WO2022253095A1 - 用于热管理系统的阀组集成模块、车辆热管理系统及车辆 - Google Patents

用于热管理系统的阀组集成模块、车辆热管理系统及车辆 Download PDF

Info

Publication number
WO2022253095A1
WO2022253095A1 PCT/CN2022/095213 CN2022095213W WO2022253095A1 WO 2022253095 A1 WO2022253095 A1 WO 2022253095A1 CN 2022095213 W CN2022095213 W CN 2022095213W WO 2022253095 A1 WO2022253095 A1 WO 2022253095A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
interface
port
heat exchanger
thermal management
Prior art date
Application number
PCT/CN2022/095213
Other languages
English (en)
French (fr)
Inventor
金玮
李石柏
许敏
叶梅娇
李玉忠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22815141.1A priority Critical patent/EP4299344A1/en
Priority to IL307275A priority patent/IL307275A/en
Priority to AU2022287059A priority patent/AU2022287059A1/en
Priority to JP2023560755A priority patent/JP2024514786A/ja
Priority to BR112023021805A priority patent/BR112023021805A2/pt
Publication of WO2022253095A1 publication Critical patent/WO2022253095A1/zh
Priority to US18/373,965 priority patent/US20240025226A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00107Assembling, manufacturing or layout details characterised by the relative position of the heat exchangers, e.g. arrangements leading to a curved airflow

Definitions

  • the present disclosure relates to the technical field of vehicles, in particular, to a valve group integration module used in a thermal management system, a vehicle thermal management system and a vehicle.
  • the heat pump air-conditioning system is an important part of the vehicle, which can change the temperature environment inside the vehicle so that the drivers and passengers can obtain a good driving experience.
  • Various valves such as electronic expansion valves and electromagnetic switching valves are provided in the existing heat pump air-conditioning system according to functional requirements.
  • a variety of valves are installed independently in the pipeline, resulting in a complex pipeline structure of the heat pump air conditioning system, which is difficult to install, which is not conducive to the vehicle platform design, and more pipeline design costs are high, the layout is easy to be messy, and it is not easy to post repair.
  • each electronic valve needs to be connected to the electric wiring harness of the whole vehicle. Since the valve bodies are scattered, the cost of the vehicle wiring harness is relatively high.
  • the purpose of the present disclosure is to provide a valve group integrated module for a thermal management system.
  • the valve group integrated module integrates various valves into one body, which is beneficial to simplify the structure of the vehicle thermal management system, reduce the space occupied by the integrated valve, and reduce the cost.
  • the present disclosure provides a valve group integration module for a heat management system, the heat management system has multiple preset heat management modes, and the valve group integration module includes:
  • a plurality of flow channels are arranged inside the valve group integration module
  • valve group includes a plurality of valves, the valves are arranged on the valve group integrated module, and the valves communicate with the flow channel;
  • the plurality of flow channels are connected to form different fluid channels, so as to realize at least one of the various preset heat management modes.
  • the flow channel includes a first flow channel and a second flow channel, the first flow channel is roughly distributed in the same plane, the second flow channel is distributed in a different plane, and the valve group is used for selectively The first flow channel and the second flow channel are connected to form different fluid channels.
  • first flow channels there are multiple first flow channels and multiple second flow channels.
  • valve group integration module further includes an interface, and the interface is used to connect the fluid channel with an external heat exchange component in the thermal management system.
  • the interface includes a condenser interface, an air conditioner heat exchanger interface, an evaporator interface, a battery pack heat exchanger interface, a motor heat exchanger interface, an engine heat exchanger interface, a compressor interface, and a gas-liquid separator interface and a plurality of PT sensor interfaces, the condenser interface, the air conditioner heat exchanger interface, the evaporator interface, the battery pack heat exchanger interface, the motor heat exchanger interface and the compressor The interface is used to connect the corresponding external thermal management system components.
  • the interface includes the condenser interface, the air conditioner heat exchanger interface, the evaporator interface, and the compressor interface, and the condenser interface is used to communicate with the external thermal management system
  • the condenser is connected, the air conditioner heat exchanger interface is used to connect with the air conditioner heat exchanger in the external thermal management system, the evaporator interface is used to connect with the evaporator in the external thermal management system, the The compressor interface is used to connect with the compressor in the external thermal management system.
  • the condenser interface includes a condenser outlet interface
  • the air conditioner heat exchanger interface includes an air conditioner heat exchanger inlet interface and an air conditioner heat exchanger outlet interface
  • the evaporator interface includes an evaporator inlet interface
  • the valve group includes a first on-off valve and a second expansion valve
  • the first port of the first switch valve is connected to the outlet port of the condenser, and the second port of the first switch valve is connected to the inlet port of the air conditioner heat exchanger;
  • the first port of the second expansion valve is connected to the outlet port of the air conditioner heat exchanger, and the second port of the second expansion valve is connected to the inlet port of the evaporator, so that the thermal management system can realize the The air conditioner cooling mode in the preset thermal management mode described above.
  • valve group further includes a first expansion valve and a second switching valve
  • the first port of the first expansion valve is connected to the outlet port of the condenser, and the second port of the first expansion valve is connected to the inlet port of the air conditioner heat exchanger;
  • the first port of the second on-off valve is connected to the outlet port of the air conditioner heat exchanger, and the second port of the second on-off valve is connected to the inlet of the compressor, so that the thermal management system can realize the The air conditioner heating mode in the preset thermal management mode described above.
  • the battery pack heat exchanger interface includes a first battery pack heat exchanger interface and a battery pack heat exchanger second interface,
  • the valve group also includes a third expansion valve and a fourth switching valve, the first port of the third expansion valve is connected to the second port of the battery pack heat exchanger, and the second port of the third expansion valve is connected to the second port of the battery pack heat exchanger.
  • the outlet interface of the air conditioner heat exchanger is connected;
  • the first port of the fourth switching valve is connected to the first interface of the battery pack heat exchanger, and the second port of the fourth switching valve is used to connect to the inlet of the compressor, so that the thermal management system can Realize the battery cooling mode in the preset thermal management mode, or the dual-on mode of air conditioning cooling and battery cooling.
  • the compressor interface includes a compressor outlet interface
  • the motor heat exchanger interface includes a first interface of a motor heat exchanger and a second interface of a motor heat exchanger
  • the valve group also includes a second on-off valve and a third on-off valve, the first port of the third on-off valve is connected to the outlet port of the compressor, the second port of the third on-off valve is connected to the battery pack
  • the first port of the heat exchanger is connected
  • the second port of the third expansion valve is connected with the first port of the motor heat exchanger
  • the first port of the second switching valve is connected with the second port of the motor heat exchanger
  • the second port of the second switching valve is used to connect with the inlet of the compressor, so that the thermal management system can realize the battery heating mode in the preset thermal management mode, or the air conditioner refrigeration and battery heating mode. Heating double open mode.
  • the valve group further includes a first expansion valve, the first port of the first expansion valve is connected to the outlet port of the condenser, and the second port of the first expansion valve exchanges heat with the motor connected to the first interface of the controller, so that the thermal management system can realize the heat pump heating mode in the preset thermal management mode, or the dual-on mode of heat pump heating and battery cooling, or the dual-on mode of heat pump heating and battery heating.
  • the second interface of the motor heat exchanger is also connected to the first port of the second expansion valve, so that the heat management system can realize air-conditioning refrigeration and air-conditioning dehumidification in the preset heat management mode And battery heating three-on mode, or air-conditioning cooling, air-conditioning dehumidification and battery cooling three-on mode.
  • valve group further includes a fifth on-off valve and a sixth on-off valve
  • the first port of the fifth on-off valve is respectively connected to the second port of the first on-off valve and the second port of the first expansion valve, and the second port of the fifth on-off valve is connected to the motor for heat exchange. connected to the first interface of the device;
  • the first port of the sixth on-off valve is respectively connected to the second port of the first on-off valve and the second port of the first expansion valve, and the second port of the sixth on-off valve is used to communicate with the The inlet port of the air conditioner heat exchanger is connected.
  • valve group further includes a first one-way valve and a second one-way valve
  • the first port of the first one-way valve is connected with the second port of the third expansion valve, and the second port of the first one-way valve is used for connecting with the first interface of the motor heat exchanger, wherein , the first one-way valve is configured to only allow fluid to flow from its first port to the second port;
  • the first port of the second one-way valve is connected to the outlet port of the air conditioner heat exchanger, and the second end of the second one-way valve is connected to the second port of the third expansion valve, wherein the second The one-way valve is configured to only allow fluid flow from its first port to its second port.
  • the interface of the gas-liquid separator includes an inlet interface of the gas-liquid separator
  • the interface of the evaporator further includes an outlet interface of the evaporator
  • the outlet interface of the evaporator is connected to the inlet interface of the gas-liquid separator.
  • the flow channels include first flow channels substantially distributed in the same plane;
  • the first flow passage includes a first branch passage, and the outlet port of the condenser communicates with the first port of the first switching valve and the first port of the first expansion valve through the first branch passage;
  • the first flow passage also includes a second branch passage, and the second port of the first on-off valve and the second port of the first expansion valve are connected to the first port of the fifth on-off valve through the second branch passage. ports, and the second port of the first on-off valve and the second port of the first expansion valve are also in communication with the first port of the sixth on-off valve through the second branch; or
  • the first flow path also includes a third branch, and the second port of the sixth switching valve communicates with the inlet port of the air conditioner heat exchanger through the third branch; or
  • the first flow channel also includes a fourth branch channel, the outlet port of the air conditioner heat exchanger and the second port of the motor heat exchanger communicate with the first port of the second switching valve through the fourth branch channel, Moreover, the outlet port of the air conditioner heat exchanger and the second port of the motor heat exchanger are also communicated with the first port of the second expansion valve through the fourth branch, or
  • the first flow path also includes a fifth branch, and the second port of the third switching valve and the first interface of the battery pack heat exchanger communicate with the first port of the fourth switching valve through the fifth branch ;or
  • the first flow path also includes a sixth branch, the second port of the second on-off valve, the outlet port of the evaporator, and the outlet of the fourth on-off valve can communicate with the compressor through the sixth branch. import connections.
  • the valve group integrated module includes a first half body and a second half body, the first half body includes a first connection surface, the second half body includes a second connection surface, and the first connection The surface is in sealing connection with the second connecting surface;
  • the inside of the first half body is provided with a plurality of the second flow channels, and at least one groove is provided on the second connecting surface of the second half body, so that the The groove and the first connecting surface jointly define the first flow channel.
  • the valve group integrated module includes a first half body and a second half body, the first half body includes a first connection surface, the second half body includes a second connection surface, and the first connection The surface is in sealing connection with the second connecting surface;
  • the inside of the first half body is provided with a plurality of the second flow channels, and at least one groove is provided on the first connecting surface on the first half body, so that the second connecting surface and The grooves on the first half body jointly define the first flow channel.
  • the groove is a curved groove or a straight groove.
  • a plurality of hollow parts are formed on the first half body.
  • the interface further includes a third interface of a motor heat exchanger and a fourth interface of a motor heat exchanger
  • the valve group integration module further includes a pump and a storage tank for accommodating cooling liquid, and the outlet of the pump is connected to the The third interface of the motor heat exchanger is connected to pump coolant to the third interface of the motor heat exchanger, and the outlet of the storage tank is connected to the inlet of the pump for supplementing the pump. Coolant.
  • the valve group integration module further includes a three-way valve, the first port of the three-way valve is connected to the fourth interface of the heat exchanger, and the second port of the three-way valve is used to connect with the The inlet of the radiator of the coolant flow path is connected, and the third port of the three-way valve is used to be connected with the inlet of the high-pressure system of the coolant flow path where the motor is located.
  • the present disclosure also provides a vehicle thermal management system, including a thermal management system component and the above-mentioned valve group integration module, the thermal management system component includes a compressor, a condenser, an air conditioner heat exchanger, and an evaporator, and the valve group integration module At least one of the compressor interface, the condenser interface, the heat exchanger interface and the evaporator interface is provided on the module to correspond to the thermal management system components.
  • the vehicle thermal management system further includes a gas-liquid separator, and the valve group integration module is also provided with a gas-liquid separator interface for connecting with the gas-liquid separator.
  • the vehicle thermal management system further includes a battery pack heat exchanger
  • the valve group integration module is further provided with a battery pack heat exchanger interface for connecting with the battery pack heat exchanger, so that by selecting The fluid channel realizes the heating or cooling of the battery pack.
  • the vehicle thermal management system further includes a motor heat exchanger
  • the valve group integrated module is also provided with a motor heat exchanger interface for connecting with the motor heat exchanger, so that by selecting the corresponding fluid flow The channel realizes the heat exchange with the motor.
  • the present disclosure further provides a vehicle, including the vehicle thermal management system.
  • valve group integrated module by setting multiple flow channels inside the valve group integrated module to replace the existing connecting pipelines, it is beneficial to reduce the design of connecting pipelines in the thermal management system;
  • the valve group of two valves is convenient for maintenance and disassembly, and can effectively reduce the bracket design used to install each valve; and, from the perspective of light weight, the design of multiple flow channels inside the valve group integration module, and the integration
  • the design of multiple valves is also conducive to reducing the weight of the integrated module of the valve group, which is conducive to the lightweight design of the vehicle and can reduce costs and fuel consumption.
  • multiple flow channels can be flexibly designed on the valve group integration module, so that the arrangement position of each valve can also be flexibly selected to adapt to different vehicle layouts, which is conducive to the platform design of the vehicle.
  • Fig. 1 is a schematic diagram of the principle of a vehicle thermal management system in some embodiments of the present disclosure, and the principle integrates the design of the valves involved in the vehicle thermal management system;
  • Fig. 2 is a schematic diagram of the principle of a vehicle thermal management system according to some embodiments of the present disclosure
  • Fig. 3 and Fig. 4 are perspective structural diagrams of a valve group integrated module used in a thermal management system according to some embodiments of the present disclosure
  • Fig. 5 is a schematic exploded structure diagram of a valve group integrated module used in a thermal management system according to some embodiments of the present disclosure
  • Fig. 6 is a schematic perspective view of the first half body of the valve group integrated module used in the thermal management system according to some embodiments of the present disclosure, which shows a plurality of first flow channels;
  • Fig. 7 and Fig. 8 are the top views of Fig. 6;
  • Fig. 9 is a schematic perspective view of the first half of the valve group integrated module used in the thermal management system according to some embodiments of the present disclosure, and the figure shows a plurality of interfaces;
  • Figure 10 is a top view of Figure 9;
  • Fig. 11 is a schematic sectional view along line C-C in Fig. 10;
  • Fig. 12 is a schematic cross-sectional view along line A-A in Fig. 10;
  • Figure 13 is a side view of Figure 9;
  • Fig. 14 is a schematic cross-sectional view along line B-B in Fig. 12 .
  • orientation words “up and down” are defined based on the direction of the drawings, and “up and down” are the same directions as the up and down of the vehicle, “Inside and outside” refers to the inside and outside of the relevant parts.
  • first, second and the like are used only for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • the terms “setting”, “connecting” and “installing” should be understood in a broad sense, for example, it can be fixedly connected, It can also be detachably connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components.
  • the above terms can be understood in specific situations specific meaning in this disclosure.
  • a valve group integration module 100 for a thermal management system 1000 is provided.
  • the thermal management system 1000 has multiple preset thermal management modes.
  • the valve group integration module 100 It includes a plurality of flow passages 10 and a valve group 20, the plurality of flow passages 10 are arranged inside the valve group integration module 100, the valve group 20 includes a plurality of valves, the valves are arranged on the valve group integration module 100, and the valves communicate with the flow passage 10 ; By turning on or off the valve, the multiple flow channels 10 are connected to form different fluid channels, so as to realize at least one of multiple preset thermal management modes.
  • valve group integration module 100 By arranging a plurality of flow channels inside the valve group integration module 100 to replace the existing connection pipelines, it is beneficial to reduce the design of the connection pipelines in the thermal management system 1000; on the valve group integration module 100 Integrate the valve group 20 with multiple valves, which is convenient for maintenance and disassembly and can effectively reduce the bracket design used to install each valve; and, the design of the multiple flow channels 10 inside the valve group integration module 100, and the integrated multiple
  • the design of each valve is also conducive to reducing the weight of the valve group integrated module 100, thereby facilitating the lightweight design of the entire vehicle, and can reduce costs and fuel consumption.
  • multiple flow channels can be flexibly designed on the valve group integration module 100, so that the arrangement position of each valve can also be flexibly selected to adapt to different vehicle layouts, which is beneficial to the platform-based design of the vehicle.
  • the above flow channel includes a first flow channel 110 and a second flow channel 120, the first flow channel 110 is roughly distributed in the same plane, the second flow channel 120 is distributed in a different plane, and the valve group is used for selective communication
  • the first channel 110 and the second channel 120 form different fluid channels.
  • the flow channel 120 can form a plurality of different fluid channels, so as to adapt to different vehicle models and improve the adaptability of the valve group integration module 100 .
  • the valve group integrated module 100 may include a first half body 1 and a second half body 2, the first half body 1 includes a first connection surface 1001, the second half body 1 The two halves 2 include a second connection surface 2001 , and the first connection surface 1001 is in sealing connection with the second connection surface 2001 .
  • the inside of the first half body 1 is provided with a plurality of second flow channels 120, and at least one groove is arranged on the second connection surface 2001 of the second half body 2, so that the groove on the second connection surface 2001 is compatible with the first
  • the connecting surfaces 1001 jointly define a first channel 110 .
  • first flow channel 110 By defining the first flow channel 110 between the first half body 1 and the second half body 2, a plurality of second flow channels 120 are arranged inside the first half body 1, and the first flow channels 110 are selectively communicated through a valve. and the second flow channel 120, so that the fluid can flow in the fluid channel formed by the first flow channel 110 and the second flow channel 120 corresponding to the valve.
  • the same first flow channel 110 can communicate with multiple second flow channels 120 to form a fluid channel, and multiple second flow channels 120 share the same first flow channel 110.
  • 100 simplifies the internal structure of the valve group integration module 100, which facilitates the processing of the valve group integration module 100;
  • the integration degree of the group integration module 100 is low, and the valve group integration module 100 occupies a large space.
  • the second half body 2 has a simple structure, and it is more convenient to adjust the position between the multiple grooves when designing multiple grooves. Arrangement, flexible layout of multiple grooves; therefore, the second half body 2 can also be utilized to a greater extent to improve the integration of the valve group integrated module 100; in addition, multiple grooves are arranged on the same surface It is also convenient for later maintenance;
  • the groove is arranged on the second half body 2, and the second half body 2 is independently provided with the first half body 1, so the design of the groove does not affect the second half body 1 on the first half body 1.
  • the design and layout of the flow channel 120 are affected, and there is no need to avoid the second flow channel 120 on the first half body 1 if the groove is provided on the second half body 1, and the second flow channel 120 is more used in the first half body.
  • a plurality of second flow channels 120 are provided inside the first half body 1, and at least one groove is provided on the first connecting surface 1001 on the first half body 1, so that the second The connecting surface 2001 and the groove on the first half body 1 jointly define the first flow channel 110 .
  • the second connecting surface 2001 of the second half body 2 covers the groove on the first connecting surface 1001 of the first half body 1, and the second connecting surface 2001 of the second half body 1 The part of the two connecting surfaces 2001 covering the opening of the groove and the groove wall of the groove are jointly enclosed to form the first flow channel 110 .
  • the design of the second flow channel 120 and the design of the groove are both set on the first half body 1 , and the first flow channel 110 is jointly defined by the first half body 1 and the second half body 2 .
  • the main structural design can be concentrated on the first half body 1, and in the case of damage, the main maintenance can be carried out on the first half body 1; the design freedom of the second half body 2 is high, and designers can The shape and size of the second half body 2 are set according to the different layout spaces of different models.
  • a plurality of second flow channels 120 are provided inside the first half body 1, at least one groove is provided on the second connecting surface 2001 of the second half body 2, and the first half body At least one groove is provided on the first connection surface 1001 of 1; in this way, when the first half body 1 and the second half body 2 are combined, the first flow channel 110 can also be defined, and this disclosure does not make any specific design methods. limited.
  • the groove is a curved groove or a straight groove.
  • the included angle ⁇ of the curved groove at the bending position can be 50° ⁇ 180°.
  • the included angle ⁇ can be 90° ⁇ 180°
  • the included angle of the curved position of the curved groove is 180°, it is configured as a straight groove.
  • the cross section of the groove is U-shaped with a smooth transition.
  • the U-shaped groove is more convenient for processing; on the other hand, the groove with a smooth transition can also make the fluid flow in the groove The flow resistance suffered is smaller, so that the fluid flows more smoothly in the first channel 110 .
  • first half body 1 and second half body 2 can be configured in any appropriate shape and structure, as long as they can realize corresponding functions, which is not limited in the present disclosure.
  • a sealing film may also be provided between the first half body 1 and the second half body 2 .
  • first half body 1 and the second half body 2 can be connected by welding to ensure the stability of the connection between the first half body 1 and the second half body 2 .
  • the present disclosure does not limit the connection method between the first half body 1 and the second half body 2 , and the connection may also be made by clamping or bonding, as long as the stability of the connection can be ensured.
  • a plurality of hollow parts 50 are formed on the first half body 1, thereby effectively reducing the weight of the first half body 1, facilitating the lightweight design of the first half body 1, and also This facilitates the lightweight design of the valve group integration module 100 and further facilitates the lightweight design of the entire vehicle.
  • the valve group integration module 100 further includes an interface, which is used to connect the fluid channel with an external heat exchange component in the thermal management system 1000 .
  • an interface which is used to connect the fluid channel with an external heat exchange component in the thermal management system 1000 .
  • the above-mentioned interfaces may include condenser interfaces, air conditioner heat exchanger interfaces, evaporator interfaces, battery pack heat exchanger interfaces, motor heat exchanger interfaces, engine heat exchanger interfaces, compressor interfaces, gas-liquid separator interfaces and
  • PT sensor interfaces the condenser interface, the air conditioner heat exchanger interface, the evaporator interface, the battery pack heat exchanger interface, the motor heat exchanger interface and the compressor interface are used to connect to the corresponding external thermal management system components.
  • the corresponding external thermal management system components refer to: condenser 200, air conditioner heat exchanger 300, evaporator 400, battery pack heat exchanger 500, motor heat exchanger 700 and compressor 600 .
  • the condenser interface is used to connect to the condenser 200
  • the air conditioner heat exchanger interface is used to connect to the air conditioner heat exchanger 300
  • the evaporator interface is used to connect to the evaporator 400
  • the battery pack heat exchanger interface is used to connect to the battery
  • the package heat exchanger 500 is connected
  • the motor heat exchanger interface is used for connecting with the motor heat exchanger 700
  • the compressor interface is used for connecting with the compressor 600 .
  • valve group integration module 100 By providing an interface for communicating with external thermal management system components on the valve group integration module 100, it is convenient to realize the communication between the fluid channel in the valve group integration module 100 and the external thermal management system components, so as to achieve different preset thermal management mode; in addition, using the fluid channels inside the valve group integration module 100 to replace the existing connecting pipelines can also reduce the design of pipelines and facilitate lightweight design.
  • the above-mentioned interfaces may include a condenser interface, an air conditioner heat exchanger interface, an evaporator interface, and a compressor interface.
  • the condenser interface is used to connect to the condenser 200 in the external thermal management system 1000
  • the air conditioner heat exchanger interface is used to connect to the air conditioner heat exchanger 300 in the external thermal management system 1000
  • the evaporator interface is used to connect to the external thermal management system
  • the evaporator 400 in 1000 is connected
  • the compressor interface is used to connect with the compressor 600 in the external thermal management system 1000 .
  • the present disclosure does not limit the types of interfaces on the valve group integration module 100 , and designers can set them according to requirements.
  • the condenser interface may include a condenser outlet interface 202
  • the air conditioner heat exchanger interface may include an air conditioner heat exchanger inlet interface 203 and the air conditioner heat exchanger outlet interface 204
  • the evaporator interface may include Evaporator inlet port 205 .
  • the valve group includes a first switch valve 21 and a second expansion valve 32; the first port of the first switch valve 21 is connected to the condenser outlet port 202, and the second port of the first switch valve 21 is connected to the air conditioner heat exchanger inlet port 203 ; The first port of the second expansion valve 32 is connected to the air conditioner heat exchanger outlet port 204, and the second port of the second expansion valve 32 is connected to the evaporator inlet port 205, so that the thermal management system 1000 can realize the preset thermal management mode The cooling mode of the air conditioner.
  • the condenser outlet interface 202 and the air-conditioning heat exchanger inlet interface 203 are provided on the valve group integration module 100, and the valve group integration module The inside of 100 is provided with a fluid channel connecting the condenser outlet port 202 and the air conditioner heat exchanger inlet port 203, so that the fluid channel can be used to replace the connection between the condenser 200 and the air conditioner heat exchanger 300 in the prior art pipeline; and the air conditioner heat exchanger outlet interface 204 and the evaporator inlet interface 205 are integrally designed on the valve group integration module 100, and there must be a connection between the air conditioner heat exchanger outlet interface 204 and the evaporator inlet interface 205 inside the valve group integration module 100
  • the fluid channel of the evaporator outlet interface 205 can be used to replace the communication pipeline between the air conditioner heat exchanger 300 and the evaporator 400 in the prior art; and the above-mentioned first development valve 21 and the second The expansion valve 32
  • the specific working process can be as follows:
  • the compressor 600 discharges high-temperature and high-pressure gaseous refrigerant, which flows through the pipeline to the inlet of the condenser 200, and the refrigerant passes through the outlet of the condenser 200 (the condenser 200 may not perform heat release work at this time) and
  • the condenser outlet port 202 on the valve group integration module 100 is connected to enter into the fluid passage.
  • the valve group integration module 100 is provided with a first on-off valve 21 connected to the fluid passage.
  • the first on-off valve 21 is in an open state, and the refrigerant Flow through the first switch valve 21 to the inlet port 203 of the air conditioner heat exchanger, the inlet port 203 of the air conditioner heat exchanger communicates with the inlet of the air conditioner heat exchanger 300, and the refrigerant enters the air conditioner heat exchanger 300 for heat exchange.
  • the final refrigerant flows out from the outlet of the air-conditioning heat exchanger 300 and flows to the outlet interface 204 of the air-conditioning heat exchanger, and then enters the fluid channel of the valve group integrated module 100.
  • the valve group integrated module 100 is provided with a second expansion valve 32 communicating with the fluid channel.
  • the refrigerant flows to the evaporator inlet port 205 after being throttled and depressurized by the second expansion valve 32, and the evaporator inlet port 205 can communicate with the inlet of the evaporator 400 through a pipeline, and the throttled and decompressed refrigerant passes through the pipeline Enter the evaporator 400 to evaporate to absorb the heat of the environment.
  • the cooled ambient temperature is blown into the member compartment by the blower to realize refrigeration.
  • the refrigerant after passing the evaporator 400 flows to the compressor 600 through the pipeline, and the gaseous refrigerant will enter to the compressor 600 for refrigeration cycle work.
  • the valve group can also include a first expansion valve 31 and a second switch valve 22; the first port of the first expansion valve 31 is connected to the condenser outlet port 202, and the first port of the first expansion valve 31
  • the two ports are connected with the air conditioner heat exchanger inlet port 203; the first port of the second switch valve 22 is connected with the air conditioner heat exchanger outlet port 204, and the second port of the second switch valve 22 is connected with the inlet of the compressor 600, so that
  • the thermal management system 1000 can realize the air-conditioning and heating mode among the preset thermal management modes.
  • the air-conditioning and heating in the preset thermal management mode can also be realized.
  • the fluid channel in the valve group integration module 100 can also be used to replace the connecting pipeline used to communicate between the condenser 200 and the air-conditioning heat exchanger 300 in the prior art, and replace the current In the prior art, it is used to connect the communication pipes between the air conditioner heat exchanger 300 and the evaporator 400, so as to reduce the design of the connecting pipes in the air conditioner heating mode, which is convenient for lightweight design.
  • the specific working process can be as follows:
  • the compressor 600 discharges a high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant can enter the condenser 200 through pipelines, and the refrigerant releases heat in the condenser 200.
  • the PTC blows the hot air into the car through the blower to heat the car, and the refrigerant passing through the condenser 20 enters the fluid channel of the valve group integration module 100 through the condenser outlet interface 202 on the valve group integration module 100, and the valve group
  • the integrated module 100 is provided with a first expansion valve 31 and a second on-off valve 22 which communicate with the fluid channel.
  • the interface 203 can communicate with the air conditioner heat exchanger 300 through the pipeline, and the refrigerant enters the air conditioner heat exchanger 300 for heat exchange.
  • the refrigerant then flows to the inlet of the compressor 600 through the second on-off valve 22 , and the gaseous refrigerant enters the compressor 600 to perform a heating cycle.
  • the battery pack heat exchanger interface may include a battery pack heat exchanger first interface 207 and a battery pack heat exchanger second interface 208, and the valve group may also include a third expansion valve 33 and a fourth expansion valve 33.
  • On-off valve 24, the first port of the third expansion valve 33 is connected to the second interface 208 of the battery pack heat exchanger, the second port of the third expansion valve 33 is connected to the outlet interface 204 of the air conditioner heat exchanger;
  • the first port is connected to the first interface 207 of the battery pack heat exchanger, and the second port of the fourth switching valve 24 is used to connect to the inlet of the compressor, so that the thermal management system 1000 can realize battery cooling in the preset thermal management mode mode, or dual-on mode for air conditioning cooling and battery cooling.
  • the first interface 207 of the battery pack heat exchanger, the second interface 208 of the battery pack heat exchanger, and the third expansion valve on the valve group integrated module 100 33 and the fourth switch valve 24 can also realize the battery cooling mode in the preset thermal management mode, or the double-open mode of air-conditioning cooling and battery cooling, reducing the design of the connecting pipelines in the battery cooling mode, air-conditioning cooling and battery cooling double-opening mode .
  • the specific working process can be as follows:
  • the compressor 600 discharges high-temperature and high-pressure gaseous refrigerant, which flows through the pipeline to the inlet of the condenser 200, and the refrigerant passes through the outlet of the condenser 200 (the condenser 200 may not perform exothermic work at this time) It communicates with the condenser outlet port 202 on the valve group integrated module 100, so as to enter the fluid passage, the refrigerant flows to the air conditioner heat exchanger 300 through the first switch valve 21 for heat exchange, and the heat exchanged refrigerant passes through the third expansion
  • the valve 33 throttles and lowers the pressure and then flows to the battery pack heat exchanger 500 to absorb heat and cool down the battery pack.
  • the refrigerant passing through the battery pack heat exchanger 500 flows to the compressor 600 through the fourth switch valve 24 to perform cycle work for battery cooling.
  • the second expansion valve 32 is in a closed state.
  • the specific working process can be as follows:
  • the compressor 600 discharges high-temperature and high-pressure gaseous refrigerant, which flows through the pipeline to the inlet of the condenser 200, and the refrigerant passes through the outlet of the condenser 200 (the condenser 200 may not perform heat release work at this time) and
  • the condenser outlet interface 202 on the valve group integration module 100 is connected to enter into the fluid passage, and the refrigerant flows to the air conditioner heat exchanger 300 through the first switch valve 21 for heat exchange.
  • the refrigerant after heat exchange is divided into two paths, All the way through the third expansion valve 33 throttling and lowering the pressure, it flows to the battery pack heat exchanger 500 to absorb heat and cool down the battery pack, and the refrigerant passing through the battery pack heat exchanger 500 flows to the compressor 600 through the fourth switch valve 24 to cool the battery
  • the refrigerant enters the evaporator 400 through the pipeline and evaporates to absorb the heat of the environment.
  • the cooled ambient temperature is blown into the member compartment by the blower to realize refrigeration.
  • the refrigerant flows to the compressor 600 through the pipeline.
  • the gaseous refrigerant will enter into the compressor 600 to perform the air-conditioning and refrigeration cycle work.
  • the compressor interface may include a compressor outlet interface 201
  • the motor heat exchanger interface may include a motor heat exchanger first interface 209 and a motor heat exchanger second interface 210
  • the valve group may include a third On-off valve 23, the first port of the third on-off valve 23 is connected to the compressor outlet interface 201, the second port of the third on-off valve 23 is connected to the first interface 207 of the battery pack heat exchanger, the second port of the third expansion valve 33
  • the port is connected to the first port 209 of the motor heat exchanger, the first port of the second switching valve 22 is connected to the second port 210 of the motor heat exchanger, and the second port of the second switching valve 22 is used to connect to the inlet of the compressor 600 , so that the thermal management system 1000 can realize the battery heating mode in the preset thermal management mode, or the dual-on mode of air conditioning cooling and battery heating.
  • the specific working process can be as follows:
  • the high-temperature and high-pressure refrigerant flows out from the compressor 600 and communicates with the third on-off valve 23 through a pipeline, and the third on-off valve 23 can be connected to the battery pack heat exchanger 500 and the fourth on-off valve through a pipeline.
  • the third on-off valve 23 is in the open state
  • the fourth on-off valve 24 is in the closed state
  • the refrigerant enters the battery pack heat exchanger 500 to heat the battery pack
  • the refrigerant passing through the battery pack heat exchanger 500 passes through the pipeline
  • the refrigerant enters the third expansion valve 33 for throttling and decompression
  • the refrigerant after throttling and decompression enters the motor heat exchanger 700 for heat exchange
  • the refrigerant passing through the motor heat exchanger 700 enters the compressor through the second switch valve 22 for battery heating cycle Work.
  • the specific working process can be as follows:
  • the high-temperature and high-pressure refrigerant flows out from the compressor 600 and is divided into two paths:
  • the refrigerant passes through the condenser 200 (the condenser 200 may not perform heat release work at this time), and then passes through the first on-off valve 21 of the flow channel, the first on-off valve 21 is in an open state, and the refrigerant enters
  • the refrigerant after heat exchange is connected to the second expansion valve 32 through the pipeline, and the refrigerant flows to the evaporator 400 after being throttled and depressurized by the second expansion valve 32, and the refrigerant after the throttling and depressurization passes through
  • the pipeline enters the evaporator 400 for evaporation to absorb the heat of the environment.
  • the cooled ambient temperature is blown into the member compartment by the blower to realize refrigeration.
  • the refrigerant after passing through the evaporator 400 flows to the compressor 600 through the pipeline, and the gaseous refrigerant will enter into the compressor 600 to perform air conditioning and refrigeration cycle work;
  • the other one is connected to the third on-off valve 23 through a pipeline, the refrigerant passing through the third on-off valve 23 enters the battery pack heat exchanger 500, the refrigerant enters the battery pack heat exchanger 500 to heat the battery pack, and passes through the battery pack heat exchanger 500
  • the refrigerant enters the third expansion valve 33 through the pipeline for throttling and decompression, and the refrigerant after throttling and decompression enters the motor heat exchanger 700 for heat exchange, and the refrigerant passing through the motor heat exchanger 700 enters the compressor through the second switch valve 22
  • the machine performs battery heating cycle work.
  • the valve group also includes a first expansion valve 31, the first port of the first expansion valve 31 is connected to the condenser outlet port 202, and the second port of the first expansion valve 31 is connected to the motor heat exchanger
  • the first interface 209 is connected to enable the thermal management system 1000 to implement the heat pump heating mode in the preset thermal management mode, or the dual-on mode of heat pump heating and battery cooling, or the dual-on mode of heat pump heating and battery heating.
  • the specific working process can be as follows:
  • the refrigerant flows out of the compressor 600 and enters the condenser 200 through pipelines, the refrigerant releases heat in the condenser 200, the heat released by the condenser 200 combines with the wind to heat the PTC, and then blows the hot air into the car through the blower, To heat the interior of the car, the refrigerant passing through the condenser 200 enters the first expansion valve 31 for throttling and pressure reduction, and the refrigerant after throttling and pressure reduction enters the motor heat exchanger 700 for heat absorption and evaporation.
  • the on-off valve 22 enters the compressor 600 to perform heating cycle work.
  • the specific working process can be as follows:
  • the refrigerant flows out of the compressor 600 and enters the condenser 200 through pipeline connection, the refrigerant releases heat in the condenser 200, the heat release of the condenser 200 combines with the wind to heat the PTC, and then blows the hot air into the car through the blower Inside, for the heating of the car, the refrigerant passing through the condenser 200 is connected to the first expansion valve 31 through pipelines.
  • the evaporated refrigerant enters the third expansion valve 33 through the refrigerant, the refrigerant enters the third expansion valve 33 for throttling and pressure reduction, and then enters the battery pack heat exchanger 500 to absorb heat and cool down the battery pack, and exchange heat through the battery
  • the refrigerant of the device 500 passes through the fourth on-off valve 24, and the refrigerant enters the compressor through the fourth on-off valve 24, so as to realize the dual-open cycle operation of the heat pump heating and the battery cooling double-open mode.
  • the specific working process can be as follows:
  • the refrigerant releases heat in the condenser 200.
  • the heat released by the condenser 200 combines with the wind to heat the PTC to heat the interior of the car.
  • the refrigerant passing through the condenser 200 enters the first expansion valve 31.
  • the first expansion valve 31 The valve 31 throttles and lowers the pressure of the refrigerant, the refrigerant flowing out from the first expansion valve 31 enters the motor heat exchanger 700, and the refrigerant that has absorbed heat and evaporated through the motor heat exchanger 700 enters the compressor through the second switching valve 22;
  • the other way uses a pipeline to enter the third on-off valve 23, the refrigerant passing through the third on-off valve 23 enters the battery pack heat exchanger 500 to heat the battery pack, and the refrigerant passing through the battery pack heat exchanger 500 enters the third expansion valve 33 for throttling.
  • the refrigerant after throttling and reducing pressure also enters the motor heat exchanger 700 to evaporate and absorb heat, and the refrigerant after absorbing heat and evaporated enters the compressor through the second switch valve 22 .
  • the second interface 210 of the motor heat exchanger is also connected to the first port of the second expansion valve 32, so that the thermal management system 1000 can realize air-conditioning refrigeration and air-conditioning dehumidification in the preset heat management mode. And battery heating three-on mode, or air-conditioning cooling, air-conditioning dehumidification and battery cooling three-on mode.
  • the specific working process can be as follows:
  • the compressor 600 discharges high-temperature and high-pressure gaseous refrigerant and enters the condenser 200.
  • the refrigerant enters the first on-off valve 21 after the condenser 200 releases heat. At this time, the first on-off valve 21 is fully opened.
  • the refrigerant enters the air conditioner heat exchanger 300 or the motor heat exchanger 700 after passing through the first switching valve 21, and the refrigerant after heat exchange in the air conditioner heat exchanger 300 or the motor heat exchanger 700 enters the second expansion valve 32 for throttling.
  • the refrigerant After throttling and reducing the pressure, the refrigerant enters the evaporator 400 to absorb the heat of the environment inside the car, so that the humid air in the car reaches the dew point temperature and condenses into water to be discharged to achieve the dehumidification effect.
  • the dehumidified environment plus the heat release of the condenser 200 Make the environment in the car reach a more comfortable temperature, and blow the wind into the passenger compartment through the fan to achieve a more comfortable ambient temperature in the passenger compartment.
  • the refrigerant passing through the evaporator 400 enters the compressor to perform a dehumidification cycle.
  • the specific working process can be as follows:
  • the compressor 600 discharges the high-temperature and high-pressure gaseous refrigerant, which is connected to the condenser 200 through pipelines.
  • the refrigerant after throttling and decompression is connected to the evaporator 400 through the pipeline to absorb the ambient heat in the car, so that the indoor warm air reaches the dew point temperature and condenses into water to be discharged to achieve dehumidification Effect.
  • the dehumidified environment and the heat release of the condenser 200 make the ambient temperature reach a more comfortable temperature, and the air blown into the passenger compartment by the fan realizes a more comfortable temperature in the passenger compartment, and the refrigerant through the evaporator 400 enters the compression Machine 600.
  • the other refrigerant discharged from the air conditioner heat exchanger 300 enters the third expansion valve 33.
  • the refrigerant enters the third expansion valve 33 for throttling and pressure reduction, and then enters the battery pack heat exchanger 500 to absorb heat and cool down the battery pack.
  • the refrigerant after the heat exchanger 500 enters the compressor 600 through the fourth switching valve 24 .
  • the specific working process can be as follows:
  • the gaseous refrigerant is divided into two paths:
  • the first path enters the condenser 200 through a pipeline connection, and the refrigerant is connected to the first on-off valve 21 by a pipeline after the condenser 200 releases heat.
  • the first on-off valve 21 is fully opened, and the refrigerant passes through the first on-off valve.
  • 21 enters the air conditioner heat exchanger 300 through the pipeline, and the refrigerant after heat exchange through the air conditioner heat exchanger 300 enters the second expansion valve 32 through the pipeline;
  • the refrigerant enters the evaporator 400 after throttling and reducing pressure in the second expansion valve Absorb the ambient heat inside the car to make the warm air in the car reach the dew point temperature and condense into water to be discharged to achieve the dehumidification effect.
  • the dehumidified environment plus the heat release of the condenser 200 makes the ambient temperature reach a more comfortable temperature.
  • the wind blows to the passenger compartment to make the passenger compartment reach a relatively comfortable ambient temperature, and the refrigerant after passing through the evaporator 400 enters the compressor 600 through pipeline connection.
  • the second way is connected to the third on-off valve 23 through a pipeline, the refrigerant passing through the third on-off valve 23 enters the battery pack heat exchanger 500 to heat the battery pack, and the refrigerant passing through the battery pack heat exchanger 500 passes through the pipeline Enter the third expansion valve 33 for throttling and pressure reduction, the refrigerant after throttling and pressure reduction enters the motor heat exchanger 700 to absorb heat and evaporate, and the evaporated refrigerant also enters the second expansion valve 32 through pipeline connection, which is the same as the above The first refrigerant confluence.
  • the valve group further includes a fifth switching valve 25 and a sixth switching valve 26; the first port of the fifth switching valve 25 is connected to the second port of the first switching valve 21 respectively.
  • the port is connected to the second port of the first expansion valve 31, the second port of the fifth on-off valve 25 is connected to the first interface 209 of the motor heat exchanger, and the first port of the sixth on-off valve 26 is connected to the first port of the first on-off valve 21 respectively.
  • the second port is connected to the second port of the first expansion valve 31 , and the second port of the sixth switching valve 26 is used to be connected to the inlet port 203 of the air conditioner heat exchanger.
  • the refrigerant flowing out of the first on-off valve 21 and the first expansion valve 31 can be turned on or off, so as to selectively enter the air conditioner heat exchanger 300 , to improve the flexibility of flow path control; similarly, by integrating the design of the sixth on-off valve 26 on the valve group integration module 100, the refrigerant flowing out from the first on-off valve 21 and the first expansion valve 31 can also be conducted Or closed to selectively enter the motor heat exchanger 700, increasing the flexibility of flow path control.
  • the valve group can also include a first one-way valve 41 and a second one-way valve 42, the first port of the first one-way valve 41 is connected with the second port of the third expansion valve 33, and the first one-way valve 41 is connected to the second port of the third expansion valve 33.
  • the second port of the directional valve 41 is used to connect with the first interface 209 of the motor heat exchanger, specifically, it can be connected with the first port of the fifth switch valve 25, wherein the first one-way valve 41 is configured to only allow fluid Flow from its own first port to the second port; the first port of the second one-way valve 42 is connected with the outlet interface 204 of the air conditioner heat exchanger, and the second end of the second one-way valve 42 is connected with the second port of the third expansion valve 33
  • the ports are connected, wherein the second one-way valve 42 is configured to only allow fluid to flow from its first port to its second port.
  • the fluid can be prevented from flowing backward and the stable flow of the fluid in the flow path can be ensured.
  • the gas-liquid separator interface includes a gas-liquid separator inlet interface 211, and the evaporator interface also includes an evaporator outlet interface 206, and the evaporator outlet interface 206 is connected to the gas-liquid separator.
  • Import interface 211 That is to say, the refrigerant passing through the evaporator 400 can flow into the gas-liquid separator 800 for gas-liquid two-phase separation, and the separated gas-phase refrigerant enters the compressor 600 to prevent liquid-phase refrigerant or gas-liquid mixed two-phase refrigerant from entering the compressor 600 middle.
  • the flow channel includes first flow channels 110 that are roughly distributed in the same plane; wherein, the first flow channel 110 includes a first branch channel 11, and the condenser outlet interface 202 passes through the first branch channel.
  • the channel 11 communicates with the first port of the first switching valve 21 and the first port of the first expansion valve 31 .
  • the first branch channel 11 by setting the first branch channel 11, and the first branch channel 11 communicates with the condenser outlet port 202, and the first branch channel 11 can realize the communication with the first switch valve 21 communication and the communication of the first expansion valve 31, avoid setting up two separate flow passages to respectively realize the communication between the condenser outlet interface 202 and the first port of the first switch valve 21, and the condenser outlet interface 202 and the first expansion valve 31 to communicate with the first port, by sharing the first branch channel 11 to reduce the number of flow channels opened in the valve group integration module 100 .
  • the first branch channel 11 is formed with a first opening 803 and a second opening 802, the first opening 803 communicates with the first port of the first switch valve 21, the second opening 802 communicates with the first port of the first expansion valve 31 The first port communicates, and the condenser outlet interface 202 can communicate with the first branch channel 11 through one of the second flow channels 120 .
  • the first flow passage 110 also includes a second branch passage 12, the second port of the first on-off valve 21 and the second port of the first expansion valve 31 pass through the second branch passage 12 and The first port of the fifth on-off valve 25 is communicated, and the second port of the first on-off valve 21 and the second port of the first expansion valve 31 are also communicated with the first port of the sixth on-off valve 26 through the second branch 12 .
  • the refrigerant flowing out from the first on-off valve 21 and the first expansion valve 31 can share the second branch passage 12 to communicate with the sixth on-off valve 26.
  • the fifth on-off valve 25 and the first one-way valve 41 are connected to reduce the number of openings in the flow passages in the valve group integration module 100 .
  • the second branch channel 12 is formed with a third opening 818 , a fourth opening 819 , a fifth opening 801 , a sixth opening 121 and a seventh opening 122 .
  • the third opening 818 communicates with the second port of the first switching valve 21
  • the fourth opening 819 communicates with the second port of the first expansion valve 31
  • the fifth opening 801 communicates with the second port of the first one-way valve 41
  • the sixth opening 121 communicates with the first port of the sixth on-off valve 26
  • the seventh opening 122 communicates with the first port of the fifth on-off valve 25 .
  • the first flow passage 110 further includes a third branch passage 13, and the second port of the sixth switching valve 26 communicates with the inlet port 203 of the air conditioner heat exchanger through the third branch passage 13, So that the refrigerant flows to the air conditioner heat exchanger 300 .
  • an eighth opening 805 and a ninth opening 804 are formed on the third branch channel 13 , the eighth opening 805 communicates with the second port of the sixth switch valve 26 , and the ninth opening 804 can pass through one of the second flow channels 120 It communicates with the inlet port 203 of the air conditioner heat exchanger.
  • the first flow channel 110 further includes a fourth branch channel 14 , and the outlet interface 204 of the air conditioner heat exchanger and the second interface 210 of the motor heat exchanger pass through the fourth branch channel 14 It communicates with the first port of the second on-off valve 22 , and the outlet port 204 of the air conditioner heat exchanger and the second port 210 of the motor heat exchanger communicate with the first port of the second expansion valve 32 through the fourth branch 14 .
  • the refrigerant flowing out from the air-conditioning heat exchanger 300 and the refrigerant flowing out from the motor heat exchanger 700 flow into the fourth branch 14, and the fourth branch 14 can be selectively connected with
  • the second on-off valve 22 is turned on or off, and is selectively turned on or off with the second expansion valve 32 .
  • the fourth branch channel 14 it is not necessary to separately set up a plurality of flow channels to realize the communication between the air conditioner heat exchanger 300 and the second switching valve 22 and the second expansion valve 32, and realize the communication between the motor heat exchanger 700 and the second switching valve. 22 and the second expansion valve 32 reduce the number of flow passages opened in the valve group integration module 100 .
  • the fourth branch 14 is provided with a tenth opening 816, an eleventh opening 817, a twelfth opening 820 and a thirteenth opening 806.
  • the tenth opening 816 communicates with the outlet interface 204 of the air conditioner heat exchanger through one of the second flow channels 120;
  • the eleventh opening 817 communicates with the second interface 210 of the motor heat exchanger through one of the second flow channels 120;
  • the twelfth opening 820 communicates with the first port of the second switch valve 22 ;
  • the thirteenth opening 806 communicates with the first port of the second expansion valve 32 .
  • the first flow channel 110 further includes a fifth branch channel 15 , and the second port of the third switching valve 23 and the first interface 207 of the battery pack heat exchanger pass through the fifth branch channel 15 .
  • the branch passage 15 communicates with the first port of the fourth on-off valve 24 .
  • the refrigerant flowing out from the second port of the third on-off valve 23 enters the fifth branch passage 15, and the refrigerant flowing into the fifth branch passage 15 then selectively flows to the fourth on-off valve 24 or the battery.
  • Package heat exchanger 500 By sharing the fifth branch passage 15, it is possible to avoid separately providing a flow passage between the third on-off valve 23 and the fourth on-off valve 24, and separately arranging a flow passage between the third on-off valve 23 and the battery pack heat exchanger 500, Reduce the number of flow passages in the valve group integration module 100 .
  • the fifth branch channel 15 is provided with a fourteenth opening 807 , a fifteenth opening 808 and a sixteenth opening (not shown in the figure).
  • the fourteenth opening 807 communicates with the second port of the third switching valve 23 ;
  • the fifteenth opening 808 communicates with the first port of the fourth switching valve 24 ;
  • the sixteenth opening communicates with the first interface 207 of the battery pack heat exchanger.
  • the first channel 110 further includes a sixth branch channel 16 , the second port of the second switch valve 22 , the evaporator outlet interface 206 , and the port of the fourth switch valve 24
  • the outlet can communicate with the inlet of the compressor 600 through the sixth branch 16 .
  • the inlets of the valves are connected to each other, so as to avoid setting up multiple flow channels to communicate with each other, and reduce the number of flow channels opened in the valve group integration module 100 .
  • the above-mentioned PT sensor includes a first PT sensor 404 and a second PT sensor 405 .
  • the first PT sensor 404 is arranged at the outlet of the evaporator 400 and the second port of the second switching valve 22 for temperature detection of the refrigerant flowing out of the evaporator 400 or from the second switching valve 22;
  • the second PT sensor 405 is arranged at the outlet of the compressor 600 to detect the temperature of the refrigerant discharged from the compressor 600 .
  • the sixth branch 16 is provided with a seventeenth opening 809 , an eighteenth opening 810 , a nineteenth opening 811 , a twentieth opening 812 and a twenty-first opening 813 .
  • the seventeenth opening 809 communicates with the second port of the fourth switching valve 24; the eighteenth opening 810 can communicate with the gas-liquid separator inlet port 211 through one of the second flow channels 120; the nineteenth opening 811 communicates with the first PT
  • the second port of the sensor 404 communicates; the twentieth opening 812 communicates with the evaporator outlet port 206 through one of the second flow channels 120 ; the twenty-first opening 813 communicates with the second port of the second on-off valve 22 .
  • the refrigerant flows into the sixth branch channel 16 through the seventeenth opening 809 , the nineteenth opening 811 , the twentieth opening 812 and the twenty-first opening 813 , and then flows into the gas-liquid separator through the eighteenth opening 810 In 800 , the refrigerant passes through the gas-liquid separator 800 and finally flows into the compressor 600 .
  • the compressor 600 discharges the high-temperature and high-pressure gaseous refrigerant, which flows through the pipeline to the inlet of the condenser 200. After the refrigerant performs heat exchange in the condenser 200, the refrigerant passes through the outlet of the condenser 200 and the condenser outlet interface 202 on the valve group integration module 100. The outlet interface 202 of the condenser communicates with the first branch channel 11 through one of the second flow channels 120.
  • the first opening 803 is in an open state
  • the second opening 802 is in a closed state
  • the refrigerant passes through
  • the first opening 803 flows through the first switch valve 21 and flows to the third opening 818 to enter the second branch channel 12
  • the refrigerant entering the second branch channel 12 flows through the sixth switch valve 26 through the sixth opening 121 and flows to the second branch channel 12.
  • the refrigerant flowing out of the device 300 flows to the tenth opening 816 through the air conditioner heat exchanger outlet interface 204 to enter the fourth branch 14, and the refrigerant flows to the thirteenth opening 806 in the fourth branch 14 to enter the second expansion valve 32 , the refrigerant flowing through the second expansion valve 32 enters the evaporator 400 through the evaporator inlet port 205, and the refrigerant flowing out of the evaporator 400 communicates with the twentieth opening 812 through the evaporator outlet port 206 to enter the sixth branch In the channel 16, the refrigerant enters the sixth branch channel 16 and then enters the gas-liquid separator 800 through the eighteenth opening 810, and the refrigerant coming out of the gas-liquid separat
  • the outlet of the pump 60 is connected with the third interface 212 of the motor heat exchanger for pumping the cooling liquid to the third interface 212 of the motor heat exchanger, so the inlet of the storage tank 70 is connected with the third interface 212 of the motor heat exchanger.
  • the motor heat exchanger is connected to the fourth interface 213 , and the outlet of the storage tank 70 is connected to the inlet of the pump 60 for replenishing the pump 60 with cooling liquid.
  • the coolant in the storage tank 70 enters the motor heat exchanger 700 , and the heat exchange between the coolant circuit and the refrigerant circuit is realized in the motor heat exchanger 700 .
  • the valve group integration module 100 also includes a three-way valve 40 , the first port 401 of the three-way valve 40 is connected to the fourth port 213 of the heat exchanger, and the second port 401 of the three-way valve 40
  • the port 402 is used to connect with the inlet of the radiator 910 of the coolant flow path where the motor is located, and the third port 403 of the three-way valve 40 is used to be connected with the inlet of the high pressure system 920 of the coolant flow path where the motor is located.
  • the coolant passing through the three-way valve 40 is divided into two paths, one path enters the radiator 910, and the other path enters the high-voltage system 920 with motors, electric controls, etc., and the heat in the high-voltage system 920 is brought to the motor exchange Heater 700 exchanges heat with the refrigerant circuit.
  • an integrated water pipe 701 is also integrated on the valve group integrated module 100 , and the integrated water pipe 701 is used to connect the storage tank 70 and the pump 60 to improve the convenience of connection.
  • the above-mentioned third on-off valve 23 and fourth on-off valve 24 are installed on the same side of the valve group integration module 100, so that the second port of the third on-off valve 23 is connected to the second port of the first on-off valve.
  • the flow path between the first ports of the four-switch valve 24 is designed to be as short as possible to meet the performance of low flow resistance.
  • the above-mentioned on-off valve and expansion valve can be connected to the valve group integrated module 100 by inserting, and can be fixed and locked by threads; the above-mentioned first one-way valve 41 and second one-way valve 42 are also The valve body is integrally inserted into the installation hole of the valve group integration module 100 , and is sealed and connected through the first plug 411 and the second plug 421 respectively.
  • a third expansion valve socket 331 and other sockets are formed on the valve group integration module 100.
  • the third expansion valve socket 331 is used for inserting the third expansion valve 33, and other valves can be inserted correspondingly.
  • the present disclosure will not repeat them here.
  • valve group integration module 100 is formed with a threaded hole for fastening connection of the expansion valve, so as to facilitate the installation and disassembly of the expansion valve.
  • a first threaded hole 1011 is formed on the valve group integrated module 100, and the first threaded hole 1011 is used for passing fasteners such as bolts or screws to fasten and install the first expansion valve 31. on the valve group integration module 100.
  • valve group integration module 100 is formed with a threaded interface 251 for inserting the fifth switch valve 25 ,
  • the disclosure further provides a vehicle thermal management system 1000, the vehicle thermal management system 1000 includes a thermal management system component and a valve group integration module 100, the thermal management system component includes a compressor 600, a condenser 200, an air conditioner heat exchanger 300, The evaporator 400 and the valve group integration module 100 are provided with at least one of a compressor interface, a condenser interface, a heat exchanger interface, and an evaporator interface to correspond to the thermal management system components.
  • valve group integration module 100 By setting multiple interfaces on the valve group integration module 100 for communicating with the thermal management system components, and setting multiple flow channels inside the valve group integration module 100 to replace the existing connecting pipelines, it is beneficial to reduce the heat management system.
  • the design of the connecting pipeline in 1000 also facilitates maintenance and simplifies the vehicle thermal management system 1000 .
  • the vehicle thermal management system 1000 further includes a gas-liquid separator 800 , and the valve group integration module 100 is also provided with a gas-liquid separator interface for connecting with the gas-liquid separator 800 .
  • the gas-liquid two-phase separation of the refrigerant is performed by setting the gas-liquid separator 800 , and the separated gas-phase refrigerant enters the compressor 600 , preventing liquid-phase refrigerant or gas-liquid mixed two-phase refrigerant from entering the compressor 600 .
  • the vehicle thermal management system 1000 further includes a battery pack heat exchanger 500 , and the valve group integration module 100 is also provided with a battery pack heat exchange device connected to the battery pack heat exchanger 500 .
  • the controller interface can be used to heat or cool the battery pack by selecting the corresponding fluid flow channel to ensure the normal operation of the battery pack. There is no need to separately set the thermal management system 1000 to heat or cool the battery pack, reducing the design cost of the vehicle thermal management system 1000 cost.
  • the vehicle thermal management system 1000 further includes a motor heat exchanger 700 , and the valve group integration module 100 is also provided with a motor heat exchanger interface for connecting with the motor heat exchanger 700 ,
  • the heat exchange with the motor can be realized by selecting the corresponding fluid flow channel to ensure the normal operation of the motor, and there is no need to separately install the heat management system 1000 to exchange heat with the motor, reducing the design cost of the vehicle heat management system 1000 .
  • the present disclosure further provides a vehicle, which includes the above-mentioned vehicle thermal management system 1000 .

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种用于热管理系统(1000)的阀组集成模块(100),热管理系统(1000)具有多种预设热管理模式,阀组集成模块(100)包括:多个流道(10),设置于阀组集成模块(100)内部;阀组(20),阀组(20)包括多个阀,阀设置于阀组集成模块(100)上,阀与流道(10)连通;通过阀的导通或关断,连通多个流道(10)以形成不同的流体通道,实现多种预设热管理模式中的至少一个。一种车辆热管理系统和车辆也被公开。

Description

用于热管理系统的阀组集成模块、车辆热管理系统及车辆
相关申请的交叉引用
本申请基于申请号为:202110600840.1,申请日为2021年05月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆技术领域,具体地,涉及一种用于热管理系统的阀组集成模块、车辆热管理系统及车辆。
背景技术
热泵空调系统是车辆的重要组成部分,其能够改变车辆内部的温度环境,以使驾乘人员获得良好的驾乘体验。现有的热泵空调系统中根据功能需要设置有如电子膨胀阀、电磁开关阀等在内的多种阀。通常,多种阀独立安装在管路中,导致热泵空调系统的管路结构复杂,安装难度较大,不利于车辆平台化设计,且较多的管路设计成本高,布置易杂乱,不易后期维修。此外,由于现有的阀多为电子阀,每一电子阀均需要连接整车电器线束,由于各阀体分散设置,从而导致车辆线束成本较高。
申请内容
本公开的目的是提供一种用于热管理系统的阀组集成模块,该阀组集成模块将多种阀集成于一体,利于简化车辆热管理系统的结构,减小集成阀占用的空间,降低成本。
为了实现上述目的,本公开提供一种用于热管理系统的阀组集成模块,所述热管理系统具有多种预设热管理模式,所述阀组集成模块包括:
多个流道,设置于所述阀组集成模块内部;
阀组,所述阀组包括多个阀,所述阀设置于所述阀组集成模块上,所述阀与所述流道连通;
通过所述阀的导通或关断,连通所述多个流道以形成不同的流体通道,实现所述多种预设热管理模式中的至少一个。
可选地,所述流道包括第一流道和第二流道,所述第一流道大致分布于同一平面内,所述第二流道分布于不同平面内,所述阀组用于选择性连通第一流道和第二流道以形成不同的流体通道。
可选地,所述第一流道有多条,第二流道有多条。
可选地,所述阀组集成模块还包括接口,所述接口用于连接所述流体通道与所述热管理系统中的外部换热组件。
可选地,所述接口包括冷凝器接口、空调换热器接口、蒸发器接口、电池包换热器接口、电机换热 器接口、发动机换热器接口、压缩机接口、气液分离器接口及PT传感器接口中的多个,所述冷凝器接口、所述空调换热器接口、所述蒸发器接口、所述电池包换热器接口、所述电机换热器接口及所述压缩机接口用于连接对应的外部热管理系统组件。
可选地,所述接口包括所述冷凝器接口、所述空调换热器接口、所述蒸发器接口、所述压缩机接口,所述冷凝器接口用于与所述外部热管理系统中的冷凝器连接,所述空调换热器接口用于与所述外部热管理系统中的空调换热器连接,所述蒸发器接口用于与所述外部热管理系统中的蒸发器连接,所述压缩机接口用于与所述外部热管理系统中的压缩机连接。
可选地,所述冷凝器接口包括冷凝器出口接口,所述空调热换器接口包括空调换热器进口接口和空调换热器出口接口,所述蒸发器接口包括蒸发器进口接口;
所述阀组包括第一开关阀和第二膨胀阀;
所述第一开关阀的第一端口与所述冷凝器出口接口相连,所述第一开关阀的第二端口与所述空调换热器进口接口相连;
所述第二膨胀阀的第一端口与所述空调换热器出口接口相连,所述第二膨胀阀的第二端口与所述蒸发器进口接口相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制冷模式。
可选地,所述阀组还包括第一膨胀阀和第二开关阀;
所述第一膨胀阀的第一端口与所述冷凝器出口接口相连,所述第一膨胀阀的第二端口与所述空调换热器进口接口相连;
所述第二开关阀的第一端口与所述空调换热器出口接口相连,所述第二开关阀的第二端口与所述压缩机的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制热模式。
可选地,所述电池包换热器接口包括电池包换热器第一接口和电池包换热器第二接口,
所述阀组还包括第三膨胀阀和第四开关阀,所述第三膨胀阀的第一端口与所述电池包换热器第二接口相连,所述第三膨胀阀的第二端口与所述空调换热器出口接口相连;
所述第四开关阀的第一端口与所述电池包换热器第一接口相连,所述第四开关阀的第二端口用于与压缩机的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的电池冷却模式,或者空调制冷和电池冷却双开模式。
可选地,所述压缩机接口包括压缩机出口接口,所述电机换热器接口包括电机换热器第一接口和电机换热器第二接口;
所述阀组还包括第二开关阀和第三开关阀,所述第三开关阀的第一端口与所述压缩机出口接口相连,所述第三开关阀的第二端口与所述电池包换热器第一接口相连,所述第三膨胀阀的第二端口与所述电机换热器第一接口相连,所述第二开关阀的第一端口与所述电机换热器第二接口相连,所述第二开关阀的第二端口用于与所述压缩机的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的电 池加热模式、或者空调制冷和电池加热双开模式。
可选地,所述阀组还包括第一膨胀阀,所述第一膨胀阀的第一端口与所述冷凝器出口接口相连,所述第一膨胀阀的第二端口与所述电机换热器第一接口相连,以使所述热管理系统能够实现所述预设热管理模式中的热泵采暖模式,或者,热泵采暖和电池冷却双开模式,或者,热泵采暖与电池加热双开模式。
可选地,所述电机换热器第二接口还与所述第二膨胀阀的第一端口相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制冷、空调除湿和电池加热三开模式,或者,空调制冷、空调除湿和电池冷却三开模式。
可选地,所述阀组还包括第五开关阀和第六开关阀;
所述第五开关阀的第一端口分别与所述第一开关阀的第二端口和所述第一膨胀阀的第二端口相连,所述第五开关阀的第二端口所述电机换热器第一接口相连;
所述第六开关阀的第一端口分别与所述第一开关阀的第二端口、所述第一膨胀阀的第二端口相连,所述第六开关阀的第二端口用于与所述空调换热器进口接口相连。
可选地,所述阀组还包括第一单向阀和第二单向阀,
所述第一单向阀的第一端口与所述第三膨胀阀的第二端口相连,所述第一单向阀的第二端口用于与所述电机换热器第一接口相连,其中,第一单向阀被配置为仅允许流体从自身的第一端口流向第二端口;
所述第二单向阀的第一端口与所述空调热换器出口接口相连,所述第二单向阀的第二端与所述第三膨胀阀的第二端口相连,其中,第二单向阀被配置为仅允许流体从自身第一端口流向第二端口。
可选地,所述气液分离器接口包括气液分离器进口接口,所述蒸发器接口还包括蒸发器出口接口,所述蒸发器出口接口与所述气液分离器进口接口。
可选地,所述流道包括大致分布于同一平面内的第一流道;
其中,所述第一流道包括第一支道,所述冷凝器出口接口通过所述第一支道与所述第一开关阀的第一端口、所述第一膨胀阀的第一端口连通;或
所述第一流道还包括第二支道,所述第一开关阀的第二端口、所述第一膨胀阀的第二端口通过所述第二支道与所述第五开关阀的第一端口连通,并且,所述第一开关阀的第二端口、所述第一膨胀阀的第二端口还通过所述第二支道与所述第六开关阀的第一端口连通;或
所述第一流道还包括第三支道,所述第六开关阀的第二端口通过所述第三支道与所述空调换热器进口接口连通;或
所述第一流道还包括第四支道,所述空调换热器出口接口、所述电机换热器第二接口通过所述第四支道与所述第二开关阀的第一端口连通,并且,所述空调换热器出口接口、所述电机换热器第二接口还通过所述第四支道与所述第二膨胀阀的第一端口连通,或
所述第一流道还包括第五支道,所述第三开关阀的第二端口、所述电池包换热器第一接口通过所述第五支道与第四开关阀的第一端口连通;或
所述第一流道还包括第六支道所述第二开关阀的第二端口、所述蒸发器出口接口、所述第四开关阀的出口通过所述第六支道能够与所述压缩机的进口连通。
可选地,所述阀组集成模块包括第一半体和第二半体,所述第一半体包括第一连接面,所述第二半体包括第二连接面,所述第一连接面与所述第二连接面密封连接;
所述第一半体的内部设置有多条所述第二流道,所述第二半体的第二连接面上设置有至少一个凹槽,以使所述第二连接面上的所述凹槽与所述第一连接面共同限定出所述第一流道。
可选地,所述阀组集成模块包括第一半体和第二半体,所述第一半体包括第一连接面,所述第二半体包括第二连接面,所述第一连接面与所述第二连接面密封连接;
所述第一半体的内部设置有多条所述第二流道,并且,所述第一半体上的第一连接面上设置有至少一个凹槽,以使所述第二连接面与所述第一半体上的凹槽共同限定出所述第一流道。
可选地,所述凹槽为曲线型凹槽或者直线型凹槽。
可选地,所述第一半体上形成有多个镂空部。
可选地,所述接口还包括电机换热器第三接口和电机换热器第四接口,所述阀组集成模块还包括泵和用于容纳冷却液的容纳箱,所述泵的出口与所述电机换热器第三接口相连,以用于向所述电机换热器第三接口泵送冷却液,所述容纳箱的出口与所述泵的进口相连,用于向所述泵补充冷却液。
可选地,所述阀组集成模块还包括三通阀,所述三通阀的第一端口与所述换热器第四接口相连,所述三通阀的第二端口用于与电机所在冷却液流路的散热器的进口相连,所述三通阀的第三端口用于与所述电机所在冷却液流路的高压系统的进口相连。
本公开还提供一种车辆热管理系统,包括热管理系统组件和上述的阀组集成模块,所述热管理系统组件包括压缩机、冷凝器、空调换热器、蒸发器,所述阀组集成模块上设置有压缩机接口、冷凝器接口、换热器接口、蒸发器接口中至少一者以与对应的热管理系统组件。
可选地,所述车辆热管理系统还包括气液分离器,所述阀组集成模块上还设置有用于与所述气液分离器相连的气液分离器接口。
可选地,所述车辆热管理系统还包括电池包换热器,所述阀组集成模块上还设置有用于与所述电池包换热器相连的电池包换热器接口,以通过选择对应的流体流道实现对电池包的加热或冷却。
可选地,所述车辆热管理系统还包括电机换热器,所述阀组集成模块上还设置有用于与所述电机换热器相连的电机换热器接口,以通过选择对应的流体流道实现与电机的换热。
本公开另外还提供一种车辆,包括所述的车辆热管理系统。
在上述技术方案中,通过在阀组集成模块内部设置多个流道以替代现有的连接管路,有利于减少热 管理系统中的连接管路的设计;在阀组集成模块上集成具有多个阀的阀组,方便进行维修拆卸地同时还能够有效地减少用来安装各个阀的支架设计;并且,从轻量化的角度来说,阀组集成模块内部多个流道的设计、以及集成的多个阀的设计也利于降低阀组集成模块的重量,从而有利于整车轻量化的设计,能够降低成本和油耗。同时,由于减少了零部件的使用,也利于减小整车的布置空间。另外,可以在阀组集成模块上对多个流道进行灵活设计,以使得各个阀的布置位置也可以灵活选择,以适应不同的整车布置,有利于整车平台化的设计。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一些实施方式的车辆热管理系统的原理示意图,且该原理对车辆热管理系统中涉及到的阀等进行了集成设计;
图2是本公开一些实施方式的车辆热管理系统的原理示意图;
图3和图4是本公开一些实施方式的用于热管理系统的阀组集成模块的立体结构示意图;
图5是本公开一些实施方式的用于热管理系统的阀组集成模块的爆炸结构示意图;
图6是本公开一些实施方式的用于热管理系统的阀组集成模块的第一半体的立体结构示意图,该图中示意出了多条第一流道;
图7和图8是图6的俯视图;
图9是本公开一些实施方式的用于热管理系统的阀组集成模块的第一半体的立体结构示意图,且该图中示意出了多个接口;
图10是图9的俯视图;
图11是图10中沿C-C线的剖视示意图;
图12是图10中沿A-A线的剖视示意图;
图13是图9的侧视图;
图14是图12中沿B-B线的剖视示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,方位词“上、下”是基于附图的图面方向定义的,“上、下”与车辆的上、下所指代的方向相同,“内、外”是指相关零部件的内、外。此外,所使用的术语“第 一、第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
另外,在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,出现的术语“设置”、“相连”、“安装”应作广义理解,例如,可以使固定相连,也可以是可拆卸相连,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通,对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
如图1至图14所示,根据本公开的一方面,提供一种用于热管理系统1000的阀组集成模块100,热管理系统1000具有多种预设热管理模式,阀组集成模块100包括多个流道10和阀组20,多个流道10设置于阀组集成模块100内部,阀组20包括多个阀,阀设置于阀组集成模块100上,且阀与流道10连通;通过阀的导通或关断,连通多个流道10以形成不同的流体通道,从而实现多个预设热管理模式中的至少一个。
在上述技术方案中,通过在阀组集成模块100内部设置多个流道以替代现有的连接管路,有利于减少热管理系统1000中的连接管路的设计;在阀组集成模块100上集成具有多个阀的阀组20,方便进行维修拆卸地同时还能够有效地减少用来安装各个阀的支架设计;并且,阀组集成模块100内部多个流道10的设计、以及集成的多个阀的设计也利于降低阀组集成模块100的重量,从而有利于整车轻量化的设计,能够降低成本和油耗。同时,由于减少了零部件的使用,也利于减小整车的布置空间。另外,可以在阀组集成模块100上对多个流道进行灵活设计,以使得各个阀的布置位置也可以灵活选择,以适应不同的整车布置,有利于整车平台化的设计。
在一些实施方式中,上述流道包括第一流道110和第二流道120,第一流道110大致分布于同一平面内,第二流道120分布于不同平面内,阀组用于选择性连通第一流道110和第二流道120以形成不同的流体通道。
通过将第一流道110大致布置于同一平面内便于进行制造加工以及后期的维护;而通过将第二流道120布置于不同的平面内,在通过阀组选择性连通第一流道110和第二流道120时,可以形成多个不同的流体通道,从而能够适应不同的车型,提高该阀组集成模块100的适应性。例如,第一流道110有多条,第二流道120有多条,通过阀组选择性地导通多条第一流道110和多条第二流道120,进一步地满足不同车型的使用需求。
参照图3、图5、图6、图8以及图11所示,阀组集成模块100可以包括第一半体1和第二半体2,第一半体1包括第一连接面1001,第二半体2包括第二连接面2001,第一连接面1001与第二连接面2001密封连接。
第一半体1的内部设置有多条第二流道120,第二半体2的第二连接面2001上设置有至少一个凹槽,以使第二连接面2001上的凹槽与第一连接面1001共同限定出第一流道110。当第一半体1和第二半体2贴合在一起时,第一半体1的第一连接面1001封盖在第二半体2的第二连接面2001上的凹槽上, 第一连接面1001封盖在凹槽的开口的部分与凹槽的槽壁共同围合形成为第一流道110。
通过在第一半体1和第二半体2之间限定出第一流道110,在第一半体1的内部设置多条第二流道120,并通过阀选择性地连通第一流道110和第二流道120,这样,流体可以在与该阀对应的第一流道110和第二流道120形成的流体通道内流动。
也就是说,同一第一流道110可以与多个第二流道120分别连通以形成流体通道,多个第二流道120共用同一个第一流道110,这样的话,可以减少在阀组集成模块100内开设的流道的数量;一方面,精简了阀组集成模块100的内部结构,便于对阀组集成模块100进行加工;另外一方面还能够避免由于流道数量过多导致布置杂乱、阀组集成模块100集成度低、阀组集成模块100占用空间较大的问题。
另外,通过将一个或多个凹槽形成于第二半体2的第二连接面2001上,具有以下的优点:
第一,由于凹槽形成于第二半体2的第二连接面2001上,第二半体2结构简单,在对多个凹槽进行设计时,更加便于对多个凹槽之间的位置进行布置,对多个凹槽进行灵活地布局;因此也可以更大程度地利用该第二半体2,提高阀组集成模块100的集成度;此外,将多个凹槽布置于同一面上也便于后期的维护;
第二,将凹槽设置在第二半体2上,第二半体2与第一半体1是独立设置的,因此,凹槽的设计并不会对第一半体1上的第二流道120的设计及布局造成影响,在第二半体2上设置凹槽也无需对第一半体1上的第二流道120进行避让,更加利用第二流道120在第一半体1内的合理布局。
在其他的实施方式中,第一半体1的内部设置有多条第二流道120,并且,第一半体1上的第一连接面1001上设置有至少一个凹槽,以使第二连接面2001与第一半体1上的凹槽共同限定出第一流道110。当第一半体1和第二半体2贴合在一起时,第二半体2的第二连接面2001封盖在第一半体1的第一连接面1001上的凹槽上,第二连接面2001封盖在凹槽的开口的部分与凹槽的槽壁共同围合形成为第一流道110。
在此方案中,第二流道120的设计以及凹槽的设计均设置于第一半体1,第一流道110由第一半体1和第二半体2共同进行限定。这样,主要的结构设计可以集中在第一半体1上,在发生损害的情况下,对第一半体1进行主要的维修即可;第二半体2的设计自由度高,设计人员可以根据不同车型的不同布置空间对该第二半体2的形状、大小进行自行设定。
在另外一种变形的方案中,第一半体1的内部设置有多条第二流道120,第二半体2的第二连接面2001上设置有至少一个凹槽,且第一半体1的第一连接面1001上设置有至少一个凹槽;这样,在第一半体1和第二半体2对合时,也可以限定出第一流道110,本公开对具体的设计方式不作限定。
为了适应不同的安装场景以及更加合理地利用第二半体2的空间,在本公开提供的一些实施方式中,凹槽为曲线型凹槽或者直线型凹槽。
如图6和图7所示,在凹槽为曲线型凹槽的情况下,为了减小流体在第一流道110内流动的阻力, 曲线型凹槽在弯曲位置的夹角θ可以为50°~180°。这样,流体在凹槽内流动的过程中,流体与凹槽之间具有较小的流阻,以使流体在凹槽内的流动更加顺畅,降低流体在流动过程中的能耗。优选地,夹角θ可以为90°~180°
这里,需要说明的是,当曲线型凹槽的弯曲位置的夹角为180°时,则构造为直线型凹槽。
可选地,凹槽的横截面呈圆滑过渡的U型,一方面,呈U型的凹槽更加便于加工;另外一方面,圆滑过渡的凹槽也能够使得流体在凹槽内流动的过程中受到的流阻更小,以使流体在第一流道110内流动地更加顺畅。
上述的第一半体1和第二半体2可以构造为任意适当的形状和结构,能够实现对应的功能即可,本公开对此不作限定。
为了进一步提高第一半体1和第二半体2之间的密封性,在第一半体1和第二半体2之间还可以设置密封膜。
可选地,第一半体1和第二半体2之间可以采用焊接的工艺连接而成,以保证第一半体1和第二半体2之间连接的稳定性。但是,本公开并不对该第一半体1和第二半体2之间的连接方式作限定,也可以采用卡接或者粘接等方式进行连接,能够保证连接的稳定性即可。
可选地,参照图6所示,第一半体1上形成有多个镂空部50,从而有效地减少该第一半体1的重量,便于该第一半体1轻量化的设计,也即便于阀组集成模块100的轻量化设计,进一步地便于整车轻量化的设计。
可选地,阀组集成模块100还包括接口,接口用于连接流体通道与热管理系统1000中的外部换热组件。通过在阀组集成模块100上设置接口,通过该接口可以直接实现阀组集成模块100中的流体通道与热管理系统1000中的外部换热组件的连通,并不需要中间转接件之类的结构进行连接,降低了阀组集成模块100泄漏的风险。
例如,上述的接口可以包括冷凝器接口、空调换热器接口、蒸发器接口、电池包换热器接口、电机换热器接口、发动机换热器接口、压缩机接口、气液分离器接口及PT传感器接口中的多个,冷凝器接口、空调换热器接口、蒸发器接口、电池包换热器接口、电机换热器接口及压缩机接口用于连接对应的外部热管理系统组件。该处需要进行说明的是,对应的外部热管理系统组件分别指的是:冷凝器200、空调换热器300、蒸发器400、电池包换热器500、电机换热器700以及压缩机600。
具体地,冷凝器接口用于与冷凝器200连接,空调换热器接口用于与空调换热器300连接,蒸发器接口用于与蒸发器400连接,电池包换热器接口用于与电池包换热器500连接,电机换热器接口用于与电机换热器700连接,压缩机接口用于与压缩机600连接。
通过在阀组集成模块100上设置用于与外部热管理系统组件进行连通的接口,便于实现该阀组集成模块100中的流体通道与外部热管理系统组件的连通,以实现不同的预设热管理模式;此外,利用阀组 集成模块100内部的流体通道取代现有的连接管路也可以减少管路的设计,便于轻量化的设计。
在一些实施方式中,上述的接口可以包括冷凝器接口、空调换热器接口、蒸发器接口、压缩机接口。冷凝器接口用于与外部热管理系统1000中的冷凝器200连接,空调换热器接口用于与外部热管理系统1000中的空调换热器300连接,蒸发器接口用于与外部热管理系统1000中的蒸发器400连接,压缩机接口用于与外部热管理系统1000中的压缩机600连接。当然,本公开并不对阀组集成模块100上的接口类型进行限定,设计人员可以根据需求进行自行设定。
可选地,参照图1和图2所示,冷凝器接口可以包括冷凝器出口接口202,空调热换器接口包括空调换热器进口接口203和空调换热器出口接口204,蒸发器接口包括蒸发器进口接口205。阀组包括第一开关阀21和第二膨胀阀32;第一开关阀21的第一端口与冷凝器出口接口202相连,第一开关阀21的第二端口与空调换热器进口接口203相连;第二膨胀阀32的第一端口与空调换热器出口接口204相连,第二膨胀阀32的第二端口与蒸发器进口接口205相连,以使热管理系统1000能够实现预设热管理模式中的空调制冷模式。
在上述技术方案中,相比于现有的空调制冷模式来说,因在该阀组集成模块100上设置了冷凝器出口接口202以及空调换热器进口接口203,且在该阀组集成模块100的内部设置连通该冷凝器出口接口202与空调换热器进口接口203的流体通道,从而可以利用该流体通道替换现有技术中用于连通冷凝器200以及空调换热器300之间的连接管路;且该阀组集成模块100上集成设计了空调换热器出口接口204和蒸发器进口接口205,且在该阀组集成模块100的内部必然存在连通该空调换热器出口接口204和蒸发器出口接口205的流体通道,从可以利用该流体通道替换现有技术中用于连通空调换热器300以及蒸发器400之间的连通管路;而上述的第一开发阀21和第二膨胀阀32与流体通道连通,对流路进行控制,下文介绍至第一流道110的具体结构时会进行详细地说明。
可选地,在该空调制冷模式下,具体的工作过程可以如下:
如图1和图2所示,压缩机600排出高温高压气态冷媒,通过管路流至冷凝器200的进口,冷媒通过该冷凝器200的出口(冷凝器200此时可不进行放热工作)与阀组集成模块100上的冷凝器出口接口202连通,从而进入至流体通道内,阀组集成模块100设置有与流体通道连通的第一开关阀21,第一开关阀21处于打开的状态,冷媒通过该第一开关阀21流至空调换热器进口接口203,该空调换热器进口接口203与空调换热器300的进口连通,冷媒进入该空调换热器300内进行换热,换热后的冷媒从空调换热器300的出口流出并流向空调换热器出口接口204再次进入阀组集成模块100的流体通道内,阀组集成模块100设置有与流体通道连通的第二膨胀阀32,冷媒经过该第二膨胀阀32节流降压之后流至蒸发器进口接口205,该蒸发器进口接口205与蒸发器400的进口可以通过管路连通,节流降压后的冷媒通过管路进入至蒸发器400内进行蒸发以吸收环境的热量,被冷却后的环境温度通过鼓风机将冷风吹进成员仓实现制冷,通过蒸发器400后的冷媒通过管路流向压缩机600,气态冷媒将进入至压缩机600 内进行制冷循环工作。
参照图1和图2所示,阀组还可以包括第一膨胀阀31和第二开关阀22;第一膨胀阀31的第一端口与冷凝器出口接口202相连,第一膨胀阀31的第二端口与空调换热器进口接口203相连;第二开关阀22的第一端口与空调换热器出口接口204相连,第二开关阀22的第二端口与压缩机600的进口相连,以使热管理系统1000能够实现预设热管理模式中的空调制热模式。
也就是说,基于上述实现空调制冷模式的结构的基础上,通过在阀组集成模块100上增设第一膨胀阀31和第二开关阀22,还能够实现预设热管理模式中的空调制热模式,同样,在该空调制热模式中也能够利用阀组集成模块100中的流体通道替换现有技术中用于连通冷凝器200以及空调换热器300之间的连接管路、以及替换现有技术中用于连通空调换热器300以及蒸发器400之间的连通管路,减少空调制热模式下的连接管路的设计,便于轻量化设计。
可选地,在该空调制热模式下,具体的工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒,该高温高压气态冷媒可以采用管路进入冷凝器200内,冷媒在冷凝器200内放热,冷凝器200放热结合风加热PTC,再通过鼓风机将热风吹进车内,为车内制热,通过冷凝器20的冷媒通过阀组集成模块100上的冷凝器出口接口202进入至阀组集成模块100的流体通道,阀组集成模块100上设置有与流体通道连通的第一膨胀阀31和第二开关阀22,冷媒经过第一膨胀阀31节流降压后流向空调换热器进口接口203,该空调换热器进口接口203可以通过管路与空调换热器300连通,冷媒进入至空调换热器300中进行换热,换热后的冷媒通过管路与空调换热器出口接口204连通进而进入至阀组集成模块100的流体通道内,接着冷媒经过第二开关阀22流至压缩机600的进口,气态冷媒进入压缩机600进行制热循环工作。
参照图1和图2所示,电池包换热器接口可以包括电池包换热器第一接口207和电池包换热器第二接口208,阀组还可以包括第三膨胀阀33和第四开关阀24,第三膨胀阀33的第一端口与电池包换热器第二接口208相连,第三膨胀阀33的第二端口与空调换热器出口接口204相连;第四开关阀24的第一端口与电池包换热器第一接口207相连,第四开关阀24的第二端口用于与压缩机的进口相连,以使热管理系统1000能够实现预设热管理模式中的电池冷却模式,或者空调制冷和电池冷却双开模式。
也就是说,基于上述实现空调制冷模式的结构的基础上,通过在阀组集成模块100上设置电池包换热器第一接口207和电池包换热器第二接口208、以及第三膨胀阀33和第四开关阀24,还能够实现预设热管理模式中的电池冷却模式、或者空调制冷和电池冷却双开模式,减少电池冷却模式、空调制冷和电池冷却双开模式下的连接管路的设计。
可选地,在电池冷却模式下,具体的工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒,通过管路流至冷凝器200的进口,冷媒在通过该冷凝器200的出口(冷凝器200此时可不进行放热工作)与阀组集成模块100上的冷凝器出口 接口202连通,从而进入至流体通道内,冷媒通过第一开关阀21流至空调换热器300中进行换热,换热后的冷媒通过第三膨胀阀33节流降压后流向电池包换热器500进而对电池包进行吸热降温,通过电池包换热器500的冷媒通过第四开关阀24流向压缩机600进行电池冷却的循环工作,在电池冷却模式下第二膨胀阀32处于关闭状态。
可选地,在空调制冷和电池冷却双开模式下,具体的工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒,通过管路流至冷凝器200的进口,冷媒通过该冷凝器200的出口(冷凝器200此时可不进行放热工作)与阀组集成模块100上的冷凝器出口接口202连通,从而进入至流体通道内,冷媒通过第一开关阀21流至空调换热器300中进行换热,换热后的冷媒分为两路,一路通过第三膨胀阀33节流降压后流向电池包换热器500进而对电池包进行吸热降温,通过电池包换热器500的冷媒通过第四开关阀24流向压缩机600进行电池冷却的循环工作;另一路冷媒经过第二膨胀阀32节流降压之后流至蒸发器进口接口205,该蒸发器进口接口205与蒸发器400的进口可以通过管路连通,节流降压后的冷媒通过管路进入至蒸发器400内进行蒸发以吸收环境的热量,被冷却后的环境温度通过鼓风机将冷风吹进成员仓实现制冷,通过蒸发器400后的冷媒通过管路流向压缩机600,气态冷媒将进入至压缩机600内进行空调制冷循环工作。
参照图1和图2所示,压缩机接口可以包括压缩机出口接口201,电机换热器接口包括电机换热器第一接口209和电机换热器第二接口210;阀组包括还第三开关阀23,第三开关阀23的第一端口与压缩机出口接口201相连,第三开关阀23的第二端口与电池包换热器第一接口207相连,第三膨胀阀33的第二端口与电机换热器第一接口209相连,第二开关阀22的第一端口与电机换热器第二接口210相连,第二开关阀22的第二端口用于与压缩机600的进口相连,以使热管理系统1000能够实现预设热管理模式中的电池加热模式、或者空调制冷和电池加热双开模式。
基于上述能够实现预设热管理模式中的电池冷却模式,或者空调制冷和电池冷却双开模式的结构的基础上,通过在阀组集成模块100上增设压缩机出口接口201、电机换热器第一接口209、电机换热器第二接口210、第三开关阀23,通过对阀的开闭以及流体通道的导通或关闭从而实现预设热管理模式中的电池加热模式、或者空调制冷和电池加热双开模式,减少电池加热模式、或者空调制冷和电池加热双开模式下的连接管路的设计。
可选地,在电池制热模式下,具体的工作过程可以如下:
参照图1和图2所示,高温高压冷媒从压缩机600流出,采用管路与第三开关阀23连通,第三开关阀23可以采用管路与电池包换热器500和第四开关阀24连通,此时,第三开关阀23处于打开状态,第四开关阀24处于关闭状态,冷媒进入电池包换热器500对电池包进行加热,通过电池包换热器500的冷媒通过管路进入第三膨胀阀33进行节流降压,节流降压后的冷媒进入电机换热器700进行换热,经过电机换热器700的冷媒通过第二开关阀22进入压缩机进行电池加热循环工作。
可选地,在空调制冷和电池加热双开模式下,具体的工作过程可以如下:
参照图1和图2所示,高温高压冷媒从压缩机600流出,分为两路:
一路通过管路连接进入冷凝器200,冷媒通过冷凝器200(冷凝器200此时可不进行放热工作)后可通过流道第一开关阀21,第一开关阀21处于打开状态,冷媒进而进入空调换热器300,进行换热后的冷媒通过管路连接进入第二膨胀阀32,冷媒经过该第二膨胀阀32节流降压之后流至蒸发器400,节流降压后的冷媒通过管路进入至蒸发器400内进行蒸发以吸收环境的热量,被冷却后的环境温度通过鼓风机将冷风吹进成员仓实现制冷,通过蒸发器400后的冷媒通过管路流向压缩机600,气态冷媒将进入至压缩机600内进行空调制冷循环工作;
另外一路通过管路连接进入第三开关阀23,通过第三开关阀23的冷媒进入电池包换热器500,冷媒进入电池包换热器500对电池包进行加热,通过电池包换热器500的冷媒通过管路进入第三膨胀阀33进行节流降压,节流降压后的冷媒进入电机换热器700进行换热,经过电机换热器700的冷媒通过第二开关阀22进入压缩机进行电池加热循环工作。
参照图1和图2所示,阀组还包括第一膨胀阀31,第一膨胀阀31的第一端口与冷凝器出口接口202相连,第一膨胀阀31的第二端口与电机换热器第一接口209相连,以使热管理系统1000能够实现预设热管理模式中的热泵采暖模式,或者,热泵采暖和电池冷却双开模式,或者,热泵采暖与电池加热双开模式。
可选地,在热泵采暖模式下,具体的工作过程可以如下:
参照图1和图2所示,冷媒流出压缩机600采用管路进入冷凝器200,冷媒在冷凝器200放热,冷凝器200放热结合风加热PTC,再通过鼓风机将热风吹进车内,为车内制热,通过冷凝器200的冷媒进入第一膨胀阀31进行节流降压,节流降压后的冷媒进入电机换热器700进行吸热蒸发,蒸发后的冷媒流过第二开关阀22进入压缩机600进行采暖循环工作。
可选地,在热泵采暖和电池冷却双开模式下,具体的工作过程可以如下:
参照图1和图2所示,冷媒流出压缩机600采用管路连接进入冷凝器200,冷媒在冷凝器200内放热,冷凝器200放热结合风加热PTC,再通过鼓风机将热风吹进车内,为车内制热,通过冷凝器200的冷媒采用管路连接第一膨胀阀31,该第一膨胀阀31进行节流降压后进入电机换热器700,冷媒通过电机换热器700进行吸热蒸发,蒸发后的冷媒通过冷媒进入第三膨胀阀33,冷媒进入第三膨胀阀33进行节流降压后进入电池包换热器500对电池包进行吸热降温,通过电池换热器500的冷媒通过第四开关阀24,冷媒通过该导通的第四开关阀24进入压缩机,从而实现对热泵采暖和电池冷却双开模式双开的循环工作。
可选地,热泵采暖与电池加热双开模式下,具体的工作过程可以如下:
参照图1和图2所示,冷媒从压缩机流出,分为两路:
一路采用管路进入冷凝器200,冷媒在冷凝器200放热,冷凝器200放热结合风加热PTC,为车内制热,通过冷凝器200的冷媒进入第一膨胀阀31,该第一膨胀阀31对冷媒进行节流降压,从第一膨胀阀31流出的冷媒进入电机换热器700,经过电机换热器700吸热蒸发后的冷媒通过第二开关阀22进入压缩机;
另一路采用管路进入第三开关阀23,经过第三开关阀23的冷媒进入电池包换热器500对电池包进行加热,通过电池包换热器500的冷媒进入第三膨胀阀33进行节流降压,节流降压后的冷媒也进入电机换热器700进行蒸发吸热,吸热蒸发后的冷媒通过第二开关阀22进入压缩机。
参照图1和图2所示,电机换热器第二接口210还与第二膨胀阀32的第一端口相连,以使热管理系统1000能够实现预设热管理模式中的空调制冷、空调除湿和电池加热三开模式,或者,空调制冷、空调除湿和电池冷却三开模式。
可选地,在空调除湿模式下,具体工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒,进入冷凝器200,冷媒在冷凝器200进行放热后进入第一开关阀21,此时,第一开关阀21全开,冷媒通过第一开关阀21后进入空调换热器300或者电机换热器700,在空调换热器300中或电机换热器700中换热后的冷媒进入第二膨胀阀32进行节流降压,节流降压后的冷媒进入蒸发器400吸收车内环境热量使车内湿润空气达到露点温度凝结成水排出,达到除湿效果,被除湿后的环境再加上冷凝器200的放热,使车内环境达到一个较舒适的温度,通过风机将风吹进乘员舱实现乘员舱一个较舒适的环境温度。通过蒸发器400的冷媒进入压缩机进行除湿循环工作。
可选地,在空调制冷、空调除湿和电池冷却三开模式下,具体工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒,采用管路连接进入冷凝器200,冷媒在通过冷凝器200后(冷凝器200此时可不进行放热工作)采用管路进入第一开关阀21,此时第一开关阀21全开,冷媒通过该第一开关阀21后进入空调换热器300,进行换热后的冷媒分为两路:
一路通过管路进入第二膨胀阀32进行节流降压,节流降压后的冷媒采用管路连接进入蒸发器400吸收车内环境热量使室内温润空气达到露点温度凝结成水排出,达到除湿的效果。被除湿后的环境再加上冷凝器200的放热,使环境温度达到一个较舒适的温度,通过风机将风吹进乘员舱实现乘员舱一个较舒适的温度,通过蒸发器400的冷媒进入压缩机600。
另一路从空调换热器300排出的冷媒进入第三膨胀阀33,冷媒进入第三膨胀阀33进行节流降压后进入电池包换热器500以对电池包进行吸热降温,通过电池包换热器500后的冷媒通过第四开关阀24进入压缩机600。
可选地,在空调制冷、空调除湿和电池加热三开模式下,具体工作过程可以如下:
参照图1和图2所示,压缩机600排出高温高压气态冷媒后,气态冷媒分为两路:
第一路通过管路连接进入冷凝器200,冷媒在冷凝器200进行放热后采用管路连接第一开关阀21,此时,该第一开关阀21全开,冷媒通过该第一开关阀21通过管路进入空调换热器300,通过该空调换热器300换热后的冷媒通过管路进入第二膨胀阀32;冷媒在第二膨胀阀32内节流降压之后进入蒸发器400吸收车内环境热量使车内温润空气达到露点温度凝结成水排出,达到除湿效果,被除湿后的环境再加上冷凝器200的放热,使环境温度达到一个较舒适的温度,通过风机将风吹送至乘员舱使得乘员舱达到一个较舒适的环境温度,通过蒸发器400后的冷媒采用管路连接进入压缩机600。
第二路,采用管路连接进入第三开关阀23,通过该第三开关阀23的冷媒进入电池包换热器500中给电池包进行加热,通过电池包换热器500的冷媒通过管路进入第三膨胀阀33进行节流降压,节流降压后的冷媒进入电机换热器700进行吸热蒸发,蒸发后的冷媒通过管路连接同样进入第二膨胀阀32,与上文的第一路冷媒汇流。
在一些实施方式中,参照图1和图2所示,阀组还包括第五开关阀25和第六开关阀26;第五开关阀25的第一端口分别与第一开关阀21的第二端口和第一膨胀阀31的第二端口相连,第五开关阀25的第二端口与电机换热器第一接口209相连,第六开关阀26的第一端口分别与第一开关阀21的第二端口、第一膨胀阀31的第二端口相连,第六开关阀26的第二端口用于与空调换热器进口接口203相连。通过在阀组集成模块100上集成设计该第五开关阀25,可以对从第一开关阀21和第一膨胀阀31流出的冷媒进行导通或者关闭,以选择性地进入空调换热器300,提高对流路控制的灵活性;同样的,通过在阀组集成模块100上集成设计该第六开关阀26,也可以对从第一开关阀21和第一膨胀阀31流出的冷媒进行导通或者关闭,以选择性地进入电机换热器700,提高对流路控制的灵活性。
参照图1所示,阀组还可以包括第一单向阀41和第二单向阀42,第一单向阀41的第一端口与第三膨胀阀33的第二端口相连,第一单向阀41的第二端口用于与电机换热器第一接口209相连,具体地,可与第五开关阀25的第一端口相连,其中,第一单向阀41被配置为仅允许流体从自身的第一端口流向第二端口;第二单向阀42的第一端口与空调热换器出口接口204相连,第二单向阀42的第二端与第三膨胀阀33的第二端口相连,其中,第二单向阀42被配置为仅允许流体从自身第一端口流向第二端口。在该实施方式中,通过在流路中设置第一单向阀41和第二单向阀42,可以防止流体逆流,保证流路中流体的稳定流动。
在一些实施方式中,参照图1和图2所示,气液分离器接口包括气液分离器进口接口211,蒸发器接口还包括蒸发器出口接口206,蒸发器出口接口206与气液分离器进口接口211。也就是说,经过蒸发器400的冷媒可以流入气液分离器800进行气液两相分离,分离出的气相冷媒进入压缩机600,避免液相冷媒或者气液混合两相冷媒进入至压缩机600中。
可选地,参照图6至图14所示,流道包括大致分布于同一平面内的第一流道110;其中,第一流道110包括第一支道11,冷凝器出口接口202通过第一支道11与第一开关阀21的第一端口、第一膨胀 阀31的第一端口连通。
也就是说,在该实施方式中,通过设置该第一支道11,且该第一支道11与冷凝器出口接口202连通,且该第一支道11能够实现与第一开关阀21的连通及第一膨胀阀31的连通,避免设置两个单独的流道以分别实现冷凝器出口接口202与第一开关阀21的第一端口的连通、及冷凝器出口接口202与第一膨胀阀31的第一端口连通,通过共用第一支道11减少阀组集成模块100内流道开设的数量。
具体地,该第一支道11上形成有第一开口803和第二开口802,该第一开口803与第一开关阀21的第一端口连通,第二开口802与第一膨胀阀31的第一端口连通,冷凝器出口接口202可以通过其中一个第二流道120与该第一支道11连通。
参照图6、图7以及图8所示,第一流道110还包括第二支道12,第一开关阀21的第二端口、第一膨胀阀31的第二端口通过第二支道12与第五开关阀25的第一端口连通,并且,第一开关阀21的第二端口、第一膨胀阀31的第二端口还通过第二支道12与第六开关阀26的第一端口连通。
也就是说,在该实施方式中,通过设置该第二支道12,使得从第一开关阀21以及第一膨胀阀31流出的冷媒可以共用该第二支道12以与第六开关阀26、第五开关阀25以及第一单向阀41连通,减少阀组集成模块100内流道开设的数量。
具体地,该第二支道12上形成有第三开口818、第四开口819、第五开口801、第六开口121以及第七开口122。该第三开口818与第一开关阀21的第二端口连通,第四开口819与第一膨胀阀31的第二端口连通,第五开口801与第一单向阀41的第二端口连通,第六开口121与第六开关阀26的第一端口连通,第七开口122与第五开关阀25的第一端口连通。
可选地,参照图6和图7所示,第一流道110还包括第三支道13,第六开关阀26的第二端口通过第三支道13与空调换热器进口接口203连通,以使得冷媒流向空调换热器300。
具体地,第三支道13上形成有第八开口805和第九开口804,第八开口805和第六开关阀26的第二端口连通,第九开口804可以通过其中一个第二流道120与空调换热器的进口接口203连通。
可选地,参照图6、图7以及图8所示,第一流道110还包括第四支道14,空调换热器出口接口204、电机换热器第二接口210通过第四支道14与第二开关阀22的第一端口连通,并且,空调换热器出口接口204、电机换热器第二接口210还通过第四支道14与第二膨胀阀32的第一端口连通。
也就是说,在该实施方式中,从空调换热器300流出的冷媒、以及从电机换热器700流出的冷媒汇流至该第四支道14,而第四支道14能够选择性地与第二开关阀22导通或关闭、以及选择性地与第二膨胀阀32导通或关闭。通过设置该第四支道14,无需单独设置多个流道以实现空调换热器300与第二开关阀22和第二膨胀阀32的连通、以及实现电机换热器700与第二开关阀22和第二膨胀阀32的连通,减少阀组集成模块100内流道开设的数量。
具体地,第四支道14上设置有第十开口816、第十一开口817、第十二开口820以及第十三开口 806。第十开口816通过其中一个第二流道120与空调换热器出口接口204连通;第十一开口817通过其中一个第二流道120与电机换热器第二接口210连通;第十二开口820与第二开关阀22的第一端口连通;第十三开口806与第二膨胀阀32的第一端口连通。
可选地,参照图6、图7以及图8所示,第一流道110还包括第五支道15,第三开关阀23的第二端口、电池包换热器第一接口207通过第五支道15与第四开关阀24的第一端口连通。
也就是说,在该实施方式中,从第三开关阀23的第二端口流出的冷媒进入第五支道15,流入第五支道15的冷媒再选择性地流向第四开关阀24或电池包换热器500。通过共用该第五支道15,可以避免在第三开关阀23和第四开关阀24之间单独设置流道、在第三开关阀23和电池包换热器500之间单独设置流道,减少阀组集成模块100内流道开设的数量。
具体地,第五支道15上设置有第十四开口807、第十五开口808以及第十六开口(图中未示出)。第十四开口807与第三开关阀23的第二端口连通;第十五开口808与第四开关阀24的第一端口连通,第十六开口与电池包换热器第一接口207连通。
可选地,参照图6、图7以及图8所示,第一流道110还包括第六支道16,第二开关阀22的第二端口、蒸发器出口接口206、第四开关阀24的出口通过第六支道16能够与压缩机600的进口连通。
也就是说,在该实施方式中,通过共用该第六支道16,可以实现第二开关阀22的第二端口、蒸发器出口接口206、第四开关阀24的第二端口与压缩机600的进口相连通,避免设置多个流道分别进行连通,减少阀组集成模块100内流道开设的数量。
具体地,首先,需要先进行说明的是,上述的PT传感器包括第一PT传感器404以及第二PT传感器405。第一PT传感器404设置于蒸发器400的出口以及第二开关阀22的第二端口处,以用于对从蒸发器400或从第二开关阀22流出的冷媒进行温度检测;第二PT传感器405设置于压缩机600的出口处,以用于对从压缩机600排出的冷媒进行温度检测。
第六支道16设置有第十七开口809、第十八开口810、第十九开口811、第二十开口812以及第二十一开口813。第十七开口809与第四开关阀24的第二端口连通;第十八开口810可以通过其中一个第二流道120与气液分离器进口接口211连通;第十九开口811与第一PT传感器404的第二端口连通;第二十开口812通过其中一个第二流道120与蒸发器出口接口206连通;第二十一开口813与第二开关阀22的第二端口连通。冷媒通过第十七开口809、第十九开口811、第二十开口812以及第二十一开口813流入至第六支道16中,然后可以通过第第十八开口810流入至气液分离器800中,冷媒通过气液分离器800后最后流入压缩机600中。
以空调制冷模式为例,结合上述的开口,具体的工作过程如下文所述:
压缩机600排出高温高压气态冷媒,通过管路流至冷凝器200的进口,冷媒在冷凝器200进行热交换之后,通过该冷凝器200的出口与阀组集成模块100上的冷凝器出口接口202连通,冷凝器出口接 口202通过其中一个第二流道120与第一支道11连通,冷媒流入第一支道11后,第一开口803处于打开状态,第二开口802处于关闭状态,冷媒通过第一开口803流过第一开关阀21并流向第三开口818以进入第二支道12,进入至第二支道12中的冷媒通过第六开口121流过第六开关阀26并流向第八开口805,进而使得冷媒进入至第三支道13中,冷媒从第三支道13通过第九开口804流向空调换热器进口接口203进而流入至空调换热器300中,从空调换热器300中流出的冷媒通过空调换热器出口接口204流向第十开口816以进入至第四支道14中,冷媒在第四支道14中流向第十三开口806以进入第二膨胀阀32,流过第二膨胀阀32的冷媒通过蒸发器进口接口205进入至蒸发器400中,从蒸发器400流出的的冷媒通过蒸发器出口接口206与第二十开口812连通从而进入至第六支道16中,冷媒进入至第六支道16后通过第十八开口810进入气液分离器800中,从气液分离器800出来的冷媒进入至压缩机600中进行循环制冷工作。
可选地,参照图1、图3至图5、以及图8所示,接口还包括电机换热器第三接口212和电机换热器第四接口213,阀组集成模块100还包括泵60和用于容纳冷却液的容纳箱70,泵60的出口与电机换热器第三接口212相连,以用于向电机换热器第三接口212泵送冷却液,所以容纳箱70的进口与电机换热器第四接口213相连,容纳箱70的出口与泵60的进口相连,用于向泵60补充冷却液。在该实施方式中,通过泵60的驱动,使得容纳箱70中的冷却液进入至电机换热器700中,在该电机换热器700中实现冷却液回路和冷媒回路的换热。
具体地,参照图1至图5所示,阀组集成模块100还包括三通阀40,三通阀40的第一端口401与换热器第四接口213相连,三通阀40的第二端口402用于与电机所在冷却液流路的散热器910的进口相连,三通阀40的第三端口403用于与电机所在冷却液流路的高压系统920的进口相连。在该实施方式中,通过三通阀40的冷却液分为两路,一路进入散热器910,另一路进入具有电机、电控等的高压系统920,将高压系统920中的热量带至电机换热器700中,与冷媒回路进行换热。
可选地,参照图5所示,阀组集成模块100上还集成有集成水管701,集成水管701用于连接容纳箱70和泵60,提高连接的便利性。
可选地,参照图3至图5所示,上述的第三开关阀23和第四开关阀24安装于阀组集成模块100的同一侧,以使得第三开关阀23的第二端口与第四开关阀24的第一端口之间的流道设计尽可能地短,满足低流阻性能。
可选地,上述的开关阀、膨胀阀均可以通过插入的方式连接于阀组集成模块100,并可以通过螺纹进行固定锁止;上述的第一单向阀41和第二单向阀42同样采用阀体一体式插入至阀组集成模块100的安装孔内,并分别通过第一堵头411和第二堵头421进行密封连接。
例如,参照图9所示,阀组集成模块100上形成有第三膨胀阀插口331及其它插口,该第三膨胀阀插口331用于供第三膨胀阀33插设,其它阀可对应插设于其他插口中,本公开在此不做赘述。
另外,阀组集成模块100上形成有供膨胀阀紧固连接的螺纹孔,以便于膨胀阀的安装与拆卸。例如,参照图10所示,阀组集成模块100上形成有第一螺纹孔1011,该第一螺纹孔1011用于供螺栓或螺钉等紧固件穿设以将第一膨胀阀31紧固安装于阀组集成模块100上。
参照图11所示,阀组集成模块100上形成有供第五开关阀25插设的螺纹接口251,
本公开另外还提供一种车辆热管理系统1000,该车辆热管理系统1000包括热管理系统组件和阀组集成模块100,热管理系统组件包括压缩机600、冷凝器200、空调换热器300、蒸发器400,阀组集成模块100上设置有压缩机接口、冷凝器接口、换热器接口、蒸发器接口中至少一者以与对应的热管理系统组件。
通过在阀组集成模块100上设置多个接口以用于与热管理系统组件进行连通,且阀组集成模块100内部设置多个流道以替代现有的连接管路,有利于减少热管理系统1000中的连接管路的设计,同时便于进行维修,简化车辆热管理系统1000。
可选地,参照图1和图2所示,车辆热管理系统1000还包括气液分离器800,阀组集成模块100上还设置有用于与气液分离器800相连的气液分离器接口。通过设置该气液分离器800对冷媒进行气液两相分离,分离出的气相冷媒进入压缩机600,避免液相冷媒或者气液混合两相冷媒进入至压缩机600中。
可选地,参照图1和图2所示,车辆热管理系统1000还包括电池包换热器500,阀组集成模块100上还设置有用于与电池包换热器500相连的电池包换热器接口,以通过选择对应的流体流道实现对电池包的加热或冷却,保证电池包的正常工作,无需单独设置热管理系统1000对电池包进行加热或冷却,降低车辆热管理系统1000设计的成本。
可选地,参照图1和图2所示,车辆热管理系统1000还包括电机换热器700,阀组集成模块100上还设置有用于与电机换热器700相连的电机换热器接口,以通过选择对应的流体流道实现与电机的换热,保证电机的正常工作,无需单独设置热管理系统1000对电机进行换热,降低车辆热管理系统1000设计的成本。
本公开另外还提供一种车辆,该车辆包括上述的车辆热管理系统1000。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (27)

  1. 一种用于热管理系统(1000)的阀组集成模块(100),所述热管理系统(1000)具有多种预设热管理模式,其特征在于,所述阀组集成模块(100)包括:
    多个流道(10),设置于所述阀组集成模块(100)内部;
    阀组(20),所述阀组(20)包括多个阀,所述阀设置于所述阀组集成模块(100)上,所述阀与所述流道(10)连通;
    通过所述阀的导通或关断,连通所述多个流道(10)以形成不同的流体通道,实现所述多种预设热管理模式中的至少一个。
  2. 根据权利要求1所述的阀组集成模块,其特征在于,所述流道(10)包括第一流道(110)和第二流道(120),所述第一流道(110)分布于同一平面内,所述第二流道(120)分布于不同平面内,所述阀组(20)用于选择性连通第一流道(110)和第二流道(120)以形成不同的流体通道。
  3. 根据权利要求2所述的阀组集成模块,其特征在于,所述第一流道(110)有多条,第二流道(120)有多条。
  4. 根据权利要求1-3中任一项所述的阀组集成模块,其特征在于,所述阀组集成模块(100)还包括接口,所述接口用于连接所述流体通道与所述热管理系统中的外部换热组件。
  5. 根据权利要求4所述的阀组集成模块,其特征在于,所述接口包括冷凝器接口、空调换热器接口、蒸发器接口、电池包换热器接口、电机换热器接口、发动机换热器接口、压缩机接口、气液分离器接口及PT传感器接口中的多个,所述冷凝器接口、所述空调换热器接口、所述蒸发器接口、所述电池包换热器接口、所述电机换热器接口及所述压缩机接口用于连接对应的外部热管理系统组件。
  6. 根据权利要求5所述的阀组集成模块,其特征在于,其特征在于,所述接口包括所述冷凝器接口、所述空调换热器接口、所述蒸发器接口、所述压缩机接口,所述冷凝器接口用于与所述外部热管理系统中的冷凝器(200)连接,所述空调换热器接口用于与所述外部热管理系统中的空调换热器(300)连接,所述蒸发器接口用于与所述外部热管理系统中的蒸发器(400)连接,所述压缩机接口用于与所述外部热管理系统中的压缩机(600)连接。
  7. 根据权利要求6所述的阀组集成模块,其特征在于,所述冷凝器接口包括冷凝器出口接口(202),所述空调热换器接口包括空调换热器进口接口(203)和空调换热器出口接口(204),所述蒸发器接口包括蒸发器进口接口(205);
    所述阀组(20)包括第一开关阀(21)和第二膨胀阀(32);
    所述第一开关阀(21)的第一端口与所述冷凝器出口接口(202)相连,所述第一开关阀(21)的第二端口与所述空调换热器进口接口(203)相连;
    所述第二膨胀阀(32)的第一端口与所述空调换热器出口接口(204)相连,所述第二膨胀阀(32)的第二端口与所述蒸发器进口接口(205)相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制冷模式。
  8. 根据权利要求7所述的阀组集成模块,其特征在于,所述阀组还包括第一膨胀阀(31)和第二开关阀(22);
    所述第一膨胀阀(31)的第一端口与所述冷凝器出口接口(202)相连,所述第一膨胀阀(31)的第二端口与所述空调换热器进口接口(203)相连;
    所述第二开关阀(22)的第一端口与所述空调换热器出口接口(204)相连,所述第二开关阀(22)的第二端口与所述压缩机(600)的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制热模式。
  9. 根据权利要求7所述的阀组集成模块,其特征在于,其特征在于,所述电池包换热器接口包括电池包换热器第一接口(207)和电池包换热器第二接口(208),
    所述阀组还包括第三膨胀阀(33)和第四开关阀(24),所述第三膨胀阀(33)的第一端口与所述电池包换热器第二接口(208)相连,所述第三膨胀阀(33)的第二端口与所述空调换热器出口接口(204)相连;
    所述第四开关阀(24)的第一端口与所述电池包换热器第一接口(207)相连,所述第四开关阀(24)的第二端口用于与压缩机(600)的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的电池冷却模式,或者空调制冷和电池冷却双开模式。
  10. 根据权利要求9所述的阀组集成模块,其特征在于,所述压缩机接口包括压缩机出口接口(201),所述电机换热器接口包括电机换热器第一接口(209)和电机换热器第二接口(210);
    所述阀组还包括第二开关阀(22)和第三开关阀(23),所述第三开关阀(23)的第一端口与所述压缩机出口接口(201)相连,所述第三开关阀(23)的第二端口与所述电池包换热器第一接口(207)相连,所述第三膨胀阀(33)的第二端口与所述电机换热器第一接口(209)相连,所述第二开关阀(22)的第一端口与所述电机换热器第二接口(210)相连,所述第二开关阀(22)的第二端口用于与所述压缩机(600)的进口相连,以使所述热管理系统能够实现所述预设热管理模式中的电池加热模式、或者空调制冷和电池加热双开模式。
  11. 根据权利要求10所述的阀组集成模块,其特征在于,所述阀组还包括第一膨胀阀(31),所述第一膨胀阀(31)的第一端口与所述冷凝器出口接口(202)相连,所述第一膨胀阀(31)的第二端口与所述电机换热器第一接口(209)相连,以使所述热管理系统能够实现所述预设热管理模式中的热泵采暖模式,或者,热泵采暖和电池冷却双开模式,或者,热泵采暖与电池加热双开模式。
  12. 根据权利要求11所述的阀组集成模块,其特征在于,所述电机换热器第二接口(210)还与 所述第二膨胀阀(32)的第一端口相连,以使所述热管理系统能够实现所述预设热管理模式中的空调制冷、空调除湿和电池加热三开模式,或者,空调制冷、空调除湿和电池冷却三开模式。
  13. 根据权利要求11所述的阀组集成模块,其特征在于,所述阀组还包括第五开关阀(25)和第六开关阀(26);
    所述第五开关阀(25)的第一端口分别与所述第一开关阀(21)的第二端口和所述第一膨胀阀(31)的第二端口相连,所述第五开关阀(25)的第二端口与所述电机换热器第一接口(209)相连;
    所述第六开关阀(26)的第一端口分别与所述第一开关阀(21)的第二端口、所述第一膨胀阀(31)的第二端口相连,所述第六开关阀(26)的第二端口用于与所述空调换热器进口接口(203)相连。
  14. 根据权利要求11所述的阀组集成模块,其特征在于,所述阀组还包括第一单向阀(41)和第二单向阀(42),
    所述第一单向阀(41)的第一端口与所述第三膨胀阀(33)的第二端口相连,所述第一单向阀(41)的第二端口用于与所述电机换热器第一接口(209)相连,其中,第一单向阀(41)被配置为仅允许流体从自身的第一端口流向第二端口;
    所述第二单向阀(42)的第一端口与所述空调热换器出口接口(204)相连,所述第二单向阀(42)的第二端与所述第三膨胀阀(33)的第二端口相连,其中,第二单向阀(42)被配置为仅允许流体从自身第一端口流向第二端口。
  15. 根据权利要求7所述的阀组集成模块,其特征在于,所述气液分离器接口包括气液分离器进口接口(211),所述蒸发器接口还包括蒸发器出口接口(206),所述蒸发器出口接口(206)与所述气液分离器进口接口(211)。
  16. 根据权利要求13所述的阀组集成模块,其特征在于,所述流道包括分布于同一平面内的第一流道(110);
    其中,所述第一流道(110)包括第一支道(11),所述冷凝器出口接口(202)通过所述第一支道(11)与所述第一开关阀(21)的第一端口、所述第一膨胀阀(31)的第一端口连通;或
    所述第一流道(110)还包括第二支道(12),所述第一开关阀(21)的第二端口、所述第一膨胀阀(31)的第二端口通过所述第二支道(12)与所述第五开关阀(25)的第一端口连通,并且,所述第一开关阀(21)的第二端口、所述第一膨胀阀(31)的第二端口还通过所述第二支道(12)与所述第六开关阀(26)的第一端口连通;或
    所述第一流道(110)还包括第三支道(13),所述第六开关阀(26)的第二端口通过所述第三支道(13)与所述空调换热器进口接口(203)连通;或
    所述第一流道(110)还包括第四支道(14),所述空调换热器出口接口(204)、所述电机换热器第二接口(210)通过所述第四支道(14)与所述第二开关阀(22)的第一端口连通,并且,所述空调 换热器出口接口(204)、所述电机换热器第二接口(210)还通过所述第四支道(14)与所述第二膨胀阀(32)的第一端口连通,或
    所述第一流道(110)还包括第五支道(15),所述第三开关阀(23)的第二端口、所述电池包换热器第一接口(207)通过所述第五支道(15)与第四开关阀(21)的第一端口连通;或
    所述第一流道(110)还包括第六支道(16),所述第二开关阀(22)的第二端口、所述蒸发器出口接口(206)、所述第四开关阀(24)的第二端口通过所述第六支道(16)能够与所述压缩机(600)的进口连通。
  17. 根据权利要求2-16中任一项所述的阀组集成模块,其特征在于,所述阀组集成模块(100)包括第一半体(1)和第二半体(2),所述第一半体(1)包括第一连接面(1001),所述第二半体(2)包括第二连接面(2001),所述第一连接面(1001)与所述第二连接面(2001)密封连接;
    所述第一半体(1)的内部设置有多条所述第二流道(120),所述第二半体(2)的第二连接面(2001)上设置有至少一个凹槽,以使所述第二连接面(2001)上的所述凹槽与所述第一连接面(1001)共同限定出所述第一流道(110)。
  18. 根据权利要求2-17中任一项所述的阀组集成模块,其特征在于,所述阀组集成模块(100)包括第一半体(1)和第二半体(2),所述第一半体(1)包括第一连接面(1001),所述第二半体(2)包括第二连接面(2001),所述第一连接面(1001)与所述第二连接面(2001)密封连接;
    所述第一半体(1)的内部设置有多条所述第二流道(120),并且,所述第一半体(1)的第一连接面(1001)上设置有至少一个凹槽,以使所述第二连接面(2001)与所述第一半体(1)上的凹槽共同限定出所述第一流道(110)。
  19. 根据权利要求17或18所述的阀组集成模块,其特征在于,所述凹槽为曲线型凹槽或者直线型凹槽。
  20. 根据权利要求17-19中任一项所述的阀组集成模块,其特征在于,所述第一半体(1)上形成有多个镂空部(50)。
  21. 根据权利要求5-20中任一项所述的阀组集成模块,其特征在于,所述接口还包括电机换热器第三接口(212)和电机换热器第四接口(213),所述阀组集成模块(100)还包括泵(60)和用于容纳冷却液的容纳箱(70),所述泵(60)的出口与所述电机换热器第三接口(212)相连,以用于向所述电机换热器第三接口(212)泵送冷却液,所以容纳箱(70)的进口与所述电机换热器第四接口(213)相连,所述容纳箱(70)的出口与所述泵(60)的进口相连,用于向所述泵(60)补充冷却液。
  22. 根据权利要求21所述的阀组集成模块,其特征在于,所述阀组集成模块(100)还包括三通阀(40),所述三通阀(40)的第一端口(401)与所述换热器第四接口(213)相连,所述三通阀(40)的第二端口(402)用于与电机所在冷却液流路的散热器(910)的进口相连,所述三通阀(40)的第三 端口(403)用于与所述电机所在冷却液流路的高压系统(920)的进口相连。
  23. 一种车辆热管理系统,其特征在于,包括热管理系统组件和根据权利要求1-22中任一项所述的阀组集成模块(100),所述热管理系统组件包括压缩机(600)、冷凝器(200)、空调换热器(300)、蒸发器(400),所述阀组集成模块(100)上设置有压缩机接口、冷凝器接口、换热器接口、蒸发器接口中至少一者以与对应的热管理系统组件相连。
  24. 根据权利要求23所述的车辆热管理系统,其特征在于,所述车辆热管理系统还包括气液分离器(800),所述阀组集成模块(100)上还设置有用于与所述气液分离器(800)相连的气液分离器接口。
  25. 根据权利要求23或24所述的车辆热管理系统,其特征在于,所述车辆热管理系统还包括电池包换热器(500),所述阀组集成模块(100)上还设置有用于与所述电池包换热器(500)相连的电池包换热器接口,以通过选择对应的流体流道实现对电池包的加热或冷却。
  26. 根据权利要求23-25中任一项所述的车辆热管理系统,其特征在于,所述车辆热管理系统还包括电机换热器(700),所述阀组集成模块(100)上还设置有用于与所述电机换热器(700)相连的电机换热器接口,以通过选择对应的流体流道实现与电机的换热。
  27. 一种车辆,其特征在于,包括权利要求23-26中任一项所述的车辆热管理系统。
PCT/CN2022/095213 2021-05-31 2022-05-26 用于热管理系统的阀组集成模块、车辆热管理系统及车辆 WO2022253095A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22815141.1A EP4299344A1 (en) 2021-05-31 2022-05-26 Integrated valve set module for thermal management system, vehicle thermal management system, and vehicle
IL307275A IL307275A (en) 2021-05-31 2022-05-26 A module of an integrated valve array for a thermal management system, a thermal management system for a car, and a car
AU2022287059A AU2022287059A1 (en) 2021-05-31 2022-05-26 Integrated valve set module for thermal management system, vehicle thermal management system, and vehicle
JP2023560755A JP2024514786A (ja) 2021-05-31 2022-05-26 熱管理システム用弁群統合モジュール、車両熱管理システム及び車両
BR112023021805A BR112023021805A2 (pt) 2021-05-31 2022-05-26 Módulo de integração de tubulação de válvula, sistema de gerenciamento térmico de veículo, e, veículo
US18/373,965 US20240025226A1 (en) 2021-05-31 2023-09-28 Valve manifold integration module for thermal management system, vehicle thermal management system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110600840.1 2021-05-31
CN202110600840.1A CN115476635A (zh) 2021-05-31 2021-05-31 用于热管理系统的阀组集成模块、车辆热管理系统及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,965 Continuation US20240025226A1 (en) 2021-05-31 2023-09-28 Valve manifold integration module for thermal management system, vehicle thermal management system, and vehicle

Publications (1)

Publication Number Publication Date
WO2022253095A1 true WO2022253095A1 (zh) 2022-12-08

Family

ID=84322786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095213 WO2022253095A1 (zh) 2021-05-31 2022-05-26 用于热管理系统的阀组集成模块、车辆热管理系统及车辆

Country Status (8)

Country Link
US (1) US20240025226A1 (zh)
EP (1) EP4299344A1 (zh)
JP (1) JP2024514786A (zh)
CN (1) CN115476635A (zh)
AU (1) AU2022287059A1 (zh)
BR (1) BR112023021805A2 (zh)
IL (1) IL307275A (zh)
WO (1) WO2022253095A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204388447U (zh) * 2014-12-29 2015-06-10 天津商业大学 用于实现制冷系统制冷与除霜自动切换的执行组件
CN108068572A (zh) * 2016-11-09 2018-05-25 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
KR20210008673A (ko) * 2019-07-15 2021-01-25 현대위아 주식회사 차량의 통합 열관리 모듈
CN112339525A (zh) * 2020-11-10 2021-02-09 中国科学院广州能源研究所 一种电动汽车综合热管理系统
CN112810402A (zh) * 2021-03-02 2021-05-18 艾泰斯热系统研发(上海)有限公司 电动汽车热管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204388447U (zh) * 2014-12-29 2015-06-10 天津商业大学 用于实现制冷系统制冷与除霜自动切换的执行组件
CN108068572A (zh) * 2016-11-09 2018-05-25 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
KR20210008673A (ko) * 2019-07-15 2021-01-25 현대위아 주식회사 차량의 통합 열관리 모듈
CN112339525A (zh) * 2020-11-10 2021-02-09 中国科学院广州能源研究所 一种电动汽车综合热管理系统
CN112810402A (zh) * 2021-03-02 2021-05-18 艾泰斯热系统研发(上海)有限公司 电动汽车热管理系统

Also Published As

Publication number Publication date
IL307275A (en) 2023-11-01
JP2024514786A (ja) 2024-04-03
BR112023021805A2 (pt) 2023-12-26
CN115476635A (zh) 2022-12-16
EP4299344A1 (en) 2024-01-03
AU2022287059A1 (en) 2023-10-12
US20240025226A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2022253097A1 (zh) 阀组集成模块及具有其的车辆
US20240017593A1 (en) Valve group integration module and vehicle with the same
WO2021036957A1 (zh) 用于汽车的热管理系统以及基于该系统的热管理方法
US9751378B2 (en) Air conditioning system and heat exchanger
WO2024093582A1 (zh) 整车热管理系统、车辆
CN107351634B (zh) 汽车热管理系统和电动汽车
WO2023207583A1 (zh) 用于车辆热管理系统的集成模块、车辆热管理系统及车辆
WO2024093590A1 (zh) 空调系统及其内部换热器、整车热管理系统、车辆
WO2022253123A1 (zh) 阀组集成模块、热管理系统及车辆
WO2022253095A1 (zh) 用于热管理系统的阀组集成模块、车辆热管理系统及车辆
EP3984794A1 (en) Thermal management system
US20240017588A1 (en) Valve set integrated module, vehicle thermal management system, and vehicle
CN108397573B (zh) 一种空调装置以及汽车空调
WO2022253122A1 (zh) 阀组集成模块、热管理系统及车辆
US20240017587A1 (en) Valve set integrated module, vehicle thermal management system, and vehicle
JP2024522427A (ja) 弁群統合モジュール、車両熱管理システム及び車両
CN110530063A (zh) 一种热管理系统
KR102158505B1 (ko) 차량용 공조장치
CN218519495U (zh) Co2热泵空调系统及车辆
CN116215159A (zh) 流体控制组件及热管理系统
CN115476642A (zh) 阀组集成模块、车辆热管理系统以及车辆
KR20240030650A (ko) 차량의 통합냉매모듈 및 통합열관리모듈
CN115476638A (zh) 阀组集成模块、车辆热管理系统以及车辆
CN112519528A (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022287059

Country of ref document: AU

Ref document number: AU2022287059

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022815141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 307275

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2301006329

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2023560755

Country of ref document: JP

Ref document number: 804201

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2022815141

Country of ref document: EP

Effective date: 20230926

ENP Entry into the national phase

Ref document number: 2022287059

Country of ref document: AU

Date of ref document: 20220526

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021805

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023021805

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: DE