal management integrated module described above.
  • Figure 8 is a schematic diagram of the flow of related working fluids in the thermal management system when the passenger compartment cooling, battery cooling, and motor cooling scenarios are realized, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the air conditioner. The flow direction of the liquid cooling loop and the flow direction of the battery liquid cooling loop are shown. In this article, the gray areas in the thermal management system all represent loops that do not require working fluid to pass through.
  • the flow direction of the refrigerant circuit is described as follows:
  • the AB end and DC end of the four-way refrigerant valve 2 are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchange through the AB end of the four-way refrigerant valve 2.
  • the condenser 3 conducts condensation and heat release. After passing through the throttle valve 4, it is throttled into a low-temperature gas-liquid two-phase refrigerant, and then passes through the plate heat exchanger 5 for evaporation and heat absorption, and absorbs the battery and the passenger compartment from the plate heat exchanger 5.
  • the heat finally enters the gas-liquid separator 6 through the DC end of the refrigerant four-way valve 2 and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6.
  • the flow direction of the motor liquid cooling loop is described as follows:
  • the B terminal of the multifunctional valve 8 of the motor liquid cooling loop is closed, and the C terminal receives the high temperature liquid output from the plate heat exchanger 3, and after being output through the A terminal, it sequentially passes through the power device 9
  • the motor controller 10 and the motor 11 close the A-side of the integrated valve 14 so that the high-temperature liquid is cooled by the heat dissipation water tank 12.
  • the fan 13 can be used to further dissipate heat, and then enter the plate heat exchanger 3 again.
  • the flow direction of the air conditioning liquid cooling loop and the battery liquid cooling loop are described as follows:
  • the C and D ends of the integrated valve pump 15 that belong to the battery liquid cooling loop and the air conditioning liquid cooling loop are opened, and the A terminal receives the heat exchange from the plate
  • the cryogenic liquid output from the device 5 part of the cryogenic liquid is output from the C end, and passes through the air-conditioning heat exchanger 21 to achieve the purpose of cooling the passenger compartment.
  • Another part of the low-temperature liquid is output from the D terminal, passes through the electric heater 17, and absorbs the heat of the battery in the battery pack 16 to achieve the purpose of cooling the battery pack 16.
  • the electric heater 17 is not turned on and only serves as a circulation function.
  • the function of adjusting the cooling capacity of the battery pack and the passenger compartment can be realized by adjusting the opening degree of the waterway three-way valve in the integrated valve pump 15.
  • Figure 9 is a schematic diagram of the flow of working fluids in the thermal management system under the scenario of realizing passenger compartment heating and battery heating, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the air conditioning fluid. The flow direction of the cold loop, the flow direction of the battery liquid cooling loop and the flow direction of the warm air liquid cooling loop are shown.
  • the flow direction of the refrigerant circuit is described as follows: the AD and BC ends of the four-way refrigerant valve 2 are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchange through the AD end of the four-way refrigerant valve 2.
  • the condenser 5 conducts condensation and heat release to provide the heat required for heating the battery and the passenger compartment; after passing through the throttle valve 4, it is throttled into a low-temperature gas-liquid two-phase refrigerant, and then passes through the plate heat exchanger 3 to evaporate and absorb heat.
  • the waste heat in the motor or the heat in the environment in the heat exchanger 3 finally enters the gas-liquid separator 6 through the BC end of the refrigerant four-way valve 2, and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6 .
  • the flow direction of the motor liquid cooling loop is described as follows:
  • the B terminal of the multifunctional valve 8 of the motor liquid cooling loop is closed, and the C terminal receives the cryogenic liquid output from the plate heat exchanger 3, and after being output through the A terminal, it sequentially passes through the power device 9 , Motor controller 10 and motor 11.
  • the B-side of the integrated valve 14 can be closed, so that the high-temperature liquid from the motor 11 enters directly from the A-side of the integrated valve 14, and the C-side is output to the plate heat exchanger 3 to provide the heat required for evaporation. .
  • the A side of the integrated valve 14 is closed, and the B side is opened, so that after the cryogenic liquid comes out of the motor 11, it absorbs heat from the environment, and then enters the plate heat exchanger from the C side of the integrated valve. 3 in.
  • the flow direction of the air conditioning liquid cooling loop and the battery liquid cooling loop are described as follows:
  • the C and D ends of the integrated valve pump 15 that belong to the battery liquid cooling loop and the air conditioning liquid cooling loop are opened, and the A terminal receives the heat exchange from the plate
  • the high-temperature liquid output from the device 5 is respectively output from the C terminal, through the air-conditioning heat exchanger 21, to achieve the purpose of heating the passenger compartment; output from the D terminal, through the electric heater 17, to achieve the purpose of heating the battery pack 16, heating the battery and
  • the cryogenic liquid behind the passenger compartment enters the plate heat exchanger 5 again through the three-way water pipe.
  • the function of adjusting the heat distribution of the battery and the passenger compartment can be realized by adjusting the opening of the three-way valve of the waterway in the integrated valve pump 15.
  • the flow direction of the warm air and liquid cooling loop is described as follows: if the water temperature at the C and D ends of the integrated valve pump 15 is not enough, the electric heater 17 can be turned on to realize the function of auxiliary heating battery, and the integrated kettle pump 18 and electric heater 19 can be turned on , To achieve the function of auxiliary heating of the passenger compartment.
  • Fig. 10 is a schematic diagram of the flow of related working fluids in the thermal management system in the scenario of realizing battery natural cooling.
  • Fig. 10 when the ambient temperature is low, only natural cooling of the battery and the motor is required.
  • the refrigerant circuit is closed, and the heat of the battery and the motor can be naturally cooled by the heat dissipation water tank 12.
  • the direction of the liquid cooling loop is described as follows: the C terminal of the multifunctional valve 8 is closed, the B terminal receives the high-temperature liquid from the outlet of the battery pack 16, and the high-temperature liquid discharged from the A terminal passes through the power device 9, the motor controller 10, and the motor, respectively. 11. At this time, the end A of the integrated valve 14 is closed, so that the high-temperature liquid at the outlet of the motor 11 is cooled into a low-temperature liquid through the heat dissipation water tank 12. Since the C end of the multifunctional valve 8 is closed, the low-temperature liquid from the heat dissipation water tank 12 can only pass through the integration valve 14 The D end of the pump enters the B end of the integrated valve pump 15.
  • Figure 11 is a schematic diagram of the flow of related working fluids in the thermal management system under the scenario of battery heating and passenger compartment dehumidification, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the air conditioning liquid cooling loop. The flow direction of the road, the flow direction of the battery liquid cooling loop and the flow direction of the warm air liquid cooling loop are shown.
  • the flow direction of the refrigerant circuit is described as follows: the AB end and DC end of the refrigerant four-way valve 2 are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchange through the AB end of the refrigerant four-way valve 2
  • the condenser 3 conducts condensation and heat release, throttling into a low-temperature gas-liquid two-phase refrigerant through the throttle valve 4, and then evaporates and absorbs heat through the plate heat exchanger 5, and absorbs the heat in the passenger compartment from the plate heat exchanger 5. Finally, it enters the gas-liquid separator 6 through the DC end of the refrigerant four-way valve 2, and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6.
  • the flow direction of the motor liquid cooling loop is described as follows: the B and C ends of the multifunctional valve 8 of the motor liquid cooling loop are opened at the same time, the C end receives the high temperature liquid output from the plate heat exchanger 3, and the B end receives the battery pack 16
  • the output cryogenic liquid after being output through the A terminal, passes through the power device 9, the motor controller 10, and the motor 11 in sequence.
  • the B end of the integrated valve 14 is closed, so that the high temperature liquid from the motor 11 enters from the A end of the integrated valve 14, and then is output from the C end of the integrated valve 14 to the plate heat exchanger 3, and the integrated valve 14
  • the D end of the integrated valve pump 15 passes through the electric heater 17 and then enters the battery pack 16 via the B and D ends of the integrated valve pump 15.
  • the flow direction of the air-conditioning liquid-cooling loop is described as follows:
  • the A-end of the integrated valve pump 15 of the air-conditioning liquid-cooling loop receives the low-temperature liquid output from the plate heat exchanger 5, and then enters the air-conditioning heat exchanger 21 in the HVAC after being output from the C-end.
  • the high-temperature liquid at the outlet of the heat exchanger 21 returns to the plate heat exchanger 5 again.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the integrated pot pump 18 and the electric heater 19 of the warm air and liquid cooling loop are turned on, so that the air-conditioning heat exchanger 21 is cooled and the warm air core 20 is heated, thereby realizing the dehumidification of the passenger compartment.
  • the flow direction of the battery liquid cooling loop is described as follows: the B end of the multifunctional valve 8 receives the cryogenic liquid from the outlet of the battery pack 16, and the cryogenic liquid discharged from the A end passes through the power device 9, the motor controller 10, and the motor 11, respectively. At this time, the B end of the integrated valve 14 is closed, so that the high-temperature liquid at the outlet of the motor 11 enters through the B end of the integrated valve 14, and then enters from the D end of the integrated valve 14 to the B end of the integrated valve pump 15, and flows out to the electric
  • the heater 17 enters the battery pack 16 to achieve the purpose of heating the battery.
  • FIG 12 is a schematic diagram of the flow of related working fluids in the thermal management system in the scenario of realizing battery natural cooling and heating of the passenger compartment, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the air conditioning liquid cooling.
  • the flow direction of the loop, the flow direction of the battery liquid cooling loop and the flow direction of the warm air liquid cooling loop are shown.
  • the flow direction of the refrigerant circuit is described as follows: the AD and BC ends of the four-way refrigerant valve 2 are connected, and the high-temperature refrigerant discharged from the compressor 1 enters the plate heat exchange through the AD end of the four-way refrigerant valve 2.
  • the condenser 5 performs condensation and heat release to provide the heat required for heating the passenger compartment.
  • the BC end of the vent valve 2 enters the gas-liquid separator 6 and enters the suction port of the compressor 1 from the outlet of the gas-liquid separator 6.
  • the flow direction of the motor liquid cooling loop is described as follows: the B and C ends of the multifunctional valve 8 of the motor liquid cooling loop are opened at the same time, the C end receives the low temperature liquid output from the plate heat exchanger 3, and the B end receives the battery pack 16 The output high temperature liquid passes through the power device 9, the motor controller 10 and the motor 11 in turn after being output via the A terminal.
  • the flow direction of the air-conditioning liquid-cooling loop is described as follows:
  • the A-end of the integrated valve pump 15 of the passenger compartment liquid-cooling loop receives the high-temperature liquid output from the plate heat exchanger 5, and then enters the air-conditioning heat exchanger 21 in the HVAC after being output from the C-end.
  • the low-temperature liquid at the outlet of the air-conditioning heat exchanger 21 returns to the plate heat exchanger 5 again.
  • the flow direction of the heating and liquid cooling loop is described as follows: If the heat output from the C terminal of the integrated valve pump 15 is not enough, the integrated kettle pump 18 and the electric heater 19 of the heating loop of the passenger compartment can be turned on to achieve the function of auxiliary heating of the passenger compartment .
  • end B of the multifunctional valve 8 receives the high-temperature liquid from the outlet of the battery pack 16, and the high-temperature liquid discharged from the end A passes through the power device 9, the motor controller 10, and the motor 11, respectively.
  • the end A of the integration valve 14 is closed, so that the high-temperature liquid at the outlet of the motor 11 is cooled into a low-temperature liquid through the heat dissipation water tank 12, enters through the B end of the integration valve 14, and then enters the integration valve pump 15 from the D end of the integration valve 14
  • the B-end and D-end flows out and flows through the electric heater 17 that is not turned on, and enters the battery pack 16, so as to achieve the purpose of natural cooling of the battery.
  • the refrigerant loop system is simplified by using the refrigerant four-way reversing valve; by using two plate heat exchangers, the refrigerant in the refrigerant loop can pass through The plate heat exchanger 3 exchanges heat with the cooling liquid of the motor liquid cooling loop, and exchanges heat with the cooling liquid of the air conditioning liquid cooling loop through the plate heat exchanger 5, and/or, through the plate heat exchanger 5 and the battery
  • the cooling liquid in the liquid cooling loop performs heat exchange, thereby avoiding the use of parallel flow heat exchangers.
  • the structural integration of the thermal management system can be realized, and the main components of the system can be integrated in different integrations.
  • the body also enables the implementation of the electronic control integration scheme of the thermal management system, which solves the problem of excessively long refrigerant pipelines and electronic control wiring harnesses.
  • the embodiments of the present application can also be applied to various practical application scenarios, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, and so on. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the thermal management system includes: a refrigerant loop system, a motor liquid cooling loop system, and a heater Liquid cooling loop system, where:
  • the refrigerant loop system includes: a compressor 101, a plate heat exchanger 102, a throttle valve 103, a plate heat exchanger 104, a throttle valve 109, an evaporator 110 (or air conditioner evaporator 110), and a gas-liquid separator 107.
  • Both the plate heat exchanger 102 and the plate heat exchanger 104 contain two pairs of inlet and outlet passages.
  • One pair of inlet and outlet passages are refrigerant passages for circulating refrigerant, and the other pair of inlet and outlet passages are liquid cooling passages for circulation. Coolant.
  • Heat exchange (referred to as heat exchange, or heat exchange) can be carried out between the refrigerant in the refrigerant channel and the cooling liquid in the liquid cooling channel.
  • the compressor 101, the plate heat exchanger 102, the throttle valve 103, the plate heat exchanger 104, the throttle valve 109, the air conditioner evaporator 110 and the gas-liquid separator 107 are connected in series to form a loop.
  • the compressor 101 The outlet is connected to the first end of the refrigerant passage in the plate heat exchanger 102 through a pipe, and the second end of the refrigerant passage in the plate heat exchanger 102 is connected to the first end of the throttle valve 103.
  • the second end is connected to the first end of the refrigerant passage in the plate heat exchanger 104, and the second end of the refrigerant passage in the plate heat exchanger 104 is connected to the first end of the throttle valve 109.
  • the second end is connected to the first end of the air conditioner evaporator 110, the second end of the air conditioner evaporator 110 is connected to the first end of the gas-liquid separator 107, and the second end of the gas-liquid separator 107 is connected to the compressor 101 Entrance. Therefore, a refrigerant loop (or called a first refrigerant loop) is formed, and the refrigerant loop is used to circulate refrigerant.
  • a refrigerant loop (or called a first refrigerant loop) is formed, and the refrigerant loop is used to circulate refrigerant.
  • the motor liquid cooling loop system includes a motor liquid cooling loop that circulates coolant through the circulation of the motor, and the two pipes in the motor liquid cooling loop are respectively connected to the first end and the first end of the liquid cooling channel in the plate heat exchanger 103
  • the second end; the motor liquid cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger 103, that is, the coolant of the motor liquid cooling loop system and the refrigerant of the refrigerant loop system can be exchanged in the plate Heat exchange is performed in the heat exchanger 103.
  • the warm-air liquid-cooled loop system includes a warm-air-liquid-cooled loop that circulates coolant through a warm-air core, and the pipes in the warm-air-liquid-cooled loop are connected to the liquid-cooled channels in the plate heat exchanger 102, respectively.
  • the first and second ends; the heating air liquid cooling loop system and the refrigerant loop system exchange heat through the plate heat exchanger 102, that is, the coolant of the air conditioning liquid cooling loop system and the refrigerant of the refrigerant loop system
  • the heat exchange can be performed in the plate heat exchanger 102.
  • the throttle valve 103 can be fully opened to the size of the pipe diameter, and the throttle valve 109 is normally throttled.
  • the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchangers 102 and 104 successively for condensation and heat release, and is throttled by the throttle valve 109 into a low-temperature gas-liquid two-phase refrigerant, and then passes through the air-conditioning evaporator 110 to absorb the passenger compartment (The air-conditioning evaporator is installed in the passenger compartment) The heat finally enters the gas-liquid separator 107 and enters the suction port of the compressor 101, thereby realizing the circulation of the refrigerant.
  • the cooling liquid of the motor liquid cooling loop system can absorb heat through the plate heat exchanger 104, and realize heat dissipation through the motor liquid cooling loop.
  • the cooling liquid of the warm air liquid cooling loop system can absorb heat through the plate heat exchanger 102 and output heat in the warm air liquid cooling loop.
  • the warm air core is used to heat the member cabins, thereby combining with the air conditioning evaporator 110. Refrigeration achieves the purpose of dehumidification.
  • the thermal management system of the embodiment of the present application can be applied to traditional energy vehicles (internal combustion engine vehicles), and may also be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • the loop of the refrigerant loop system is simplified without using the refrigerant four-way valve, and the heat pump air conditioning system is used when the refrigerant loop has only one flow direction.
  • the refrigerant in the refrigerant circuit can exchange heat with the cooling liquid of the motor liquid cooling circuit through the plate heat exchanger 104, and through the plate heat exchanger 102 and the warm air liquid cooling ring The cooling liquid in the circuit exchanges heat, thereby avoiding the use of parallel flow heat exchangers.
  • the structural integration of the thermal management system can be realized, and the electronic control integration of the thermal management system can be implemented. Be realized. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • FIG 14 is a schematic structural diagram of another thermal management system provided by an embodiment of the present application.
  • the thermal management system differs from the thermal management system shown in Figure 13 in that the thermal management in Figure 14
  • the system adds a battery liquid cooling loop system to the thermal management system shown in Figure 13, and adds a refrigerant branch containing a plate heat exchanger 106, thereby forming another refrigerant loop (or called The second refrigerant loop), the warm air liquid cooling system can not only realize heat exchange through the plate heat exchanger 102, but also realize heat exchange through the plate heat exchanger 106.
  • the specific description is as follows:
  • the plate heat exchanger 106 contains three pairs of inlet and outlet passages.
  • One pair of inlet and outlet passages are refrigerant passages for circulating refrigerant, and the other two pairs of inlet and outlet passages are liquid-cooled passages.
  • One of the liquid-cooled passages (which can be called The first liquid cooling channel is used to circulate the cooling liquid of the battery liquid cooling loop system, and the other liquid cooling channel (may be called the second liquid cooling channel) is used to circulate the cooling liquid of the warm air liquid cooling loop system.
  • the newly added refrigerant branch includes a throttle valve 105 and a plate heat exchanger 106.
  • the two ends are connected to the first end of the gas-liquid separator 107, thereby forming the compressor 101, the plate heat exchanger 102, the throttle valve 103, the plate heat exchanger 104, the throttle valve 105, the plate heat exchanger 106, and the gas-liquid separator.
  • the second refrigerant circuit of the separator 107 is also connected to the first end of the throttle valve 105, the second end of the throttle valve 105 is connected to the first end of the refrigerant passage of the plate heat
  • the battery liquid cooling loop system includes a battery liquid cooling loop that circulates cooling liquid through the battery pack, and the two sections of pipes in the battery liquid cooling loop are respectively connected to the first liquid cooling channel in the plate heat exchanger 106.
  • the heat exchanger 102 and/or the plate heat exchanger 106 exchange heat, that is, the coolant of the air-conditioning liquid cooling loop system and the refrigerant of the refrigerant loop system can exchange heat in the plate heat exchanger 102 or Heat exchange is performed in the plate heat exchanger 106.
  • the throttle valve 103 can be fully opened to the size of the pipe diameter, and the throttle valve 109 is normally throttled.
  • the high-temperature refrigerant discharged from the compressor 101 sequentially enters the plate heat exchangers 102 and 104 to condense and release heat, and then is throttled into a low-temperature gas-liquid two-phase refrigerant by the throttle valve 109 and the throttle valve 105 respectively, and then respectively
  • the air conditioner evaporator 110 and the plate heat exchanger 106 respectively absorb the heat of the passenger compartment (the air conditioner evaporator is installed in the passenger compartment) and the heat of the battery pack, and finally enter the gas-liquid separator 107, enter the suction port of the compressor 101, thereby achieving Refrigerant circulation.
  • the cooling liquid of the motor liquid cooling loop system can absorb heat through the plate heat exchanger 104, and realize heat dissipation through the motor liquid cooling loop.
  • the cooling liquid of the warm air liquid cooling loop system can absorb heat through the plate heat exchanger 102 and the plate heat exchanger 106, and output heat in the warm air liquid cooling loop, such as heating the member cabins through the warm air core, thereby Combined with the refrigeration of the air conditioner evaporator 110, the purpose of dehumidification is achieved.
  • the thermal management system of the embodiment of the present application may be applied to new energy vehicles (such as electric vehicles, hybrid vehicles, etc.).
  • new energy vehicles such as electric vehicles, hybrid vehicles, etc.
  • the heat pump air conditioning system is used to implement heat pump cooling and/or heating for the passenger compartment when the refrigerant circuit has only one flow direction. Function, and/or, the function of cooling and/or heating the battery pack.
  • the refrigerant in the refrigerant loop can exchange heat with the coolant in the motor liquid cooling loop through the plate heat exchanger 104, and through the plate heat exchanger 102 and the plate heat exchanger 106 It exchanges heat with the cooling liquid of the warm air liquid cooling loop, and exchanges heat with the cooling liquid of the battery liquid cooling loop through the plate heat exchanger 106, thereby avoiding the use of parallel flow heat exchangers.
  • the structural integration of the thermal management system can be realized, and the electronic control integration of the thermal management system can be implemented. Be realized. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • FIG. 15 is a detailed structural diagram of a thermal management system provided by an embodiment of the present application.
  • the thermal management system is an integrated thermal management system that does not include a refrigerant four-way reversing valve structure. system.
  • an integrated kettle pump 121, a multifunctional valve body 122, an integrated body 123, and an integrated body 124 are integrated.
  • the integrated kettle pump 121 is an integrated body composed of a water pump 121-1 and an expansion kettle 121-2, and is used to realize the water pump and water storage functions.
  • one end of the expansion kettle 121-2 is connected to one end of the water pump 121-12, the other end of the expansion kettle 121-2 provides an external interface (marked as end A, for example for connecting the battery pack 120), and the other end of the water pump 121-12
  • One end provides an external interface (denoted as end B, for example for connecting to the plate heat exchanger 106).
  • Multifunctional valve body 122 its functions include water pump, water flow reversal and water storage function
  • multifunctional valve body 122 includes water pump 122-1 and water pump 122-6, three-way water valve 122-2 and three-way water valve 122-4 , Waterway four-way valve 122-3 and kettle 122-5.
  • the waterway four-way valve 122-3 is respectively connected to the water pump 122-1, the three-way water valve 122-2, the three-way water valve 122-4 and the kettle 122-5.
  • the kettle 122-5 is also connected to the water pump 122-6 and the water pump 122.
  • the other end of -6 also provides an external interface (denoted as the C end, for example, for connecting the plate heat exchanger 104).
  • the three-way water valve 122-2 also provides two external interfaces.
  • the water pump 122-1 also provides two external interfaces, for example, one is marked as the G end, the other is marked as the E end, the G end is used for connecting the plate heat exchanger 102, for example, the E end is used for connecting the plate heat exchanger 106, for example;
  • the water valve 122-4 also provides two external interfaces, for example, one is denoted as the F end and the other is denoted as the D end. The F end is used for connecting the plate heat exchanger 106, for example, and the D end is used for connecting the heater core 111, for example.
  • the integrated body 123 is composed of multiple plate heat exchangers (plate heat exchanger 102, plate heat exchanger 104 and plate heat exchanger 106) and multiple throttle valves (throttle valve 103 and throttle valve 105).
  • the temperature and pressure sensor can also be arranged on the pipeline connecting the various integrated components.
  • the integrated body 124 is an integrated body composed of a gas-liquid separator 107 and a solenoid valve 108.
  • the plate heat exchanger 106 here contains three pairs of inlets and outlets, which can cool and heat the battery.
  • connection relationship of the refrigerant loop is as follows: the outlet of the compressor 101 is connected to one end of the plate heat exchanger 102 (that is, one end of the refrigerant channel of the plate heat exchanger 102), and the plate heat exchanger The other end of the heat exchanger 102 (that is, the other end of the refrigerant passage of the plate heat exchanger 102) is connected to one end of the throttle valve 103, and the other end of the throttle valve 103 is connected to one end of the plate heat exchanger 104 (that is, the cooling of the plate heat exchanger 104).
  • the other end of the plate heat exchanger 104 (that is, the other end of the refrigerant channel of the plate heat exchanger 104) is connected to one end of the throttle valve 105 and the throttle valve 10, and the other end of the throttle valve 105 is connected to One end of the plate heat exchanger 106 (that is, one end of the refrigerant channel of the plate heat exchanger 106) is connected, the other end of the throttle valve 109 is connected to one end of the air conditioner evaporator 110, and the other end of the air conditioner evaporator 110 is connected to the plate heat exchanger 106.
  • One end (that is, the other end of the refrigerant passage of the plate heat exchanger 106) is connected to the inlet of the gas-liquid separator 107.
  • the other end of the plate heat exchanger 104 (that is, the other end of the refrigerant passage of the plate heat exchanger 104) is connected to one end of the solenoid valve 108, and the other end of the solenoid valve 108 is connected to the inlet of the gas-liquid separator 107.
  • the outlet of the gas-liquid separator 107 is connected to the inlet of the compressor 101.
  • the throttle valve 103 is a throttle valve that can be all-passed, and a combination of a solenoid valve and an ordinary throttle valve can be used; here, the throttle valves 105 and 106 are throttle valves that can be completely closed.
  • the throttle valve can be replaced by a capillary tube, an expansion valve or a baffle, and any one with a throttle function can be used.
  • connection relationship of the warm air liquid cooling loop is as follows: Port G of the multifunctional valve body 122 is connected to one end of the plate heat exchanger 102, and the other end of the plate heat exchanger 102 is connected to the electric heating One end of the heater 114 is connected, the other end of the electric heater 114 is connected to one end of the warm air core 111, and the other end of the warm air core 111 is connected to the D port of the multifunctional valve body 122.
  • the F port of the multifunctional valve body 122 is connected to one end of the plate heat exchanger 106, and the other end of the plate heat exchanger 106 is connected to the D port of the multifunctional valve body 122.
  • connection relationship of the battery liquid cooling loop is as follows: the outlet B of the integrated pot pump 121 is connected to one end of the plate heat exchanger 106, and the other end of the plate heat exchanger 106 is connected to the battery pack 120. One end of the cooling device is connected, and the other end of the cooling device of the battery pack 120 is connected to the inlet A of the integrated pot pump 121.
  • the cooling device of the battery pack 120 is a device for heating or cooling the battery pack by circulating a cooling liquid.
  • the cooling device of the battery pack 120 may be a water-cooled coil or a cooling plate in contact with the battery pack, which is not limited herein.
  • connection relationship of the motor liquid cooling loop is as follows: the C port of the multifunctional valve body 122 is connected to one end of the plate heat exchanger 104, and the other end of the plate heat exchanger 104 is connected to the power device 117
  • the cooling device of the power device 117 is connected to one end, the other end of the cooling device of the power device 117 is connected to the end of the cooling device of the motor controller 118, the other end of the cooling device of the motor controller 118 is connected to the end of the cooling device of the motor 119, and the other end of the cooling device of the motor 119
  • One end is respectively connected with one end of the heat dissipation water tank 115 and the A port of the multifunctional valve body 122.
  • the other end of the heat dissipation water tank 115 is connected to the B end of the multifunctional valve body 122.
  • the "cooling device of the power device 117” is briefly referred to as the "power device 117”
  • the "cooling device of the motor controller 118” is also referred to as the “motor controller 118”.
  • the "cooling device of the motor 119” is simply referred to as the "motor 119”.
  • the integrated pot pump 121, the multifunctional valve body 122, the integrated body 123, and the integrated body 124 can also be integrated together to form the aforementioned integrated thermal management module.
  • Figure 16 is a schematic diagram of the flow of related working fluids in the thermal management system when the passenger compartment cooling, battery cooling, and motor cooling scenarios are realized, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery. The flow direction of the liquid cooling loop is shown.
  • the gray areas in the thermal management system all represent loops that do not require working fluid to pass through.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 103 is fully opened to the size of the pipe diameter, the throttle valves 105 and 9 are normally throttled, and the solenoid valve 108 is closed. At this time, the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchangers 102 and 104 in order to be condensed, and is throttled into a low-temperature gas-liquid two-phase refrigerant by the throttle valve 105 and the throttle valve 109, and then passes through the plate heat exchanger.
  • the evaporator 106 and the air conditioner evaporator 110 respectively absorb the heat of the battery liquid cooling loop and the heat of the passenger compartment, and finally enter the gas-liquid separator 107 and enter the suction port of the compressor 101.
  • the opening and closing of the throttle valve 105 and the throttle valve 109 can be controlled to control whether the low-temperature refrigerant enters the plate heat exchanger 106 and the air conditioner evaporator 110, so as to realize single air conditioner cooling or single battery cooling.
  • the flow direction of the motor liquid cooling loop is described as follows:
  • the G end of the multifunctional valve body 122 outputs liquid cooling medium into the plate heat exchanger 3, cools the high-temperature refrigerant, and then flows through the electric heater 114 and the warm air core 111 into the multifunctional valve in turn
  • the D port of the body 122, where the electric heater 114 is not turned on, is only used as a circulation function, the temperature damper 125 is adjusted to the coldest state, and the air bypasses the warm air core 111.
  • the liquid cooling medium enters from port D of the multifunctional valve body 122, and flows out of port C into the plate heat exchanger 104 to cool the high-temperature refrigerant again, then enters the power device 117, the motor controller 118 and the motor 119 in turn, and enters the heat sink for cooling back.
  • the flow directions of the battery liquid cooling loop are described as follows:
  • the integrated pot pump 121 pumps high temperature liquid to the plate heat exchanger 106, and is cooled by the plate heat exchanger 106 into a low temperature liquid.
  • the low temperature liquid flows through the battery pack 120 and absorbs the batteries in the battery pack 120.
  • the heat of the heat reaches the purpose of cooling the battery pack 120, which is called the high-temperature liquid returning to the integrated pot pump 121.
  • Figure 17 is a schematic diagram of the flow of working fluids in the thermal management system under the scenario of realizing passenger compartment heating and battery heating. Specifically, it includes the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the flow direction of the battery liquid. The flow direction of the cold loop and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 103 is normally throttled, the throttle valves 105 and 9 are closed, and the solenoid valve 108 is opened.
  • the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchanger 102 in order to be condensed, and enters the plate heat exchanger 104 after being throttled by the throttle valve 103 to absorb heat from the liquid cooling side. Then it enters the inlet of the gas-liquid separator 107 through the solenoid valve 108 and enters the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the G port of the multifunctional valve body 122 pumps liquid cooling into the plate heat exchanger 102 and into the electric heater 114, where the electric heater 114 controls the power output according to the water temperature, and then liquid cooling
  • the medium enters the warm air core 111, releases heat into the cabin, and then enters the D port of the multifunctional valve body 122. Then it flows from port F to the plate heat exchanger 106 back to port E of the multifunctional valve, and enters the inlet of the water pump 122-1.
  • the temperature damper 125 can bypass the damper 125 of the heating air core 111 to control whether to heat the cabin.
  • the three-way valve 122-4 has one inlet and two outlet ports, which can control the liquid cooling flow of F outlet to control whether to heat the battery.
  • the flow direction of the motor liquid cooling loop is described as follows: the C port of the multifunctional valve body 122 pumps liquid cooling into the plate heat exchanger 104, heats the low temperature refrigerant of the plate heat exchanger 104, and then passes through the power device 117 and the motor controller 118 in turn And the motor 119, enter the port A of the multifunctional valve body 122, and return to the port C of the multifunctional valve body 122. So as to realize the waste heat recovery of the electric drive.
  • the flow directions of the battery liquid cooling loop are described as follows: the integrated pot pump 121 pumps out low-temperature liquid to the plate heat exchanger 106, and is heated by the plate heat exchanger 106 into a high-temperature liquid.
  • the high-temperature liquid flows through the battery pack 120 to reach the heating temperature of the battery pack 120.
  • the purpose is to return the cryogenic liquid to the integrated kettle pump 121.
  • Figure 18 is a schematic diagram of the flow of related working fluids in the thermal management system in the scenario of battery heating and passenger compartment dehumidification, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery liquid cooling loop. The flow direction of the road and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 103 is fully opened to the pipe diameter, the throttle valve 105 is closed, the throttle valve 109 is normally throttled, and the solenoid valve 108 is closed.
  • the high-temperature refrigerant discharged by the compressor 101 enters the plate heat exchangers 102 and 4 in turn to be condensed, is throttled by the throttle valve 109 into a low-temperature gas-liquid two-phase refrigerant, and then passes through the air-conditioning evaporator 110 to absorb the heat of the passenger compartment , And finally enter the gas-liquid separator 107, enter the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the G port of the multifunctional valve body 122 pumps liquid cooling into the plate heat exchanger 102 and into the electric heater 114, where the electric heater 114 controls the power output according to the water temperature, and then liquid cooling The medium enters the warm air core 111 and releases heat into the cabin, thereby achieving the function of dehumidification. Then enter the port D of the multifunctional valve body 122. Then it flows from the F port to the plate heat exchanger 106 to realize the function of battery heating, and then returns to the E port of the multi-function valve and enters the inlet of the water pump 122-1.
  • Port C of the multifunctional valve body 122 pumps out low-temperature liquid into the plate heat exchanger 104, and then passes through the power device 117, the motor controller 118 and the motor 119 in turn, and enters the multifunctional valve body 122.
  • B port return to C port of the multifunctional valve body 122.
  • the flow directions of the battery liquid cooling loop are described as follows: the integrated pot pump 121 pumps out low-temperature liquid to the plate heat exchanger 106, and is heated by the plate heat exchanger 106 into a high-temperature liquid.
  • the high-temperature liquid flows through the battery pack 120 to reach the heating temperature of the battery pack 120.
  • the purpose is to return the cryogenic liquid to the integrated kettle pump 121.
  • Figure 19 is a schematic diagram of the flow of working fluids in the thermal management system under the scenario of battery cooling and passenger compartment heating, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery liquid cooling loop. The flow direction of the road and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 103 is fully opened to the size of the pipe diameter, the throttle valve 105 is normally throttled, the throttle valve 109 is closed, and the solenoid valve 108 is closed.
  • the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchangers 102 and 4 in turn to be condensed, is throttled by the throttle valve 105 into a low-temperature gas-liquid two-phase refrigerant, and then passes through the plate heat exchanger 106 to absorb the battery loop The heat finally enters the gas-liquid separator 107 and enters the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the G port of the multifunctional valve body 122 pumps liquid cooling into the plate heat exchanger 102 and into the electric heater 114, where the electric heater 114 controls the power output according to the water temperature, and then liquid cooling The medium enters the warm air core 111 and releases heat into the cabin, thereby achieving the purpose of heating the passenger cabin. Then enter the port D of the multifunctional valve body 122, and then directly return to the inlet of the water pump 122-1.
  • Port C of the multifunctional valve body 122 pumps out low-temperature liquid into the plate heat exchanger 104, and then passes through the power device 117, the motor controller 118 and the motor 119 in turn, and enters the multifunctional valve body 122.
  • B port return to C port of the multifunctional valve body 122.
  • the flow directions of the battery liquid cooling loop are described as follows:
  • the integrated pot pump 121 pumps high temperature liquid to the plate heat exchanger 106, and is cooled by the plate heat exchanger 106 into a low temperature liquid.
  • the low temperature liquid flows through the battery pack 120 and absorbs the batteries in the battery pack 120.
  • the heat of the heat reaches the purpose of cooling the battery pack 120, which is called the high-temperature liquid returning to the integrated pot pump 121.
  • the heat pump air conditioning system is used to implement heat pump cooling and/or heating for the passenger compartment when the refrigerant circuit has only one flow direction. Function, and/or, the function of cooling and/or heating the battery pack.
  • the refrigerant in the refrigerant loop can exchange heat with the coolant in the motor liquid cooling loop through the plate heat exchanger 104, and through the plate heat exchanger 102 and the plate heat exchanger 106 It exchanges heat with the cooling liquid of the warm air liquid cooling loop, and exchanges heat with the cooling liquid of the battery liquid cooling loop through the plate heat exchanger 106, thereby avoiding the use of parallel flow heat exchangers. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the structural integration of the thermal management system can be realized, and the main components of the system can be integrated in different integrations. In the body.
  • the embodiments of the present application can also be applied to various practical application scenarios, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, and so on. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the thermal management system is an integrated thermal management system that does not include a refrigerant four-way reversing valve structure. system.
  • an integrated pot pump 231, an integrated pot pump 232, an integrated body 228, and an integrated body 233 are integrated.
  • the integrated kettle pump 231 is an integrated body composed of a kettle 220, a water pump 221 and a water pump 222, and is used to realize the water pump and water storage functions.
  • the integrated kettle pump 232 is an integrated body composed of a kettle 226 and a water pump 225, and is used to realize the water pump and water storage functions.
  • the integrated body 228 is an integration that integrates multiple plate heat exchangers (plate heat exchanger 202, plate heat exchanger 204, plate heat exchanger 206) and multiple throttle valves (throttle valve 203 and throttle valve 205).
  • the temperature and pressure sensor can also be arranged on the pipeline connecting each integrated component;
  • the integrated body 233 is an integrated body that integrates the gas-liquid separator 207 and the solenoid valve 208.
  • connection relationship of the refrigerant loop is as follows: the outlet of the compressor 101 is connected to one end of the plate heat exchanger 202, and the other end of the plate heat exchanger 202 is connected to one end of the throttle valve 203.
  • the other end of the valve 203 is connected to one end of the plate heat exchanger 204, the other end of the plate heat exchanger 204 is connected to the throttle valve 205 and one end of the throttle valve 209, and the other end of the throttle valve 205 is connected to the plate heat exchanger 206 to throttle
  • the other end of the valve 209 is connected to one end of the air conditioner evaporator 210, and the other end of the air conditioner evaporator 210 and the other end of the plate heat exchanger 206 are both connected to the inlet of the gas-liquid separator 207.
  • the other end of the plate heat exchanger 204 is connected to one end of the solenoid valve 208, and the other end of the solenoid valve 208 is connected to the inlet of the gas-liquid separator 207.
  • the outlet of the gas-liquid separator 207 is connected to the inlet of the compressor 101.
  • the throttle valve 203 is a throttle valve that can be fully communicated, and a combination of a solenoid valve and an ordinary throttle valve can be used; here, the throttle valve 205 and the throttle valve 209 are throttle valves that can be completely closed.
  • the throttle valve can be replaced by a capillary tube, an expansion valve or a baffle, and any one with a throttle function can be used.
  • connection relationship of the heating and liquid cooling loop is as follows: the A port of the waterway four-way valve 213 is connected to one end of the plate heat exchanger 202, the B port is connected to one end of the electric heater 223, and the other end of the electric heater 223 is connected to the three-way valve
  • the inlet end of the 224 is connected, the B port of the three-way valve 224 is connected to one end of the heater core 211, and the A port is connected to one end of the plate heat exchanger 206.
  • the other end of the plate heat exchanger 206 and the heater core are both connected to the water pump
  • the inlet of 222 is connected, and the outlet of the water pump 222 is connected with the other end of the plate heat exchanger 202.
  • connection relationship of the battery liquid cooling loop is as follows: the outlet B of the water pump 225 is connected to one end of the plate heat exchanger 206, the other end of the plate heat exchanger 206 is connected to one end of the cooling device of the battery pack 227, and the cooling device of the battery pack 227 The other end is connected to the inlet of the kettle 226, and the outlet of the kettle 226 is connected to the inlet of the water pump 225.
  • the cooling device of the battery pack 227 is a device that heats or cools the battery pack by circulating a cooling liquid.
  • the cooling device of the battery pack 227 may be a water-cooled coil or a cooling plate in contact with the battery pack, which is not limited herein.
  • connection relationship of the motor liquid cooling loop is as follows: the outlet of the water pump 221 is connected to one end of the plate heat exchanger 204, the other end of the plate heat exchanger 204 is connected to the C port of the waterway four-way valve 213, and the waterway four-way valve 213 is connected to the D port
  • the cooling device of the power device 214 is connected to one end of the cooling device of the power device 214.
  • the other end of the cooling device of the power device 214 is connected to the cooling device of the motor controller 215.
  • the other end of the cooling device of the motor controller 215 is connected to the cooling device of the motor 216.
  • the other end of the cooling device is connected to the inlet of the three-way valve 217, the A end of the three-way valve 217 is directly connected to the inlet of the kettle 220, the B end of the three-way valve is connected to one end of the heat dissipation water tank 218, and the other end of the heat dissipation water tank 218 is connected to the kettle 220 220 entrance connection.
  • the outlet of the kettle 220 is connected to the inlet of the water pump 221.
  • the "cooling device of the power device 214" is briefly referred to as the "power device 214”
  • the “cooling device of the motor controller 215" is simply referred to as the "motor controller 215".
  • the “cooling device of the motor 216” is simply referred to as the "motor 216”.
  • the integrated kettle pump 231, the integrated kettle pump 232, the integrated body 228, and the integrated body 233 can also be integrated together to form the thermal management integrated module described above.
  • Figure 21 is a schematic diagram of the flow of related working fluids in the thermal management system when the passenger compartment cooling, battery cooling, and motor cooling scenarios are realized, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery. The flow direction of the liquid cooling loop is shown.
  • the gray areas in the thermal management system all represent loops that do not require working fluid to pass through.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 203 is fully opened to the pipe diameter, the throttle valves 205 and 209 are normally throttled, and the solenoid valve 208 is closed. At this time, the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchangers 202 and 4 in order to be condensed, and is throttled into a low-temperature gas-liquid two-phase refrigerant through the throttle valve 205 and the throttle valve 209, and then passes through the plate heat exchanger.
  • the evaporator 206 and the air conditioner evaporator 210 absorb the heat of the battery liquid cooling loop and the heat of the passenger compartment respectively, and finally enter the gas-liquid separator 207 and enter the suction port of the compressor 101.
  • the opening and closing of the throttle valve 205 and the throttle valve 209 can be controlled to control whether the low-temperature refrigerant enters the plate heat exchanger 206 and the air conditioner evaporator 210, so as to realize single air conditioner cooling or single battery cooling.
  • the flow direction of the motor liquid cooling loop is described as follows: the outlet of the water pump 221 outputs the liquid cooling medium into the plate heat exchanger 204, cools the high-temperature refrigerant, and flows into the C port of the water four-way valve 213, and flows out from the B port of the water four-way valve 213 , Flows through the electric heater 223 and the three-way valve 224 in turn, enters the warm air core 211 from port B of the three-way valve 224, and enters the inlet of the water pump 22 from the outlet of the warm air core 211.
  • the temperature damper of the warm air core 211 is adjusted to the coldest state, and the air bypasses the warm air core 211.
  • the outlet of the water pump 22 outputs the liquid cooling medium into the plate heat exchanger 202 to cool the high-temperature medium in the plate heat exchanger 202 again.
  • the outlet of the plate heat exchanger 202 enters the A port of the waterway four-way valve 213, and then flows out from the B port. , Enter the power device 214, the motor controller 215 and the motor 216 in turn, enter the entrance of the three-way valve 217, and discharge from port B of the three-way valve 217 into the heat dissipation water tank 218.
  • the heat dissipation water tank 218 cools the high temperature liquid and enters the water pump via the kettle 220 221 entrance.
  • Figure 22 is a schematic diagram of the flow of working fluids in the thermal management system under the scenario of realizing passenger compartment heating and battery heating, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the flow direction of the battery liquid. The flow direction of the cold loop and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 203 is normally throttled, the throttle valve 205 and the throttle valve 209 are closed, and the solenoid valve 208 is opened.
  • the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchanger 202 in order to be condensed, and enters the plate heat exchanger 204 after being throttled by the throttle valve 203 to absorb heat from the liquid cooling side. Then it enters the inlet of the gas-liquid separator 207 through the solenoid valve 208 and enters the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the outlet of the water pump 22 pumps the liquid into the plate heat exchanger 202, then enters the A port of the waterway four-way valve 213, and then enters the electric heater 223 from the B port, where the electric heater 223
  • the power output is controlled according to the water temperature, and then the inlet of the liquid cooling medium three-way valve 224, where the three-way valve 224 is one inlet and two outlet ports, which can control the liquid cooling flow of the two outlets A and B to control whether the battery and the occupants are The cabin is heated.
  • the heated liquid returns to the inlet of the water pump 22 again.
  • the flow direction of the motor liquid cooling loop is described as follows: the outlet of the water pump 221 pumps liquid cooling into the plate heat exchanger 204, heating the low temperature refrigerant of the plate heat exchanger 204, and then passing through the C port and D port of the waterway four-way valve 213 in turn , The power device 214, the motor controller 215 and the motor 216 enter the kettle 220 through the A port of the waterway three-way valve 217, and then return to the inlet of the water pump 221. So as to realize the waste heat recovery of the electric drive.
  • the flow directions of the battery liquid cooling loop are described as follows: the integrated pot pump 232 pumps low-temperature liquid to the plate heat exchanger 206, which is heated by the plate heat exchanger 206 to a high-temperature liquid, and the high-temperature liquid flows through the battery pack 227 to reach the heating battery pack 227.
  • the purpose is to return the cryogenic liquid to the integrated pot pump 232.
  • FIG 23 is a schematic diagram of the flow of related working fluids in the thermal management system in the scenario of battery heating and passenger compartment dehumidification, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery liquid cooling loop. The flow direction of the road and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 203 is fully opened to the pipe diameter, the throttle valve 205 is closed, the throttle valve 209 is normally throttled, and the solenoid valve 208 is closed.
  • the high-temperature refrigerant discharged by the compressor 101 enters the plate heat exchanger 202 and the plate heat exchanger 4 in turn for condensation, is throttled by the throttle valve 209 into a low-temperature gas-liquid two-phase refrigerant, and then absorbed by the air-conditioning evaporator 210
  • the heat from the passenger compartment finally enters the gas-liquid separator 207 and enters the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the outlet of the water pump 22 pumps the liquid into the plate heat exchanger 202, then enters the A port of the waterway four-way valve 213, and then enters the electric heater 223 from the B port, where the electric heater 223
  • the power output is controlled according to the water temperature, and then the inlet of the liquid cooling medium three-way valve 224, and the two ports of the three-way valve A and B simultaneously discharge water to heat the battery and the passenger compartment respectively.
  • the heated liquid returns to the inlet of the water pump 222 again.
  • the flow direction of the motor liquid cooling loop is described as follows: the outlet of the water pump 221 pumps liquid cooling into the plate heat exchanger 204, heating the low temperature refrigerant of the plate heat exchanger 204, and then passing through the C port and D port of the waterway four-way valve 213 in turn
  • the power device 214, the motor controller 215 and the motor 216 enter the heat dissipation water tank 218 through the B port of the waterway three-way valve 217, and then return to the inlet of the water pump 221 via the kettle 220.
  • the flow directions of the battery liquid cooling loop are described as follows: the integrated pot pump 232 pumps low-temperature liquid to the plate heat exchanger 206, which is heated by the plate heat exchanger 206 to a high-temperature liquid, and the high-temperature liquid flows through the battery pack 227 to reach the heating battery pack 227.
  • the purpose is to return the cryogenic liquid to the integrated pot pump 232.
  • Figure 24 is a schematic diagram of the flow of related working fluids in the thermal management system under the scenario of battery cooling and passenger compartment heating, including the flow direction of the refrigerant loop, the flow direction of the motor liquid cooling loop, and the battery liquid cooling loop. The flow direction of the road and the flow direction of the warm air and liquid cooling loop are shown.
  • the flow direction of the refrigerant loop is described as follows: the throttle valve 203 is fully opened to the pipe diameter, the throttle valve 205 is normally throttled, the throttle valve 209 is closed, and the solenoid valve 208 is closed.
  • the high-temperature refrigerant discharged from the compressor 101 enters the plate heat exchanger 202 and the plate heat exchanger 204 in turn for condensation, is throttled by the throttle valve 205 into a low-temperature gas-liquid two-phase refrigerant, and then passes through the plate heat exchanger 206 It absorbs the heat of the battery loop, and finally enters the gas-liquid separator 207 and enters the suction port of the compressor 101.
  • the flow direction of the warm air and liquid cooling loop is described as follows: the outlet of the water pump 22 pumps the liquid into the plate heat exchanger 202, then enters the A port of the waterway four-way valve 213, and then enters the electric heater 223 from the B port, where the electric heater 223 The power output is controlled according to the water temperature, and then the liquid cooling medium three-way valve 224 enters, and the three-way valve B outlet water to heat the passenger compartment. The heated liquid returns to the inlet of the water pump 22 again.
  • the flow direction of the motor liquid cooling loop is described as follows: the outlet of the water pump 221 pumps liquid cooling into the plate heat exchanger 204, heating the low temperature refrigerant of the plate heat exchanger 204, and then passing through the C port and D port of the waterway four-way valve 213 in turn
  • the power device 214, the motor controller 215 and the motor 216 enter the heat dissipation water tank 218 through the B port of the waterway three-way valve 217, and then return to the inlet of the water pump 221 via the kettle 220.
  • the integrated pot pump 232 pumps high-temperature liquid to the plate heat exchanger 206, and is cooled by the plate heat exchanger 206 into a low-temperature liquid.
  • the low-temperature liquid flows through the battery pack 227 and absorbs the batteries in the battery pack 227.
  • the heat, which achieves the purpose of cooling the battery pack 227, is called high temperature liquid returning to the integrated pot pump 232.
  • the heat pump air conditioning system is used to implement heat pump cooling and/or heating for the passenger compartment when the refrigerant circuit has only one flow direction. Function, and/or, the function of cooling and/or heating the battery pack.
  • the cooling liquid By changing the position of the four-way reversing valve in the water circuit, the cooling liquid first passes through the plate heat exchanger 204 at the back of the refrigerant circuit and then through the plate heat exchanger 202 at the front in the case of refrigeration, which can better improve the cooling of the system. Time energy efficiency, reducing system energy consumption under refrigeration conditions.
  • the refrigerant in the refrigerant loop can exchange heat through the plate heat exchanger and the coolant in the motor liquid cooling loop, and through the plate heat exchanger and the warm air liquid cooling loop.
  • the cooling liquid exchanges heat through the plate heat exchanger and the cooling liquid of the battery liquid cooling loop, thereby avoiding the use of parallel flow heat exchangers. Due to the relatively small volume of the plate heat exchanger, through the application of the plate heat exchanger and the cooling liquid heat exchange method, the structural integration of the thermal management system can be realized, and the main components of the system can be integrated in different integrations. In the body.
  • the embodiments of the present application can also be applied to various practical application scenarios, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, and so on. Therefore, the implementation of the embodiments of the present application is conducive to saving the space occupied by the thermal management system in the front compartment, and also conducive to saving the cost of the thermal management system.
  • the thermal management controller for the foregoing various thermal management systems.
  • the method includes but is not limited to the following steps:
  • S1 Data acquisition step. In this step, before the thermal management controller works, it acquires the signals of the sensors installed on the pipes of the thermal management system and the thermal management requests of other controllers (such as air conditioning board controllers), such as temperature, Pressure and humidity signals and battery heating and cooling requests, etc.
  • other controllers such as air conditioning board controllers
  • S2 Mode judgment step.
  • the thermal management controller performs data processing and judgment on the acquired data according to the set thermal management strategy, and synthesizes a most suitable vehicle thermal management based on different thermal management requests System mode.
  • the thermal management controller calculates the working status of each component according to the set thermal management strategy and the judged system mode. For example, in the cooling mode, the thermal management controller calculates the speed requirements of the compressor and water pump, as well as the speed of each valve. Switch demand, etc., and then generate control signals (or control instructions, or control information, or demand signals) for the relevant controlled components of the thermal management system.
  • the relevant controlled components are components that can actively provide the cooling, heat, and water flow required by the thermal management system, such as compressors, water pumps, throttling devices, heat exchangers, gas-liquid separators, solenoid valves, Thermal management components such as valves.
  • the thermal management controller sends these control signals to the drive board.
  • the drive board is a drive unit (or drive circuit, or drive element, or drive module, or drive veneer) that separates controlled components such as water pumps, valves, compressors, and throttling devices from the actuator , And then the drive units of these controlled components are jointly integrated on a drive board (or integrated drive board, or integrated circuit board).
  • a drive board or integrated drive board, or integrated circuit board.
  • S4 Drive execution step.
  • the above-mentioned integrated drive board performs signal conversion according to the control signal sent by the thermal management controller, and then drives different thermal management components (controlled components) to execute corresponding Instructions to realize the functions of various specific application scenarios such as the thermal management system described above, such as passenger compartment cooling/heating/dehumidification, battery cooling/heating, motor cooling/heat recovery, etc.
  • the thermal management controller since the electronic control integration integrates the individual drive boards of the thermal management components on a unified drive board, the thermal management controller only needs to send control signals to the unified drive board. (Demand signal), and then the integrated drive board will perform the corresponding signal conversion according to the control signal (demand signal), and simultaneously drive the actuators of multiple components to execute the corresponding instructions. Therefore, the implementation of this application can effectively reduce the length of the wiring harness of the thermal management system, save wiring space, reduce wiring costs, and ensure the normal realization of functions in various specific application scenarios.

Abstract

一种用于汽车的热管理系统及方法,热管理系统中,制冷剂环路系统包括:压缩机(1)、制冷剂四通换向阀(2)、一板式换热器(3)、节流阀(4)、另一板式换热器(5)和气液分离器(6),形成制冷剂环路;电机液冷环路系统包括流经电机(11)的循环流通冷却液的电机液冷环路,且电机液冷环路中的管道接入到一板式换热器(3)中的液冷通道,与制冷剂环路系统通过一板式换热器(3)进行换热;空调液冷环路系统包括流经空调箱的循环流通冷却液的空调液冷环路,空调液冷环路中的管道接入到另一板式换热器(5)中的液冷通道,与制冷剂环路系统通过另一板式换热器(5)进行换热。实施用于汽车的热管理系统有利于实现节约汽车前舱空间以及节约热管理系统的成本。

Description

用于汽车的热管理系统以及基于该系统的热管理方法
本申请要求于2019年08月23日提交到中国专利局、申请号为201910789070.2、申请名称为“用于汽车的热管理系统以及基于该系统的热管理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车热管理技术,尤其涉及用于汽车的热管理系统以及基于该系统的热管理方法。
背景技术
电动汽车通常采用电机驱动行驶,这给汽车的空调系统的制热带来了挑战。电动汽车空调大多依赖于电热设备来制热,但是这种直接采用电加热的方式制热效率较低,且耗电量大,对于电动汽车而言其用电经济性不够。由于热泵技术的制热效率相对较高,因此越来越多汽车厂商倾向于采用热泵技术来提高电动汽车的空调系统的用电经济性。
目前汽车的热泵空调系统上直接换热时所采用的冷凝器主要是平行流换热器,平行流换热器通常是采用空气作为传热介质,把空气引入,使得空气流过换热器中的相关模块达到散热的目的。平行流换热器通常包含有风扇、进出口风道等,其体积较大,对风量的要求较高,这样,使得平行流换热器很难与汽车内的热管理系统中其他部件,例如压缩机、节流装置、水泵、阀门等,集成在一起布置。所以平行流换热器通常安装在汽车前舱的外侧,以便于更好与空气接触。而热管理系统中其他部件通常分散布置在汽车前舱的各个安装位置,进而导致热管理系统中的管路错综复杂,既不利于节约前舱空间,也不利于节约热管理系统的成本。
发明内容
本申请实施例提供了用于汽车的热管理系统以及基于该系统的热管理方法,有利于实现节约汽车前舱空间以及节约热管理系统的成本。
第一方面,本申请提供了一种用于汽车的热管理系统,其特征在于,包括:制冷剂环路系统、电机液冷环路系统、空调液冷环路系统,其中,所述制冷剂环路系统包括:压缩机(1)、制冷剂四通换向阀(2)、板式换热器(3)、节流阀(4)、板式换热器(5)和气液分离器(6);其中,所述压缩机(1)的出口通过管道与所述制冷剂四通换向阀(2)的第一端连接,所述制冷剂四通换向阀(2)的第二端与所述板式换热器(3)中的制冷剂通道的第一端连接,所述板式换热器(3)中的制冷剂通道的第二端与所述节流阀(4)的第一端连接,所述节流阀(4)的第二端与所述板式换热器(5)中的制冷剂通道的第一端连接,所述板式换热器(5)中的制冷剂通道的第二端与所述制冷剂四通换向阀(2)的第三端连接,所述制冷剂四通换向阀(2)的第四端与所述气液分离器(6)的第一端连接,所述气液分离器(6)的第二端与所述压缩机(1)的入口连接,以形成制冷剂环路;
所述电机液冷环路系统包括流经电机的循环流通冷却液的电机液冷环路,且所述电机液冷环路中的管道分别接入所述板式换热器(3)中的液冷通道的第一端和第二端;所述电机液冷环路系统与所述制冷剂环路系统通过所述板式换热器(3)进行换热;
所述空调液冷环路系统包括流经空调箱的循环流通冷却液的空调液冷环路,且所述空调液冷环路中的管道分别接入所述板式换热器(5)中的液冷通道的第一端和第二端;所述空调液冷环路系统与所述制冷剂环路系统通过所述板式换热器(5)进行换热。
本申请实施例的热管理系统可应用于传统能源汽车(内燃机汽车),也可能被应用于新能源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,通过使用制冷剂四通换向阀,简化了制冷剂环路系统的环路;通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器(3)与电机液冷环路的冷却液进行热交换,以及通过板式换热器(5)与空调液冷环路的冷却液进行热交换,和/或,通过板式换热器(5)与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统在结构上可以实现集成化。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于第一方面,在可能的实施方式中,所述热管理系统还包括:电池液冷环路系统,所述电池液冷环路系统包括流经电池包的循环流通冷却液的电池液冷环路,且所述电池液冷环路和所述空调液冷环路系统共用管道接入所述板式换热器(5)中的液冷通道的第一端和第二端;所述电池液冷环路系统与所述制冷剂环路系统通过所述板式换热器(5)进行换热。
本申请实施例的热管理系统可能被应用于新能源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,通过使用制冷剂四通换向阀,简化了制冷剂环路系统的环路;通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器(3)与电机液冷环路的冷却液进行热交换,以及通过板式换热器(5)与空调液冷环路的冷却液进行热交换,和/或,通过板式换热器(5)与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,也使得热管理系统的电控集成的方案可以被实现。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于第一方面,在可能的实施方式中,所述电机液冷环路系统包括:多功能阀(8)、功率器件(9)、电机控制器(10)、电机(11)、散热水箱(12)和集成阀(14),其中,所述多功能阀(8)、功率器件(9)、电机控制器(10)、电机(11)、散热水箱(12)和集成阀(14)串联接通,所述多功能阀(8)还连接到所述板式换热器(3)的液冷通道的第一端,所述集成阀(14)还连接到所述板式换热器(3)的液冷通道的第二端;所述电机(11)还直接与所述集成阀(14)连接;
所述多功能阀(8)用于实现水泵、水流换向和蓄水功能;所述集成阀(14)用于实现水流换向功能。
基于第一方面,在可能的实施方式中,所述空调液冷环路系统包括:空调换热器(21)、集成阀泵(15);所述空调换热器(21)和所述集成阀泵(15)连接,所述空调换热器(21)还连接所述板式换热器(5)的液冷通道的第一端,所述集成阀泵(15)还连接所述板式换热器(5)的液冷通道的第二端。
基于第一方面,在可能的实施方式中,所述电池液冷环路系统包括:电池包(16)、电加热器(17)和集成阀泵(15);其中,所述电池包(16)、所述电加热器(17)和集成阀泵(15)串联接通,所述电池包(16)还连接所述板式换热器(5)的液冷通道的第一端,所述集成阀泵(15)还连接所述板式换热器(5)的液冷通道的第二端;所述集成阀泵(15)用于实现水泵和水流换向功能。
基于第一方面,在可能的实施方式中,所述热管理系统还可以包括暖风液冷环路系统,所述暖风液冷环路系统包括流经暖风芯体(20)的循环流通冷却液的暖风液冷环路;所述暖 风液冷环路包括集成壶泵(18)、电加热器(19)和所述暖风芯体(20),其中,所述暖风液冷环路包括集成壶泵(18)、电加热器(19)和所述暖风芯体(20)串联接通;所述集成壶泵(18)用于实现水泵和蓄水功能。
基于第一方面,在可能的实施方式中,所述集成壶泵(18)包括膨胀水壶(18-1)和水泵(18-2),所述膨胀水壶(18-1)和所述水泵(18-2)连接,所述膨胀水壶(18-1)还连接所述暖风芯体(20),所述水泵(18-2)还连接所述电加热器(19)。
基于第一方面,在可能的实施方式中,所述多功能阀(8)为包括水泵(8-1)、膨胀水壶(8-2)和水路三通阀(8-3)的集成体,其中,所述水路三通阀(8-3)的第一端连接所述膨胀水壶(8-2),所述水路三通阀(8-3)的第二端连接所述电池包(16),所述水路三通阀(8-3)的第三端连接所述板式换热器(3)的液冷通道的第一端;所述膨胀水壶(8-2)连接所述水泵(8-1),所述水泵(8-1)连接所述功率器件(9)。
基于第一方面,在可能的实施方式中,所述集成阀(14)为包括水路三通阀(14-1)和三通水管的集成体,所述水路三通阀(14-1)的第一端连接所述电机(11),所述水路三通阀(14-1)的第二端连接所述散热水箱(12),所述水路三通阀(14-1)的第三端连接所述三通水管的第一端,所述三通水管的第二端连接所述板式换热器(3)的液冷通道的第二端,所述三通水管的第三端连接所述集成阀泵(15)。
基于第一方面,在可能的实施方式中,所述集成阀泵(15)为包括水泵(15-1)和水路三通阀(15-2)的集成体,所述水泵(15-1)分别连接到所述板式换热器(5)的液冷通道的第二端和所述水路三通阀(15-2)的第一端,所述水路三通阀(15-2)的第二端分别连接所述集成阀(14)的所述三通水管和所述电加热器(17),所述水路三通阀(15-2)的第三端连接所述空调换热器(21)
基于第一方面,在可能的实施方式中,由多个板式换热器(板式换热器3和5)和制冷剂四通换向阀(2)以及节流阀(4)可组成集成体(7),制冷剂温度压力传感器可以布置在连接各个集成元件的管路上。
基于第一方面,在可能的实施方式中,所述集成体(7)、集成壶泵(18)、所述多功能阀(8)、所述集成阀(14)、所述集成阀泵(15)中的至少一个在结构上被配置为集成结构。
基于第一方面,在可能的实施方式中,集成体(7)、多功能阀(8)、集成阀(14)、集成阀泵(15)和集成壶泵(18)可以共同集成在一起成为热管理集成模块。
可以看到,本申请中,通过对热管理部件的安装位置进行结构集成,能够极大地降低电动汽车的热管理系统的安装体积,节约占用空间;同时,保证各种工况下电池和乘员舱等均在合适的温度区间范围内运行,降低制冷系统中的流动阻力,提高系统能效。
第二方面,本申请实施例提供了一种用于汽车的热管理系统,包括:制冷剂环路系统、电机液冷环路系统、暖风液冷环路系统,其中,
所述制冷剂环路系统包括:压缩机(101)、板式换热器(102)、节流阀(103)、板式换热器(104)、节流阀(109)、空调蒸发器(110)和气液分离器(107);其中,所述压缩机(101)、所述板式换热器(102)、所述节流阀(103)、所述板式换热器(104)、所述节流阀(109)、所述空调蒸发器(110)和所述气液分离器(107)串联接通形成第一制冷剂环路;
所述电机液冷环路系统包括流经电机的循环流通冷却液的电机液冷环路,且所述电机液冷环路中的管道分别接入所述板式换热器(104)中的液冷通道的第一端和第二端;所述电机液冷环路系统与所述第一制冷剂环路系统通过所述板式换热器(104)进行换热;
所述暖风液冷环路系统包括流经暖风芯体的循环流通冷却液的暖风液冷环路,且所述暖 风液冷环路中的管道分别接入所述板式换热器(102)中的液冷通道的第一端和第二端;所述暖风液冷环路系统与所述第一制冷剂环路系统通过所述板式换热器(102)进行换热。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,简化了制冷剂环路系统的环路,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能。通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器(104)与电机液冷环路的冷却液进行热交换,以及通过板式换热器(102)与暖风液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统在结构上可以实现集成化。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于第二方面,在可能的实施方式中,所述压缩机(101)的出口通过管道与所述板式换热器(102)中的制冷剂通道的第一端连接,所述板式换热器(102)中的制冷剂通道的第二端与所述节流阀(103)的第一端连接,所述节流阀(103)的第二端与所述板式换热器(104)中的制冷剂通道的第一端连接,所述板式换热器(104)中的制冷剂通道的第二端与所述节流阀(109)的第一端连接,所述节流阀(109)的第二端与所述空调蒸发器(110)的第一端连接,所述空调蒸发器(110)的第二端与所述气液分离器(107)的第一端连接,所述气液分离器(107)的第二端接入到所述压缩机(101)的入口。
基于第二方面,在可能的实施方式中,所述热管理系统还包括电池液冷环路系统,所述制冷剂环路系统还包括制冷剂支路,其中,
所述制冷剂支路包括节流阀(105)和板式换热器(106),所述压缩机(101)、所述板式换热器(102)、所述节流阀(103)、所述板式换热器(104)、所述节流阀(105)、所述板式换热器(106)和所述气液分离器(107)串联接通形成第二制冷剂环路;
所述电池液冷环路系统包括流经电池包的循环流通冷却液的电池液冷环路,且所述电池液冷环路中的两段管道分别接入板式换热器(106)中的第一液冷通道的第一端和第二端;
所述暖风液冷环路系统中还存在管道分别接入所述板式换热器(106)中的第二液冷通道的第一端和第二端;
所述电池液冷环路系统与所述制冷剂环路系统通过板式换热器(106)进行换热;或者,
所述暖风液冷环路系统与所述制冷剂环路系统还通过所述板式换热器(106)进行换热;或者,
所述暖风液冷环路系统与所述电池液冷环路系统通过所述板式换热器(106)进行换热。
基于第二方面,在可能的实施方式中,所述节流阀(105)的第一端与所述板式换热器(104)中的制冷剂通道的第二端连接,所述节流阀(105)的第二端与板式换热器(106)的制冷剂通道的第一端连接,所述板式换热器(106)的制冷剂通道的第二端与所述气液分离器(107)的第一端连接。
基于第二方面,在可能的实施方式中,所述电机液冷环路系统包括:功率器件(117)、电机控制器(118)、电机(119)、散热水箱(115)和多功能阀体(122),其中,所述功率器件(117)、所述电机控制器(118)、所述电机(119)、所述散热水箱(115)和所述多功能阀体122串联接通,所述多功能阀体122分别连接所述板式换热器(102)的液冷通道的第二端以及所述板式换热器(104)的液冷通道的第二端;所述功率器件(117)还与所述板式换热器(104)的液冷通道的第一端连接;所述电机还直接与所述多功能阀体(122)连接;
多功能阀体(122)用于实现水泵、水流换向和蓄水功能。
基于第二方面,在可能的实施方式中,所述电池液冷环路系统包括:电池包(120)和集成壶泵(121;其中,所述电池包(120)和所述集成壶泵(121)连接,所述集成壶泵(121)还连接所述板式换热器(106)的第一液冷通道的第一端,所述电池包(120)还连接所述板式换热器(106)的第一液冷通道的第二端;所述集成壶泵(121用于实现水泵和蓄水功能。
基于第二方面,在可能的实施方式中,所述暖风液冷环路系统包括:多功能阀体(122、电加热器(114)、暖风芯体(111),其中,所述多功能阀体(122)、所述电加热器(114)和所述暖风芯体(111)串联接通,所述多功能阀体(122)还分别连接到所述板式换热器(102)的液冷通道的第二端、所述板式换热器(106)的第二液冷通道的第一端以及第二端。
基于第二方面,在可能的实施方式中,所述多功能阀体(122)包括:水泵(122-1)和水泵(122-6)、三通水阀(122-2)和三通水阀(122-4)、水路四通阀(122-3)和水壶(122-5);其中,所述水路四通阀(122-3)分别连接所述水泵(122-1)、所述三通水阀(122-2)、所述三通水阀(122-4)和所述水壶(122-5),所述水壶(122-5)还连接所述水泵(122-6);
所述三通水阀(122-2)还分别连接所述电机(119)和所述散热水箱(115);
所述水泵(122-1)还分别连接所述板式换热器(102)的液冷通道的第二端和所述板式换热器(106)的第二液冷通道的第一端;
所述三通水阀(122-4)还分别连接所述板式换热器(106)的第二液冷通道的第二端和所述暖风芯体(111);
所述水泵(122-6)还连接所述板式换热器(104)的液冷通道的第二端。
基于第二方面,在可能的实施方式中,所述集成壶泵(121)包括膨胀水壶(121-2)和水泵(121-12),所述膨胀水壶(121-2)和所述水泵(121-12)连接,所述膨胀水壶(121-2)还连接所述电池包(120),所述水泵(121-12)还连接所述板式换热器(106)的第一液冷通道的第一端。
基于第二方面,在可能的实施方式中,所述多功能阀体(122)和所述集成壶泵(121)中的至少一个在结构上被配置为集成结构。
基于第二方面,在可能的实施方式中,由多个板式换热器(板式换热器102,板式换热器104和板式换热器106)和多个节流阀(节流阀103和节流阀105)可集成为集成体(123),其中温度压力传感器也可以布置在连接各个集成元件的管路上
基于第二方面,在可能的实施方式中,集成壶泵(121)、多功能阀体(122)、集成体(123)、集成体(124)还可以共同集成在一起成为热管理集成模块。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能,和/或,对电池包进行制冷和/或加热的功能。通过对采用水路四通换向阀,实现了不同水路的流向切换,使得制冷回路只有一个流动方向,能够最大化地利用制冷系统的性能。
通过设计三个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器(104)与电机液冷环路的冷却液进行热交换,以及通过板式换热器(102)和板式换热器(106)与暖风液冷环路的冷却液进行热交换,通过板式换热器(106)与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,可以使系统中主要零部件集成在不同的集成体中。也使得热管理系统的电控集成的方案可以被实现,解决了制冷剂管路和电控线束过长的问题。并且,本申请实施例同样可以适用于各种各样的实际应用场景,例如乘员舱制冷/加热/除湿,电池制冷/加热,电机冷却/热量回收等。所以,实施本申请实 施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于第二方面,在可能的实施方式中,制冷剂环路的连接关系具体为:压缩机(101)出口与板式换热器(202)一端连接,板式换热器(202)另外一端与节流阀(203)一端连接,节流阀(203)另外一端与板式换热器(204)一端连接,板式换热器(204)另外一端分别与节流阀(205)和节流阀209)一端连接,节流阀(205)另外一端与板式换热器(206)连接,节流阀(209)另外一端与空调蒸发器(210)一端连接,空调蒸发器(210)另外一端和板式换热器(206)另外一端均与气液分离器(207)入口连接。板式换热器(204)另外一端连接电磁阀(208)一端,电磁阀(208)另外一端连接气液分离器(207)入口。气液分离器207出口与压缩机(101)入口连接,形成制冷剂环路。
基于第二方面,在可能的实施方式中,暖风液冷环路连接关系具体为:水路四通阀(213)的A口与板式换热器(202)的一端连接,B口与电加热器(223)的一端连接,电加热器(223)的另外一端与三通阀(224)的入口端连接,三通阀(224)的B口与暖风芯体(211)一端连接,A口与板式换热器(206)的一端连接,板式换热器(206)和暖风芯体的另一端均与水泵(222)的入口连接,水泵(222)的出口与板式换热器(202)的另一端连接。
基于第二方面,在可能的实施方式中,电池液冷环路连接关系具体为:水泵(225)的出口B与板式换热器(206)的一端连接,板式换热器(206)的另外一端与电池包(227)的冷却装置的一端连接,电池包(227)的冷却装置的另外一端与水壶(226)的入口连接,水壶(226)的出口与水泵(225)的入口连接。
基于第二方面,在可能的实施方式中,集成壶泵(231)为由水壶(220)、水泵(221)和水泵(222)组成的集成体,用于实现水泵和蓄水功能。
基于第二方面,在可能的实施方式中,集成壶泵(232)为由水壶226和水泵(225)组成的集成体,用于实现水泵和蓄水功能。
基于第二方面,在可能的实施方式中,集成体(228)为将多个板式换热器(板式换热器202,板式换热器204,板式换热器206)和多个节流阀(节流阀203和节流阀205)集成的集成体,其中温度压力传感器也可以布置在连接各个集成元件的管路上;
基于第二方面,在可能的实施方式中,集成体(233)为将气液分离器207)和电磁阀20)8集成的集成体。
基于第二方面,在可能的实施方式中,集成壶泵(231)、集成壶泵(232)、集成体(228)、集成体(233)还可以共同集成在一起成为热管理集成模块。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能,和/或,对电池包进行制冷和/或加热的功能。通过对更改水路四通换向阀的位置,实现制冷情况下冷却液先经过制冷剂回路后面位置的板式换热器(204),再经过前面位置的板式换热器(202),能够更好地提高系统制冷时的能效,降低制冷工况下的系统能耗。
通过设计三个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器与电机液冷环路的冷却液进行热交换,以及通过板式换热器与暖风液冷环路的冷却液进行热交换,通过板式换热器与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,可以使系统中主要零部件集成在不同的集成体中。也使得热管理系统的电控集成的方案可以被实现,解决了制冷剂管路和电控线束过长的问题。并且,本申请实施例同样可以适用于各种各样的实际应用场景,例如乘员舱制冷/加热/除湿,电池制冷/加热, 电机冷却/热量回收等。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
第三方面,本申请实施例提供了一种热管理系统的热管理方法,所述方法包括:控制器获取传感器信号和热管理请求;控制器根据所述传感器信号和热管理请求,生成控制信号;控制器将所述控制信号发送给驱动板;所述控制信号用于指示所述驱动板驱动热管理系统中的多个部件进行工作;其中,所述驱动板包括所述热管理系统中的所述多个部件中的各个部件的驱动单元,所述热管理系统为如第一方面或第二方面任一实施例所述的热管理系统。
可以看到,本申请实施例中,由于电控集成将热管理各元器件单独的驱动板集成在一个合一的驱动板上,因此热管理控制器只需向合一的驱动板发送控制信号(需求信号)即可,后续再由合一的驱动板根据控制信号(需求信号),进行相应的信号转换,同时驱动多个部件的执行机构执行相应的指令。所以实施本申请能够有效减少了热管理系统的线束长度,节约布线空间,降低布线成本,还可以保证各种具体应用场景的功能的正常实现。
第四方面,本申请实施例提供了一种用于热管理系统的控制器,所述控制器包括处理芯片和通信接口,所述通信接口用于,获取传感器信号和热管理请求;所述处理芯片用于,根据所述传感器信号和热管理请求,生成控制信号;所述通信接口还用于,将所述控制信号发送给驱动板;所述控制信号用于指示所述驱动板驱动热管理系统中的多个部件进行工作;其中,所述热管理系统为第一方面或第二方面任一实施例所述的热管理系统。
第五方面,本申请实施例提供了一种用于热管理系统的驱动板,其特征在于,所述驱动板包括通信接口和所述热管理系统中的多个部件中的各个部件的驱动单元,所述各个部件的驱动单元分别用于驱动所述各个部件进行工作;所述通信接口用于,接收来自所述热管理系统的控制器的控制信号;所述各个部件的驱动单元分别用于,根据所述控制信号驱动所述各个部件进行工作;其中,所述热管理系统为第一方面或第二方面任一实施例所述的热管理系统。
可以看到,本申请实施例中,通过对零部件的驱动单元进行电控集成,使得每个零部件的驱动单板无需与热管理控制器实行单独的线束连接,减少了总线束长度;同时,基于前舱中的热管理部件结构集成,使得零部件与合一的驱动板之间的连接线束也大大缩短。所以实施本申请能够有效减少了热管理系统的线束长度,既节约布线空间,又可以降低布线成本。
第六方面,本发明实施例提供了一种存储计算机指令的可读非易失性存储介质,该可读非易失性存储介质包括计算机指令,其中:所述计算机指令被执行以实现第三方面描述的方法。
第七方面,本发明实施例提供了一种计算机程序产品,当计算机程序产品运行于计算机时,被执行以实现第三方面描述的方法。
综合来看,本申请中,通过对热管理部件的安装位置进行结构集成,能够极大地降低电动汽车的热管理系统的安装体积,节约占用空间;同时,保证各种工况下电池和乘员舱等均在合适的温度区间范围内运行,降低制冷系统中的流动阻力,提高系统能效;通过对零部件的驱动单元进行电控集成,使得每个零部件的驱动单板无需与热管理控制器实行单独的线束连接,减少了总线束长度。同时,基于前舱中的热管理部件结构集成,使得零部件与合一的驱动板之间的连接线束也大大缩短。所以实施本申请能够有效减少了热管理系统的线束长度,既节约布线空间,又可以降低布线成本。
附图说明
图1是本申请实施例提供的一种热管理系统的结构集成示意图;
图2是本申请实施例提供的一种热管理集成模块的示例图;
图3A是本申请实施例提供的一种集成阀泵的示例图;
图3B是本申请实施例提供的一种集成阀泵的示例图;
图3C是本申请实施例提供的一种集成阀泵的示例图;
图4是本申请实施例提供的一种热管理系统的电控集成示意图;
图5是本申请实施例提供的一种热管理系统的结构示意图;
图6是本申请实施例提供的一种热管理系统的结构示意图;
图7是本申请实施例提供的一种热管理系统的详细结构示意图;
图8是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图9是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图10是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图11是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图12是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图13是本申请实施例提供的一种热管理系统的结构示意图;
图14是本申请实施例提供的一种热管理系统的结构示意图;
图15是本申请实施例提供的一种热管理系统的详细结构示意图;
图16是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图17是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图18是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图19是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图20是本申请实施例提供的一种热管理系统的详细结构示意图;
图21是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图22是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图23是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图24是本申请实施例提供的一种热管理系统中相关的工质流向示意图;
图25是本申请实施例提供的一种热管理方法的流程示意图。
具体实施方式
下面将基于附图详细描述本申请的各种实施方案。应理解的是,本说明书并非旨在将本申请限制于那些示例性实施方案。相反,本申请旨在不但覆盖这些示例性实施方案,而且覆盖可以包括在由所附权利要求所限定的本申请的精神和范围之内的各种替选方式、修改方式、等同方式以及其它的实施方案。
本说明书中将省略与本申请不相关的内容的描述以清楚地描述本申请,并且在整个说明书中相同的附图标记表示相同的元件。此外,为了便于说明,在附图中示出的各部件的尺寸、厚度、外观形状、连接线形状等仅用作示意,而非限定。进一步的,本申请具体实现不限于附图所示的内容。
本申请的技术方案可能被应用于传统能源汽车,也可能被应用于新能源汽车。传统能源汽车例如可以为汽油车、柴油车等内燃机汽车,新能源汽车例如可以为电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、以及其他新能源汽车等。
其中,电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。 电力驱动及控制系统由驱动电动机(简称电机)、电源(或称电池包)和电动机的调速控制装置等组成。电动汽车的其他装置可基本与内燃机汽车相同。
电动汽车中的热管理系统可包括压缩机、水泵、冷凝器、节流装置、换热器、蒸发器以及电池冷却器(Chiller)、水泵、阀门等热管理部件,通过控制器控制各部件的协调工作,保证各种工况下电池和乘员舱均在合适的温度区间范围内。通常情况下,这些零部件分散安装在汽车前舱中的各个位置,由于热管理系统中各个零部件之间均需要采用对应的管路进行连接,因此各个零部件安装位置的分散,会导致热管理系统中的管路错综复杂。此外,每个零部件安装时均需要考虑相应的安装位置和安装空间,给整车的安装布置带来严峻的考验。
本申请实施例对热管理系统进行了重新设计,有利于实现热管理部件的集成。具体可包括两方面的集成:一个是热管理部件的结构上的集成,另一个是热管理部件的电控上的集成。
首先描述本申请关于结构集成的一些实施方式。
参见图1,图1为本申请实施例提供的一种热管理系统的结构集成示意图。如图1所示,本申请将压缩机、换热器(如后面各个实施例描述的板式换热器)、水泵、水阀等能够主动提供热管理系统所需冷量、热量和水流量的部件,通过结构的紧凑化设计和安装,在结构上集成在热管理集成模块中,而其他具有热管理需求的部件,如汽车中的电机、散热水箱、电池包、空调箱等,则利用水管将其与该热管理集成模块连接起来,通过冷水和热水在连接水管内的流动,实现热管理系统结构集成的功能。
举例来说,参见图2,图2为一种热管理集成模块的示例图,如图2所示,该热管理集成模块可包括压缩机、板式换热器、集成阀、集成阀泵、多功能阀等部件,不同部件之间可通过管道相连。示例性地,多功能阀可以为由水泵、膨胀水壶和水路三通阀形成的集成体;集成阀可以为由水路三通阀和三通水管形成的集成体;集成阀泵可以为由水泵和水路三通阀形成的集成体。上述这些部件可通过一个固定框架布置在一起,从而在整体上又形成一种集成体结构。该集成体结构一方面可方便于通过模块化方式安装在汽车前舱,另一方面通过集成化设计有利于节约占用空间。
需要说明的是,上述图2仅用于示例性解释本申请的一种集成方案,而非限定。集成体结构中各个部件的形状、安装位置、连接关系等均为示例而非限定。
还需要说明单是,该热管理集成模块中的各个部件还可以不采用固定框架,而是通过其他方式实现集成,例如不同部件之间可以通过管道相连,且在距离上紧凑靠近,而实现集成;又例如不同部件还可进行一体化设计而实现集成,等等。
在实际应用中,基于本申请的技术思想还可以设计出其他的集成方案,
例如,可将能够主动提供热管理系统所需冷量、热量和水流量的若干数量的部件,例如压缩机、节流装置、换热器、气液分离器、电磁阀、水泵、阀门等热管理部件中的一个或多个进行集成。
对于若干数量的部件的集成,可以是采用固定框架来固定部件的方式实现集成,还可以是其他方式,例如可以通过固定管道相连而实现集成,又例如还可进行一体化设计而实现集成。
又举例来说,参见图3A,图3A为本申请实施例提供的一种集成阀泵的示例图,如图所示,可将水泵和水路三通阀通过固定框架来固定设置在一起,水泵的输出端通过软的管道或硬的管道连接三通阀的一个输入端即可。
又举例来说,参见图3B,图3B为本申请实施例提供的一种集成阀泵的示例图,如图所 示,可通过一体化设计,将水泵和水路三通阀固定设置在一起,即水泵的输出端直接接入到三通阀的一个输入端。
又举例来说,参见图3C,图3C为本申请实施例提供的又一种集成阀泵的示例图,如图所示,可将水泵和水路三通阀通过固定管道来设置在一起,即水泵的输出端连接固定管道的一端,固定管道的另一端连接三通阀的一个输入端。
需要说明的是,对于若干数量的部件的集成还可以是其他的方式,上述图3A、图3B、图3C实施例仅用于解释申请的方案而非限定。
在现有技术中,汽车(例如,电动汽车)热管理系统的零部件分散安装在前舱和乘员舱中,各零部件之间的位置较为发散,对每个零部件进行布置和装配时,均需要考虑相应的安装空间和支架设计等,从而会导致整车的装配布置存在一定的困难。此外,由于热管理系统中零部件分散,导致制冷剂系统的管路较长,制冷剂流动时的沿程阻力增大,制冷剂流量会因为阻力的增大而降低,从而引起系统能效的降低。
而本申请中,通过对热管理部件的安装位置进行结构集成,能够极大地降低电动汽车的热管理系统的安装体积,节约占用空间;同时,保证各种工况下电池和乘员舱等均在合适的温度区间范围内运行,降低制冷系统中的流动阻力,提高系统能效。
下面描述本申请关于电控集成的一些实施方式。
参见图4,图4展示了本申请实施例的热管理系统的一种电控集成示意图。热管理系统包括用于进行热管理控制的控制器(或称热管理控制器),控制器用于控制压缩机、换热器、水泵、水阀等能够主动提供热管理系统所需冷量、热量和水流量的部件(这样的部件又可称为被控部件)进行工作,从而实现为其他具有热管理需求的部件,如汽车中的电机、散热水箱、电池包、空调箱等提供相关服务。在一种可能的实现中,为了节约乘员舱空间,可将控制器部署于乘员舱的空调箱附近。
本申请的一种方案中,可将水泵、阀件、压缩机、节流装置等被控部件的驱动单元(或称驱动电路,或称驱动元件,或称驱动模块,或称驱动单板)与执行机构分离,再将这些被控部件的驱动单元共同集成在一块驱动板(或称集成驱动板,或称集成电路板)上,从而实现各个被控部件的电控集成。在一种可能实现中,该驱动板可以安装在前舱中的压缩机内,也可以单独安装在其他地方。这样,控制器只需要与前舱中的驱动板通过一根总线连接,各个被控部件的执行机构则分别与该驱动板进行电连接。也就是说,控制器可以向驱动板统一发送控制指令,从而通过该驱动板进一步驱动相关部件进行工作,从而实现热管理系统的功能。
在现有技术中,汽车(例如,电动汽车)热管理系统的各零部件的电控元件相对独立,每个部件电控元件和热管理控制器之间均需要采用线束进行电连接,这些零部件中的一些分布在前舱,主要有水泵、压缩机、阀件和一些温度传感器,另外一些分布在乘员舱,主要是空调箱中的执行机构和舱内传感器等,而热管理控制器即为传统的空调控制器位于乘员舱,所有存在着这些被控部件均连接至热管理控制器,从而导致电控系统的线束过长。
而本申请中,通过对零部件的驱动单元进行电控集成,使得每个零部件的驱动单板无需与热管理控制器实行单独的线束连接,减少了总线束长度;同时,基于前舱中的热管理部件结构集成,使得零部件与合一的驱动板之间的连接线束也大大缩短。所以实施本申请能够有效减少了热管理系统的线束长度,既节约布线空间,又可以降低布线成本。
下面描述本申请实施例提供的一些热管理系统的结构连接方案,以及基于结构的功能实现方案。下面的各实施例中的附图中,为了方便描述,仅展示一些热管理部件和热需求部件的连接关系以及在功能实现中的工质流向(如制冷剂流向、冷却液流向等),而不展示一些部件中具体的结构集成,以及不展示电控集成中控制器、驱动板、电连接线束等,而基于上文的描述,技术人员将熟悉在具有结构集成和/或电控集成情况下的具体实现方案,本文对这些具体实现方案不展开详述。
参见图5,图5是本申请实施例提供的一种热管理系统的结构示意图,如图4所示,该热管理系统包括:制冷剂环路系统、电机液冷环路系统、空调液冷环路系统,其中:
制冷剂环路系统包括:压缩机1、制冷剂四通换向阀2、板式换热器3、节流阀4、板式换热器5和气液分离器6。板式换热器3和板式换热器5均含有两对进出口通道,其中一对进出口通道为制冷剂通道,用于流通制冷剂,另一对进出口通道为液冷通道,用于流通冷却液。制冷剂通道的制冷剂和液冷通道的冷却液之间可进行热量交换(简称热交换,或称换热)。
压缩机1的出口通过管道与制冷剂四通换向阀2的第一端(即A端)连接,四通换向阀2的第二端(即B端)与板式换热器3中的制冷剂通道的第一端连接,板式换热器3中的制冷剂通道的第二端与节流阀4的第一端连接,所述节流阀4的第二端与所述板式换热器5中的制冷剂通道的第一端连接,所述板式换热器5中的制冷剂通道的第二端与制冷剂四通换向阀2的第三端(即C端)连接,制冷剂四通换向阀2的第四端(即D端)与气液分离器6的第一端连接,气液分离器6的第二端与压缩机1的入口连接,以形成制冷剂环路,制冷剂环路为用于循环流通制冷剂。
电机液冷环路系统包括经由电机的循环流通冷却液的电机液冷环路,且电机液冷环路中的两段管道分别接入板式换热器3中的液冷通道的第一端和第二端;电机液冷环路系统的与制冷剂环路系统通过板式换热器3进行换热,即电机液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器3中进行热交换。
空调液冷环路系统包括经由空调箱的循环流通冷却液的空调液冷环路,且空调液冷环路中的管道分别接入板式换热器5中的液冷通道的第一端和第二端;空调液冷环路系统与制冷剂环路系统通过板式换热器5进行换热,即空调液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器5中进行热交换。
在一种具体实施方案中,制冷剂四通阀的A-B端、C-D端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-B端进入板式换热器3进行冷凝放热,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器5进行蒸发吸热,从板式换热器5中吸收乘员舱(空调机安装在乘员舱)中的热量,最后经过制冷剂四通阀2的D-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口,从而实现制冷剂的循环。电机液冷环路系统的冷却液可通过板式换热器3吸收热量,并通过电机液冷环路实现散热。
在又一种具体实施方案中,制冷剂四通阀的A-D端、B-C端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-D端进入板式换热器5进行冷凝放热,提供乘员舱(空调机安装在乘员舱)加热所需的热量,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器3进行蒸发吸热,最后经过制冷剂四通阀2的B-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。电机液冷环路系统的冷却液可吸收电机液冷环路中的热量(例如电机热量),并通过板式换热器3释放热量,从而实现热量回收,提高制冷剂环路系统的工作效率。
本申请实施例的热管理系统可应用于传统能源汽车(内燃机汽车),也可能被应用于新能 源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,通过使用制冷剂四通换向阀,简化了制冷剂环路系统的环路;通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器3与电机液冷环路的冷却液进行热交换,以及通过板式换热器5与空调液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,也使得热管理系统的电控集成的方案可以被实现。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
参见图6,图6是本申请实施例提供的又一种热管理系统的结构示意图,如图6所示,该热管理系统与图5所示热管理系统的区别在于,图6的热管理系统在图5所示热管理系统的基础上增加了电池液冷环路系统,电池液冷环路系统包括经由电池包的循环流通冷却液的电池液冷环路,且电池液冷环路和前述空调液冷环路系统共用管道接入板式换热器5中的液冷通道的第一端和第二端;电池液冷环路系统与制冷剂环路系统通过所述板式换热器5进行换热,即电池液冷环路系统的冷却液也可以和制冷剂环路系统的制冷剂在板式换热器5中进行热交换。
在一种具体实施方案中,制冷剂四通阀的A-B端、C-D端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-B端进入板式换热器3进行冷凝放热,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器5进行蒸发吸热,从板式换热器5中吸收乘员舱(空调机安装在乘员舱)中的热量,和/或,从板式换热器5中吸收电池液冷环路的电池包中的热量。最后经过制冷剂四通阀2的D-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口,从而实现制冷剂的循环。电机液冷环路系统的冷却液可通过板式换热器3吸收热量,并通过电机液冷环路实现散热。
在又一种具体实施方案中,制冷剂四通阀的A-D端、B-C端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-D端进入板式换热器5进行冷凝放热,提供乘员舱(空调机安装在乘员舱)加热所需的热量,和/或,提供电池液冷环路的电池包加热所需的热量。通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器3进行蒸发吸热,最后经过制冷剂四通阀2的B-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。电机液冷环路系统的冷却液可吸收电机液冷环路中的热量(例如电机热量),并通过板式换热器3释放热量,从而实现热量回收,提高制冷剂环路系统的工作效率。
本申请实施例的热管理系统可能被应用于新能源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,通过使用制冷剂四通换向阀,简化了制冷剂环路系统的环路;通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器3与电机液冷环路的冷却液进行热交换,以及通过板式换热器5与空调液冷环路的冷却液进行热交换,和/或,通过板式换热器5与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,也使得热管理系统的电控集成的方案可以被实现。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于图6实施例所展示的热管理系统,下面示例性描述在一种实现场景中热管理系统中 的相关部件的连接关系。具体参见图7,图7是本申请实施例提供的一种热管理系统的详细结构示意图,如图7所示,该热管理系统为包含有制冷剂四通换向阀结构的集成化热管理系统。这里集成的有集成体7、多功能阀8、集成阀14、集成阀泵15和集成壶泵18。
其中,集成体7具体为由多个板式换热器(板式换热器3和5)和制冷剂四通换向阀2以及节流阀4组成的集成体,制冷剂温度压力传感器可以布置在连接各个集成元件的管路上。
多功能阀8为由水泵8-1、膨胀水壶8-2和水路三通阀8-3组成的集成体,多功能阀8用于实现水泵、水流换向(或称冷却液换向)和蓄水功能。其中,水路三通阀8-3的第一端连接膨胀水壶8-2的一端,水路三通阀8-3的第二端提供对外接口(图示中记为B端,例如可用于连接电池包16),水路三通阀8-3的第三端提供对外接口(图示中记为C端,例如可用于连接板式换热器3);膨胀水壶8-2的另一端连接水泵8-1的一端,水泵8-1的另一端提供对外接口(图示中记为A端,例如可用于连接所述功率器件9)。
集成阀14为由水路三通阀14-1和三通水管组成的集成体,用于实现水流换向功能。其中,水路三通阀14-1的第一端提供对外接口(图示中记为A端,例如用于连接所述电机11),水路三通阀14-1的第二端提供对外接口(图示中记为B端,例如用于连接散热水箱12),水路三通阀14-1的第三端连接三通水管的第一端,三通水管的第二端提供对外接口(图示中记为C端,例如用于连接板式换热器3),三通水管的第三端提供对外接口(图示中记为C端,例如用于连接集成阀泵15)。
集成阀泵15为由水泵15-1和水路三通阀15-2组成的集成体,用于实现水泵和水流换向功能。其中,水泵15-1的一端提供对外接口(图示中记为A端,例如用于连接到板式换热器5),水泵15-1的另一端连接水路三通阀15-2的第一端,水路三通阀15-2的第二端可提供两路对外接口,例如图示中可通过三通水管提供对外接口B端和D端,B端例如用于连接集成阀14,D端例如用于连接电加热器17;水路三通阀15-2的第三端提供对外接口(图示中记为C端,例如用于连接空调换热器21。
集成壶泵18为由水泵18-2和膨胀水壶18-1组成的集成体,用于实现水泵和蓄水功能。膨胀水壶18-1的一端和水泵18-2的一端连接,膨胀水壶18-1的另一端提供对外接口(例如用于连接暖风芯体20),水泵18-2另一端提供对外接口(例如用于连接电加热器19)。
在图7所示的热管理系统中,制冷剂环路的连接关系如下:压缩机1的出口与制冷剂四通换向阀2的A端连接,制冷剂四通换向阀2的B端与板式换热器3的一端(即板式换热器3的制冷剂通道的一端)连接,板式换热器3的另一端(即板式换热器3的制冷剂通道的另一端)与节流阀4的一端连接,节流阀4的另一端连接板式换热器5的一端(即板式换热器5的制冷剂通道的一端),板式换热器5的另一端(即板式换热器5的制冷剂通道的另一端)连接制冷剂四通换向阀2的D端,制冷剂四通换向阀的C端与气液分离器6的一端连接,气液分离器6的另一端与压缩机1的入口连接。这里节流阀4可为双向节流的节流阀,节流阀4可以使用毛细管、膨胀阀等具有节流功能的元件来实现。
在图7所示的热管理系统中,电池液冷环路的连接关系如下:集成阀泵15的A端与板式换热器5的一端(即板式换热器5的液冷通道的一端)连接,D端则与电加热器17的一端连接,电加热器17的另一端则连接电池包15的冷却装置的入口,电池包16的冷却装置的出口则可以通过三通水管,同时连接板式换热器5的另一端(即板式换热器5的液冷通道的另一端)和多功能阀8的B端。
电池包15的冷却装置为通过流通冷却液来实现对电池包进行加热或冷却的装置,例如电池包15的冷却装置可以为与电池包接触的水冷盘管、冷却板等,本文不做限定。
另外,需要说明的是,本文中,为了叙述的方便,有时也把“连接电池包15的冷却装置”简述为“连接电池包15”,把“电池包15的冷却装置的入口”简述为“电池包15的入口”,把“电池包15的冷却装置的出口”简述为“电池包15的出口”。
在图7所示的热管理系统中,空调液冷环路(这里也可称为乘员舱液冷环路)的连接关系如下:集成阀泵15的C端和供热通风与空气调节(Heating,Ventilation and Air Conditioning,HVAC)系统内的空调换热器21的一端连接,空调换热器21的另一端则可通过三通水管,与电池包16的出口合并后共同接入板式换热器5的另一端。HVAC系统具体可包括空调换热器21、暖风芯体20和风扇22。空调换热器21可用于实现乘员舱制冷功能,暖风芯体20可用于实现乘员舱制热功能,风扇22可用于实现乘员舱的吹风功能。上述器件的组合还可实现其他功能,例如空调换热器21和暖风芯体20共同用于实现乘员舱除湿功能。
此外,在可能的实施例中,在图7所示的热管理系统中,还可以包括暖风液冷环路(又可称为乘员舱暖风环路),暖风液冷环路的连接关系如下:集成壶泵18的出口(即水泵18-2的出口)连接电加热器19,电加热器19的另一端连接HVAC内的暖风芯体20,暖风芯体20的另一端则连接集成壶泵18的入口(即膨胀水壶18-1的入口)。
在图7所示的热管理系统中,电机液冷环路(又可称为动力系统液冷环路)的连接关系如下:多功能阀8的C端(即水路三通阀8-3的C端,或称多功能阀8的第三端)连接板式换热器3的一端,多功能阀8的A端(即水泵8-1的A端)与功率器件8的冷却装置一端连接,功率器件9的冷却装置的另外一端与电机控制器10的冷却装置一端连接,电机控制器10的冷却装置另外一端与电机11的冷却装置一端连接,电机11的冷却装置的另一端分别与散热水箱12和集成阀14的A端(即水路三通阀14-1的A端)连接,散热水箱12的另一端则与集成阀14的B端(即水路三通阀14-1的B端)连接。集成阀14的C端(即水路三通阀14-1的C端)与板式换热器3的另一端连接,集成阀14的D端(即三通水管的一端)可与集成阀泵15的B端连接。
需要说明的是,功率器件9的冷却装置为通过流通冷却液来实现对功率器件进行加热或冷却的装置,电机控制器10的冷却装置为通过流通冷却液来实现对电机控制器进行加热或冷却的装置,电机11的冷却装置为通过流通冷却液来实现对电机进行加热或冷却的装置。
本文中,为了叙述的方便,有时也把“连接功率器件9的冷却装置”简述为“连接功率器件9”,把“连接电机控制器10的冷却装置”简述为“连接电机控制器10”,把“连接电机11的冷却装置”简述为“连接电机11”。
需要说明的是,集成体7、多功能阀8、集成阀14、集成阀泵15和集成壶泵18各自的具体集成方式还可类似参考前文图3A、图3B、图3C实施例的相关描述,为了说明书的简洁,这里不再赘述。
除此之外,集成体7、多功能阀8、集成阀14、集成阀泵15和集成壶泵18还可以共同集成在一起,成为前文所述的热管理集成模块。
基于图7实施例的结构连接关系,下面将对主要的应用场景进行示例性地阐述。
参见图8,图8为在实现乘员舱冷却、电池冷却以及电机冷却场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、空调液冷环路流向示意和电池液冷环路流向示意。本文中,热管理系统中的灰色区域均表示无需工质通过的环路。
如图8所示,制冷剂环路流向描述如下:制冷剂四通阀2的A-B端、D-C端联通,压缩 机1排出的高温制冷剂经过制冷剂四通阀2的A-B端进入板式换热器3进行冷凝放热,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器5进行蒸发吸热,从板式换热器5中吸收电池和乘员舱中的热量,最后经过制冷剂四通阀2的D-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。
电机液冷环路流向描述如下:电机液冷环路的多功能阀8的B端关闭,C端接受从板式换热器3中输出的高温液体,经由A端输出后,依次经过功率器件9、电机控制器10和电机11,通过关闭集成阀14的A端,使得高温液体经由散热水箱12冷却,可选的还可以利用风扇13进一步散热,然后再次进入到板式换热器3中。
空调液冷环路流向和电池液冷环路流向分别描述如下:同属于电池液冷环路和空调液冷环路的集成阀泵15的C端和D端打开,A端接收从板式换热器5中输出的低温液体,低温液体一部分从C端输出,经过空调换热器21,达到冷却乘员舱的目的。低温液体另一部分从D端输出,经过电加热器17,吸收电池包16中电池的热量,达到冷却电池包16的目的。此时电加热器17没有打开,仅作为流通功能。吸收了电池和乘员舱的热量后的液体经过三通水管,再次进入到板式换热器5中。可选的,可以通过调节集成阀泵15中的水路三通阀的开度,实现调节电池包和乘员舱冷量分配的功能。
参见图9,图9为在实现乘员舱制热和电池制热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、空调液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图9所示,制冷剂环路流向描述如下:制冷剂四通阀2的A-D端、B-C端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-D端进入板式换热器5进行冷凝放热,提供为电池和乘员舱加热所需要的热量;通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器3进行蒸发吸热,从板式换热器3中电机中的余热或者环境中的热量,最后经过制冷剂四通阀2的B-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。
电机液冷环路流向描述如下:电机液冷环路的多功能阀8的B端关闭,C端接受从板式换热器3中输出的低温液体,经由A端输出后,依次经过功率器件9、电机控制器10和电机11。在电机开启的情况下,可以关闭集成阀14的B端,使得电机11出来的高温液体直接从集成阀14的A端进入、C端输出到板式换热器3中,提供蒸发所需的热量。而当电机关闭的情况下,则将集成阀14的A端关闭,B端开启,使得低温液体从电机11出来后,从环境中吸收热量,再从集成阀的C端进入到板式换热器3中。
空调液冷环路流向和电池液冷环路流向分别描述如下:同属于电池液冷环路和空调液冷环路的集成阀泵15的C端和D端打开,A端接收从板式换热器5中输出的高温液体,分别从C端输出,经过空调换热器21,达到加热乘员舱的目的;从D端输出,经过电加热器17,达到加热电池包16的目的,加热电池和乘员舱后的低温液体经由三通水管,再次进入到板式换热器5中。可选的,通过调节集成阀泵15中水路三通阀的开度,实现调节电池和乘员舱热量分配的功能。
暖风液冷环路流向描述如下:若集成阀泵15的C、D端出口水温不够,可以将电加热器17打开,实现辅助加热电池的功能,将集成壶泵18和电加热器19打开,实现辅助加热乘员舱的功能。
参见图10,图10为在实现电池自然冷却场景下,热管理系统中相关的工质流向示意图,如图10所示,在环境温度较低,只有电池和电机自然冷却的需求时。制冷剂回路关闭,电池和电机的热量可通过散热水箱12来实现自然冷却。
具体的,液冷环路的走向描述如下:多功能阀8的C端关闭,B端接受电池包16出口的高温液体,A端排出的高温液体分别经过功率器件9、电机控制器10和电机11。此时集成阀14的A端关闭,使得电机11出口的高温液体经过散热水箱12冷却为低温液体,由于多功能阀8的C端关闭,因此散热水箱12出来的低温液体只能通过集成阀14的D端进入到集成阀泵15的B端。该情形下,关闭集成阀泵15内三通水阀与B和D端连接的口,使低温液体由集成阀泵15的D端排出,流经未开启的电加热器17,进入到电池包16,实现冷却电池的目的。
参见图11,图11为在实现电池加热和乘员舱除湿场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、空调液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图11所示,制冷剂环路流向描述如下:制冷剂四通阀2的A-B端、D-C端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-B端进入板式换热器3进行冷凝放热,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热器5进行蒸发吸热,从板式换热器5中吸收乘员舱中的热量,最后经过制冷剂四通阀2的D-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。
电机液冷环路流向描述如下:电机液冷环路的多功能阀8的B端和C端同时开启,C端接受从板式换热器3中输出的高温液体,B端接收从电池包16输出的低温液体,经由A端输出后,依次经过功率器件9、电机控制器10和电机11。此情景下,关闭集成阀14的B端,使得电机11出来的高温液体从集成阀14的A端进入,再分别由集成阀14的C端输出至板式换热器3中,由集成阀14的D端,经由集成阀泵15的B端和D端,流经电加热器17后进入到电池包16中。
空调液冷环路流向描述如下:空调液冷环路的集成阀泵15的A端接收板式换热器5输出的低温液体,经由C端输出后进入到HVAC内的空调换热器21,空调换热器21出口的高温液体再返回至板式换热器5中。
暖风液冷环路流向描述如下:暖风液冷环路的集成壶泵18和电加热器19打开,使得空调换热器21制冷、暖风芯体20制热、从而实现乘员舱除湿的功能。
电池液冷环路流向描述如下:多功能阀8的B端接受电池包16出口的低温液体,A端排出的低温液体分别经过功率器件9、电机控制器10和电机11。此时集成阀14的B端关闭,使得电机11出口的高温液体经过通过集成阀14的B端进入,再从集成阀14的D端进入到集成阀泵15的B端,D端流出到电加热器17,进入到电池包16,实现加热电池的目的。
参见图12,图12为在实现电池自然冷却和乘员舱加热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、空调液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图12所示,制冷剂环路流向描述如下:制冷剂四通阀2的A-D端、B-C端联通,压缩机1排出的高温制冷剂经过制冷剂四通阀2的A-D端进入板式换热器5进行冷凝放热,提供乘员舱加热所需的热量,通过节流阀4以后节流成低温气液两相制冷剂,然后经过板式换热 器3进行蒸发吸热,最后经过制冷剂四通阀2的B-C端进入气液分离器6,由气液分离器6的出口进入到压缩机1的吸气口。
电机液冷环路流向描述如下:电机液冷环路的多功能阀8的B端和C端同时开启,C端接受从板式换热器3中输出的低温液体,B端接收从电池包16输出的高温液体,经由A端输出后,依次经过功率器件9、电机控制器10和电机11。此情景下,关闭集成阀14的A端,使得电机11出来的高温液体经由散热水箱12后冷却成低温液体,从集成阀14的B端进入,然后分别由集成阀14的C端输出至板式换热器3中,由集成阀14的D端,经由集成阀泵15的B端和D端,流经电加热器17后进入到电池包16中。
空调液冷环路流向描述如下:乘员舱液冷环路的集成阀泵15的A端接收板式换热器5输出的高温液体,经由C端输出后进入到HVAC内的空调换热器21,空调换热器21出口的低温液体再返回至板式换热器5中。
暖风液冷环路流向描述如下:若集成阀泵15的C端输出的热量不够,可将乘员舱暖风环路的集成壶泵18和电加热器19打开,实现辅助加热乘员舱的功能。
电池液冷环路流向描述如下:多功能阀8的B端接受电池包16出口的高温液体,A端排出的高温液体分别经过功率器件9、电机控制器10和电机11。此时集成阀14的A端关闭,使得电机11出口的高温液体经过散热水箱12冷却为低温液体,经过通过集成阀14的B端进入,再从集成阀14的D端进入到集成阀泵15的B端,D端流出并流经未开启的电加热器17,进入到电池包16,实现自然冷却电池的目的。
可以看到,本申请实施例中,通过使用制冷剂四通换向阀,简化了制冷剂环路系统的环路;通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器3与电机液冷环路的冷却液进行热交换,以及通过板式换热器5与空调液冷环路的冷却液进行热交换,和/或,通过板式换热器5与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,可以使系统中主要零部件集成在不同的集成体中;也使得热管理系统的电控集成的方案可以被实现,解决了制冷剂管路和电控线束过长的问题。并且,本申请实施例同样可以适用于各种各样的实际应用场景,例如乘员舱制冷/加热/除湿,电池制冷/加热,电机冷却/热量回收等。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
参见图13,图13是本申请实施例提供的又一种热管理系统的结构示意图,如图13所示,该热管理系统包括:制冷剂环路系统、电机液冷环路系统、暖风液冷环路系统,其中:
制冷剂环路系统包括:压缩机101、板式换热器102、节流阀103、板式换热器104、节流阀109、蒸发器110(或称空调蒸发器110)和气液分离器107。板式换热器102和板式换热器104均含有两对进出口通道,其中一对进出口通道为制冷剂通道,用于流通制冷剂,另一对进出口通道为液冷通道,用于流通冷却液。制冷剂通道的制冷剂和液冷通道的冷却液之间可进行热量交换(简称热交换,或称换热)。
压缩机101、板式换热器102、节流阀103、板式换热器104、节流阀109、空调蒸发器110和气液分离器107依次串联接通形成环路,具体的,压缩机101的出口通过管道与板式换热器102中的制冷剂通道的第一端连接,板式换热器102中的制冷剂通道的第二端与节流阀103的第一端连接,节流阀103的第二端与板式换热器104中的制冷剂通道的第一端连接, 板式换热器104中的制冷剂通道的第二端与节流阀109的第一端连接,节流阀109的第二端与空调蒸发器110的第一端连接,空调蒸发器110的第二端与气液分离器107的第一端连接,气液分离器107的第二端接入到压缩机101的入口。从而,以形成制冷剂环路(或称第一制冷剂环路),制冷剂环路为用于循环流通制冷剂。
电机液冷环路系统包括经由电机的循环流通冷却液的电机液冷环路,且电机液冷环路中的两段管道分别接入板式换热器103中的液冷通道的第一端和第二端;电机液冷环路系统的与制冷剂环路系统通过板式换热器103进行换热,即电机液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器103中进行热交换。
暖风液冷环路系统包括经由暖风芯体的循环流通冷却液的暖风液冷环路,且暖风液冷环路中的管道分别接入板式换热器102中的液冷通道的第一端和第二端;暖风液冷环路系统与制冷剂环路系统通过板式换热器102进行换热,即空调液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器102中进行热交换。
在一种具体实施方案中,可将节流阀103全开至管径大小,节流阀109正常节流。这时压缩机101排出的高温制冷剂依次进入板式换热器102和104进行冷凝放热,通过节流阀109进行节流成低温气液两相制冷剂,后经过空调蒸发器110吸收乘员舱(空调蒸发器安装在乘员舱)热量,最后进入气液分离器107,进入压缩机101吸气口,从而实现制冷剂的循环。电机液冷环路系统的冷却液可通过板式换热器104吸收热量,并通过电机液冷环路实现散热。暖风液冷环路系统的冷却液可通过板式换热器102吸收热量,并在暖风液冷环路输出热量,例如通过暖风芯体对成员舱进行加热,从而结合空调蒸发器110的制冷,达到了除湿的目的。
本申请实施例的热管理系统可应用于传统能源汽车(内燃机汽车),也可能被应用于新能源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,简化了制冷剂环路系统的环路,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能。通过使用两个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器104与电机液冷环路的冷却液进行热交换,以及通过板式换热器102与暖风液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,也使得热管理系统的电控集成的方案可以被实现。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
参见图14,图14是本申请实施例提供的又一种热管理系统的结构示意图,如图14所示,该热管理系统与图13所示热管理系统的区别在于,图14的热管理系统在图13所示热管理系统的基础上增加了电池液冷环路系统,以及增加了一条包含板式换热器106的制冷剂支路,从而形成了又一条的制冷剂环路(或称第二制冷剂环路),暖风液冷系统既可以通过板式换热器102实现换热,还可以通过板式换热器106实现换热。具体描述如下:
板式换热器106含有三对进出口通道,其中一对进出口通道为制冷剂通道,用于流通制冷剂,另两对进出口通道均为液冷通道,其中一个液冷通道(可称为第一液冷通道)用于流通电池液冷环路系统的冷却液,另一个液冷通道(可称为第二液冷通道)用于流通暖风液冷环路系统的冷却液。制冷剂通道的制冷剂和这两个液冷通道的冷却液之间可进行热量交换(简称热交换,或称换热)。
在图14的基础上,新增的制冷剂支路包括节流阀105和板式换热器106,板式换热器104 中的制冷剂通道的第二端除了与节流阀109的第一端连接外,还与节流阀105的第一端连接,节流阀105的第二端与板式换热器106的制冷剂通道的第一端连接,板式换热器106的制冷剂通道的第二端连接到气液分离器107的第一端,从而形成包含压缩机101、板式换热器102、节流阀103、板式换热器104、节流阀105和板式换热器106和气液分离器107的第二制冷剂环路。
电池液冷环路系统包括经由电池包的循环流通冷却液的电池液冷环路,且电池液冷环路中的两段管道分别接入板式换热器106中的第一液冷通道的第一端和第二端;电池液冷环路系统的与制冷剂环路系统通过板式换热器106进行换热,即电池液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器106中进行热交换。
暖风液冷环路中还存在管道分别接入板式换热器106中的第二液冷通道的第一端和第二端;暖风液冷环路系统与制冷剂环路系统可通过板式换热器102和/或板式换热器106进行换热,即空调液冷环路系统的冷却液与制冷剂环路系统的制冷剂可在板式换热器102中进行热交换,也可在板式换热器106中进行热交换。
在一种具体实施方案中,可将节流阀103全开至管径大小,节流阀109正常节流。这时压缩机101排出的高温制冷剂依次进入板式换热器102和104进行冷凝放热,然后分别通过节流阀109和节流阀105进行节流成低温气液两相制冷剂,后分别经过空调蒸发器110和板式换热器106分别吸收乘员舱(空调蒸发器安装在乘员舱)热量和电池包的热量,最后均进入气液分离器107,进入压缩机101吸气口,从而实现制冷剂的循环。电机液冷环路系统的冷却液可通过板式换热器104吸收热量,并通过电机液冷环路实现散热。暖风液冷环路系统的冷却液可通过板式换热器102和板式换热器106吸收热量,并在暖风液冷环路输出热量,例如通过暖风芯体对成员舱进行加热,从而结合空调蒸发器110的制冷,达到了除湿的目的。
本申请实施例的热管理系统可能被应用于新能源汽车(例如电动汽车、混动汽车等)。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能,和/或,对电池包进行制冷和/或加热的功能。通过设计三个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器104与电机液冷环路的冷却液进行热交换,以及通过板式换热器102和板式换热器106与暖风液冷环路的冷却液进行热交换,通过板式换热器106与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,也使得热管理系统的电控集成的方案可以被实现。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于图14实施例所展示的热管理系统,下面示例性描述在一种实现场景中热管理系统中的相关部件的连接关系。具体参见图15,图15是本申请实施例提供的一种热管理系统的详细结构示意图,如图15所示,该热管理系统为不包含制冷剂四通换向阀结构的集成化热管理系统。这里集成的有集成壶泵121、多功能阀体122、集成体123、集成体124。
其中,集成壶泵121为由水泵121-1和膨胀水壶121-2组成的集成体,用于实现水泵和蓄水功能。其中,膨胀水壶121-2的一端和水泵121-12的一端连接,膨胀水壶121-2的另一端提供对外接口(记为A端,例如用于连接电池包120),水泵121-12的另一端提供对外接口(记为B端,例如用于连接板式换热器106)。
多功能阀体122,其作用包括水泵、水流换向和蓄水功能,多功能阀体122包含水泵122-1 和水泵122-6,三通水阀122-2和三通水阀122-4,水路四通阀122-3和水壶122-5。其中,水路四通阀122-3分别连接水泵122-1、三通水阀122-2、三通水阀122-4和水壶122-5,水壶122-5还连接水泵122-6,水泵122-6的另一端还提供对外接口(记为C端,例如用于连接板式换热器104)。三通水阀122-2还提供两路对外接口,如一路记为A端,一路记为B端,A端例如用于连接电机119,B端例如用于连接散热水箱115。水泵122-1还提供两路对外接口,如一路记为G端,一路记为E端,G端例如用于连接板式换热器102,E端例如用于连接板式换热器106;三通水阀122-4还提供两路对外接口,如一路记为F端,一路记为D端,F端例如用于连接板式换热器106,D端例如用于连接暖风芯体111。
集成体123为由多个板式换热器(板式换热器102,板式换热器104和板式换热器106)和多个节流阀(节流阀103和节流阀105)组成的集成体,其中温度压力传感器也可以布置在连接各个集成元件的管路上。
集成体124为由气液分离器107和电磁阀108组成的集成体。
这里的板式换热器106含有三对进出口,可以实现对电池的冷却和加热
在图15所示的热管理系统中,制冷剂环路的连接关系如下:压缩机101的出口与板式换热器102(即板式换热器102的制冷剂通道的一端)一端连接,板式换热器102另外一端(即板式换热器102的制冷剂通道的另一端)与节流阀103一端连接,节流阀103另外一端与板式换热器104一端(即板式换热器104的制冷剂通道的一端)连接,板式换热器104另外一端(即板式换热器104的制冷剂通道的另一端)分别与节流阀105和节流阀10一端连接,节流阀105另外一端与板式换热器106的一端(即板式换热器106的制冷剂通道的一端)连接,节流阀109另外一端与空调蒸发器110一端连接,空调蒸发器110另外一端和板式换热器106另外一端(即板式换热器106的制冷剂通道的另一端)均与气液分离器107入口连接。板式换热器104另外一端(即板式换热器104的制冷剂通道的另一端)连接电磁阀108一端,电磁阀108另外一端连接气液分离器107入口。气液分离器107出口与压缩机101入口连接。这里节流阀103为可以全通的节流阀,可以使用电磁阀和普通节流阀的组合件;这里节流阀105和106为可以完全关闭的节流阀。所述的节流阀可以使用毛细管、膨胀阀或挡板等代替,凡是具有节流功能均可以使用。
在图15所示的热管理系统中,暖风液冷环路连接关系如下:多功能阀体122的G口与板式换热器102的一端连接,板式换热器102的另外一端与电加热器114的一端连接,电加热器114的另外一端与暖风芯体111一端连接,暖风芯体111另外一端与多功能阀体122的D口连接。多功能阀体122的F口与板式换热器106一端连接,板式换热器106另外一端与多功能阀体122的D口连接。
在图15所示的热管理系统中,电池液冷环路连接关系如下:集成壶泵121的出口B与板式换热器106的一端连接,板式换热器106的另外一端与电池包120的冷却装置一端连接,电池包120的冷却装置的另外一端与集成壶泵121入口A连接。
电池包120的冷却装置为通过流通冷却液来实现对电池包进行加热或冷却的装置,例如电池包120的冷却装置可以为与电池包接触的水冷盘管、冷却板等,本文不做限定。
需要说明的是,本文中,为了叙述的方便,有时也把“连接电池包120的冷却装置”简述为“连接电池包120”,即把“电池包120的冷却装置”简述为“电池包120”。
在图15所示的热管理系统中,电机液冷环路连接关系如下:多功能阀体122的C口与板式换热器104的一端连接,板式换热器104的另外一端与功率器件117的冷却装置一端连接,功率器件117的冷却装置另外一端与电机控制器118的冷却装置一端连接,电机控制器118 的冷却装置的另外一端与电机119的冷却装置一端连接,电机119的冷却装置另外一端分别与散热水箱115一端和多功能阀体122的A口连接。散热水箱115的另外一端与多功能阀体122的B端连接。
同样,本文中,为了叙述的方便,有时也把“功率器件117的冷却装置”简述为“功率器件117”,把“电机控制器118的冷却装置”简述为“电机控制器118”,把“电机119的冷却装置”简述为“电机119”。
集成壶泵121、多功能阀体122、集成体123、集成体124各自的具体集成方式还可类似参考前文图3A、图3B、图3C实施例的相关描述,为了说明书的简洁,这里不再赘述。
除此之外,集成壶泵121、多功能阀体122、集成体123、集成体124还可以共同集成在一起,成为前文所述的热管理集成模块。
基于图15实施例的结构连接关系,下面将对主要的应用场景进行示例性地阐述。
参见图16,图16为在实现乘员舱冷却、电池冷却以及电机冷却场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意和电池液冷环路流向示意。本文中,热管理系统中的灰色区域均表示无需工质通过的环路。
如图16所示,制冷剂环路流向描述如下:节流阀103全开至管径大小,节流阀105和9正常节流,电磁阀108关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器102和104进行冷凝,分别通过节流阀105和节流阀109进行节流成低温气液两相制冷剂,后经过板式换热器106和空调蒸发器110分别吸收电池液冷环路热量和乘员舱热量,最后进入气液分离器107,进入压缩机101吸气口。这里可以控制节流阀105和节流阀109的开关来控制低温制冷剂是否进入板式换热器106和空调蒸发器110,从而实现单空调冷却或者单电池冷却。
电机液冷环路流向描述如下:多功能阀体122的G端输出液冷介质进入板式换热器3,冷却高温制冷剂,依次流经电加热器114和暖风芯体111进入多功能阀体122的D口,这里电加热器114没有打开,仅作为流通功能,温度风门125调至最冷状态,空气旁通暖风芯体111。液冷介质从多功能阀体122的D口进入,C口流出进入板式换热器104再次冷却高温制冷剂后,依次进入功率器件117,电机控制器118和电机119,进入散热水箱进行冷却回到多功能阀体122的B口,经过多功能阀体122的G口泵出。
电池液冷环路流向分别描述如下:集成壶泵121向板式换热器106泵出高温液体,经过板式换热器106冷却为低温液体,低温液体流经电池包120,吸收电池包120中电池的热量,达到冷却电池包120的目的,称为高温液体回到集成壶泵121。
参见图17,图17为在实现乘员舱制热和电池制热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图17所示,制冷剂环路流向描述如下:节流阀103正常节流,节流阀105和9关闭,电磁阀108打开。这时压缩机101排除的高温制冷剂依次进入板式换热器102进行冷凝,经过节流阀103节流后进入板式换热器104,吸收液冷侧热量。然后通过电磁阀108进入气液分离器107入口,进入压缩机101吸气口。
暖风液冷环路流向描述如下:多功能阀体122的G口泵出液冷进入板式换热器102,进入电加热器114,这里电加热器114根据水温高低控制功率输出,然后液冷介质进入暖风芯 体111,释放热量至舱内,接着进入多功能阀体122的D口。然后从F口流至板式换热器106回到多功能阀的E口,进入水泵122-1的入口。可以根据温度风门125旁通暖风芯体111的风门125进而控制是否对舱内加热。三通阀122-4为一进两出接口,可以控制F出口的液冷流量从而控制是否对电池加热。
电机液冷环路流向描述如下:多功能阀体122的C口泵出液冷进入板式换热器104,加热板式换热器104的低温制冷剂,然后依次经过功率器件117、电机控制器118和电机119,进入多功能阀体122的A口,回到多功能阀体122的C口。从而实现了电驱的余热回收。
电池液冷环路流向分别描述如下:集成壶泵121向板式换热器106泵出低温液体,经过板式换热器106加热为高温液体,高温液体流经电池包120,达到加热电池包120的目的,成为低温液体回到集成壶泵121。
参见图18,图18为在实现电池加热和乘员舱除湿场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图18所示,制冷剂环路流向描述如下:节流阀103全开至管径大小,节流阀105关闭,节流阀109正常节流,电磁阀108关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器102和4进行冷凝,通过节流阀109进行节流成低温气液两相制冷剂,后经过空调蒸发器110吸收乘员舱的热量,最后进入气液分离器107,进入压缩机101吸气口。
暖风液冷环路流向描述如下:多功能阀体122的G口泵出液冷进入板式换热器102,进入电加热器114,这里电加热器114根据水温高低控制功率输出,然后液冷介质进入暖风芯体111,释放热量至舱内,从而达到除湿的功能。接着进入多功能阀体122的D口。然后从F口流至板式换热器106,实现为电池加热的功能,接着回到多功能阀的E口,进入水泵122-1的入口。
电机液冷环路流向描述如下:多功能阀体122的C口泵出低温液体进入板式换热器104,然后依次经过功率器件117、电机控制器118和电机119,进入多功能阀体122的B口,回到多功能阀体122的C口。
电池液冷环路流向分别描述如下:集成壶泵121向板式换热器106泵出低温液体,经过板式换热器106加热为高温液体,高温液体流经电池包120,达到加热电池包120的目的,成为低温液体回到集成壶泵121。
参见图19,图19为在实现电池冷却和乘员舱加热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图19所示,制冷剂环路流向描述如下:节流阀103全开至管径大小,节流阀105正常节流,节流阀109关闭,电磁阀108关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器102和4进行冷凝,通过节流阀105进行节流成低温气液两相制冷剂,后经过板式换热器106吸收电池环路的热量,最后进入气液分离器107,进入压缩机101吸气口。
暖风液冷环路流向描述如下:多功能阀体122的G口泵出液冷进入板式换热器102,进入电加热器114,这里电加热器114根据水温高低控制功率输出,然后液冷介质进入暖风芯体111,释放热量至舱内,从而达到加热乘员舱的目的。接着进入多功能阀体122的D口,然后直接回到水泵122-1的入口。
电机液冷环路流向描述如下:多功能阀体122的C口泵出低温液体进入板式换热器104,然后依次经过功率器件117、电机控制器118和电机119,进入多功能阀体122的B口,回到多功能阀体122的C口。
电池液冷环路流向分别描述如下:集成壶泵121向板式换热器106泵出高温液体,经过板式换热器106冷却为低温液体,低温液体流经电池包120,吸收电池包120中电池的热量,达到冷却电池包120的目的,称为高温液体回到集成壶泵121。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能,和/或,对电池包进行制冷和/或加热的功能。通过对采用水路四通换向阀,实现了不同水路的流向切换,使得制冷回路只有一个流动方向,能够最大化地利用制冷系统的性能。
通过设计三个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器104与电机液冷环路的冷却液进行热交换,以及通过板式换热器102和板式换热器106与暖风液冷环路的冷却液进行热交换,通过板式换热器106与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,可以使系统中主要零部件集成在不同的集成体中。也使得热管理系统的电控集成的方案可以被实现,解决了制冷剂管路和电控线束过长的问题。并且,本申请实施例同样可以适用于各种各样的实际应用场景,例如乘员舱制冷/加热/除湿,电池制冷/加热,电机冷却/热量回收等。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
基于图14实施例所展示的热管理系统,下面示例性描述在又一种实现场景中热管理系统中的相关部件的连接关系。具体参见图20,图20是本申请实施例提供的一种热管理系统的详细结构示意图,如图20所示,该热管理系统为不包含制冷剂四通换向阀结构的集成化热管理系统。这里集成的有集成壶泵231、集成壶泵232、集成体228、集成体233。
集成壶泵231为由水壶220、水泵221和水泵222组成的集成体,用于实现水泵和蓄水功能。
集成壶泵232为由水壶226和水泵225组成的集成体,用于实现水泵和蓄水功能。
集成体228为将多个板式换热器(板式换热器202,板式换热器204,板式换热器206)和多个节流阀(节流阀203和节流阀205)集成的集成体,其中温度压力传感器也可以布置在连接各个集成元件的管路上;
集成体233为将气液分离器207和电磁阀208集成的集成体。
在图20所示的热管理系统中,制冷剂环路的连接关系如下:压缩机101出口与板式换热器202一端连接,板式换热器202另外一端与节流阀203一端连接,节流阀203另外一端与板式换热器204一端连接,板式换热器204另外一端分别与节流阀205和节流阀209一端连接,节流阀205另外一端与板式换热器206连接,节流阀209另外一端与空调蒸发器210一端连接,空调蒸发器210另外一端和板式换热器206另外一端均与气液分离器207入口连接。板式换热器204另外一端连接电磁阀208一端,电磁阀208另外一端连接气液分离器207入口。气液分离器207出口与压缩机101入口连接。这里节流阀203为可以全通的节流阀,可以使用电磁阀和普通节流阀的组合件;这里节流阀205和节流阀209为可以完全关闭的节流阀。所述的节流阀可以使用毛细管、膨胀阀或挡板等代替,凡是具有节流功能均可以使用。
暖风液冷环路连接关系如下:水路四通阀213的A口与板式换热器202的一端连接,B 口与电加热器223的一端连接,电加热器223的另外一端与三通阀224的入口端连接,三通阀224的B口与暖风芯体211一端连接,A口与板式换热器206的一端连接,板式换热器206和暖风芯体的另一端均与水泵222的入口连接,水泵222的出口与板式换热器202的另一端连接。
电池液冷环路连接关系如下:水泵225的出口B与板式换热器206的一端连接,板式换热器206的另外一端与电池包227的冷却装置的一端连接,电池包227的冷却装置的另外一端与水壶226的入口连接,水壶226的出口与水泵225的入口连接。
电池包227的冷却装置为通过流通冷却液来实现对电池包进行加热或冷却的装置,例如电池包227的冷却装置可以为与电池包接触的水冷盘管、冷却板等,本文不做限定。
需要说明的是,本文中,为了叙述的方便,有时也把“电池包227的冷却装置”简述为“电池包227”。
电机液冷环路连接关系如下:水泵221的出口与板式换热器204的一端连接,板式换热器204的另外一端与水路四通阀213的C口连接,水路四通阀213的D口与功率器件214的冷却装置一端连接,功率器件214的冷却装置另外一端与电机控制器215的冷却装置一端连接,电机控制器215的冷却装置另外一端与电机216的冷却装置一端连接,电机216的冷却装置另外一端与三通阀217的入口连接,三通阀217的A端直接与水壶220的入口连接,三通阀的B端与散热水箱218的一端连接,散热水箱218的另外一端与水壶220的入口连接。水壶220的出口与水泵221的入口连接。
同样,本文中,为了叙述的方便,有时也把“功率器件214的冷却装置”简述为“功率器件214”,把“电机控制器215的冷却装置”简述为“电机控制器215”,把“电机216的冷却装置”简述为“电机216”。
集成壶泵231、集成壶泵232、集成体228、集成体233各自的具体集成方式还可类似参考前文图3A、图3B、图3C实施例的相关描述,为了说明书的简洁,这里不再赘述。
除此之外,集成壶泵231、集成壶泵232、集成体228、集成体233还可以共同集成在一起,成为前文所述的热管理集成模块。
基于图20实施例的结构连接关系,下面将对主要的应用场景进行示例性地阐述。
参见图21,图21为在实现乘员舱冷却、电池冷却以及电机冷却场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意和电池液冷环路流向示意。本文中,热管理系统中的灰色区域均表示无需工质通过的环路。
如图21所示,制冷剂环路流向描述如下:节流阀203全开至管径大小,节流阀205和209正常节流,电磁阀208关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器202和4进行冷凝,分别通过节流阀205和节流阀209进行节流成低温气液两相制冷剂,后经过板式换热器206和空调蒸发器210分别吸收电池液冷环路热量和乘员舱热量,最后进入气液分离器207,进入压缩机101吸气口。这里可以控制节流阀205和节流阀209的开关来控制低温制冷剂是否进入板式换热器206和空调蒸发器210,从而实现单空调冷却或者单电池冷却。
电机液冷环路流向描述如下:水泵221的出口输出液冷介质进入板式换热器204,冷却高温制冷剂,同时流入水路四通阀213的C口,由水路四通阀213的B口流出,依次流经电加热器223和三通阀224,由三通阀224的B口进入暖风芯体211,由暖风芯体211的出口进入到水泵22的入口。这里暖风芯体211的温度风门调至最冷状态,空气旁通暖风芯体211。 水泵22的出口将液冷介质输出进去板式换热器202,再次冷却板式换热器202内的高温介质,板式换热器202的出口进入水路四通阀213的A口,再由B口流出,依次进入功率器件214,电机控制器215和电机216,进入三通阀217的入口,由三通阀217的B口排出进入散热水箱218,散热水箱218将高温液体冷却,经由水壶220进入水泵221的入口。
参见图22,图22为在实现乘员舱制热和电池制热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图22所示,制冷剂环路流向描述如下:节流阀203正常节流,节流阀205和节流阀209关闭,电磁阀208打开。这时压缩机101排除的高温制冷剂依次进入板式换热器202进行冷凝,经过节流阀203节流后进入板式换热器204,吸收液冷侧热量。然后通过电磁阀208进入气液分离器207入口,进入压缩机101吸气口。
暖风液冷环路流向描述如下:水泵22的出口泵出液体进入板式换热器202,然后进入水路四通阀213的A口,再从B口进入电加热器223,这里电加热器223根据水温高低控制功率输出,然后液冷介质三通阀224的入口,这里的三通阀224为一进两出接口,可以控制A、B两个出口的液冷流量从而控制是否对电池和乘员舱加热。加热后的液体再回到水泵22的入口。
电机液冷环路流向描述如下:水泵221的出口泵出液冷进入板式换热器204,加热板式换热器204的低温制冷剂,然后依次经过进入水路四通阀213的C口和D口、功率器件214、电机控制器215和电机216,经水路三通阀217的A口进入水壶220,再回到水泵221的入口。从而实现了电驱的余热回收。
电池液冷环路流向分别描述如下:集成壶泵232向板式换热器206泵出低温液体,经过板式换热器206加热为高温液体,高温液体流经电池包227,达到加热电池包227的目的,成为低温液体回到集成壶泵232。
参见图23,图23为在实现电池加热和乘员舱除湿场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图23所示,制冷剂环路流向描述如下:节流阀203全开至管径大小,节流阀205关闭,节流阀209正常节流,电磁阀208关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器202和板式换热器4进行冷凝,通过节流阀209进行节流成低温气液两相制冷剂,后经过空调蒸发器210吸收乘员舱的热量,最后进入气液分离器207,进入压缩机101吸气口。
暖风液冷环路流向描述如下:水泵22的出口泵出液体进入板式换热器202,然后进入水路四通阀213的A口,再从B口进入电加热器223,这里电加热器223根据水温高低控制功率输出,然后液冷介质三通阀224的入口,三通阀A和B两个口同时出水,分别对电池和乘员舱加热。加热后的液体再回到水泵222的入口。
电机液冷环路流向描述如下:水泵221的出口泵出液冷进入板式换热器204,加热板式换热器204的低温制冷剂,然后依次经过进入水路四通阀213的C口和D口、功率器件214、电机控制器215和电机216,经水路三通阀217的B口进入散热水箱218,再经由水壶220回到水泵221的入口。
电池液冷环路流向分别描述如下:集成壶泵232向板式换热器206泵出低温液体,经过 板式换热器206加热为高温液体,高温液体流经电池包227,达到加热电池包227的目的,成为低温液体回到集成壶泵232。
参见图24,图24为在实现电池冷却和乘员舱加热场景下,热管理系统中相关的工质流向示意图,具体包括制冷剂环路流向示意、电机液冷环路流向示意、电池液冷环路流向示意和暖风液冷环路流向示意。
如图24所示,制冷剂环路流向描述如下:节流阀203全开至管径大小,节流阀205正常节流,节流阀209关闭,电磁阀208关闭。这时压缩机101排除的高温制冷剂依次进入板式换热器202和板式换热器204进行冷凝,通过节流阀205进行节流成低温气液两相制冷剂,后经过板式换热器206吸收电池环路的热量,最后进入气液分离器207,进入压缩机101吸气口。
暖风液冷环路流向描述如下:水泵22的出口泵出液体进入板式换热器202,然后进入水路四通阀213的A口,再从B口进入电加热器223,这里电加热器223根据水温高低控制功率输出,然后液冷介质三通阀224的入口,三通阀B口出水,对乘员舱加热。加热后的液体再回到水泵22的入口。
电机液冷环路流向描述如下:水泵221的出口泵出液冷进入板式换热器204,加热板式换热器204的低温制冷剂,然后依次经过进入水路四通阀213的C口和D口、功率器件214、电机控制器215和电机216,经水路三通阀217的B口进入散热水箱218,再经由水壶220回到水泵221的入口。
电池液冷环路流向分别描述如下:集成壶泵232向板式换热器206泵出高温液体,经过板式换热器206冷却为低温液体,低温液体流经电池包227,吸收电池包227中电池的热量,达到冷却电池包227的目的,称为高温液体回到集成壶泵232。
可以看到,本申请实施例中,在不使用制冷剂四通阀的情况下,实现了在制冷剂回路只有一个流动方向的情况下使用热泵空调系统对乘员舱实施热泵制冷和/或加热的功能,和/或,对电池包进行制冷和/或加热的功能。通过对更改水路四通换向阀的位置,实现制冷情况下冷却液先经过制冷剂回路后面位置的板式换热器204,再经过前面位置的板式换热器202,能够更好地提高系统制冷时的能效,降低制冷工况下的系统能耗。
通过设计三个板式换热器,使得制冷剂环路的制冷剂可以通过板式换热器与电机液冷环路的冷却液进行热交换,以及通过板式换热器与暖风液冷环路的冷却液进行热交换,通过板式换热器与电池液冷环路的冷却液进行热交换,从而避免了平行流换热器的使用。由于板式换热器体积相对较小,通过板式换热器和冷却液换热方法的应用,使热管理系统的结构化集成的方案可以被实现,可以使系统中主要零部件集成在不同的集成体中。也使得热管理系统的电控集成的方案可以被实现,解决了制冷剂管路和电控线束过长的问题。并且,本申请实施例同样可以适用于各种各样的实际应用场景,例如乘员舱制冷/加热/除湿,电池制冷/加热,电机冷却/热量回收等。所以,实施本申请实施例,有利于实现节约热管理系统在前舱的占用空间,也有利于节约热管理系统的成本。
上文描述了本申请实施例各种热管理系统以及热管理系统的各种具体应用场景,下面描述热管理控制器对上述各种热管理系统的热管理方法。参见图25,该方法包括但不限于以下步骤:
S1:数据获取步骤,在该步骤中,热管理控制器工作前,获取安装在热管理系统的管道 上的传感器的信号以及其他控制器(例如空调板控制器)的热管理请求,如温度、压力、湿度信号和电池加热、冷却请求等。
S2:模式判断步骤,在该步骤中,热管理控制器根据设定的热管理策略,对获取的数据进行数据处理和判断,根据不同的热管理请求,综合出一个最适合的整车热管理系统模式。热管理控制器根据设定的热管理策略和判断出的系统模式,计算出各部件的工作状态,例如在制冷模式下,热管理控制器计算出压缩机和水泵的转速需求,以及各阀门的开关需求等,进而生成对热管理系统的相关受控部件的控制信号(或称控制指令,或称控制信息,或称需求信号)。所述相关受控部件为能够主动提供热管理系统所需冷量、热量和水流量的若干数量的部件,例如压缩机、水泵、节流装置、换热器、气液分离器、电磁阀、阀门等热管理部件。
S3:信号输出步骤,在该步骤中,热管理控制器并将这些控制信号发送给驱动板。所述驱动板为将水泵、阀件、压缩机、节流装置等被控部件的驱动单元(或称驱动电路,或称驱动元件,或称驱动模块,或称驱动单板)与执行机构分离,再将这些被控部件的驱动单元共同集成在一块驱动板(或称集成驱动板,或称集成电路板)上而形成的,相关内容可参考前文关于电控集成的描述。
S4:驱动执行步骤,在该步骤中,上文所述的合一的驱动板根据热管理控制器发送的控制信号,进行信号转换,进而驱动不同的热管理部件(受控部件)执行相应的指令,实现诸如上文所描述的热管理系统的各种具体应用场景的功能,例如乘员舱制冷/加热/除湿,电池制冷/加热,电机冷却/热量回收等。
可以看到,本申请实施例中,由于电控集成将热管理各元器件单独的驱动板集成在一个合一的驱动板上,因此热管理控制器只需向合一的驱动板发送控制信号(需求信号)即可,后续再由合一的驱动板根据控制信号(需求信号),进行相应的信号转换,同时驱动多个部件的执行机构执行相应的指令。所以实施本申请能够有效减少了热管理系统的线束长度,节约布线空间,降低布线成本,还可以保证各种具体应用场景的功能的正常实现。
以上对本申请实施例所提供的热管理系统以及控制方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种用于汽车的热管理系统,其特征在于,包括:制冷剂环路系统、电机液冷环路系统、空调液冷环路系统,其中,
    所述制冷剂环路系统包括:压缩机(1)、制冷剂四通换向阀(2)、板式换热器(3)、节流阀(4)、板式换热器(5)和气液分离器(6);其中,所述压缩机(1)的出口通过管道与所述制冷剂四通换向阀(2)的第一端连接,所述制冷剂四通换向阀(2)的第二端与所述板式换热器(3)中的制冷剂通道的第一端连接,所述板式换热器(3)中的制冷剂通道的第二端与所述节流阀(4)的第一端连接,所述节流阀(4)的第二端与所述板式换热器(5)中的制冷剂通道的第一端连接,所述板式换热器(5)中的制冷剂通道的第二端与所述制冷剂四通换向阀(2)的第三端连接,所述制冷剂四通换向阀(2)的第四端与所述气液分离器(6)的第一端连接,所述气液分离器(6)的第二端与所述压缩机(1)的入口连接,以形成制冷剂环路;
    所述电机液冷环路系统包括流经电机的循环流通冷却液的电机液冷环路,且所述电机液冷环路中的管道分别接入所述板式换热器(3)中的液冷通道的第一端和第二端;所述电机液冷环路系统与所述制冷剂环路系统通过所述板式换热器(3)进行换热;
    所述空调液冷环路系统包括流经空调箱的循环流通冷却液的空调液冷环路,且所述空调液冷环路中的管道分别接入所述板式换热器(5)中的液冷通道的第一端和第二端;所述空调液冷环路系统与所述制冷剂环路系统通过所述板式换热器(5)进行换热。
  2. 根据权利要求1所述的系统,其特征在于,所述热管理系统还包括:电池液冷环路系统,所述电池液冷环路系统包括流经电池包的循环流通冷却液的电池液冷环路,且所述电池液冷环路和所述空调液冷环路系统共用管道接入所述板式换热器(5)中的液冷通道的第一端和第二端;所述电池液冷环路系统与所述制冷剂环路系统通过所述板式换热器(5)进行换热。
  3. 根据权利要求2所述的系统,其特征在于,所述电机液冷环路系统包括:多功能阀(8)、功率器件(9)、电机控制器(10)、电机(11)、散热水箱(12)和集成阀(14),其中,所述多功能阀(8)、功率器件(9)、电机控制器(10)、电机(11)、散热水箱(12)和集成阀(14)串联接通,所述多功能阀(8)还连接到所述板式换热器(3)的液冷通道的第一端,所述集成阀(14)还连接到所述板式换热器(3)的液冷通道的第二端;所述电机(11)还直接与所述集成阀(14)连接;
    所述多功能阀(8)用于实现水泵、水流换向和蓄水功能;所述集成阀(14)用于实现水流换向功能。
  4. 根据权利要求1-3任一项所述的系统,其特征在于,所述空调液冷环路系统包括:空调换热器(21)、集成阀泵(15);所述空调换热器(21)和所述集成阀泵(15)连接,所述空调换热器(21)还连接所述板式换热器(5)的液冷通道的第一端,所述集成阀泵(15)还连接所述板式换热器(5)的液冷通道的第二端。
  5. 根据权利要求1-4任一项所述的系统,其特征在于,所述电池液冷环路系统包括:电池包(16)、电加热器(17)和集成阀泵(15);其中,所述电池包(16)、所述电加热器(17) 和集成阀泵(15)串联接通,所述电池包(16)还连接所述板式换热器(5)的液冷通道的第一端,所述集成阀泵(15)还连接所述板式换热器(5)的液冷通道的第二端;所述集成阀泵(15)用于实现水泵和水流换向功能。
  6. 根据权利要求1-5任一项所述的系统,其特征在于,所述热管理系统还可以包括暖风液冷环路系统,所述暖风液冷环路系统包括流经暖风芯体(20)的循环流通冷却液的暖风液冷环路;所述暖风液冷环路包括集成壶泵(18)、电加热器(19)和所述暖风芯体(20),其中,所述暖风液冷环路包括集成壶泵(18)、电加热器(19)和所述暖风芯体(20)串联接通;所述集成壶泵(18)用于实现水泵和蓄水功能。
  7. 根据权利要求6所述的系统,其特征在于,所述集成壶泵(18)包括膨胀水壶(18-1)和水泵(18-2),所述膨胀水壶(18-1)和所述水泵(18-2)连接,所述膨胀水壶(18-1)还连接所述暖风芯体(20),所述水泵(18-2)还连接所述电加热器(19)。
  8. 根据权利要求7所述的系统,其特征在于,所述多功能阀(8)为包括水泵(8-1)、膨胀水壶(8-2)和水路三通阀(8-3)的集成体,其中,所述水路三通阀(8-3)的第一端连接所述膨胀水壶(8-2),所述水路三通阀(8-3)的第二端连接所述电池包(16),所述水路三通阀(8-3)的第三端连接所述板式换热器(3)的液冷通道的第一端;所述膨胀水壶(8-2)连接所述水泵(8-1),所述水泵(8-1)连接所述功率器件(9)。
  9. 根据权利要求8所述的系统,其特征在于,所述集成阀(14)为包括水路三通阀(14-1)和三通水管的集成体,所述水路三通阀(14-1)的第一端连接所述电机(11),所述水路三通阀(14-1)的第二端连接所述散热水箱(12),所述水路三通阀(14-1)的第三端连接所述三通水管的第一端,所述三通水管的第二端连接所述板式换热器(3)的液冷通道的第二端,所述三通水管的第三端连接所述集成阀泵(15)。
  10. 根据权利要求9所述的系统,其特征在于,所述集成阀泵(15)为包括水泵(15-1)和水路三通阀(15-2)的集成体,所述水泵(15-1)分别连接到所述板式换热器(5)的液冷通道的第二端和所述水路三通阀(15-2)的第一端,所述水路三通阀(15-2)的第二端分别连接所述集成阀(14)的所述三通水管和所述电加热器(17),所述水路三通阀(15-2)的第三端连接所述空调换热器(21)。
  11. 根据权利要求9所述的系统,其特征在于,所述集成壶泵(18)、所述多功能阀(8)、所述集成阀(14)、所述集成阀泵(15)中的至少一个在结构上被配置为集成结构。
  12. 一种用于汽车的热管理系统,其特征在于,包括:制冷剂环路系统、电机液冷环路系统、暖风液冷环路系统,其中,
    所述制冷剂环路系统包括:压缩机(101)、板式换热器(102)、节流阀(103)、板式换热器(104)、节流阀(109)、空调蒸发器(110)和气液分离器(107);其中,所述压缩机(101)、所述板式换热器(102)、所述节流阀(103)、所述板式换热器(104)、所述节流阀(109)、所述空调蒸发器(110)和所述气液分离器(107)串联接通形成第一制冷剂环路;
    所述电机液冷环路系统包括流经电机的循环流通冷却液的电机液冷环路,且所述电机液冷环路中的管道分别接入所述板式换热器(104)中的液冷通道的第一端和第二端;所述电机液冷环路系统与所述第一制冷剂环路系统通过所述板式换热器(104)进行换热;
    所述暖风液冷环路系统包括流经暖风芯体的循环流通冷却液的暖风液冷环路,且所述暖风液冷环路中的管道分别接入所述板式换热器(102)中的液冷通道的第一端和第二端;所述暖风液冷环路系统与所述第一制冷剂环路系统通过所述板式换热器(102)进行换热。
  13. 根据权利要求12所述的系统,其特征在于,所述压缩机(101)的出口通过管道与所述板式换热器(102)中的制冷剂通道的第一端连接,所述板式换热器(102)中的制冷剂通道的第二端与所述节流阀(103)的第一端连接,所述节流阀(103)的第二端与所述板式换热器(104)中的制冷剂通道的第一端连接,所述板式换热器(104)中的制冷剂通道的第二端与所述节流阀(109)的第一端连接,所述节流阀(109)的第二端与所述空调蒸发器(110)的第一端连接,所述空调蒸发器(110)的第二端与所述气液分离器(107)的第一端连接,所述气液分离器(107)的第二端接入到所述压缩机(101)的入口。
  14. 根据权利要求12或13所述的系统,其特征在于,所述热管理系统还包括电池液冷环路系统,所述制冷剂环路系统还包括制冷剂支路,其中,
    所述制冷剂支路包括节流阀(105)和板式换热器(106),所述压缩机(101)、所述板式换热器(102)、所述节流阀(103)、所述板式换热器(104)、所述节流阀(105)、所述板式换热器(106)和所述气液分离器(107)串联接通形成第二制冷剂环路;
    所述电池液冷环路系统包括流经电池包的循环流通冷却液的电池液冷环路,且所述电池液冷环路中的两段管道分别接入板式换热器(106)中的第一液冷通道的第一端和第二端;
    所述暖风液冷环路系统中还存在管道分别接入所述板式换热器(106)中的第二液冷通道的第一端和第二端;
    所述电池液冷环路系统与所述制冷剂环路系统通过板式换热器(106)进行换热;或者,
    所述暖风液冷环路系统与所述制冷剂环路系统还通过所述板式换热器(106)进行换热;或者,
    所述暖风液冷环路系统与所述电池液冷环路系统通过所述板式换热器(106)进行换热。
  15. 根据权利要求14任一项所述的系统,其特征在于,所述节流阀(105)的第一端与所述板式换热器(104)中的制冷剂通道的第二端连接,所述节流阀(105)的第二端与板式换热器(106)的制冷剂通道的第一端连接,所述板式换热器(106)的制冷剂通道的第二端与所述气液分离器(107)的第一端连接。
  16. 根据权利要求12-15任一项所述的系统,其特征在于,所述电机液冷环路系统包括:功率器件(117)、电机控制器(118)、电机(119)、散热水箱(115)和多功能阀体(122),其中,所述功率器件(117)、所述电机控制器(118)、所述电机(119)、所述散热水箱(115)和所述多功能阀体122串联接通,所述多功能阀体122分别连接所述板式换热器(102)的液冷通道的第二端以及所述板式换热器(104)的液冷通道的第二端;所述功率器件(117)还与所述板式换热器(104)的液冷通道的第一端连接;所述电机还直接与所述多功能阀体(122)连接;
    多功能阀体(122)用于实现水泵、水流换向和蓄水功能。
  17. 根据权利要求12-16任一项所述的系统,其特征在于,所述电池液冷环路系统包括:电池包(120)和集成壶泵(121;其中,所述电池包(120)和所述集成壶泵(121)连接,所述集成壶泵(121)还连接所述板式换热器(106)的第一液冷通道的第一端,所述电池包(120)还连接所述板式换热器(106)的第一液冷通道的第二端;所述集成壶泵(121用于实现水泵和蓄水功能。
  18. 根据权利要求12-17任一项所述的系统,其特征在于,所述暖风液冷环路系统包括:多功能阀体(122、电加热器(114)、暖风芯体(111),其中,所述多功能阀体(122)、所述电加热器(114)和所述暖风芯体(111)串联接通,所述多功能阀体(122)还分别连接到所述板式换热器(102)的液冷通道的第二端、所述板式换热器(106)的第二液冷通道的第一端以及第二端。
  19. 根据权利要求16或18所述的系统,其特征在于,所述多功能阀体(122)包括:水泵(122-1)和水泵(122-6)、三通水阀(122-2)和三通水阀(122-4)、水路四通阀(122-3)和水壶(122-5);其中,所述水路四通阀(122-3)分别连接所述水泵(122-1)、所述三通水阀(122-2)、所述三通水阀(122-4)和所述水壶(122-5),所述水壶(122-5)还连接所述水泵(122-6);
    所述三通水阀(122-2)还分别连接所述电机(119)和所述散热水箱(115);
    所述水泵(122-1)还分别连接所述板式换热器(102)的液冷通道的第二端和所述板式换热器(106)的第二液冷通道的第一端;
    所述三通水阀(122-4)还分别连接所述板式换热器(106)的第二液冷通道的第二端和所述暖风芯体(111);
    所述水泵(122-6)还连接所述板式换热器(104)的液冷通道的第二端。
  20. 根据权利要求17或18所述的系统,其特征在于,所述集成壶泵(121)包括膨胀水壶(121-2)和水泵(121-12),所述膨胀水壶(121-2)和所述水泵(121-12)连接,所述膨胀水壶(121-2)还连接所述电池包(120),所述水泵(121-12)还连接所述板式换热器(106)的第一液冷通道的第一端。
  21. 根据权利要求19或20所述的系统,其特征在于,所述多功能阀体(122)和所述集成壶泵(121)中的至少一个在结构上被配置为集成结构。
  22. 一种热管理系统的热管理方法,其特征在于,所述方法包括:
    控制器获取传感器信号和热管理请求;
    控制器根据所述传感器信号和热管理请求,生成控制信号;
    控制器将所述控制信号发送给驱动板;所述控制信号用于指示所述驱动板驱动热管理系统中的多个部件进行工作;
    其中,所述驱动板包括所述热管理系统中的所述多个部件中的各个部件的驱动单元,所述热管理系统为如权利要求1-21任一项所述的热管理系统。
  23. 一种用于热管理系统的控制器,其特征在于,所述控制器包括处理芯片和通信接口,
    所述通信接口用于,获取传感器信号和热管理请求;
    所述处理芯片用于,根据所述传感器信号和热管理请求,生成控制信号;
    所述通信接口还用于,将所述控制信号发送给驱动板;所述控制信号用于指示所述驱动板驱动热管理系统中的多个部件进行工作;
    其中,所述热管理系统为如权利要求1-21任一项所述的热管理系统。
  24. 一种用于热管理系统的驱动板,其特征在于,所述驱动板包括通信接口和所述热管理系统中的多个部件中的各个部件的驱动单元,所述各个部件的驱动单元分别用于驱动所述各个部件进行工作;
    所述通信接口用于,接收来自所述热管理系统的控制器的控制信号;
    所述各个部件的驱动单元分别用于,根据所述控制信号驱动所述各个部件进行工作;
    其中,所述热管理系统为如权利要求1-21任一项所述的热管理系统。
PCT/CN2020/110631 2019-08-23 2020-08-21 用于汽车的热管理系统以及基于该系统的热管理方法 WO2021036957A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20858835.0A EP4015272A4 (en) 2019-08-23 2020-08-21 VEHICLE THERMAL MANAGEMENT SYSTEM AND THERMAL MANAGEMENT METHOD BASED ON THERMAL MANAGEMENT SYSTEM
MX2022002261A MX2022002261A (es) 2019-08-23 2020-08-21 Sistema de gestion termica para automovil y metodo de gestion termica basado en el mismo.
JP2022512424A JP7427771B2 (ja) 2019-08-23 2020-08-21 自動車用熱管理システムおよび自動車用熱管理システムに基づく熱管理方法
US17/677,013 US20220176774A1 (en) 2019-08-23 2022-02-22 Thermal Management System for Automobile and Thermal Management Method Based on Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910789070.2 2019-08-23
CN201910789070.2A CN112406494B (zh) 2019-08-23 2019-08-23 用于汽车的热管理系统以及基于该系统的热管理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/677,013 Continuation US20220176774A1 (en) 2019-08-23 2022-02-22 Thermal Management System for Automobile and Thermal Management Method Based on Same

Publications (1)

Publication Number Publication Date
WO2021036957A1 true WO2021036957A1 (zh) 2021-03-04

Family

ID=74685163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110631 WO2021036957A1 (zh) 2019-08-23 2020-08-21 用于汽车的热管理系统以及基于该系统的热管理方法

Country Status (6)

Country Link
US (1) US20220176774A1 (zh)
EP (1) EP4015272A4 (zh)
JP (1) JP7427771B2 (zh)
CN (1) CN112406494B (zh)
MX (1) MX2022002261A (zh)
WO (1) WO2021036957A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056052A (zh) * 2021-12-14 2022-02-18 智己汽车科技有限公司 一种电动汽车热管理回路、控制方法及纯电车辆
FR3126754A1 (fr) * 2021-09-06 2023-03-10 Valeo Systemes Thermiques Dispositif de gestion thermique d’un élément électrique et/ou électronique à échangeur de chaleur tri-fluide
FR3126756A1 (fr) * 2021-09-03 2023-03-10 Valeo Systemes Thermiques Dispositif de gestion thermique pour plateforme modulaire d’un châssis de véhicule automobile électrique

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102533382B1 (ko) * 2019-01-09 2023-05-19 한온시스템 주식회사 열관리 시스템
KR20210104354A (ko) * 2020-02-17 2021-08-25 현대자동차주식회사 차량용 히트펌프 시스템
CN113670969A (zh) * 2021-09-09 2021-11-19 中国矿业大学(北京) 一种冻融循环模拟装置
CN113829832A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统及车辆
CN115958932A (zh) * 2021-10-13 2023-04-14 浙江三花汽车零部件有限公司 流体控制组件以及热管理系统
CN114688297A (zh) * 2022-04-12 2022-07-01 广汽埃安新能源汽车有限公司 一种多通水阀的集成方法、装置、电子设备及存储介质
WO2024065154A1 (zh) * 2022-09-27 2024-04-04 上海汽车集团股份有限公司 汽车的热管理系统及汽车
CN117067858B (zh) * 2023-10-13 2024-02-06 海力达汽车科技有限公司 热管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103625242A (zh) * 2013-11-18 2014-03-12 华南理工大学 一种电动汽车热管理系统
CN104999890A (zh) * 2015-07-24 2015-10-28 苏州工业园区驿力机车科技有限公司 电动汽车的电机电池温度集成控制系统
CN106004337A (zh) * 2016-07-04 2016-10-12 浙江大学 一种电动汽车智能整车热管理系统及其方法
JP2017171245A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 車両用空調装置
CN108116192A (zh) * 2017-12-27 2018-06-05 威马智慧出行科技(上海)有限公司 一种增程电动车的热管理系统和热管理方法
CN108407568A (zh) * 2018-02-01 2018-08-17 浙江吉利汽车研究院有限公司 一种汽车热管理系统和纯电动汽车
CN109572367A (zh) * 2019-01-10 2019-04-05 南京协众汽车空调集团有限公司 一种新能源汽车用r290热泵热管理系统及其工作方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329544A (ja) * 1994-06-07 1995-12-19 Nippondenso Co Ltd 車両用空気調和装置
FR2825118B1 (fr) * 2001-05-25 2003-10-03 Renault Dispositif de gestion thermique d'un vehicule automobile equipe d'une pile a combustible
FR2834778B1 (fr) * 2002-01-16 2004-04-16 Renault Dispositif de gestion thermique, notamment pour vehicule automobile equipe d'une pile a combustible
JP2008006894A (ja) * 2006-06-28 2008-01-17 Denso Corp 車両用空調装置
EP1961593B1 (de) * 2007-02-23 2013-04-17 Behr GmbH & Co. KG Klimaanlage für ein Fahrzeug
JP4803199B2 (ja) * 2008-03-27 2011-10-26 株式会社デンソー 冷凍サイクル装置
FR2948898B1 (fr) * 2009-08-07 2012-04-06 Renault Sa Systeme de regulation thermique globale pour vehicule automobile a propulsion electrique.
JP2011112312A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 移動体の熱サイクルシステム
US8336319B2 (en) * 2010-06-04 2012-12-25 Tesla Motors, Inc. Thermal management system with dual mode coolant loops
FR2965516B1 (fr) * 2010-10-04 2016-05-06 Renault Sa Dispositif de regulation thermique de l'habitacle d'un vehicule automobile
US20120297809A1 (en) * 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
DE102013105747B4 (de) * 2012-07-18 2022-06-09 Hanon Systems Vorrichtungen zur Wärmeverteilung in einem Kraftfahrzeug
US9796246B2 (en) * 2012-12-06 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. Vehicle heat pump device, and vehicle air-conditioning device
EP2972019B1 (en) * 2013-03-12 2018-05-30 MAHLE International GmbH A unitary heat pump air conditioner having a compressed vapor diversion loop
CN103287252B (zh) * 2013-06-14 2016-03-16 上海交通大学 电动车热管理系统
KR101859512B1 (ko) * 2014-01-21 2018-06-29 한온시스템 주식회사 차량용 히트 펌프 시스템
JP5716112B2 (ja) * 2014-04-16 2015-05-13 株式会社日本クライメイトシステムズ 車両用空調装置
JP6398764B2 (ja) * 2015-02-06 2018-10-03 株式会社デンソー 車両用熱管理システム
US20160344075A1 (en) * 2015-05-20 2016-11-24 Ford Global Technologies, Llc Thermal Management System for a Vehicle
US20160361974A1 (en) * 2015-06-10 2016-12-15 Ford Global Technologies, Llc Electric vehicle heating distribution system and method
JP6481668B2 (ja) * 2015-12-10 2019-03-13 株式会社デンソー 冷凍サイクル装置
DE102016000316B4 (de) * 2016-01-13 2024-03-28 Audi Ag Klimaanlage für ein Fahrzeug sowie Fahrzeug mit einer solchen Klimaanlage
JP6485390B2 (ja) * 2016-03-08 2019-03-20 株式会社デンソー 冷凍サイクル装置
KR101875651B1 (ko) * 2016-09-13 2018-07-06 현대자동차 주식회사 차량용 히트 펌프 시스템
KR101846911B1 (ko) * 2016-10-31 2018-05-28 현대자동차 주식회사 차량용 히트 펌프 시스템
CN106585414B (zh) * 2016-12-27 2018-01-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车冷却系统
US10926606B2 (en) * 2017-02-21 2021-02-23 Hanon Systems Heat pump system for vehicle
CN107020915B (zh) * 2017-04-10 2023-02-28 延擎动力科技(上海)有限公司 一种带有冷却液回路的新能源汽车用空调热泵系统
US10486542B2 (en) * 2017-07-12 2019-11-26 Ford Global Technologies, Llc Battery thermal conditioning pump control for electric vehicle
CN107791783A (zh) * 2017-11-01 2018-03-13 山东朗进科技股份有限公司 一种新能源电动车热管理系统和热管理方法
KR102470421B1 (ko) * 2017-11-07 2022-11-25 한온시스템 주식회사 열관리 시스템
CN109910590A (zh) * 2017-12-13 2019-06-21 郑州宇通客车股份有限公司 一种车辆及其热管理系统
JP7059670B2 (ja) * 2018-02-07 2022-04-26 トヨタ自動車株式会社 充電システム
CN108461868B (zh) * 2018-03-13 2020-07-07 浙江吉利汽车研究院有限公司 汽车热管理系统及汽车
CN108482067B (zh) * 2018-05-21 2019-11-29 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理系统
CN109649119A (zh) * 2018-12-23 2019-04-19 上海思致汽车工程技术有限公司 一种充分利用废热的新能源汽车整车热管理系统
CN109968940B (zh) * 2019-03-12 2021-01-29 华为技术有限公司 一种应用于电动汽车的空调系统及电动汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103625242A (zh) * 2013-11-18 2014-03-12 华南理工大学 一种电动汽车热管理系统
CN104999890A (zh) * 2015-07-24 2015-10-28 苏州工业园区驿力机车科技有限公司 电动汽车的电机电池温度集成控制系统
JP2017171245A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 車両用空調装置
CN106004337A (zh) * 2016-07-04 2016-10-12 浙江大学 一种电动汽车智能整车热管理系统及其方法
CN108116192A (zh) * 2017-12-27 2018-06-05 威马智慧出行科技(上海)有限公司 一种增程电动车的热管理系统和热管理方法
CN108407568A (zh) * 2018-02-01 2018-08-17 浙江吉利汽车研究院有限公司 一种汽车热管理系统和纯电动汽车
CN109572367A (zh) * 2019-01-10 2019-04-05 南京协众汽车空调集团有限公司 一种新能源汽车用r290热泵热管理系统及其工作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3126756A1 (fr) * 2021-09-03 2023-03-10 Valeo Systemes Thermiques Dispositif de gestion thermique pour plateforme modulaire d’un châssis de véhicule automobile électrique
FR3126754A1 (fr) * 2021-09-06 2023-03-10 Valeo Systemes Thermiques Dispositif de gestion thermique d’un élément électrique et/ou électronique à échangeur de chaleur tri-fluide
CN114056052A (zh) * 2021-12-14 2022-02-18 智己汽车科技有限公司 一种电动汽车热管理回路、控制方法及纯电车辆
EP4197832A1 (en) * 2021-12-14 2023-06-21 Zhiji Automotive Technology Co., Ltd. Electric vehicle thermal management loop, control method, and pure electric vehicle
CN114056052B (zh) * 2021-12-14 2024-03-22 智己汽车科技有限公司 一种电动汽车热管理回路、控制方法及纯电车辆

Also Published As

Publication number Publication date
MX2022002261A (es) 2022-03-22
JP7427771B2 (ja) 2024-02-05
EP4015272A1 (en) 2022-06-22
CN112406494B (zh) 2022-08-09
EP4015272A4 (en) 2022-10-12
US20220176774A1 (en) 2022-06-09
JP2022545035A (ja) 2022-10-24
CN112406494A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021036957A1 (zh) 用于汽车的热管理系统以及基于该系统的热管理方法
EP3800076A1 (en) Thermal management system
CN107351627B (zh) 汽车热管理系统和电动汽车
CN106532173B (zh) 一种换热器及一种车用热管理系统
JP2023545923A (ja) 車両熱管理システム及び電気自動車
CN114312205A (zh) 热管理系统、热管理系统的控制方法与电动汽车
EP3666565B1 (en) Automotive air conditioning system
WO2023029577A1 (zh) 电动车辆及其热管理装置
CN114144321A (zh) 用于车辆的热管理装置以及用于车辆的热管理方法
CN111854208B (zh) 热管理系统
CN218400117U (zh) 车辆热管理系统及车辆
CN215153791U (zh) 热管理系统和电动汽车
CN212289436U (zh) 热管理系统、电动汽车
WO2017163563A1 (ja) 熱交換ユニットおよび車両用空調装置
CN218021130U (zh) 可自主进行设备冷却散热的汽车空调制冷系统
WO2024027183A1 (zh) 一种热管理组件、热管理系统、车辆
CN218906835U (zh) 电动汽车的热管理系统
CN216683993U (zh) 车辆空调系统和车辆
CN218400116U (zh) 车辆热管理系统及车辆
CN217705427U (zh) 乘用车热管理控制器、热管理系统及乘用车
CN113580882B (zh) 热管理系统以及交通工具
US20230398835A1 (en) Thermal management system
CN110375463B (zh) 低温热泵系统
CN219076949U (zh) 增程式电动汽车热管理系统
WO2022253095A1 (zh) 用于热管理系统的阀组集成模块、车辆热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858835

Country of ref document: EP

Effective date: 20220318