WO2024093582A1 - 整车热管理系统、车辆 - Google Patents

整车热管理系统、车辆 Download PDF

Info

Publication number
WO2024093582A1
WO2024093582A1 PCT/CN2023/121523 CN2023121523W WO2024093582A1 WO 2024093582 A1 WO2024093582 A1 WO 2024093582A1 CN 2023121523 W CN2023121523 W CN 2023121523W WO 2024093582 A1 WO2024093582 A1 WO 2024093582A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
thermal management
flow channel
coolant
channel plate
Prior art date
Application number
PCT/CN2023/121523
Other languages
English (en)
French (fr)
Inventor
文保平
黄海圣
王磊
赵瑞坡
邓哲
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Publication of WO2024093582A1 publication Critical patent/WO2024093582A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field of thermal management of vehicles, and specifically provides a whole vehicle thermal management system and a vehicle.
  • the air conditioning system of a car is mainly used to provide cooling and heating for the cabin space of the passenger compartment.
  • the air conditioning system mainly includes a refrigerant (coolant) circulation loop composed of a compressor, a condenser, a throttling component and an evaporator.
  • a refrigerant circulation loop composed of a compressor, a condenser, a throttling component and an evaporator.
  • the vehicle thermal management system usually includes a refrigerant circulation loop, a coolant circulation loop, and a heat exchanger that allows heat exchange between the two.
  • the current thermal management system has different degrees of single-piece design and dispersed layout. Such phenomena usually lead to an increase in air-conditioning pipes, cooling pipes, vehicle wiring harnesses, etc., which will inevitably lead to a decrease in the space utilization rate of the (front cabin) of electric vehicles. Therefore, how to improve the integration of the vehicle thermal management system is an urgent problem to be solved. In other words, how to further improve the integration of the vehicle thermal management system still has room for improvement.
  • the present invention is proposed to solve the above technical problems at least to a certain extent.
  • the present invention provides a vehicle thermal management system, comprising a controller, a first thermal management part whose circulating medium is a refrigerant, and a second thermal management part whose circulating medium is a coolant, wherein the first thermal management part comprises a plurality of first thermal management components and a refrigerant flow channel plate, a plurality of refrigerant flow circuits are formed in the refrigerant flow channel plate, and the first thermal management components having a connection relationship are connected to each other through corresponding refrigerant flow circuits; wherein the second thermal management part comprises a plurality of second thermal management components and a coolant flow channel plate, a plurality of coolant flow circuits are formed in the coolant flow channel plate, and the second thermal management components having a connection relationship are connected to each other through corresponding coolant flow circuits; wherein the first thermal management component comprises an electronic expansion valve and/or an electronic refrigerant valve, and at least a portion of the coils of the electronic expansion valve and/or the electronic refrig
  • the coil of the electronic expansion valve and/or the electronic refrigerant valve can be connected to the existing structure of the controller, or an intermediate structure can be added, and the controller and the coil of the electronic expansion valve and/or the electronic refrigerant valve can be connected through the intermediate structure to achieve local integration.
  • the first thermal management unit includes M electronic expansion valves and/or electronic refrigerant valves, The coils of the M valves are integrated close to the controller; in the vehicle thermal management system based on the second schematic diagram, the first thermal management unit includes N electronic expansion valves and/or electronic refrigerant valves, and the coils of some of the N valves are integrated close to the controller; etc.
  • the refrigerant flow channel plate and the coolant flow channel plate are connected to each other, and the controller is fixedly connected to the refrigerant flow channel plate and/or the coolant flow channel plate.
  • the refrigerant flow channel plate and the coolant flow channel plate are connected to each other by multi-point connection along a thickness direction close to each other.
  • the refrigerant flow channel plate includes a refrigerant main body portion and a refrigerant cover plate portion, and the refrigerant circulation circuit is formed between the refrigerant main body portion and the refrigerant cover plate portion;
  • the coolant flow channel plate includes a coolant main body part and a coolant cover plate part, and the coolant main body part and the coolant cover plate part form the coolant circulation circuit.
  • a portion of the groove (half groove) is provided on the main body part and the cover part respectively, and the two half grooves can form a corresponding channel after being buckled.
  • the refrigerant main body is formed with a refrigerant flow channel corresponding to the refrigerant circulation circuit, and the refrigerant cover plate part covers the refrigerant flow channel; and/or the coolant main body is formed with a coolant flow channel corresponding to the coolant circulation circuit, and the coolant cover plate part covers the coolant flow channel.
  • the refrigerant flow channel plate is provided with a refrigerant flow channel opening at a position where it needs to be docked with the first thermal management component, so that: after the first thermal management component having a connection relationship is docked with the refrigerant flow channel plate through the refrigerant flow channel opening, they are connected to each other through the corresponding refrigerant circulation circuit; and/or
  • the coolant flow channel plate is provided with a coolant flow channel opening at a position where it needs to be docked with the second thermal management component, so that: after the second thermal management component having a connection relationship is docked with the coolant flow channel plate through the coolant flow channel opening, they are connected to each other through the corresponding coolant circulation circuit.
  • the first thermal management component is sealed and connected to the refrigerant flow channel plate at a position corresponding to the refrigerant flow channel opening; and/or the second thermal management component is sealed and connected to the coolant flow channel plate at a position corresponding to the coolant flow channel opening; and/or the first thermal management component includes an internal heat exchanger, and the internal heat exchanger includes a first refrigerant passage corresponding to the high-pressure part on the downstream side of the condenser and a second refrigerant passage corresponding to the low-pressure refrigerant on the downstream side of the evaporator, wherein the first refrigerant passage and the second refrigerant passage are both formed in the refrigerant flow channel plate and both have walls that can transfer heat.
  • the first/second thermal management component is provided between the first/second thermal management component and the refrigerant/coolant flow channel outlet and the refrigerant/coolant flow channel plate.
  • the deep integration of the vehicle thermal management system is achieved by modifying the first thermal management component itself.
  • the controller is a thermal management domain controller
  • the thermal management domain controller includes a PCBA board
  • the coil of the electronic expansion valve and/or the electronic refrigerant valve is integrated with the controller in a manner close to the PCBA board.
  • a specific implementation method of the coil proximity control of the electronic expansion valve and/or the electronic refrigerant valve is provided. It is understandable that those skilled in the art can determine the specific structure and specific degree of proximity on which the proximity of the two is achieved according to actual needs.
  • an intermediate structure adjacent to the PCBA board is configured, and the coil of the electronic expansion valve and/or the electronic refrigerant valve is arranged on the intermediate structure.
  • the controller includes a housing, and the coil of the electronic expansion valve and/or the electronic refrigerant valve and the PCBA board are all arranged in the housing.
  • thermal management domain controller participating in integration
  • the present invention provides a vehicle, comprising the vehicle thermal management system as described in any one of the above.
  • FIG1 is a schematic structural diagram of a thermal management integrated module (hereinafter referred to as thermal management integrated module) in a vehicle thermal management system according to an embodiment of the present invention, viewed from one side thereof (the refrigerant flow channel plate side);
  • FIG2 is a schematic structural diagram of a thermal management integrated module according to an embodiment of the present invention viewed from the other side (coolant channel plate side);
  • FIG3 is a schematic diagram showing the principle of a vehicle thermal management system based on a thermal management integrated module according to an embodiment of the present invention
  • FIG4 is a schematic structural diagram of a coaxial tube internal heat exchanger (referred to as coaxial tube) in a conventional example;
  • FIG5 is a schematic diagram showing the structure of an internal heat exchanger in a thermal management integrated module according to an embodiment of the present invention.
  • FIG6 is a schematic structural diagram of a refrigerant flow channel plate of a thermal management integrated module according to an embodiment of the present invention as viewed from one side;
  • FIG7 is a schematic structural diagram showing a refrigerant flow channel plate of a thermal management integrated module according to an embodiment of the present invention as viewed from the other side;
  • FIG8 is a schematic structural diagram of a coolant channel plate of a thermal management integrated module according to an embodiment of the present invention as viewed from one side;
  • FIG9 is a schematic structural diagram showing a coolant channel plate of a thermal management integrated module according to an embodiment of the present invention as viewed from the other side;
  • FIG10 is a schematic structural diagram showing a thermal management domain controller and a wiring harness of a thermal management integrated module according to an embodiment of the present invention as viewed from one side thereof;
  • FIG11 is a schematic structural diagram showing a thermal management domain controller and a wiring harness of a thermal management integrated module according to an embodiment of the present invention as viewed from the other side thereof;
  • FIG12 is a schematic diagram showing the structure of a thermal management domain controller of a thermal management integrated module according to an embodiment of the present invention.
  • FIG13 is a schematic structural diagram of a vibration isolation system of a thermal management integrated module according to an embodiment of the present invention.
  • FIG14 is a schematic diagram showing the refrigerant flow direction of a thermal management integrated module in a passenger compartment cooling mode according to an embodiment of the present invention
  • FIG15 is a schematic diagram showing the refrigerant flow direction of a thermal management integrated module in a power battery cooling mode according to an embodiment of the present invention
  • FIG16 is a schematic diagram showing the refrigerant flow direction of a thermal management integrated module in an air source heat pump heating mode according to an embodiment of the present invention
  • FIG17 is a schematic diagram showing the refrigerant flow direction of a thermal management integrated module in a waste heat recovery heat pump heating mode according to an embodiment of the present invention
  • FIG18 is a schematic diagram showing the cooling liquid flow direction of a thermal management integrated module in a mode 1 according to an embodiment of the present invention
  • FIG19 is a schematic diagram showing the cooling liquid flow direction of a thermal management integrated module in mode 2 according to an embodiment of the present invention.
  • FIG20 is a schematic diagram showing the cooling liquid flow direction of a thermal management integrated module in mode three according to an embodiment of the present invention.
  • FIG21 is a schematic diagram showing the flow direction of cooling liquid in a thermal management integrated module in mode 4 according to an embodiment of the present invention.
  • FIG22 is a schematic diagram showing the cooling liquid flow direction of a thermal management integrated module in mode 5 according to an embodiment of the present invention.
  • FIG23 is a schematic diagram showing the cooling liquid flow direction of a thermal management integrated module in mode 6 according to an embodiment of the present invention.
  • FIG24 is a schematic diagram showing a comparison of a thermal management integrated module according to an embodiment of the present invention and a non-integrated solution in reducing the length of air conditioning pipelines;
  • FIG25 is a schematic diagram showing a comparison of a thermal management integrated module according to an embodiment of the present invention compared with a non-integrated solution in terms of reducing the length of a cooling pipeline;
  • FIG. 26 shows that the thermal management integrated module according to an embodiment of the present invention reduces the number of wiring harnesses and connections compared to a non-integrated solution.
  • the terms “installation”, “setting”, and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or the internal connection of two components.
  • installation e.g., it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or the internal connection of two components.
  • the vehicle thermal management system is mainly used to coordinate the cooling and heating in order to meet the cooling and heating needs within the vehicle, such as the cooling/heating needs of the cabin space, the cooling needs of the motor, the heating/cooling needs of the power battery, etc.
  • part of the cooling/heating is supplied by running the refrigerant circulation loop, starting the PTC, and the cooling capacity carried by the coolant itself, and part of the heat is obtained by recovering the cooling/heat of other parts.
  • integrating some components in the vehicle thermal management system can form a thermal management integrated module.
  • the shaded area in Figure 3 covers the thermal management components and management that participate in forming the thermal management integrated module. It is understandable that those skilled in the art can adjust the components/pipelines that participate/do not participate in forming the thermal management integrated module and their positions according to actual needs.
  • the thermal management integrated module 100 mainly includes a refrigerant flow channel plate 200 , a coolant flow channel plate 300 and a plurality of thermal management components constituting a thermal management system of the entire vehicle.
  • a plurality of (segments of) refrigerant circulation circuits 201 are formed in the refrigerant flow channel plate 200.
  • the connection between the two can be achieved through the refrigerant circulation circuits 201 formed at the corresponding positions of the refrigerant flow channel plate.
  • a plurality of coolant circulation circuits 301 are formed in the coolant flow channel plate 300.
  • the connection between the two can be achieved through the coolant circulation circuits 301 formed at the corresponding positions of the coolant flow channel plate.
  • the refrigerant flow channel plate 200 and the coolant flow channel plate 300 can be used to share the task of installing the aforementioned multiple thermal management components.
  • the refrigerant flow channel plate 200 and the coolant flow channel plate 300 allow multiple thermal management components to be installed on the refrigerant flow channel plate 200 or the coolant flow channel plate 300 according to actual needs, under the premise that they can achieve a connection relationship consistent with the schematic diagram of the thermal management system of the whole vehicle.
  • the thermal management components with a connected relationship can be connected to each other through the refrigerant circulation circuit 201 or the coolant circulation circuit 301.
  • each thermal management component By adjusting the installation position of each thermal management component on the refrigerant flow plate 200/coolant flow plate 300, designing the circuits in the refrigerant flow plate 200 and the coolant flow plate 300, and connecting the circuits in the refrigerant flow plate 200 and the coolant flow plate 300 with the aforementioned compressor, external heat exchanger, and evaporator/condenser in the air-conditioning box, the same function as a dispersed vehicle thermal management system can be achieved.
  • the schematic diagram of the vehicle thermal management system in this embodiment is only one possible form of the vehicle thermal management schematic diagram in actual application.
  • the internal circuits of the refrigerant flow plate 200 and the coolant flow plate 300, the types/number of thermal management components and their installation positions on the refrigerant flow plate or the coolant flow plate can be flexibly adjusted according to the flow mode of the refrigerant and coolant in any specific schematic diagram of the vehicle thermal management system in actual application, so as to achieve thermal management for the entire vehicle while ensuring the pipe connection between the thermal management components.
  • the refrigerant flow channel plate 200 can be made of Al material. Such a material can avoid refrigerant leakage, reduce its own weight, and ensure that the refrigerant flow channel plate 200 has sufficient strength, thereby improving its structural stability and durability as the main bearing member of the thermal management integrated module 100.
  • a split molding method can be adopted.
  • the refrigerant flow channel plate 200 can be divided into a refrigerant main body part and a refrigerant cover plate part along its thickness direction, and the refrigerant main body part forms a refrigerant circulation circuit 201 with an opening.
  • the refrigerant main body part can be formed by processes such as hot forging, cold forging or casting.
  • the refrigerant cover plate part can be formed by processes such as sheet stamping. After the main body part is formed, the refrigerant main body part and the refrigerant cover plate part are fixedly connected by welding or the like to obtain the refrigerant flow channel plate 200 of the present invention.
  • the welding method may include but is not limited to vacuum welding, friction welding, laser welding, etc.
  • the coolant flow channel plate 300 can be made of a thermal insulation material such as PP, PA66, etc. Such a material can ensure the thermal insulation performance of the coolant flow channel plate while ensuring that the coolant flow channel plate 300 has sufficient strength.
  • a split molding method can also be adopted.
  • the coolant flow channel plate 300 is also divided into a coolant main body part and a coolant cover plate part along its thickness direction, and the coolant main body part forms a coolant circulation circuit 301 with an opening.
  • the coolant flow channel plate 300 of the present invention can be obtained by fixing the two by welding methods such as heat welding, friction welding, laser welding, etc. as mentioned above.
  • the two can be fixedly connected.
  • the coolant flow channel plate 300 is fixedly connected to the refrigerant flow channel plate 200 by a multi-point connection.
  • the multi-point connection method is to realize the connection between the refrigerant flow channel plate 200 and the coolant flow channel plate 300 by threaded connection at multiple installation points.
  • the connection relationship between the thermal management components contained in the thermal management integrated module and the multiple thermal management connection components can be selected according to the actual needs of the thermal management of the whole vehicle (the principle schematic diagram of different whole vehicle thermal management systems).
  • the installation position of each thermal management component on the refrigerant flow channel plate 200 or the coolant flow channel plate 300 can be flexibly determined according to the connection relationship of the thermal management component in the corresponding whole vehicle thermal management schematic diagram and the contour/size and other details of the actually selected thermal management component.
  • a fixed structure adapted to the thermal management component is reserved at the corresponding installation position of the refrigerant flow channel plate 200 or the coolant flow channel plate 300.
  • the upper part of the vehicle thermal management system is related to the refrigerant, such as the evaporator/PTC connected to the cabin space so as to provide cooling/heat to the passengers in the cabin space.
  • the lower part is related to the coolant, such as the coolant after temperature adjustment can keep the power battery warm.
  • the heat exchange between the refrigerant and the coolant can be achieved through the heat exchanger 202 between the two components, so that thermal management can be performed for the entire vehicle.
  • the heat preservation components that need to be cooled/heated in the vehicle mainly include the power battery 6, and the heat generating parts that need to be cooled mainly include the motor.
  • the motor includes the front/rear motor, the front/rear motor controller, and the front/rear intelligent power distribution unit central processor (hereinafter collectively referred to as the motor 7).
  • the vehicle thermal management system includes a first part related to the refrigerant and a second part related to the coolant.
  • the first part mainly includes a heat exchanger 202, an internal heat exchanger 203, a liquid storage drying tank 204, a first electronic expansion valve 205, a second electronic expansion valve 206, a first electronic refrigerant valve 207, a second electronic refrigerant valve 208, a third electronic refrigerant valve 209, a first non-return valve 210, a second non-return valve 211, a first pressure temperature sensor 212, a second pressure temperature sensor 213, and a third pressure temperature sensor 214.
  • the first part also includes a compressor 2151, an air conditioning box 2152 (which includes a PTC that can directly operate to generate heat, a condenser that can release heat to the cabin space (below the PTC) and an evaporator that can release cold to the cabin space (below the condenser), and an external heat exchanger 2152 connected to the outside environment.
  • a compressor 2151 which includes a PTC that can directly operate to generate heat
  • a condenser that can release heat to the cabin space (below the PTC) and an evaporator that can release cold to the cabin space (below the condenser)
  • an external heat exchanger 2152 connected to the outside environment.
  • the exhaust port of the compressor is connected to the second side of the external heat exchanger and the second side of the condenser through the second electronic refrigerant valve 208 and the third electronic refrigerant valve 209 respectively, the first side of the external heat exchanger and the first side of the condenser are connected, and a first one-way valve 210 that only allows the refrigerant to flow out of the external heat exchanger and a second one-way valve 211 that only allows the refrigerant to flow out of the evaporator are arranged therebetween in sequence.
  • the first side of the external heat exchanger is connected to the inlet of the high-pressure part of the internal heat exchanger 203 through the second electronic expansion valve 206 in sequence.
  • the outlet of the high-pressure part of the internal heat exchanger 203 is connected to the inlet of the low-pressure part of the internal heat exchanger 203 through the evaporator of the air conditioner, and on the other hand, it is connected to the inlet of the low-pressure part of the internal heat exchanger 203 through the first electronic expansion valve 205 and the refrigerant flow channel of the heat exchanger in sequence.
  • the outlet of the low-pressure part of the internal heat exchanger 203 is connected to the return air port of the compressor.
  • the second side of the external heat exchanger is connected to the return air port of the compressor through the first electronic refrigerant valve 207.
  • the inlet of the liquid storage drying tank 204 is disposed on the pipeline between the first check valve 210 and the second check valve 211 , and the outlet of the liquid storage drying tank 204 is connected to the inlet of the high pressure part of the internal heat exchanger 203 .
  • the third pressure and temperature sensor 214 is respectively arranged on the downstream side of the exhaust port of the compressor (between the exhaust port of the compressor and the second side of the external heat exchanger/condenser), between the second side of the external heat exchanger and the return air port of the compressor, and between the second side of the refrigerant flow channel of the heat exchanger and the inlet of the low-pressure part of the internal heat exchanger 203.
  • an electronic expansion valve can be added between the outlet of the high-pressure part of the internal heat exchanger 203 and the first side of the evaporator, and a high-pressure filling valve can be configured on the pipeline.
  • a low-pressure filling valve can be configured between the second side of the evaporator and the inlet of the low-pressure part of the internal heat exchanger 203.
  • the heat generating components that need to be cooled in the vehicle mainly include the motor (front motor, rear motor), motor controller (front motor, rear motor) and power battery.
  • the vehicle thermal management system includes the first part related to the refrigerant and the second part related to the coolant.
  • the second part mainly includes a multi-way valve 302 (a five-way valve is used in this example), a first water pump 303, a second water pump 304, a first water temperature sensor 305, and a second water temperature sensor 306.
  • the five flow ports of the five-way valve are respectively recorded as flow ports (1, 2, 3, 4, 5).
  • the second part also includes an expansion kettle 324 and a radiator 325.
  • the outlet of the expansion kettle is connected to the flow port 1 of the multi-way valve 302 through the coolant flow channel of the heat exchanger in the first aspect
  • the outlet of the expansion kettle is directly connected to the flow port 4 of the multi-way valve 302 in the second aspect
  • the outlet of the expansion kettle is connected to the flow port 5 of the multi-way valve 302 in the third aspect in sequence through the first water pump 303 and the power battery 7
  • the outlet of the expansion kettle is connected to the flow port 2 of the multi-way valve 302 in the fourth aspect in sequence through the second water pump 304 and two parallel branches
  • the path of the first branch is the front intelligent power distribution unit, the front motor controller, and the front motor
  • the path of the second branch is the rear intelligent power distribution unit/central processing unit, the rear motor controller, and the rear motor).
  • a first water temperature sensor 305 is provided.
  • the flow port 3 of the multi-way valve 302 is connected to the inlet of the expansion kettle through the radiator.
  • the first water temperature sensor 305 and the second water temperature sensor 306 are respectively arranged on the pipeline between the outlet of the expansion kettle and the inlet of the second water pump and on the pipeline between the front/rear motor and the connecting port 2 .
  • the thermal management components that need to be integrated in the refrigerant flow channel plate 200 mainly include a heat exchanger 202, an internal heat exchanger 203, a liquid storage drying tank 204, a first electronic expansion valve 205, a second electronic expansion valve 206, a first electronic refrigerant valve 207, a second electronic refrigerant valve 208, a third electronic refrigerant valve 209, a first one-way valve 210, a second one-way valve 211, a first pressure and temperature sensor 212, a second pressure and temperature sensor 213, and a third pressure and temperature sensor 214.
  • the thermal management components that need to be integrated in the coolant flow channel plate 300 mainly include a multi-way valve 302 (a five-way valve is used in this example), a first water pump 303, a second water pump 304, a first water temperature sensor 305, and a second water temperature sensor 306.
  • the following mainly describes the integration method of the above-mentioned thermal management components on/in the refrigerant flow channel plate 200 or the coolant flow channel plate 30 and the principle of realizing thermal management for the entire vehicle based on the above-mentioned thermal management components (that is, the connection relationship that should exist between the thermal management components and the control logic that needs to be configured).
  • the heat exchanger 202 in the thermal management component is provided with two sets of heat exchangeable pipes (respectively recorded as refrigerant flow channel structure and coolant flow channel structure), and the two sets of pipes are used to circulate refrigerant and coolant respectively. Based on this, in the mode of cooling the power battery or motor, etc. or in the mode of recovering the waste heat of the power battery, the heat exchange demand between the refrigerant fluid and the coolant fluid can be met inside the heat exchanger.
  • the heat exchanger is a structure associated with both the refrigerant flow channel plate 200 and the coolant flow channel plate 300, in theory it can be arranged on any one of them or between the two (not involved in integration) and then connected to the two by means of corresponding pipes and mounting carriers.
  • the heat exchanger 202 is connected to the refrigerant flow channel plate 200 and the coolant flow channel plate 300 respectively and sealed at the connected position (hereinafter referred to as the connection seal).
  • a refrigerant inlet and outlet loop is formed with the refrigerant flow channel structure and the refrigerant flow channel plate 200
  • a coolant inlet and outlet loop is formed with the coolant flow channel structure and the coolant flow channel plate 300.
  • the refrigerant flow channel structure in the heat exchanger 202 is connected and sealed with the refrigerant flow channel port (223, 224) of the refrigerant flow channel plate 200, and the coolant flow channel structure in the heat exchanger 202 is connected and sealed with the coolant flow channel port (322, 323) of the coolant flow channel plate 300.
  • the heat exchanger 202 is fixed to the refrigerant flow channel plate 200 by means of fasteners (such as threaded connection).
  • the type of the heat exchanger 202 can be determined according to the actual heat exchange performance requirements.
  • the internal heat exchanger 203 in the thermal management component is mainly used to exchange heat between two refrigerant circulation circuits carrying high-temperature liquid refrigerant and low-temperature gaseous refrigerant respectively, thereby reducing the pre-valve subcooling of the electronic expansion valve, and further achieving the purpose of increasing the cooling capacity of the air-conditioning system and the battery cooling capacity.
  • the internal heat exchanger in the air-conditioning system often adopts the structure of a coaxial tube.
  • the heat exchange between refrigerants of different temperatures is achieved through the wall surface between the outer tube and the inner tube of the coaxial tube.
  • the structure on the left side represents the high-pressure part of the coaxial tube
  • the structure on the right side represents the low-pressure part of the coaxial tube.
  • the annular area outside the coaxial tube is the high-pressure part of the internal heat exchanger
  • the columnar area in the middle is the low-pressure part of the internal heat exchanger.
  • High-pressure and medium-temperature liquid refrigerant enters the internal heat exchanger from the high-pressure end inlet 2031 at the left end of the internal heat exchanger 203, and flows out of the internal heat exchanger from the high-pressure end outlet 2032 at the right end of the internal heat exchanger.
  • Low-pressure and low-temperature gaseous refrigerant enters the internal heat exchanger from the low-pressure end inlet 2033 at the right end of the internal heat exchanger 203, and flows out of the internal heat exchanger from the low-pressure end outlet 2034 at the left end of the internal heat exchanger.
  • the structure of the two refrigerant circulation circuits is changed from the traditional coaxial tube structure to the wall heat transfer between the two refrigerant circulation circuits in the refrigerant flow channel plate 200 (processed and formed together with the refrigerant flow channel 201).
  • the lower area of the refrigerant flow channel plate 200 is provided with two parallel refrigerant circulation circuits that are roughly W-shaped, respectively recorded as the first intermediate heat exchange section 203a and the second intermediate heat exchange section 203b), wherein the lower first intermediate heat exchange section 203a is equivalent to the high-pressure part of the coaxial tube, and the upper second intermediate heat exchange section 203b is equivalent to the low-pressure part of the coaxial tube.
  • the two are separated by the wall in the refrigerant flow channel plate 200, so when the refrigerant of the corresponding form flows through the intermediate heat exchange section (203a, 203b), the two parts of the refrigerant can exchange heat through the wall.
  • the intermediate heat exchange section (203a, 203b) is two heat exchange sections with opposite flow directions.
  • the two ports of the middle heat exchange section (203a, 203b) are connected to another section of the pipeline. Therefore, for the convenience of description, two reference lines are added on the left and right sides of the middle heat exchange section (203a, 203b) (roughly matching the position with heat exchange capacity). Based on this, in the example, the two ports corresponding to the reference line on the left are respectively the high-pressure end inlet 2031 and the low-pressure end outlet 2034, and the two ports corresponding to the reference line on the right are respectively the high-pressure end outlet 2032 and the low-pressure end inlet 2033.
  • the relative position of the lower area, W-shaped streamlines, and upper and lower parallelism is only one embodiment, and those skilled in the art can flexibly adjust it according to actual needs.
  • it can be any area within the refrigerant flow channel plate 200, the bend in the middle of the W-shape is changed from one to multiple, the upper and lower parallelism is changed to the lower and upper parallelism, or a combination of the two (two intersecting flow paths, the upper and lower parallelism before the intersection, and the lower and upper parallelism after the intersection).
  • the intermediate heat exchange section (203a, 203b) can also be changed to a combination of multiple sections. If necessary, the flow direction of the refrigerant in the intermediate heat exchange section (203a, 203b) can also be adjusted.
  • the intermediate heat exchange section (203a, 203b) can be changed to a combination of multiple sections, such as the flow direction, distribution position and length of each section can be flexibly set according to actual needs. In this way, it is possible to seek to achieve a high degree of integration of the internal heat exchanger in a more flexible way. In addition, such a flexible setting can better assist the configuration of other thermal management components in the refrigerant flow channel plate 200, and therefore, it is expected to reduce the difficulty of achieving integration.
  • the high-pressure, medium-temperature liquid refrigerant enters the internal heat exchanger 203 from the high-pressure end inlet 2031 in the high-pressure part (left side) of the internal heat exchanger 203, and flows out of the internal heat exchanger 203 from the high-pressure end outlet 2032, thereby further reducing the supercooling of the liquid refrigerant, thereby increasing the cooling capacity of the air-conditioning system.
  • the low-pressure, low-temperature gaseous refrigerant in the low-pressure part (right side) of the internal heat exchanger 203 enters the internal heat exchanger 203 from the low-pressure end inlet 2033, and flows out of the internal heat exchanger 201 from the low-pressure end outlet 2034, thereby further increasing the superheat of the gaseous refrigerant to ensure that the refrigerant entering the return air port of the compressor is in a gaseous state.
  • the liquid storage dry tank 204 in the thermal management component is mainly used to achieve gas-liquid separation of the refrigerant therein, so as to ensure that the refrigerant flowing out of the liquid storage dry tank 204 is a liquid refrigerant.
  • the liquid storage dry tank 204 can also dry and filter the refrigerant.
  • the liquid storage dry tank 204 is connected and sealed with the refrigerant flow channel plate 200. Based on this, a refrigerant inlet and outlet circuit is formed through the refrigerant flow channel structure inside the liquid storage dry tank 204 and the refrigerant flow channel plate 200.
  • the liquid storage dry tank 204 is connected and sealed with the refrigerant flow channel opening (225, 226) of the refrigerant flow channel plate 200, it is fixed to the refrigerant flow channel plate 200 by means of fasteners (such as threaded connection).
  • fasteners such as threaded connection.
  • the selection of the liquid storage dry tank 204 can be determined according to factors such as the overlapping section of the filling platform of the vehicle thermal management system and the annual leakage of the refrigerant.
  • the electronic expansion valve can realize the expansion and full closing functions of the refrigerant by controlling the operation of the valve component, and the electronic refrigerant valve can realize the full opening, expansion and full closing functions of the refrigerant by controlling the operation of the valve component.
  • Each refrigerant electronically controlled valve component is connected and sealed with the refrigerant flow channel plate 200, and forms a refrigerant inlet and outlet circuit with the refrigerant flow channel plate 200 through the corresponding valve component refrigerant flow channel structure.
  • the first electronic expansion valve 205, the second electronic expansion valve 206, the first electronic refrigerant valve 207, the second electronic refrigerant valve 208, and the third electronic refrigerant valve 209 are respectively connected and sealed with the refrigerant flow channel openings (227, 228, 229, 230, 231) of the refrigerant flow channel plate 200, and then fixed to the refrigerant flow channel plate 200 by means of fasteners (such as by threaded connection, etc.).
  • the selection (such as the size of the caliber) of the first electronic expansion valve 205, the second electronic expansion valve 206, the first electronic refrigerant valve 207, the second electronic refrigerant valve 208, and the third electronic refrigerant valve 209 can be determined according to the flow demand of the vehicle thermal management system.
  • the multiple refrigerant mechanical valves (the first one-way valve 210, the second one-way valve 211) in the thermal management component It is mainly used to realize the full opening/full closing function of the refrigerant by changing the pressure difference before and after the valve.
  • Each refrigerant mechanical valve is connected and sealed with the refrigerant flow channel plate 200, and forms a refrigerant inlet and outlet circuit with the refrigerant flow channel plate 200 through the corresponding valve refrigerant flow channel structure.
  • the first one-way valve 210 and the second one-way valve 211 are respectively connected and sealed with the refrigerant flow channel ports (232, 233) of the refrigerant flow channel plate 200, and then fixed to the refrigerant flow channel plate 200 by means of fasteners (such as by threaded connection, etc.).
  • the selection of the first one-way valve 210 and the second one-way valve 211 can be determined according to the flow requirements of the vehicle thermal management system.
  • the multiple pressure and temperature sensors (first pressure and temperature sensor 212, second pressure and temperature sensor 213, third pressure and temperature sensor 214) in the thermal management component are mainly used for the internal pressure and temperature sensing components to detect the pressure and temperature of the refrigerant flowing through the sensor.
  • Each pressure and temperature sensor is connected and sealed with the refrigerant flow channel plate 200.
  • the second pressure and temperature sensor 213, and the third pressure and temperature sensor 214 are connected and sealed with the refrigerant flow channel openings (234, 235, 236) of the refrigerant flow channel plate 200, they are fixed to the refrigerant flow channel plate 200 by means of fasteners (such as by threaded connection, etc.).
  • the detection range of the first pressure and temperature sensor 212, the second pressure and temperature sensor 213, and the third pressure and temperature sensor 214 can be designed and selected according to the pressure and temperature requirements of the vehicle thermal management system.
  • the multi-way valve 302 in the thermal management component is mainly used to control the on and off of different modes of the cooling system.
  • the multi-way valve in this example is a five-way valve.
  • the five-way valve can be connected to multiple thermal management components through its five circulation ports. By switching the on and off state of the circulation ports, the on and off of the corresponding modes in the cooling system can be switched.
  • the multi-way valve is connected and sealed with the coolant flow channel plate 300, and forms a coolant inlet and outlet circuit with the coolant flow channel plate 300 through the corresponding multi-way valve coolant flow channel structure.
  • the circulation ports (1, 3, 2, 5, 4) of the multi-way valve 302 are respectively connected and sealed with the coolant flow channel ports (313, 314, 315, 316, 317) of the coolant flow channel plate 300, and are fixed to the coolant flow channel plate 300 by means of fasteners (such as by threaded connection, etc.).
  • the number of flow channel ports of the multi-way valve 302 can be selected according to the mode switching requirements of the vehicle thermal management system.
  • the first water pump 303 is a power battery water pump, which is mainly used to drive the coolant flow in the battery cooling circuit
  • the second water pump 304 is a motor water pump, which is mainly used to drive the coolant flow in the motor cooling circuit.
  • the power battery water pump and the motor water pump are both connected and sealed with the coolant flow channel plate 300, and form a coolant inlet and outlet circuit with the coolant flow channel plate 300 through the corresponding water pump coolant flow channel structure.
  • the first water pump 303 and the second water pump 304 are respectively connected and sealed with the coolant flow channel openings (318, 319) of the coolant flow channel plate 300, and are fixed to the coolant flow channel plate 300 by means of fasteners (such as by threaded connection, etc.).
  • the size of the first water pump 303 and the second water pump 304 can be selected according to the coolant flow demand of the vehicle thermal management system.
  • the multiple water temperature sensors (first water temperature sensor 305, second water temperature sensor 306) in the thermal management component are mainly used to detect the temperature flowing through the sensor through the temperature sensing component inside the sensor.
  • Multiple water temperature sensors are connected and sealed with the coolant flow channel plate 300.
  • the first water temperature sensor 305 and the second water temperature sensor 306 after the first water temperature sensor 305 and the second water temperature sensor 306 are connected and sealed with the coolant flow channel openings (320, 321) of the coolant flow channel plate 300, they can be fixed to the coolant flow channel plate 300 by quick plug connection.
  • the detection range of the first water temperature sensor 305 and the second water temperature sensor 306 can be selected according to the temperature requirements of the thermal management system of the whole vehicle.
  • the thermal management integrated module further includes a thermal management domain controller 400 , such as the thermal management domain controller being fixedly connected to the refrigerant flow channel plate 200 by means of fasteners (such as by threaded connection, etc.).
  • the thermal management integrated module of the present invention includes a plurality of thermal management components that need to be electrically controlled, such as an electronic expansion valve, an electronic refrigerant valve, a water valve, a water pump, a sensor, etc. While the thermal management components that need to be electrically controlled are structurally integrated, the thermal management components that need to be electrically controlled are electrically controlled and integrated into the thermal management domain controller.
  • the thermal management domain controller 400 is mainly used to realize the electronic control function of the first electronic expansion valve 205, the second electronic expansion valve 206, the first electronic refrigerant valve 207, the second electronic refrigerant valve 208, the third electronic refrigerant valve 209, the first pressure and temperature sensor 212, the second pressure and temperature sensor 213, the third pressure and temperature sensor 214, the multi-way valve 302, the first water pump 303, the second water pump 304, the first water temperature sensor 305 and the second water temperature sensor 306.
  • the thermal management domain controller 400 is provided with four connectors, namely connectors (401, 402, 403, 404). Among them, the connectors (401, 402) are connected with the wiring harness 405 corresponding to the thermal management integrated module 100, and the connectors (403, 404) are used to connect with the low-voltage main wiring harness (not shown) of the whole vehicle.
  • the first end of the wiring harness 405 is connected to the connectors (401, 402) of the thermal management domain controller 400 through connectors (406, 407), and the second end is connected to the first pressure and temperature sensor 212, the second pressure and temperature sensor 213, the third pressure and temperature sensor 214, the through valve 302, the first water pump 303, the second water pump 304, the first water temperature sensor 305 and the second water temperature sensor 306 through connectors (408, 409, 410, 411, 412, 413, 414, 415).
  • the thermal management domain controller 400 includes a housing, the housing includes an upper housing 4001 and a lower housing 4002, and the upper housing and the lower housing are welded by laser.
  • a PCBA board 4003 is disposed between the upper and lower housings, and the coils 4004 of the aforementioned five refrigerant valves (two electronic expansion valves and three electronic refrigerant valves) are connected to the upper and lower housings. It is arranged in the housing and below the PCBA board.
  • the lower housing is used as a mounting carrier, and the coil of the refrigerant valve is mounted on the lower housing.
  • Each coil is connected to the PCBA board by a hard wire, and the PCBA board is also mounted and fixed on the lower housing 200.
  • the heat sink 4005 is arranged in the upper housing, and is mainly used to dissipate heat for the MCU and power devices on the PCBA board 4.
  • the connection harness between the PCBA board and the coil can be omitted to the greatest extent, and on this basis, it is ensured that the control accuracy and stability of each refrigerant valve can be at the same level as the performance of the valve.
  • a vibration isolation system including one or more vibration isolation structures can be configured on the thermal management integrated module 100.
  • the vibration isolation structure includes four, specifically, a vibration isolation structure is respectively configured at the left and right ends of the upper side of the thermal management integrated module, such as these two vibration isolation structures are vibration isolation bushings, recorded as vibration isolation bushings (501, 502).
  • the vibration isolation bushings (501, 502) are the main load-bearing and vibration isolation components in this embodiment, and are screwed and fixed to the whole vehicle.
  • the left and right ends of the lower side are also respectively configured with a vibration isolation structure, such as these two vibration isolation structures are vibration isolation rubber pads, recorded as vibration isolation rubber pads (503, 504).
  • the vibration isolation rubber pads (503, 504) serve as auxiliary positioning and vibration isolation components in this embodiment, and are matched with the entire vehicle for position limiting.
  • vibration isolation bushings (501, 502) and the vibration isolation rubber pads (503, 504) are only an exemplary description of the vibration isolation system. Those skilled in the art can make a detailed design of the number, installation position and specific structural form of the vibration isolation structure included in the vibration isolation system according to the modal requirements of the whole vehicle.
  • a highly integrated thermal management integrated module 100 is formed with the refrigerant flow plate 200 and the coolant flow plate 300 as the installation carrier. Based on the support of the corresponding control logic, the vehicle thermal management system can achieve different thermal management modes.
  • the thermal management system of the entire vehicle can be put into "passenger compartment cooling mode or battery cooling mode” and "air source heat pump heating mode or waste heat recovery heat pump heating mode”.
  • the thermal management domain controller 400 opens the first electronic expansion valve 205, closes the second electronic expansion valve 206, closes the first electronic refrigerant valve 207, opens the second electronic refrigerant valve 208, and closes the third electronic refrigerant valve 209, so that the thermal management system of the entire vehicle is in the passenger compartment cooling mode or the battery cooling mode.
  • the refrigerant flows as follows: the high-pressure and high-temperature gaseous refrigerant generated by the compressor enters the refrigerant flow channel plate 200 from the refrigerant interface 221 (flowing through the first pressure and temperature sensor 212 during the process), then passes through the second electronic refrigerant valve 208, and flows out of the refrigerant flow channel plate 200 from the refrigerant interface 217.
  • the high-pressure and high-temperature gaseous refrigerant After passing through the condenser, the high-pressure and high-temperature gaseous refrigerant is transformed into a high-pressure medium-temperature liquid refrigerant, which enters the refrigerant flow channel plate 200 from the refrigerant interface 218, passes through the first one-way valve 210, the liquid storage drying tank 204, and the internal heat exchanger 203 in sequence, and is divided into two branches, wherein:
  • the first branch flows out of the refrigerant flow channel plate 200 from the flow channel opening 219 and enters the evaporator in the air conditioner to meet the cooling needs of the passengers in the cabin space.
  • the flow direction of the refrigerant in the refrigerant flow channel plate 200 is shown in FIG. 14 .
  • the second branch is throttled into a low-pressure, low-temperature gas-liquid two-phase refrigerant through the first electronic expansion valve 205 inside the refrigerant flow channel plate 200, and then heat-exchanged into a low-pressure, low-temperature gas refrigerant through the heat exchanger 202 (it will flow through the third pressure and temperature sensor 214 during this period), so that it can be used to realize the cooling function of the power battery.
  • the coolant inside the coolant flow plate absorbs the cold energy from the refrigerant through the heat exchanger 202, and then uses the cold energy to cool the power battery.
  • the flow direction of the refrigerant in the refrigerant flow channel plate 200 refers to Figure 15.
  • the refrigerant in the first branch is converted into a low-pressure and low-temperature gaseous refrigerant after flowing through the evaporator.
  • the low-pressure and low-temperature gaseous refrigerant can merge with the low-pressure and low-temperature gaseous refrigerant at the outlet of the heat exchanger 202 of the second branch, which is converted into a low-pressure and low-temperature gaseous refrigerant after heat exchange in the heat exchanger 202.
  • the merged refrigerant flows out of the refrigerant flow channel plate 200 from the refrigerant interface 216 and enters the compressor, completing the refrigerant circulation.
  • the thermal management system of the entire vehicle can be placed in air source heat pump heating or waste heat recovery heat pump heating mode.
  • the flow direction of the refrigerant is as follows: the high-pressure and high-temperature gaseous refrigerant generated by the compressor enters the refrigerant flow channel plate 200 from the refrigerant interface 221 (it will flow through the first pressure and temperature sensor 212 during the process), and then flows out of the refrigerant flow channel plate 200 from the refrigerant interface 221 through the third electronic refrigerant valve 209. After passing through the condenser in the air-conditioning box, the high-pressure and high-temperature gaseous refrigerant is converted into a high-pressure medium-temperature liquid refrigerant.
  • the high-pressure medium-temperature liquid refrigerant enters the refrigerant flow channel plate 200 from the refrigerant interface 222, and is divided into two branches after passing through the second one-way valve 211 and the liquid storage drying tank 204 in turn, wherein:
  • the first branch is throttled into a low-pressure and low-temperature gas-liquid two-phase refrigerant through the second electronic expansion valve 206 inside the refrigerant flow channel plate 200, and flows out of the refrigerant flow channel plate 200 from the refrigerant interface 218. Since the condenser is connected to the space inside the cabin, Therefore, the air source heat pump heating mode can be realized based on this branch. In this mode, the flow direction of the refrigerant in the refrigerant flow channel plate 200 is shown in FIG. 16 .
  • the second branch passes through the high-pressure part of the internal heat exchanger 203 inside the refrigerant flow channel plate 200 and is throttled into a low-pressure, low-temperature gas-liquid two-phase refrigerant through the first electronic expansion valve 205. It is then transformed into a low-pressure, low-temperature gas refrigerant after heat exchange in the heat exchanger 202 (it will flow through the third pressure and temperature sensor 214 during this period), realizing the waste heat recovery heat pump heating function. Specifically, since the cabin space at this time requires heat, the heat from the coolant recovered by the heat exchanger can be transferred to the cabin space along with the flow of the refrigerant. In this way, part of the heat used to meet the heating needs of the cabin space is the heat recovered from the coolant. In this mode, the flow direction of the refrigerant in the refrigerant flow channel plate 200 refers to Figure 17.
  • the low-pressure and low-temperature gaseous refrigerant in the first branch flows through the external heat exchanger and the first electronic refrigerant valve 207 in sequence (it will flow through the second pressure and temperature sensor 213 during the period), and then undergoes heat exchange with the low-pressure part of the second branch that passes through the heat exchanger 202 and the internal heat exchanger in sequence, and then is transformed into a low-pressure and low-temperature gaseous refrigerant.
  • the merged refrigerant flows out of the refrigerant flow channel plate 200 from the refrigerant interface 216 and enters the compressor, completing the air conditioning heating cycle.
  • the thermal management integrated module 100 can also realize at least six different circulation modes by controlling the multi-way valve.
  • the thermal management domain controller 400 connects the flow ports 2, 3, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 1. In this mode:
  • the coolant of the motor cooling circuit flows from the coolant interface 308 into the coolant flow channel plate 300 , and is connected to the coolant interface 315 through the flow port 2 of the multi-way valve 302 .
  • the cooling liquid of the power battery cooling circuit (a circuit for cooling the power battery) flows from the cooling liquid interface 309 into the cooling liquid flow channel plate 300 , and is connected to the cooling liquid interface 316 through the flow port 5 of the multi-way valve 302 .
  • the coolant in the coolant interface 315 and the coolant interface 316 are merged, they are connected to the coolant interface 314 through the flow port 3 of the multi-way valve 302.
  • the coolant that flows into the coolant flow channel plate 300 from the coolant interface 314 flows out of the coolant flow channel plate 300 from the coolant interface 307 and enters the radiator for heat exchange.
  • the coolant that passes through the radiator flows into the coolant flow channel plate 300 again from the coolant interface 312.
  • the coolant that flows into the coolant flow channel plate 300 is divided into two branches, among which:
  • the coolant in the first branch flows into the second water pump 304 through the coolant interface 319 , and then flows into the motor cooling circuit including the motor and other structures from the coolant flow channel opening 310 .
  • the coolant in the second branch flows into the first water pump 303 from the coolant interface 318 , and then flows into the battery cooling circuit of the power battery from the coolant flow channel opening 311 .
  • the thermal management domain controller 400 connects the flow ports 1, 2, 3, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 2. In this mode:
  • the coolant of the motor cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 308, connects to the coolant interface (315, 314) through the flow port (2, 3) of the multi-way valve 302, and flows into the coolant flow channel plate 300, then flows out of the coolant flow channel plate 300 from the coolant interface 307 and enters the radiator for heat exchange. After passing through the radiator, the coolant flows into the coolant flow channel plate 300 from the coolant interface 312 and flows into the second water pump 304 through the coolant interface 319, and finally flows into the motor and other components from the coolant flow channel port 310 to form a motor cooling circuit.
  • the coolant of the power battery cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 309, connects to the coolant interface (316, 313) through the connecting port (5, 1) of the multi-way valve 302, and then enters the heat exchanger 202 through the coolant interface 322 for heat exchange. After heat exchange in the heat exchanger 302, it flows into the coolant flow channel plate 300 from the coolant flow channel 323, then flows into the first water pump 303 through the coolant interface 318, and finally flows into the power battery again from the coolant flow channel port 311 to form a battery cooling circuit.
  • the thermal management domain controller 400 connects the flow ports 1, 2, 4, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 3. In this mode:
  • the coolant in the motor cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 308, connects to the coolant interface 315 and the coolant interface 313 through the flow ports (2, 1) of the multi-way valve 302, and enters the heat exchanger 202 through the coolant interface 322 for heat exchange.
  • the coolant after heat exchange in the heat exchanger 302 flows into the coolant flow channel plate 300 from the coolant flow channel 323, flows into the second water pump 304 through the coolant interface 319, and finally flows into the motor and other components from the coolant flow channel port 310 to form the electric Engine cooling circuit.
  • the coolant in the power battery cooling circuit flows from the coolant interface 309 into the coolant flow channel plate 300, and is connected to the coolant interface 316 and the coolant interface 317 through the flow ports (4, 5) of the multi-way valve 302. It flows into the first water pump 303 through the coolant interface 318, and finally flows into the power battery from the coolant flow channel port 311, forming a power battery cooling circuit.
  • the thermal management domain controller 400 connects the flow ports 2, 3, 4, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 4. In this mode:
  • the coolant of the motor cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 308, flows out through the flow ports (2, 3) of the multi-way valve 302, and finally flows out of the coolant flow channel plate 300 from the coolant interface 307 and enters the radiator for heat exchange.
  • the coolant after passing through the radiator flows into the coolant flow channel plate 300 from the coolant interface 312, flows into the second water pump 304 through the coolant interface 319, and finally flows into the motor from the coolant flow channel port 310 to form a motor cooling circuit.
  • the coolant of the power battery cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 309, connects to the coolant interface 316 and the coolant interface 317 through the flow ports (4, 5) of the multi-way valve 302, flows into the first water pump 303 through the coolant interface 318, and finally flows into the power battery from the coolant flow channel port 311 to form a battery cooling circuit.
  • the thermal management domain controller 400 connects the flow ports 2, 4, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 5. In this mode:
  • the coolant of the motor cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 308, and is connected to the coolant interface 315 through the flow port 2 of the multi-way valve 302, and merges with the coolant of the battery cooling circuit from the coolant interface 309 into the coolant flow channel plate 300, and is connected to the coolant interface 316 through the communication port 5 of the multi-way valve 302. After that, the coolant flows into the coolant interface (318, 319) through the communication port 4 of the multi-way valve 302 and is divided into two branches, among which:
  • the coolant in the first branch flows from the coolant interface 319 into the second water pump 304 , and finally flows from the coolant flow channel opening 310 into the motor, etc., to form a motor cooling circuit.
  • the second branch flows from the coolant interface 318 into the first water pump 303 and finally flows from the coolant flow channel opening 311 into the power battery to form a battery cooling circuit.
  • the thermal management domain controller 400 connects the flow ports 1, 2, and 5 of the multi-way valve 302, so that the thermal management integrated module 100 is in mode 5. In this mode:
  • the coolant in the motor cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 308, and is connected to the coolant interface 315 through the flow port 2 of the multi-way valve 302.
  • the coolant in the power battery cooling circuit flows into the coolant flow channel plate 300 from the coolant interface 309, and merges with the coolant that passes through the flow port 5 of the multi-way valve 302 and is connected to the coolant interface 316. After that, it passes through the flow port 1 of the multi-way valve 302 and is connected to the coolant interface 313 and enters the heat exchanger 202 through the coolant interface 322 for heat exchange. After heat exchange in the heat exchanger 302, it flows into the coolant flow channel plate 300 from the coolant flow channel 323. After flowing into the coolant flow channel plate 300, the coolant is divided into two branches, among which:
  • the first branch flows from the coolant interface 319 into the second water pump 304 , and finally flows from the coolant flow channel opening 310 into the motor, etc., to form a motor cooling circuit.
  • the second branch flows from the coolant interface 318 into the first water pump 303 , and finally flows from the coolant flow channel opening 311 into the power battery to form a power battery cooling circuit.
  • the thermal management integrated module 100 of the present invention can significantly reduce the length of the air conditioning pipeline connected to the thermal management integrated module 100 by integrating multiple thermal management components into the refrigerant flow channel plate 200 and transforming the internal heat exchanger 203 into a structural form that can be integrated into the refrigerant flow channel plate 200. As shown in FIG24, in a possible implementation, compared with the air conditioning pipeline connected to the whole vehicle by the non-integrated solution, the length of the air conditioning pipeline connected to the whole vehicle by the thermal management integrated module 100 of the present invention is reduced by 40%.
  • the thermal management integrated module 100 of the present invention can significantly reduce the length of the cooling pipeline connected to the thermal management integrated module 100 by integrating multiple thermal management components into the coolant flow channel plate 300. As shown in FIG25, in a possible implementation, compared with the cooling pipeline connected to the whole vehicle in a non-integrated solution, the length of the cooling pipeline connected to the whole vehicle by the thermal management integrated module 100 of the present invention is reduced by 30%.
  • the thermal management integrated module 100 of the present invention integrates the electronic control unit of multiple thermal management components through the thermal management domain controller 400, CAN communication is adopted between the thermal management integrated module 100 and the vehicle domain controller, and only two low-voltage connectors are retained, resulting in a significant reduction in the length of the low-voltage wire harness connected to the thermal management integrated module 100.
  • the length of the low-voltage wire harness of the vehicle connected to the thermal management integrated module 100 of the present invention is reduced by 70%, and the number of connectors is reduced by 83%.
  • the thermal management system of the vehicle of the present invention reduces the length of air-conditioning pipes, cooling pipes and low-voltage wiring harnesses, improves the space layout utilization rate of the front cabin of the entire vehicle, and the space saved after the application of the thermal management integrated module 100 realizes the design of increasing the space of the front luggage box in the front cabin.
  • the assembly time of the whole vehicle is saved by about 35%.
  • the thermal management integrated module 100 and the air conditioning pipeline, cooling pipeline, etc. and the whole vehicle cross beam and other structures are integrated and assembled, the assembly time of the whole vehicle can be further reduced and the production rhythm of the whole vehicle assembly line can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种整车热管理系统,其包括控制器、流通介质为制冷剂的第一热管理部以及流通介质为冷却液的第二热管理部,其中,第一/第二热管理部包括多个第一/第二热管理部件并包括制冷剂/冷却液流道板(200,300),制冷剂/冷却液流道板中形成多条制冷剂/冷却液流通回路(201,301),具有连接关系的第一/第二热管理部件之间通过相应的制冷剂流通回路彼此连接;第一热管理部件中包括电子膨胀阀(205,206)和/或电子冷媒阀(207,208,209),至少一部分电子膨胀阀和/或电子冷媒阀的线圈设置于靠近控制器的位置。以及一种包括整车热管理系统的车辆。通过该系统能够对整车热管理系统进行高度集成。

Description

整车热管理系统、车辆
相关文件的交叉引用
本申请要求2022年10月31日提交的、发明名称为“整车热管理系统、车辆”的中国专利申请CN202211351134.9的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本发明涉及车辆的热管理技术领域,具体提供一种整车热管理系统、车辆。
背景技术
汽车的空调系统主要用于为驾乘舱的舱内空间提供冷量与热量,空调系统主要包括由压缩机、冷凝器、节流部件和蒸发器构成的冷媒(制冷剂)循环回路。为驾乘舱的舱内空间提供冷量与热量的方式包括两种:一种是冷量与热量的获得均通过运行冷媒循环回路的方式获得,另一种是仅冷量的获得是通过运行冷媒循环回路的方式获得,热量是通过在与舱内空间连通的空调箱内配置PTC,通过PTC加热的方式向舱内空间发放热量。
随着电动汽车的发展,为了提升其续航里程,存在如对电机等发热部件冷却需求以及为了使得动力电池保持在一定的温度区间而对其加热或者冷却的需求。出于冷量和热量可以在整车范围内互换的考虑,便将与热量/冷量相关的功能整合为整车热管理系统,如整车热管理系统通常包括冷媒循环回路、冷却液循环回路以及允许二者之间发生换热的热交换器。目前的热管理系统存在不同程度的单件设计、分散布置等现象,这样的现象通常会导致如空调管路、冷却管路、整车线束等增多,这必然会导致电动汽车的(前舱)空间利用率降低。因此,如何提高整车热管理系统的集成度,是亟待解决的问题。抑或说,如何进一步地提高的整车热管理系统的集成度,尚存一定的提升空间。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了至少一定程度地解决上述技术问题,提出本发明。
在第一方面,本发明提供了一种整车热管理系统,包括控制器、流通介质为制冷剂的第一热管理部以及流通介质为冷却液的第二热管理部,其中,所述第一热管理部包括多个第一热管理部件并包括制冷剂流道板,所述制冷剂流道板中形成多条制冷剂流通回路,具有连接关系的第一热管理部件之间通过相应的制冷剂流通回路彼此连接;其中,所述第二热管理部包括多个第二热管理部件并包括冷却液流道板,所述冷却液流道板中形成多条冷却液流通回路,具有连接关系的第二热管理部件之间通过相应的冷却液流通回路彼此连接;其中,所述第一热管理部件中包括电子膨胀阀和/或电子冷媒阀,至少一部分所述电子膨胀阀和/或所述电子冷媒阀的线圈设置于靠近所述控制器的位置。
通过这样的构成,能够谋求对热管理系统进行集成。
可以理解的是,本领域技术人员可以根据实际需求确定第一/第二热管理部的具体构成方式及其满足相应的热管理需求的具体原理等。相应地,本领域技术人员可以根据实际需求确定制冷剂/冷却液流道板中的制冷剂/冷却液流通回路的具体布置形式以及相关的第一/第二热管理部件与制冷剂/冷却液流通回路的具体衔接方式等。
通过将电子膨胀阀和/或电子冷媒阀的线圈设置于靠近控制器的位置,通过将控制器与电子膨胀阀和/或电子冷媒阀的线圈就近集成,不仅最大程度地节省了连接线束,同时保证了电子膨胀阀和/或电子冷媒阀的控制精度以及稳定性能够与阀的性能保持在同等水平。
可以理解的是,本领域技术人员可以根据实际需求确定靠近的程度以及靠近的方式。示例性地,如可以使电子膨胀阀和/或电子冷媒阀的线圈与控制器的已有结构连接,或者增设一个中间结构,通过中间结构与控制器与电子膨胀阀和/或电子冷媒阀的线圈分别连接从而实现就近集成等。
可以理解的是,本领域技术人员可以根据实际需求确定与控制器就近集成的电子膨胀阀和/或电子冷媒阀的个数及其在第一热管理部中的具体作用等。换言之,本领域技术人员可以根据实际需求将全部或者部分电子膨胀阀和/或电子冷媒阀与控制器就近集成。如可以是:基于第一种原理图的整车热管理系统中,第一热管理部包含M个电子膨胀阀和/或电子冷媒阀, 将M个阀的线圈均与控制器就近集成;基于第二种原理图的整车热管理系统中,第一热管理部包含N个电子膨胀阀和/或电子冷媒阀,将N个阀的其中一部分的线圈与控制器就近集成;等。
对于上述整车热管理系统,在一种可能的实施方式中,制冷剂流道板与所述冷却液流道板彼此连接,所述控制器固接至所述制冷剂流道板和/或所述冷却液流道板。
通过这样的构成,给出了整车热管理系统在集成之后的一种具体的连接方式。
对于上述整车热管理系统,在一种可能的实施方式中,制冷剂流道板与所述冷却液流道板之间沿靠近彼此的厚度方向通过多点连接的方式彼此连接。
通过这样的构成,给出了制冷剂流道板与所述冷却液流道板之间的一种具体的连接方式。
对于上述整车热管理系统,在一种可能的实施方式中,所述制冷剂流道板包括制冷剂主体部分和制冷剂盖板部分,所述制冷剂主体部分和所述制冷剂盖板部分之间形成所述制冷剂流通回路;和/或
所述冷却液流道板包括冷却液主体部分和冷却液盖板部分,所述冷却液主体部分和所述冷却液盖板部分形成所述冷却液流通回路。
通过这样的构成,给出了制冷剂/冷却液流道板的具体的结构方式。
可以理解的是,本领域技术人员可以根据实际情形确定流通回路的具体构造方式。示例性地,在主体部分和盖板部分上分别设置有一部分的槽(半槽),两个半槽扣合之后便可形成相应的通道。
可以理解的是,本领域技术人员可以根据实际需求确定制冷剂/冷却液(主体、盖板)部分的材质、结构形式、个数以及二者之间的连接关系等。
对于上述整车热管理系统,在一种可能的实施方式中,所述制冷剂主体部分形成有与所述制冷剂流通回路对应的制冷剂流道,所述制冷剂盖板部分将所述制冷剂流道盖合;和/或所述冷却液主体部分形成有与所述冷却液流通回路对应的冷却液流道,所述冷却液盖板部分将所述冷却液流道盖合。
通过这样的构成,给出了制冷剂/冷却液流道的一种具体的构造方式。
对于上述整车热管理系统,在一种可能的实施方式中,所述制冷剂流道板在需要与第一热管理部件对接的位置设置有制冷剂流道口,以便:具有连接关系的第一热管理部件经制冷剂流道口与制冷剂流道板对接之后,经相应的制冷剂流通回路彼此连通;和/或
所述冷却液流道板在需要与第二热管理部件对接的位置设置有冷却液流道口,以便:具有连接关系的第二热管理部件经冷却液流道口与冷却液流道板对接之后,经相应的冷却液流通回路彼此连通。
通过这样的构成,给出了第一/第二热管理部件与制冷剂/冷却液流道板之间一种具体的衔接方式。
对于上述整车热管理系统,在一种可能的实施方式中,所述第一热管理部件在对应于所述制冷剂流道口的位置与所述制冷剂流道板密封连接;和/或所述第二热管理部件在对应于所述冷却液流道口的位置与所述冷却液流道板密封连接;和/或所述第一热管理部件包括内部换热器,所述内部换热器内包括与冷凝器下游侧的高压部分对应的第一制冷剂通路和与蒸发器下游侧的低压制冷剂对应的第二制冷剂通路,其中,所述第一制冷剂通路和所述第二制冷剂通路均形成于所述制冷剂流道板内且二者具有能够传热的壁。
通过这样的构成,给出了第一/第二热管理部件在制冷剂/冷却液流道口出与制冷剂/冷却液流道板之间一种具体的连接方式。以及,通过将第一热管理部件本身进行改造的方式实现了整车热管理系统的深度集成。
对于上述整车热管理系统,在一种可能的实施方式中,所述控制器为热管理域控制器,所述热管理域控制器包括PCBA板,所述电子膨胀阀和/或所述电子冷媒阀的线圈以靠近所述PCBA板的方式与所述控制器进行集成。
通过这样的构成,给出了电子膨胀阀和/或电子冷媒阀的线圈靠近控制的一种具体的实现方式。可以理解的是,本领域技术人员可以根据实际需求确定实现二者的靠近所依赖的具体结构以及具体的靠近程度等。示例地,配置一个邻近PCBA板设置的中间结构,将电子膨胀阀和/或电子冷媒阀的线圈设置于中间结构上。
对于上述整车热管理系统,在一种可能的实施方式中,所述控制器包括壳体,所述电子膨胀阀和/或所述电子冷媒阀的线圈以及所述PCBA板均设置于所述壳体内。
通过这样的构成,给出了热管理域控制器参与集成的一种具体的结构形式。
在第二方面,本发明提供了一种车辆,该车辆包括前述任一项所述的整车热管理系统。
可以理解的是,该车辆具有前述任一项所述的整车热管理系统的所有技术效果,在此不再赘述。
附图说明
下面结合一种具体的整车热管理系统的原理图(图3)并参照附图来描述本发明的优选实施方式,附图中:
图1示出本发明一种实施例的整车热管理系统中的热管理集成模块(下文简称热管理集成模块)从其一侧(制冷剂流道板侧)观察的结构示意图;
图2示出本发明一种实施例的热管理集成模块从其另一侧(冷却液流道板侧)观察的结构示意图;
图3示出本发明一种实施例的热管理集成模块所基于的整车热管理系统的原理示意图;
图4示出现有例的、同轴管形式的内部换热器(简称同轴管)的结构示意图;
图5示出本发明一种实施例的热管理集成模块中内部换热器的结构示意图;
图6示出本发明一种实施例的热管理集成模块的制冷剂流道板从其一侧观察的结构示意图;
图7示出本发明一种实施例的热管理集成模块的制冷剂流道板从其另一侧观察的结构示意图;
图8示出本发明一种实施例的热管理集成模块的冷却液流道板从其一侧观察的结构示意图;
图9示出本发明一种实施例的热管理集成模块的冷却液流道板从其另一侧观察的结构示意图;
图10示出本发明一种实施例的热管理集成模块的热管理域控制器及线束从其一侧观察的结构示意图;
图11示出本发明一种实施例的热管理集成模块的热管理域控制器及线束从其另一侧观察的结构示意图;
图12示出本发明一种实施例的热管理集成模块的热管理域控制器的结构示意图;
图13示出本发明一种实施例的热管理集成模块的隔振系统的结构示意图;
图14示出本发明一种实施例的热管理集成模块在乘客舱制冷模式下的制冷剂流向示意图;
图15示出本发明一种实施例的热管理集成模块在动力电池冷却模式下的制冷剂流向示意图;
图16示出本发明一种实施例的热管理集成模块在空气源热泵制热模式下的制冷剂流向示意图;
图17示出本发明一种实施例的热管理集成模块在余热回收热泵制热模式下的制冷剂流向示意图;
图18示出本发明一种实施例的热管理集成模块在模式一下的冷却液流向示意图;
图19示出本发明一种实施例的热管理集成模块在模式二下的冷却液流向示意图;
图20示出本发明一种实施例的热管理集成模块在模式三下的冷却液流向示意图;
图21示出本发明一种实施例的热管理集成模块在模式四下的冷却液流向示意图;
图22示出本发明一种实施例的热管理集成模块在模式五下的冷却液流向示意图;
图23示出本发明一种实施例的热管理集成模块在模式六下的冷却液流向示意图;
图24示出本发明一种实施例的热管理集成模块相比非集成方案在降低空调管路长度方面的对比示意图;
图25示出本发明一种实施例的热管理集成模块相比非集成方案在降低冷却管路长度方面的对比示意图;以及
图26示出本发明一种实施例的热管理集成模块相比非集成方案减少线束及接 插件方面的对比示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式中是结合具体造型的管路以及在明确的位置设置与热管理系统的原理图相适配的如压缩机以及换热器等部件来进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可其进行合理的变更,如可以根据任意可实现整车热管理的原理图对相关的管线以及部件进行集成,以及可以根据实际需求将相应的管线从折线变更为斜线、对管线的径向尺寸/长度(直线长度或者的总长度)进行适当的调整等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节,本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的车辆的热管理的原理等未作详细描述,以便于凸显本发明的主旨。
整车热管理系统主要用于通常对冷量和热量进行统筹,以便满足整车范围内的冷量和热量的需求,如舱内空间的制冷/制热需求、电机的冷却需求、动力电池的加热/冷却需求等。其中,一部分冷量/热量是通过如运行冷媒循环回路、启动PTC、冷却液自身携带冷量等方式供给的,一部分热量是通过如回收其他部分的冷量/热量的方式获得的。其中,将整车热管理系统中的一部分部件进行集成,便可成热管理集成模块。
如在本示例中,图3中的阴影区域涵盖的部分为参与构成了热管理集成模块的热管理部件及管理。可以理解的是,本领域技术人员可以根据实际需求对参与/不参与构成热管理集成模块的部件/管路及其位置进行调整。
下文将参照图1至图26中的全部或者部分来阐述本发明。
主要参照图1至图3,在一种可能的实施方式中,热管理集成模块100主要包括制冷剂流道板200、冷却液流道板300以及构成整车热管理系统的多个热管理部件。
其中,制冷剂流道板200中形成多个(段)制冷剂流通回路201,具体而言,基于图3所示的整车热管理系统的原理示意图,在需要不同的制冷剂侧部件之间具有连通关系时,便可以通过在制冷剂流道板的相应位置形成的制冷剂流通回路201来实现二者的连通。同理,在冷却液流道板300中形成多个冷却液流通回路301,在需要不同的冷却液侧部件之间具有连通关系时,便可以通过在冷却液流道板的相应位置形成的冷却液流通回路301来实现二者的连通。
同时,制冷剂流道板200和冷却液流道板300作为整个热管理集成模块100的承载件(安装载体),可以用来分担用于安装前述的多个热管理部件的任务。作为本发明的热管理集成模块中的关键构成部件,制冷剂流道板200和冷却液流道板300在能够实现与整车热管理系统的原理图相一致的连接关系的前提条件下,允许将多个热管理部件根据实际需求安装在制冷剂流道板200或者冷却液流道板300上。在此基础上,具有连通关系的热管理部件便可通过制冷剂流通回路201或者冷却液流通回路301实现彼此之间的连接。通过对各个热管理部件在制冷剂流道板200/冷却液流道板300上的安装位置、制冷剂流道板200和冷却液流道板300内的回路设计以及制冷剂流道板200和冷却液流道板300内的回路与如前述的如压缩机、外部换热器以及空调箱内的蒸发器/冷凝器等进行连接,便可实现与分散设置的整车热管理系统相同的功能。
可以理解的是,本实施例中的整车热管理系统的原理图只是实际应用的整车热管理原理图中的其中一种可能的形式。换言之,制冷剂流道板200和冷却液流道板300内部的回路、热管理部件的种类/个数及其在制冷剂流道板或者冷却液流道板上的安装位置可以根据实际应用的整车热管理系统任意具体的原理图中制冷剂及冷却液的流动方式进行灵活的调整,以期在保证热管理部件之间的管路连接的基础上,实现针对整车范围的热管理。
在一种可能的实施方式中,制冷剂流道板200可以采用Al材质制成,这样的材质选用在能够避免制冷剂泄露、降低其自重的同时,还可以保证制冷剂流道板200具有足够的强度,从而提高了其作为热管理集成模块100的主要承载件的结构稳定性及耐久性。为了便于制冷剂流道板200的成型,可以采用分体成型的方式。示例性地,如可以将制冷剂流道板200沿其厚度方向分割为制冷剂主体部分以及制冷剂盖板部分,制冷剂主体部分形成具有开口的制冷剂流通回路201,如制冷剂主体部分可以采用如热锻、冷锻或者铸造等工艺成型。而制冷剂盖板部分则可以通过板材冲压等工艺成型。如在主体部分成型之后,通过焊接等方式将制冷剂主体部分和制冷剂盖板部分二者固接即可得到本发明的制冷剂流道板200。如焊接方式可以包括但不限于真空焊接,摩擦焊接、激光焊接等。
在一种可能的实施方式中,冷却液流道板300可以采用PP、PA66等热绝缘材质制成,这样的材质选用在能够保证冷却液流道板的热绝缘性能的同时,还可以保证冷却液流道板300具有足够的强度。类似地,为了便于冷却液流道板300的成型,也可以采用分体成型的方式,示例性地,如同样将冷却液流道板300沿其厚度方向分割为冷却液主体部分以及冷却液盖板部分,冷却液主体部分形成具有开口的冷却液流通回路301。如将冷却液主体部分以及冷却液盖板部分分别采用注塑工艺成型之后,通过如前述的如热焊接,摩擦焊接、激光焊接等焊接方式将二者固接即可得到本发明的冷却液流道板300。
在制得制冷剂流道板200和冷却液流道板300之后,将二者固定连接即可。如主要参照图5,冷却液流道板300通过多点连接的方式与制冷剂流道板200固接。示例性地,多点连接的方式为在多个安装点处通过螺纹连接的方式实现制冷剂流道板200和冷却液流道板300之间的连接。如前所述,由于热管理集成模块中包含的热管理部件以及多个热管理连接部件之间的连通关系可以根据整车热管理的实际需求(不同的整车热管理系统的原理示意图)选择。在此基础上,在能够满足与原理图对应的连接关系的前提下,各个热管理部件在制冷剂流道板200或者冷却液流道板300上的安装位置可以根据热管理部件在与之对应的整车热管理原理图中的连接关系以及实际选择的热管理部件的轮廓/尺寸等细节灵活确定。在安装位置确定之后,在制冷剂流道板200或者冷却液流道板300的对应的安装位置上留出与热管理部件适配的固定结构即可。
主要参照图3,在一种可能的实施方式中,整车热管理系统中靠上的部分为与制冷剂相关的部分,如蒸发器/PTC与舱内空间相连通从而能够向舱内空间的驾乘人员提供冷量/热量。靠下的部分为与冷却液相关的部分,如温度调整后的冷却液能够对动力电池进行保温处理。两个部件之间可以通过热交换器202实现制冷剂和冷却液之间的热量交换,从而能够针对整车进行热管理。
主要参照图3,在一种可能实施方式中,车辆中需要冷却/加热的保温部件主要包括动力电池6,需要冷却的发热部分主要包括电机。如在本示例中,包括前/后电机、前/后电机控制器、前/后智能功率分配单元中央处理器(下文统称电机7)。整车热管理系统包括与制冷剂相关的第一部分以及与冷却液相关的第二部分。
在一种可能的实施方式中,第一部分主要包括热交换器202、内部换热器203、储液干燥罐204、第一电子膨胀阀205、第二电子膨胀阀206、第一电子冷媒阀207、第二电子冷媒阀208、第三电子冷媒阀209、第一单向阀210、第二单向阀211、第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214。此外,第一部分还包括压缩机2151、空调箱2152(其包括能够直接运行产生热量的PTC、能够向舱内空间发放热量的冷凝器(PTC的下方)以及能够向舱内空间发放冷量的蒸发器(冷凝器的下方)、与车外环境连通的外部换热器2152。
其中,压缩机的排气口分别经第二电子冷媒阀208和第三电子冷媒阀209与外部换热器的第二侧和冷凝器的第二侧相连接,外部换热器的第一侧和冷凝器的第一侧相连接且二者之间依次设置有仅允许制冷剂由外部换热器流出的第一单向阀210以及仅允许制冷剂由蒸发器流出的第二单向阀211。
其中,外部换热器的第一侧依次经第二电子膨胀阀206连接至内部换热器203的高压部分的入口,在内部换热器203的高压部分的出口处,一方面,经空调箱的蒸发器连接至内部换热器203的低压部分的入口,另一方面,依次经第一电子膨胀阀205、热交换器的制冷剂流道连接至内部换热器203的低压部分的入口。内部换热器203的低压部分的出口连接至压缩机的回气口。外部换热器的第二侧经第一电子冷媒阀207连接至压缩机的回气口。
在一种可能的实施方式中,储液干燥罐204的入口设置于第一单向阀210和第二单向阀211之间的管路上,储液干燥罐204的出口连接至内部换热器203的高压部分的入口。
在一种可能的实施方式中,第一压力温度传感器212、第二压力温度传感器 213、第三压力温度传感器214分别设置于压缩机的排气口的下游侧(压缩机的排气口与外部换热器/冷凝器的第二侧之间)、外部换热器的第二侧与压缩机的回气口之间、热交换器的制冷剂流道的第二侧与内部换热器203的低压部分的入口之间。
此外,如在本示例中,在内部换热器203的高压部分的出口与蒸发器的第一侧之间可以增设电子膨胀阀,并在该管路上配置高压加注阀。以及在蒸发器的第二侧与内部换热器203的低压部分的入口之间配置低压加注阀。
车辆中需要冷却的发热部件主要包括电机(前电机、后电机)、电机控制器(前电机、后电机)和动力电池。整车热管理系统包括与制冷剂相关的第一部分以及与冷却液相关的第二部分。
在一种可能的实施方式中,第二部分主要包括多通阀302(本示例中采用五通阀)、第一水泵303、第二水泵304、第一水温传感器305、第二水温传感器306。五通阀的五个流通口分别记作流通口(1、2、3、4、5)此外,第二部分还包括膨胀水壶324和散热器325。
其中,膨胀水壶的出口第一方面经热交换器的冷却液流道连接至多通阀302的流通口1,膨胀水壶的出口第二方面直接连接至多通阀302的流通口4,膨胀水壶的出口第三方面依次经第一水泵303和动力电池7连接至多通阀302的流通口5,膨胀水壶的出口第四方面依次经第二水泵304以及两条并列的支路(第一条支路的路径为前智能功率分配单元、前电机控制器、前电机,第二条支路的路径为后智能功率分配单元/中央处理器、后电机控制器、后电机)连接至多通阀302的流通口2。设置有第一水温传感器305。多通阀302的流通口3经散热器连接至膨胀水壶的入口。
在一种可能的实施方式中,第一水温传感器305和第二水温传感器306分别配置于膨胀水壶的出口和第二水泵的入口之间的管路以及前/后电机与连通口2之间的管路上。
基于上述原理图,在一种可能的实施方式中,需要集成在制冷剂流道板200的热管理部件主要包括热交换器202、内部换热器203、储液干燥罐204、第一电子膨胀阀205、第二电子膨胀阀206、第一电子冷媒阀207、第二电子冷媒阀208、第三电子冷媒阀209、第一单向阀210、第二单向阀211、第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214。需要集成在冷却液流道板300的热管理部件主要包括多通阀302(本示例中采用五通阀)、第一水泵303、第二水泵304、第一水温传感器305、第二水温传感器306。下面主要描述上述热管理部件在制冷剂流道板200或者冷却液流道板30上/内的集成方式以及基于上述热管理部件针对整车实现热管理的原理(即热管理部件之间应当具有的连接关系以及需配置的控制逻辑)。
其中,热管理部件中的热交换器202中设置有两组可换热的管道(分别记作制冷剂流道结构和冷却液流道结构),两组管道分别用于流通制冷剂和冷却液。基于此,如在对动力电池或者电机等进行冷却或者在对动力电池的余热进行回收的模式下,在热换热器的内部便可满足制冷剂流体与冷却液流体之间的换热需求。
由于热交换器属于与制冷剂流道板200及冷却液流道板300均具有之间关联的结构,因此理论上其可以设置于其中的任一个上或者设置于二者之间(不参与集成)然后借助相应的管道和安装载体实现其与二者的分别连接。在一种可能的实施方式中,热交换器202通过与制冷剂流道板200以及冷却液流道板300分别连通并在连通的位置密封连接(下文称作连通密封)。并且,通过制冷剂流道结构与制冷剂流道板200形成制冷剂进出回路,通过冷却液流道结构与冷却液流道板300形成冷却液进出回路。如主要参照图6和图9,在本示例中,将热交换器202内的制冷剂流道结构与制冷剂流道板200的制冷剂流道口(223、224)实现连通密封,以及将热交换器202内的冷却液流道结构与冷却液流道板300的冷却液流道口(322、323)实现连通密封。在此前提下,将热交换器202借助于紧固件(如采用螺纹连接的方式)固接至制冷剂流道板200。显然,热交换器202选型可根据实际的换热性能需求确定。
其中,热管理部件中的内部换热器203主要用于对分别承载有高温液态制冷剂与低温气态制冷剂的两条制冷剂流通回路之间进行换热,从而降低电子膨胀阀的阀前过冷度,进而实现增加空调系统的制冷量以及电池冷却制冷量的目的。
目前空调系统中的内部换热器常用采用同轴管的结构形式,具体而言,通过同轴管的外管与内管之间的壁面来实现不同温度的制冷剂之间的换热。如参照图3,左侧的结构表示的是同轴管的高压部分,右侧的结构则表示的是同轴管的低压部分。如参照图4,同轴管外侧的环状区域为内部换热器的高压部分,中部的柱状区域为内部换热器的低压部分。高压中温液态制冷剂从内部换热器203左端的高压端入口2031进入内部换热器,从内部换热器右端的高压端出口2032流出内部换热器。低压低温气态制冷剂从内部换热器203右端的低压端入口2033进入内部换热器,从内部换热器左端的低压端出口2034流出内部换热器。
而在本发明的热管理集成模块中,将两条制冷剂流通回路的结构由传统的同轴管的结构形式变更为制冷剂流道板200内的其中两条制冷剂流通回路之间的壁面传热(与制冷剂流通回路201一起加工成型)。如主要参照图5,制冷剂流道板200的下方区域设置有大致为W型的、两段并行的制冷剂流通回路,分别记作第一中间换热段203a和第二中间换热段203b),其中,下方的第一中间换热段203a相当于同轴管的高压部分,上方的第二中间换热段203b相当于同轴管的低压部分。二者之间通过制冷剂流道板200内的壁隔开,因此在相应形态的制冷剂流过中间换热段(203a、203b)时,两部分制冷剂之间便可通过壁面换热。在本实施例中,中间换热段(203a、203b)为流向相反的两个换热段。
参照图3可知,与中间换热段(203a、203b)的两个口分别衔接的是另一段管路。因此为了便于表述,在中间换热段(203a、203b)的左右两侧增加两条参考线(与具有换热能力的位置大致适配),基于此,在示例中,对应于左侧的参考线的两个口分别为高压端入口2031和低压端出口2034,对应于右侧的参考线的两个口分别为高压端出口2032和低压端入口2033。
可以理解的是,下方区域、W型流线以及上下并行的相对位置只是一种实施方式,本领域技术人员可以根据实际需求对其进行灵活的调整。如可以是制冷剂流道板200内的任何区域、将W型中部的弯折由一个变更为多个、将上下并行变更为下上变行或者二者的组合(两个交叉的流路,交叉之前是上下并行,交叉之后是下上并行)等。此外,还可以将中间换热段(203a、203b)变更为多段的组合。在有需要的情形下,也可对制冷剂在中间换热段(203a、203b)内的流向进行调整。
以其中的多段的组合为例,如在制冷剂流道板200内的制冷剂流通回路的设计受限的情形下(如连续的一整段中间换热段的设计会在一定程度上影响其他热管理部件的布局),可以将中间换热段(203a、203b)变更为多段的组合,如各个段的流向、分布位置以及长度等均可以根据实际需求灵活地设置。这样一来,能够谋求以更灵活的方式实现关于内部换热器的高度集成。并且,这样的灵活设置能够更好地辅佐其他热管理部件在制冷剂流道板200的配置,因此,有望降低集成的实现难度。
这样一来,便可在制冷剂流道板200的内部实现制冷剂回路之间的换热,而无需采用同轴管的换热方式。与设置同轴管的方式相比,由于在构成整车的热管理系统时无需进行与同轴管相适配的管路绕行,因此可以有效地缩短用于连接车辆的空调系统与制冷剂流道板200的空调管路的长度。显然,内部换热器203的两条制冷剂流通回路的横截面积、具体的流线以及长度等细节可以参考实际的换热性能需求灵活设置。
以下文中提到的在整车热管理系统处于乘客舱制冷/电池冷却模式时为例。一方面,高压中温液态制冷剂从内部换热器203的高压部分(左侧)中的高压端入口2031进入内部换热器203,从高压端出口2032流出内部换热器203,从而进一步降低液态制冷剂的过冷度,进而增加空调系统的制冷量。另一方面,内部换热器203的低压部分(右侧)中的低压低温气态制冷剂从低压端入口2033进入内部换热器203,从低压端出口2034流出内部换热器201,从而进一步提升气态制冷剂的过热度,以保证进入压缩机的回气口的制冷剂为气态。
其中,热管理部件中的储液干燥罐204主要用于对其内的制冷剂实现气液分离,从而保证流出储液干燥罐204的制冷剂为液态制冷剂。此外,储液干燥罐204还可以对制冷剂进行干燥、过滤。在本示例中,储液干燥罐204与制冷剂流道板200连通密封,基于此,通过储液干燥罐204内部的制冷剂流道结构与制冷剂流道板200形成制冷剂进出回路。主要参照图4,在本示例中,储液干燥罐204与制冷剂流道板200的制冷剂流道口(225、226)连通密封后,借助于紧固件(如采用螺纹连接的方式)固接至制冷剂流道板200。其中,储液干燥罐204的选型可根据整车热管理系统的充注平台重合段以及制冷剂的年泄露量等因素确定。
其中,热管理部件的多个制冷剂电控阀件(第一电子膨胀阀205,第二电子膨胀阀206,第一电子冷媒阀207,第二电子冷媒阀208以及第三电子冷媒阀209)中,电子膨胀阀通过控制阀件的运行可以实现制冷剂的膨胀以及全关功能,电子冷媒阀通过控制阀件的运行可以实现制冷剂的全开、膨胀以及全关功能。各个制冷剂电控阀件与制冷剂流道板200连通密封,并通过相应的阀件制冷剂流道结构与制冷剂流道板200形成制冷剂进出回路。主要参照图6,在本示例中,第一电子膨胀阀205、第二电子膨胀阀206、第一电子冷媒阀207、第二电子冷媒阀208、第三电子冷媒阀209分别与制冷剂流道板200的制冷剂流道口(227、228、229、230、231)连通密封后,借助于紧固件(如通过螺纹连接的方式等)固接至制冷剂流道板200。其中,第一电子膨胀阀205、第二电子膨胀阀206、第一电子冷媒阀207、第二电子冷媒阀208、第三电子冷媒阀209的选型(如口径大小)可以根据整车热管理系统的流量需求确定。
其中,热管理部件中的多个制冷剂机械阀件(第一单向阀210、第二单向阀211) 主要用于通过阀前阀后的压力差变化来实现制冷剂的全开/全关功能。各个制冷剂机械阀件与制冷剂流道板200连通密封,并通过相应的阀件制冷剂流道结构与制冷剂流道板200形成制冷剂进出回路。主要参照图6,在本示例中,第一单向阀210、第二单向阀211分别与制冷剂流道板200的制冷剂流道口(232、233)连通密封后,借助于紧固件(如通过螺纹连接的方式等)固接至制冷剂流道板200。其中,第一单向阀210、第二单向阀211的选型(如口径大小)可以根据整车热管理系统的流量需求确定。
其中,热管理部件中的多个压力温度传感器(第一压力温度传感器212,第二压力温度传感器213,第三压力温度传感器214)主要用于其内部的感压感温部件对流过传感器的制冷剂的压力温度进行检测。各个压力温度传感器与制冷剂流道板200连通密封。主要参照图4、图7,第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214与制冷剂流道板200的制冷剂流道口(234、235、236)连通密封后,借助于紧固件(如通过螺纹连接的方式等)固接至制冷剂流道板200。其中,第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214的检测范围可根据整车热管理系统的压力温度需求进行设计选型。
其中,热管理部件中的多通阀302主要用于控制冷却系统的不同模式的通断,如本示例中的多通阀为五通阀,五通阀能够通过其拥有五个流通口与多个热管理部件相连,通过切换流通口的通断状态,便可切换冷却系统中相应模式的通断。多通阀与冷却液流道板300连通密封,并通过相应的多通阀冷却液流道结构与冷却液道板300形成冷却液进出回路。主要参照图8,多通阀302的流通口(1、3、2、5、4)分别与冷却液流道板300的冷却液流道口(313、314、315、316、317)连通密封后,借助于紧固件(如通过螺纹连接的方式等)固接至冷却液流道板300。其中,多通阀302的流道口数量可根据整车热管理系统的模式切换需求进行选型。
其中,热管理部件的泵组件(第一水泵303、第二水泵304)中,其中的第一水泵303为动力电池水泵,其主要用于驱动电池冷却回路内的冷却液流动,第二水泵304为电机水泵,其主要用于驱动电机冷却回路内的冷却液流动。其中,动力电池水泵和电机水泵均与冷却液流道板300连通密封,并通过相应的水泵冷却液流道结构与冷却液道板300形成冷却液进出回路。主要参照图8,第一水泵303、第二水泵304分别与冷却液流道板300的冷却液流道口(318、319)连通密封后,借助于紧固件(如通过螺纹连接的方式等)固接至冷却液流道板300。其中,第一水泵303、第二水泵304的大小可根据整车热管理系统的冷却液流量需求进行选型。
其中,热管理部件中的多个水温传感器(第一水温传感器305、第二水温传感器306)主要用于通过传感器内部的感温部件对流过传感器的温度进行检测。多个水温传感器与冷却液流道板300连通密封。主要参照图8,第一水温传感器305、第二水温传感器306分别与冷却液流道板300的冷却液流道口(320、321)连通密封后,如可以通过快插连接的方式固接至冷却液流道板300。其中,第一水温传感器305,第二水温传感器306的检测范围可根据整车热管理系统的温度需求进行选型。
此外,热管理集成模块还包括热管理域控制器400,如热管理域控制器借助于紧固件(如通过螺纹连接的方式等)固接至制冷剂流道板200。
在本实施例中,本发明的热管理集成模块中,包含多个需要电控的热管理部件,如电子膨胀阀、电子冷媒阀、水阀、水泵、传感器等,在对上述需要电控的热管理部件进行结构集成的同时,对上述需要电控的热管理部件进行电控集成至热管理域控制器。主要参照图10和图11,热管理域控制器400主要用于实现对第一电子膨胀阀205、第二电子膨胀阀206、第一电子冷媒阀207、第二电子冷媒阀208、第三电子冷媒阀209、第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214、多通阀302、第一水泵303、第二水泵304、第一水温传感器305和第二水温传感器306的电控功能。
在一种可能的实施方式中,热管理域控制器400上设置有四个接插件,分别是接插件(401、402、403、404)。其中,接插件(401、402)连接有对应于热管理集成模块100的线束405,接插件(403、404)则用于与整车低压主线束(未示出)连接。具体地,线束405的第一端分别通过接插件(406、407)与热管理域控制器400的接插件(401、402)连接,第二端分别通过接插件(408、409、410、411、412、413、414、415)与第一压力温度传感器212、第二压力温度传感器213、第三压力温度传感器214、通阀302、第一水泵303、第二水泵304、第一水温传感器305以及第二水温传感器306连接。
主要参照图12,在一种可能的实施方式中,热管理域控制器400包括壳体,壳体包括上壳体4001以及下壳体4002,如上壳体上与下壳体之间通过激光焊接。PCBA板4003设置于上、下壳体之间,前述的5个冷媒阀(两个电子膨胀阀和三个电子冷媒阀)的线圈4004 设置于壳体内并位于PCBA板的下方。如下壳体作为安装载体,冷媒阀的线圈安装在下壳体上,每个线圈与PCBA板均通过硬线连接,PCBA板也安装并固定在下壳体200上。散热块4005设置于上壳体,主要用于对PCBA板4上的MCU和功率器件等散热。通过将PCBA板与各个冷媒阀的线圈就近集成,可以最大程度地省去PCBA板与线圈之间的连接线束,并且在此基础上保证了各个冷媒阀的控制精度和稳定性能够与阀的性能处于同等水平。
可以看出,在本实施例中,由于热管理集成模块100中集成了如第一水泵303、第二水泵304等多个包含有旋转运动的热管理部件,因此为了降低这些运动部件与整车之间的振动传递,需要对热管理集成模块进行隔振设计。在一种可能的实施方式中,主要参照图13,可以在热管理集成模块100上配置有包含一个或者多个隔振结构的隔振系统。如在本示例中,隔振结构包括四个,具体地,在热管理集成模块上侧的左右两个端部分别配置有一个隔振结构,如这两个隔振结构为隔振衬套,记作隔振衬套(501、502)。其中,隔振衬套(501、502)作为本实施例中的主要承重及隔振部件,与整车螺连固定。下侧的左右两个端部也分别配置有一个隔振结构,如这两个隔振结构为隔振胶垫,记作隔振橡胶垫(503、504)。其中,隔振橡胶垫(503、504)作为本实施例中的辅助定位及隔振部件,与整车进行限位匹配。
显然,隔振衬套(501、502)以及隔振橡胶垫(503、504)只是组成隔振系统的一种示例性的描述,本领域技术人员可以根据整车的模态需求对隔振系统包含的隔振部结构的个数、设置位置以及具体的结构形式等进行详细的设计。
基于图3所述的整车热管理系统的原理图,通过将上述的多个热管理部件、热管理域控制器400以及相应的管路进行集成,形成了以制冷剂流道板200和冷却液流道板300作为安装载体的、高度集成的热管理集成模块100。基于相应的控制逻辑的加持,便可使得整车热管理系统实现的不同的热管理模式。
在本实施例中,一方面,可以通过对制冷剂阀件进行通断控制,可使整车热管理系统处于“乘客舱制冷模式或者电池冷却模式”以及“空气源热泵制热模式或者余热回收热泵制热模式”。
在一种可能的实施方式中,热管理域控制器400使第一电子膨胀阀205开启、第二电子膨胀阀206关闭、第一电子冷媒阀207关闭、第二电子冷媒阀208开启,第三电子冷媒阀209关闭,便可使得整车热管理系统处于乘客舱制冷模式或者电池冷却模式。
在该模式下,制冷剂的流向为:由压缩机产生的高压高温气态制冷剂,从制冷剂接口221进入制冷剂流道板200(期间会流经第一压力温度传感器212),再经过第二电子冷媒阀208,从制冷剂接口217流出制冷剂流道板200。经过冷凝器后,高压高温气态制冷剂转变为高压中温液态制冷剂,高压中温液态制冷剂从制冷剂接口218进入制冷剂流道板200,依次经过第一单向阀210、储液干燥罐204、内部换热器203后,分成两条支路,其中:
第一条支路从流道口219流出制冷剂流道板200进入空调箱内的蒸发器,用于满足对舱内空间的驾乘人员的制冷需求。该模式下,制冷剂在制冷剂流道板200内的流向参照图14。
第二条支路在制冷剂流道板200内部经过第一电子膨胀阀205节流成低压低温气液两相态制冷剂之后,再经过热交换器202热交换成低压低温气态制冷剂(期间会流经第三压力温度传感器214),从而能够用于实现对动力电池的冷却功能。具体而言,冷却液流动板内部的冷却液通过热交换器202吸收来自制冷剂的冷量,从而利用该冷量对动力电池进行冷却。该模式下,制冷剂在制冷剂流道板200内的流向参照图15。
其中,第一条支路中的制冷剂从蒸发器流过之后转变为低压低温气态制冷剂,低压低温气态制冷剂在经过制冷剂流道口220之后可与第二条支路的热交换器202出口处的、经由热交换器202热交换之后转变为低压低温气态制冷剂低压低温气态制冷剂汇合,汇合之后的制冷剂从制冷剂接口216流出制冷剂流道板200进入压缩机,完成制冷剂的循环。
在一种可能的实施方式中,使第一电子膨胀阀205开启、第二电子膨胀阀206开启、第一电子冷媒阀207开启、第二电子冷媒阀208关闭、第三电子冷媒阀209开启,便可使得整车热管理系统处于空气源热泵制热或者余热回收热泵制热模式。
在该模式下,制冷剂的流向为:由压缩机产生的高压高温气态制冷剂从制冷剂接口221进入制冷剂流道板200(期间会流经第一压力温度传感器212),再经过第三电子冷媒阀209从制冷剂接口221流出制冷剂流道板200。经过空调箱内的冷凝器后,高压高温气态制冷剂转变为高压中温液态制冷剂。高压中温液态制冷剂从制冷剂接口222进入制冷剂流道板200,依次经过第二单向阀211、储液干燥罐204之后分成两条支路,其中:
第一条支路在制冷剂流道板200内部经过第二电子膨胀阀206节流成低压低温气液两相态制冷剂,并从制冷剂接口218流出制冷剂流道板200,由于冷凝器与舱内空间连通, 因此基于该支路能够实现空气源热泵制热模式。该模式下,制冷剂在制冷剂流道板200内的流向参照图16。
第二条支路在制冷剂流道板200内部经过内部换热器203的高压部分并经过第一电子膨胀阀205节流成低压低温气液两相态制冷剂,之后经过热交换器202热交换后转变成低压低温气态制冷剂(期间会流经第三压力温度传感器214),实现余热回收热泵制热功能。具体而言,由于此时的舱内空间需要的是热量,经热交换器回收的来自冷却液的热量便可伴随着制冷剂的流动转送至舱内空间,这样一来,用于满足舱内空间的制热需求中的一部分热量是回收了来自冷却液中的热量。该模式下,制冷剂在制冷剂流道板200内的流向参照图17。
其中,第一条支路中的低压低温气态制冷剂在依次流经外部换热器、第一电子冷媒阀207(期间会流经第二压力温度传感器213)之后,与第二条支路中依次经由热交换器202、内部换热器的低压部分进行热交换之后转变为低压低温气态制冷剂低压低温气态制冷剂进行汇合,汇合之后的制冷剂从制冷剂接口216流出制冷剂流道板200进入压缩机,完成空调制热循环。
本实施例中,另一方面,热管理集成模块100还可以通过对多通阀进行控制来实现至少六种不同的流通模式。
模式一:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口2、流通口3、流通口5处于连通状态,即可使热管理集成模块100处于模式一。在该模式下:
一方面,电机冷却回路的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302的流通口2对接至冷却液接口315。
另一方面,动力电池冷却回路(对动力电池进行冷却的回路)的冷却液体从冷却液接口309流入冷却液流道板300,经过多通阀302的流通口5对接至冷却液接口316。
冷却液接口315和冷却液接口316的冷却液汇合后,经过多通阀302的流通口3对接至冷却液接口314。从冷却液接口314流入冷却液流道板300内的冷却液从冷却液接口307流出冷却液流道板300之后,进入散热器进行热量交换,经过散热器后的冷却液从冷却液接口312再次流入冷却液流道板300。流入冷却液流道板300后的冷却液分为两条支路,其中:
第一条支路中的冷却液经冷却液接口319流入第二水泵304之后,从冷却液流道口310流入包含电机等结构的电机冷却回路中。
第二条支路中的冷却液从冷却液接口318流入第一水泵303之后,从冷却液流道口311流入动力电池的电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图18。
模式二:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口1、流通口2、流通口3、流通口5处于连通状态,即可使热管理集成模块100处于模式二。在该模式下:
电机冷却回路的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302的流通口(2、3)对接至冷却液接口(315、314)流入冷却液流道板300,之后从冷却液接口307流出冷却液流道板300并进入散热器进行热量交换,冷却液经过散热器之后从冷却液接口312流入冷却液流道板300并经过冷却液接口319流入第二水泵304,最后从冷却液流道口310流入电机等部件形成电机冷却回路。
动力电池冷却回路的冷却液从冷却液接口309流入冷却液流道板300,经过多通阀302的连通口(5、1)对接至冷却液接口(316、313)从而经冷却液接口322进入热交换器202内进行热量交换,经过热交换器302换热后从冷却液流道323流入冷却液流道板300,随后经过冷却液接口318流入第一水泵303,最后从冷却液流道口311再次流入动力电池,形成电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图19。
模式三:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口1、流通口2、流通口4、流通口5处于连通状态,即可使热管理集成模块100处于模式三。在该模式下:
电机冷却回路的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302的流通口(2、1)对接至冷却液接口315和冷却液接口313并经冷却液接口322进入热交换器202进行热量交换,在热交换器302内换热后的冷却液从冷却液流道323流入冷却液流道板300,经过冷却液接口319流入第二水泵304,最后从冷却液流道口310流入电机等部件形成电 机冷却回路。
动力电池冷却回路中的冷却液从冷却液接口309流入冷却液流道板300,经多通阀302的流通口(4、5)对接至冷却液接口316和冷却液接口317。经过冷却液接口318流入第一水泵303,最后从冷却液流道口311流入动力电池,形成动力电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图20。
模式四:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口2、流通口3、流通口4、流通口5处于连通状态,即可使热管理集成模块100处于模式四。在该模式下:
电机冷却回路的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302的流通口(2、3)对接至冷却液接口315和冷却液接口314流出,最后从冷却液接口307流出冷却液流道板300进入散热器进行热量交换。经过散热器后的冷却液从冷却液接口312流入冷却液流道板300,经过冷却液接口319流入第二水泵304,最后从冷却液流道口310流入电机形成电机冷却回路。
动力电池冷却回路的冷却液从冷却液接口309流入冷却液流道板300,经过多通阀302的流通口(4、5)对接至冷却液接口316和冷却液接口317,经过冷却液接口318流入第一水泵303,最后从冷却液流道口311流入动力电池形成电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图21。
模式五:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口2、流通口4、流通口5处于连通状态,即可使热管理集成模块100处于模式五。在该模式下:
电机冷却回路的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302的流通口2对接至冷却液接口315,与电池冷却回路的冷却液从冷却液接口309流入冷却液流道板300,经过多通阀302的连通口5对接至冷却液接口316的冷却液汇合后,再经过多通阀302的连通口4对接至冷却液接口317的冷却液流入冷却液接口(318、319)之后分为两条支路,其中:
第一条支路中的冷却液从冷却液接口319流入第二水泵304,最后从冷却液流道口310流入电机等形成电机冷却回路。
第二条支路从冷却液接口318流入第一水泵303,最后从冷却液流道口311流入动力电池形成电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图22。
模式六:
在一种可能的实施方式中,热管理域控制器400使多通阀302的流通口1、流通口2、流通口5处于连通状态,即可使热管理集成模块100处于模式五。在该模式下:
电机冷却回路中的冷却液从冷却液接口308流入冷却液流道板300,经过多通阀302流通口2对接至冷却液接口315,与动力电池冷却回路中的冷却液从冷却液接口309流入冷却液流道板300,与经过多通阀302的流通口5对接至冷却液接口316的冷却液汇合后,经过多通阀302的流通口1对接至冷却液接口313并经冷却液接口322进入热交换器202内进行热量交换。在热交换器302内进行热交换之后,从冷却液流道323流入冷却液流道板300。流入冷却液流道板300后的冷却液分为两条支路,其中:
第一条支路从冷却液接口319流入第二水泵304,最后从冷却液流道口310流入电机等形成电机冷却回路。
第二条支路从冷却液接口318流入第一水泵303,最后从冷却液流道口311流入动力电池形成动力电池冷却回路。
该模式下,冷却液在冷却液流道板300内的流向参照图23。
本发明的热管理集成模块100通过将多个热管理部件集成至制冷剂流道板200上并且将内部换热器203改造为可集成至制冷剂流道板200内部的结构形式,可以使得与热管理集成模块100对接的空调管路的长度明显降低。如参照图24,在一种可能的实施方式中,与非集成方案与整车对接的空调管路相比,本发明的热管理集成模块100与整车对接的空调管路的长度的降幅达40%。
本发明的热管理集成模块100通过将多个热管理部件集成至冷却液流道板300,可以使得与热管理集成模块100对接的冷却管路的长度明显降低。如参照图25,在一种可能的实施方式中,与非集成方案与整车对接的冷却管路相比,本发明的热管理集成模块100与整车对接的冷却管路的长度的降幅达30%。
本发明的热管理集成模块100通过热管理域控制器400集成多个热管理部件的电控单元后与整车域控制器之间采用CAN通讯,且仅保留了2个低压接插件,导致与热管理集成模块100对接的低压线束长度明显降低。如参照图26,在一种可能的实施方式中,与非集成方案与整车对接的低压线束及接插件相比,本发明的热管理集成模块100与整车对接的整车低压线束的长度的降幅达70%,接插件的数量减少了83%。
可以看出,在本发明的车辆的热管理系统实现了空调管路、冷却管路、低压线束长度减少,提高整车前舱的空间布置利用率,热管理集成模块100应用后节省的空间实现前舱增加前行李箱增加空间的设计。
本发明的车辆的热管理系统在应用至整车之后,与非集成方案相比,整车的总装装配工时节省了约35%。并且,由于热管理集成模块100与空调管路、冷却管路等以及整车横梁等结构采用集成分装的形式,因此可以进一步降低整车的总装装配工时、提升整车装配线的生产节拍。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种整车热管理系统,其特征在于,所述整车热管理系统包括控制器、流通介质为制冷剂的第一热管理部以及流通介质为冷却液的第二热管理部,
    其中,所述第一热管理部包括多个第一热管理部件并包括制冷剂流道板,所述制冷剂流道板中形成多条制冷剂流通回路,具有连接关系的第一热管理部件之间通过相应的制冷剂流通回路彼此连接;
    其中,所述第二热管理部包括多个第二热管理部件并包括冷却液流道板,所述冷却液流道板中形成多条冷却液流通回路,具有连接关系的第二热管理部件之间通过相应的冷却液流通回路彼此连接;
    其中,所述第一热管理部件中包括电子膨胀阀和/或电子冷媒阀,至少一部分所述电子膨胀阀和/或所述电子冷媒阀的线圈设置于靠近所述控制器的位置。
  2. 根据权利要求1所述的整车热管理系统,其特征在于,制冷剂流道板与所述冷却液流道板彼此连接,所述控制器固接至所述制冷剂流道板和/或所述冷却液流道板。
  3. 根据权利要求2所述的整车热管理系统,其特征在于,制冷剂流道板与所述冷却液流道板之间沿靠近彼此的厚度方向通过多点连接的方式彼此连接。
  4. 根据权利要求1所述的整车热管理系统,其特征在于,所述制冷剂流道板包括制冷剂主体部分和制冷剂盖板部分,所述制冷剂主体部分和所述制冷剂盖板部分之间形成所述制冷剂流通回路;和/或
    所述冷却液流道板包括冷却液主体部分和冷却液盖板部分,所述冷却液主体部分和所述冷却液盖板部分形成所述冷却液流通回路。
  5. 根据权利要求4所述的整车热管理系统,其特征在于,所述制冷剂主体部分形成有与所述制冷剂流通回路对应的制冷剂流道,所述制冷剂盖板部分将所述制冷剂流道盖合;和/或
    所述冷却液主体部分形成有与所述冷却液流通回路对应的冷却液流道,所述冷却液盖板部分将所述冷却液流道盖合。
  6. 根据权利要求1所述的整车热管理系统,其特征在于,所述制冷剂流道板在需要与第一热管理部件对接的位置设置有制冷剂流道口,以便:具有连接关系的第一热管理部件经制冷剂流道口与制冷剂流道板对接之后,经相应的制冷剂流通回路彼此连通;和/或
    所述冷却液流道板在需要与第二热管理部件对接的位置设置有冷却液流道口,以便:具有连接关系的第二热管理部件经冷却液流道口与冷却液流道板对接之后,经相应的冷却液流通回路彼此连通。
  7. 根据权利要求6所述的整车热管理系统,其特征在于,所述第一热管理部件在对应于所述制冷剂流道口的位置与所述制冷剂流道板密封连接;和/或
    所述第二热管理部件在对应于所述冷却液流道口的位置与所述冷却液流道板密封连接;和/或
    所述第一热管理部件包括内部换热器,所述内部换热器内包括与冷凝器下游侧的高压部分对应的第一制冷剂通路和与蒸发器下游侧的低压制冷剂对应的第二制冷剂通路,
    其中,所述第一制冷剂通路和所述第二制冷剂通路均形成于所述制冷剂流道板内且二者具有能够传热的壁。
  8. 根据权利要求1所述的整车热管理系统,其特征在于,所述控制器为热管理域控制器,所述热管理域控制器包括PCBA板,所述电子膨胀阀和/或所述电子冷媒阀的线圈以靠近所述PCBA板的方式与所述控制器进行集成。
  9. 根据权利要求8所述的整车热管理系统,其特征在于,所述控制器包括壳体,所述电子膨胀阀和/或所述电子冷媒阀的线圈以及所述PCBA板均设置于所述壳体内。
  10. 一种车辆,其特征在于,所述车辆包括权利要求1至9中任一项所述的整车热管理系统。
PCT/CN2023/121523 2022-10-31 2023-09-26 整车热管理系统、车辆 WO2024093582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351134.9A CN115817101A (zh) 2022-10-31 2022-10-31 整车热管理系统、车辆
CN202211351134.9 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093582A1 true WO2024093582A1 (zh) 2024-05-10

Family

ID=85525992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121523 WO2024093582A1 (zh) 2022-10-31 2023-09-26 整车热管理系统、车辆

Country Status (2)

Country Link
CN (1) CN115817101A (zh)
WO (1) WO2024093582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115782529A (zh) * 2022-10-31 2023-03-14 蔚来汽车科技(安徽)有限公司 空调系统及其内部换热器、整车热管理系统、车辆
CN115817101A (zh) * 2022-10-31 2023-03-21 蔚来汽车科技(安徽)有限公司 整车热管理系统、车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547888A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 冷媒热管理模块、热管理系统及车辆
KR20220022536A (ko) * 2020-08-19 2022-02-28 현대자동차주식회사 전기자동차의 열관리 시스템
CN114670602A (zh) * 2022-04-25 2022-06-28 苏州市振业实业有限公司 汽车热管理系统装置及电动汽车
CN114905918A (zh) * 2022-01-27 2022-08-16 富奥汽车零部件股份有限公司 热集成模块总成以及电动汽车热管理系统
CN115042582A (zh) * 2022-06-10 2022-09-13 智己汽车科技有限公司 一种集成式换热阀模块、车辆热管理系统及其控制方法
CN115817101A (zh) * 2022-10-31 2023-03-21 蔚来汽车科技(安徽)有限公司 整车热管理系统、车辆
CN218661236U (zh) * 2022-10-31 2023-03-21 蔚来汽车科技(安徽)有限公司 整车热管理系统、车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547888A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 冷媒热管理模块、热管理系统及车辆
KR20220022536A (ko) * 2020-08-19 2022-02-28 현대자동차주식회사 전기자동차의 열관리 시스템
CN114905918A (zh) * 2022-01-27 2022-08-16 富奥汽车零部件股份有限公司 热集成模块总成以及电动汽车热管理系统
CN114670602A (zh) * 2022-04-25 2022-06-28 苏州市振业实业有限公司 汽车热管理系统装置及电动汽车
CN115042582A (zh) * 2022-06-10 2022-09-13 智己汽车科技有限公司 一种集成式换热阀模块、车辆热管理系统及其控制方法
CN115817101A (zh) * 2022-10-31 2023-03-21 蔚来汽车科技(安徽)有限公司 整车热管理系统、车辆
CN218661236U (zh) * 2022-10-31 2023-03-21 蔚来汽车科技(安徽)有限公司 整车热管理系统、车辆

Also Published As

Publication number Publication date
CN115817101A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024093582A1 (zh) 整车热管理系统、车辆
JP7427771B2 (ja) 自動車用熱管理システムおよび自動車用熱管理システムに基づく熱管理方法
WO2022267631A1 (zh) 一种热管理集成模块和电动车辆
JP4970022B2 (ja) 複合型熱交換器及び複合型熱交換器システム
WO2013114880A1 (ja) 熱交換器
CN109849616A (zh) 电动汽车热管理系统
WO2024093591A1 (zh) 整车热管理系统、车辆
TWI646288B (zh) 一種空調系統及其換熱器
CN107351627B (zh) 汽车热管理系统和电动汽车
WO2024093590A1 (zh) 空调系统及其内部换热器、整车热管理系统、车辆
CN111251809B (zh) 车辆的热管理系统及车辆
CN107351634B (zh) 汽车热管理系统和电动汽车
CN218661236U (zh) 整车热管理系统、车辆
CN113997753A (zh) 一种新能源汽车热管理系统
CN111251814A (zh) 车辆的热管理系统及车辆
JP6103186B2 (ja) 車両用ヒートポンプ装置および車両用空調装置
KR102657255B1 (ko) 차량용 히트 펌프 시스템
CN218400117U (zh) 车辆热管理系统及车辆
CN208593269U (zh) 一种新能源汽车的热管理系统
CN108248331A (zh) 热泵空调系统及电动汽车
CN218661268U (zh) 空调系统及其内部换热器、整车热管理系统、车辆
JP5819433B2 (ja) 電磁弁を備え、ヒートポンプとして動作する空調ループ
CN111251804B (zh) 车辆的热管理系统及车辆
CN218750187U (zh) 整车热管理系统、车辆
CN111251810A (zh) 车辆的热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884514

Country of ref document: EP

Kind code of ref document: A1