WO2023029577A1 - 电动车辆及其热管理装置 - Google Patents

电动车辆及其热管理装置 Download PDF

Info

Publication number
WO2023029577A1
WO2023029577A1 PCT/CN2022/092539 CN2022092539W WO2023029577A1 WO 2023029577 A1 WO2023029577 A1 WO 2023029577A1 CN 2022092539 W CN2022092539 W CN 2022092539W WO 2023029577 A1 WO2023029577 A1 WO 2023029577A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
heat transfer
interface
interfaces
valve assembly
Prior art date
Application number
PCT/CN2022/092539
Other languages
English (en)
French (fr)
Inventor
许俊波
戴海江
李贵宾
林炳荣
Original Assignee
浙江吉利控股集团有限公司
宁波吉利汽车研究开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波吉利汽车研究开发有限公司 filed Critical 浙江吉利控股集团有限公司
Publication of WO2023029577A1 publication Critical patent/WO2023029577A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of thermal management of electric vehicles, in particular to electric vehicles and thermal management devices thereof.
  • thermo management system of electric vehicles usually needs to perform thermal management on thermal management objects such as battery packs, passenger compartments, and driving groups of electric vehicles, so that the temperature of these managed objects Maintain within the operating temperature range for normal operation.
  • the thermal management system includes an air-conditioning circulation circuit for cooling or heating the passenger compartment, a battery circulation circuit for heating or cooling the battery pack, and a power cycle circuit for cooling the driving group.
  • refrigerants such as freon circulate in the air conditioning circulation pipeline
  • heat transfer media such as water and antifreeze circulate in the battery circulation pipeline and power circulation pipeline.
  • Embodiments of the present application provide an electric vehicle and a thermal management device thereof, which are used to solve the problems of large volume and difficult layout of the thermal management system in the related art.
  • thermo management device for an electric vehicle
  • the electric vehicle includes a battery pack, a drive pack, a radiator, a compressor, an internal condenser, and an internal evaporator
  • the thermal management device includes
  • the base body is provided with a valve assembly;
  • the valve assembly is provided with two first interfaces, two second interfaces and two third interfaces, and the two first interfaces are used for the driving group
  • the heat transfer pipeline is connected;
  • the two second interfaces are used for the heat transfer pipeline of the battery pack;
  • the two third interfaces are used for the radiator; the valve assembly
  • Multiple sets of two interfaces of different types can be selectively connected to form different heat transfer circuits, thereby realizing switching of different heat transfer modes.
  • an electric vehicle including a battery pack, a drive pack, a radiator, a compressor, an internal condenser, an internal evaporator, and the thermal management device as described above, and the modes of the electric vehicle include : Individual cooling of the passenger compartment, separate heating of the passenger compartment, independent cooling of the driving group, joint cooling of the driving group and the passenger compartment, common cooling of the driving group and the battery pack, joint cooling of the battery pack and the passenger compartment, and separate cooling of the battery pack by using the waste heat of the driving group Heat, use the waste heat of the driving group to heat the passenger compartment separately, and use the waste heat of the driving group to jointly heat the battery pack and the passenger compartment.
  • a valve assembly is provided on the substrate, and the valve assembly is provided with two first interfaces, two second interfaces and two third interfaces, and through the two first interfaces and
  • the heat transfer pipeline of the driving group is connected to the heat transfer pipeline of the battery assembly through two second interfaces, connected to the radiator through two third interfaces, and multiple sets of two interfaces of different types are connected through the valve assembly , to combine different heat transfer circuits.
  • FIG. 1 is a schematic diagram of a thermal management device provided in an embodiment of the present application
  • Fig. 2 is an equivalent diagram of the air-conditioning circulation pipeline part of the thermal management device shown in Fig. 1;
  • FIG. 3 is a schematic flow diagram of the heat management device shown in FIG. 1 in a first mode
  • Fig. 4 is a flow schematic diagram of the thermal management device shown in Fig. 1 in the second mode
  • FIG. 5 is a flow diagram of the thermal management device shown in FIG. 1 in a third mode.
  • 51-expansion kettle 511-the first water supply pipeline; 512-the second water supply pipeline;
  • the thermal management system includes an air conditioning circulation pipeline, a battery circulation pipeline and a power circulation pipeline.
  • the three circulating pipelines are respectively arranged at different positions of the electric vehicle, and each pipeline is provided with a plurality of valves. Therefore, when assembling, the operator needs to separately assemble each circulation pipeline and each valve.
  • Each circulation pipeline is composed of multiple branches, and different electrical devices need to be arranged on each circulation pipeline, which leads to long and difficult assembly work.
  • two or three of the three circulation pipelines can be integrated to form an integrated device, so as to reduce the time and difficulty of assembly.
  • the battery circulation pipeline and the power circulation pipeline can be combined.
  • the purpose of the power circulation pipeline is to reduce the temperature of the drive group.
  • the purpose of the battery circulation lines is to lower or raise the temperature of the battery pack.
  • the motor will generate a part of heat energy when it is working. If this part of heat energy can act on the battery, energy consumption can be reduced.
  • the following modes may be involved: the temperature of the battery pack alone, the temperature of the battery pack alone, the cooling of the driving group alone, and the cooling of the battery pack and the driving group. Therefore, the heat transfer pipeline of the battery pack and the heat transfer pipeline of the battery pack can be connected in series or in parallel.
  • the cooling of the battery pack and the drive pack can be achieved through the radiator. Since the radiator is generally cooled by cooling, the radiator is generally arranged at the position where the electric vehicle has a grille. The space at this location is generally limited, so the cooling device is not integrated with the two circulation lines.
  • a base is provided, and several pipelines and valve components are integrated on the base.
  • the valve assembly is provided with three sets of interfaces.
  • the heat transfer pipes of the battery pack, the heat transfer pipes of the drive pack, and the radiator can be respectively connected to these three groups of interfaces.
  • two different types of interfaces among the three groups of interfaces are connected to form different heat transfer circuits, thereby realizing switching of different heat transfer modes. In this way, compared with the original situation of two independent circulation pipelines, the number of pipelines and the space occupied by the pipelines are reduced.
  • part of the air conditioning circuit can also be integrated on the base body in order to further reduce the assembly time.
  • a battery cooler and a water-cooled condenser can be integrated on the substrate. Both the battery cooler and the water-cooled condenser can be provided with a heat transfer pipeline and an air-conditioning pipeline, and the heat-transfer pipeline and the corresponding air-conditioning pipeline can perform heat exchange, so as to improve the integration effect.
  • FIG. 1 is a schematic diagram of a thermal management device provided by an embodiment of the present application.
  • the thermal management device provided by the embodiment of the present application may include a substrate, on which an air conditioning cycle part and a heat transfer cycle part may be integrated.
  • the inner area of the box drawn by the two-dot chain line in FIG. 1 is the thermal management device provided by the embodiment of the present application.
  • the air-conditioning circulation part may include an air-conditioning circulation pipeline (dotted line in FIG. 1 ) and devices arranged on the air-conditioning circulation pipeline.
  • the heat transfer circulation part may include a heat transfer circulation pipeline (a solid line connecting two devices in FIG. 1 ) and devices arranged on the heat transfer circulation pipeline.
  • the air conditioning cycle part can be connected with the internal condenser 105 , the internal evaporator 104 and the compressor 11 to realize the temperature control of the passenger compartment of the electric vehicle.
  • both the internal condenser 105 and the internal evaporator 104 can be installed inside or near the passenger compartment, so as to exchange heat with the air inside the passenger compartment.
  • the compressor 11 can be arranged outside the passenger compartment, so as to prevent the noise generated by the compressor 11 from affecting the passengers or drivers in the passenger compartment.
  • the devices installed on the air-conditioning circulation pipeline may include the air-conditioning pipeline of the water-cooled condenser 4 , the air-conditioning pipeline of the battery cooler 3 and various valves.
  • the existing air-cooled condenser can be replaced with a water-cooled condenser 4 .
  • the air-cooled condenser uses a fan to exchange heat between the condenser and the outside air, so the air-cooled condenser needs to be installed at the exhaust outlet of the vehicle, and the volume of the fan is generally large.
  • the water-cooled condenser 4 utilizes a liquid heat transfer medium to cool down.
  • the water-cooled condenser 4 of the embodiment of the present application has an air-conditioning pipeline and a heat transfer pipeline.
  • the air-conditioning pipeline communicates with the air-conditioning circulation pipeline for the flow of relatively high-temperature refrigerant.
  • the heat transfer pipeline communicates with the heat transfer circulation pipeline for the flow of the lower temperature heat transfer medium.
  • the heat transfer pipeline of the water-cooled condenser 4 is exchanged with the air-conditioning pipeline, so that most of the high-temperature refrigerant in the air-conditioning pipeline changes from a gaseous state to a liquid state, and the temperature of the refrigerant decreases. It will also increase the temperature of the original lower temperature heat transfer medium in the heat transfer line, and the heat transfer medium with increased temperature can flow through the radiator 103 to lower the temperature, so as to enter the heat transfer line of the water-cooled condenser 4 again middle.
  • the battery cooler 3 can also use a liquid heat transfer medium to achieve temperature regulation.
  • the battery cooler 3 may also include an air conditioning pipeline and a heat transfer pipeline.
  • the air-conditioning pipeline of the battery cooler 3 communicates with the air-conditioning circulation pipeline for the vaporized refrigerant to flow through.
  • the heat transfer pipeline of the battery cooler 3 communicates with the heat transfer circulation pipeline for the flow of the heat transfer medium. Since the refrigerant absorbs heat when it vaporizes, after exchanging heat between the air-conditioning circulation pipeline and the heat transfer pipeline, the temperature of the heat transfer medium in the heat transfer pipeline of the battery cooler 3 can be reduced. The temperature of the battery pack 102 and/or the motor pack can be cooled through the heat transfer circulation pipeline.
  • Fig. 2 is an equivalent diagram of the air-conditioning cycle part of the thermal management device shown in Fig. 1 .
  • the heat transfer circulation pipeline may include a condensation pipeline and an evaporation pipeline.
  • the outflow end of the compressor 11 can be connected with the inflow end of the condensing pipeline
  • the outflow end of the condensing pipeline can be connected with the inflow end of the evaporation pipeline
  • the outflow end of the evaporator pipeline can be connected with the inflow end of the compressor 11 . In this way, a closed heat transfer loop is formed.
  • the condensation pipeline may include two parallel condensation branches, which may be the first condensation branch 71 and the second condensation branch 72 respectively.
  • the first condensing branch 71 can be connected to the air-conditioning pipeline of the water-cooled condenser 4
  • the second condensing branch 72 can be used for connecting the internal condenser 105 . That is to say, the internal condenser 105 is connected in parallel with the air-conditioning pipeline of the water-cooled condenser 4 .
  • Each condensing branch can be provided with at least one valve, so that the condensing branch corresponding to the valve is turned on or off.
  • a stop valve 27 may be provided upstream of the internal condenser 105 , and a stop valve 27 may also be provided upstream of the water-cooled condenser 4 .
  • a check valve 29 may be provided downstream of the internal condenser 105 , and a check valve 29 may also be provided downstream of the water-cooled condenser 4 .
  • the evaporation pipeline may include two parallel evaporation branches, namely the first evaporation branch 73 and the second evaporation branch 74 .
  • the air-conditioning pipeline of the battery cooler 3 can be connected to the first evaporating branch 73
  • the second evaporating branch 74 can be used for connecting the internal evaporator 104 . That is to say, the internal evaporator 104 is connected in parallel with the air conditioning pipeline of the battery cooler 3 .
  • Each condensing branch can be provided with at least one valve, so that the condensing branch corresponding to the valve is turned on or off.
  • an expansion valve 28 may be provided upstream of the internal evaporator 104 , and an expansion valve 28 may also be provided upstream of the battery cooling. In order to play the role of turning on or off the evaporation branch, it can also play the role of throttling.
  • the first evaporation branch 73 may also be provided with a one-way valve 29 so as to guide the flow of refrigerant.
  • the air conditioning cycle has the following modes: passenger compartment cooling, passenger compartment heating, and passenger compartment dehumidification.
  • Figure 3 and Figure 4 show the cooling mode of the passenger compartment
  • Figure 5 shows the heating mode of the passenger compartment.
  • the arrows on the air-conditioning circulation pipeline (dotted line) all indicate the flow direction of the refrigerant in the air-conditioning circulation pipeline.
  • the valves on each condensing branch and each evaporating branch are used to turn on or cut off the branch where the valve is located when switching between different air-conditioning modes.
  • the second condensing branch 72 is connected to the first evaporating branch 73 , and the water-cooled condenser 4 and the internal evaporator 104 work.
  • the water-cooled condenser 4 works, the air-conditioning pipeline and the heat transfer pipeline of the water-cooled condenser 4 are all conducted.
  • the evaporation part of the battery cooler 3 does not work, and the air-conditioning pipeline of the battery cooler 3 is not conducted, but the heat transfer pipeline of the battery cooler 3 is still conducted.
  • the first condensation branch 71 is connected to the second evaporation branch 74 , and the internal condenser 105 works with the battery cooler 3 .
  • the air-conditioning pipeline and the heat transfer pipeline of the battery cooler 3 are both connected.
  • the condensing part of the water-cooled condenser 4 does not work, and the air-conditioning pipeline of the water-cooled condenser 4 is not conducted, but the heat transfer pipeline of the water-cooled condenser 4 can still be conducted.
  • a temperature sensor 9 may be provided in the air-conditioning cycle line.
  • a temperature sensor 9 can be set in the air-conditioning circulation pipeline between the water-cooled condenser 4 and the internal evaporator 104, and a temperature sensor 9 can be set in the air-conditioning circulation pipeline between the battery cooler 3 and the compressor 11. sensor9.
  • an air-conditioning circulation pipeline between the compressor 11 and the evaporator may be provided with a gas-liquid separator 8.
  • the gas-liquid separator 8 can increase the dryness of the refrigerant flowing out of the compressor 11 .
  • the components installed on the air conditioning circulation pipeline include the heat transfer pipeline of the water-cooled condenser 4 , the heat transfer pipeline of the battery cooler 3 , the water pump, the expansion kettle 51 and the valve assembly.
  • the valve assembly can be provided with two first ports, two second ports and two third ports.
  • the two first interfaces are used for connecting the heat transfer pipeline of the driving group 101 .
  • the two second interfaces are used for connecting the heat transfer pipeline of the battery pack 102 .
  • the two third interfaces are used for connecting the radiator 103 .
  • the valve assembly can be selectively connected with multiple sets of two interfaces of different types to combine different heat transfer circuits, thereby realizing the switching of different heat transfer modes.
  • the two first interfaces can be the front-end first interface 21 and the rear-end first interface 21' respectively, and the outflow end of the heat transfer pipeline between the front-end first interface 21 and the drive group 101 can pass through the heat transfer circulation pipeline Connection, the first interface 21 ′ at the rear end can be connected with the inflow end of the heat transfer pipeline of the driving group 101 through a heat transfer circulation pipeline.
  • the two second interfaces can be the front-end second interface 22 and the rear-end second interface 22' respectively, the front-end second interface 22 and the inflow end of the heat transfer pipeline of the battery pack 102 can be connected through a heat transfer circulation pipeline, and the rear end The second interface 22' can be connected with the outflow end of the heat transfer pipeline of the battery pack 102 through a heat transfer circulation pipeline.
  • the two third interfaces can be respectively the third interface 23 at the front end and the third interface 23' at the rear end.
  • the third interface 23 at the front end can be connected to the inflow end of the radiator 103 through a heat transfer circulation pipeline.
  • the third interface 23' at the rear end The outflow end of the radiator 103 can be connected through a heat transfer circulation pipeline.
  • the heat transfer cycle part can have the following modes: driving group 101 cooling mode, battery pack 102 cooling mode, driving group 101 and battery pack 102 common cooling mode, using the waste heat of the driving
  • the waste heat of group 101 is used for passenger compartment heating mode.
  • FIG. 3 is a flow diagram of the thermal management device shown in FIG. 1 in a first mode.
  • the heat transfer pipeline of the driving group 101 in the cooling mode of the driving group 101, can be communicated with the radiator 103 through the heat transfer cycle pipeline through the valve assembly, so that the heat generated by the driving group 101 can be dissipated
  • the device 103 dissipates heat.
  • the arrows on the heat transfer pipeline in FIG. 3 indicate the flow direction of the heat transfer medium in the heat transfer circulation pipeline.
  • the front end first interface 21 communicates with the front end third interface 23
  • the front end third interface 23 communicates with the rear end third interface 23'
  • the rear end third interface 23' communicates with the rear end first interface 21'
  • the rear end third interface 23' communicates with the rear end first interface 21'.
  • the end first interface 21 ′ communicates with the front end first interface 21 .
  • the drive group 101 can form a heat transfer circulation loop with the radiator 103, and the flow path of the circulation loop is: the first interface 21 at the front end ⁇ the third interface 23 at the front end ⁇ the radiator 103 ⁇ the third interface 23′ at the rear end ⁇ the rear end
  • the first interface 21 ′ ⁇ the heat transfer pipeline of the driving group 101 ⁇ the first interface 21 at the front end. And so on.
  • the heat transfer pipeline of the driving group 101 mentioned in the embodiment of the present application refers to the heat transfer pipeline capable of exchanging heat with the driving group 101, that is, the heat generated by the driving group 101 can Transfer through the heat transfer pipeline of the driving group 101 .
  • the drive group 101 in Figures 3-5 may include a front motor 15 and a rear motor 16, and the heat transfer pipelines of the two may be connected in parallel between the front first interface 21 and the rear first interface 21' between. That is to say, for the heat transfer medium coming out of the first interface 21 ′ at the rear end, the first part of the heat transfer medium will pass through the heat transfer pipeline of the front motor, and the second part of the heat transfer medium will pass through the heat transfer pipeline of the rear end motor. After the first part of the heat transfer medium flows through the heat transfer pipeline of the front motor, the second part of the heat transfer medium flows through the heat transfer pipeline of the rear motor, and the two merge together and enter the first interface 21 at the front end.
  • the driving group 101 of the electric vehicle may also be provided with only one motor, or the driving group 101 may also be provided with more than two motors.
  • FIGS. 3-5 are just examples, and the number of heat transfer pipelines of the motor connected between the two first interfaces is not specifically limited.
  • the driving group 101 may also include electronic components such as a controller 12, a transformer 13, and a charger 14. You can set it according to specific needs.
  • FIG. 3-FIG. 5 are only for illustration and not for specific limitation.
  • the heat transfer pipeline of the water-cooled condenser 4 mentioned above may be arranged on the heat transfer circulation pipeline between the radiator 103 and one of the third interfaces.
  • the water-cooled condenser 4 works, and the heat transfer pipeline of the water-cooled condenser 4 absorbs the heat of the air-conditioning pipeline of the water-cooled condenser 4 .
  • the heat transfer pipeline of the water-cooled condenser 4 can communicate with the radiator 103 to dissipate the heat through the radiator 103 .
  • the heat transfer pipeline of the water-cooled condenser 4 is arranged on the heat transfer circulation pipeline between the radiator 103 and the third interface 23 at the front end to improve heat dissipation efficiency as an example.
  • the heat dissipation method of the heat transfer pipeline of the water-cooled condenser 4 is described below by taking the position of the heat transfer pipeline of the water-cooled condenser 4 in FIG. 3 as an example.
  • the water-cooled condenser 4 can dissipate heat together with the driving group 101 , and the water-cooled condenser 4 can also dissipate heat independently.
  • the water-cooled condenser 4 and the driving group 101 both dissipate heat through the radiator 103, and the connection method of the valve assembly can refer to FIG.
  • the front third interface 23 communicates, the front third interface 23 communicates with the rear third interface 23', the rear third interface 23' communicates with the rear first interface 21', and the rear first interface 21' communicates with the front first interface.
  • the interface 21 communicates.
  • the water-cooled condenser 4 dissipates heat independently, the third interface 23 at the front end communicates with the third interface 23' at the rear end, and the third interface 23' at the rear end communicates.
  • the third interface 23' can communicate with the fourth rear interface 24' mentioned below, the fourth rear interface 24' can communicate with the fourth front interface 24 mentioned below, and the fourth front interface 24 can communicate with the third interface 23 at the front .
  • a heat transfer pipeline of the battery cooler 3 may be provided between the front fourth interface 24 and the rear fourth interface 24 ′.
  • the air-conditioning pipeline of the battery cooler 3 does not participate in the refrigerant flow, so the heat transfer pipeline of the battery cooler 3 only functions as a channel at this time, and does not communicate with the air-conditioning pipeline of the battery cooler 3. heat exchange.
  • the heat transfer pipeline of the water-cooled condenser 4 can form a heat transfer circulation loop with the radiator 103, and the flow path of the circulation loop is: the third interface 23 at the front end ⁇ the radiator 103 ⁇ the third interface 23′ at the rear end ⁇ the rear end
  • the fourth interface 24 ′ ⁇ the heat transfer pipeline of the battery cooler 3 ⁇ the fourth interface 24 at the front end ⁇ the third interface 23 at the front end. And so on.
  • the air-conditioning pipeline of the water-cooled condenser 4 does not participate in the flow of refrigerant, and the heat transfer pipeline of the water-cooled condenser 4 only works To the channel, it does not exchange heat with the air-conditioning pipeline of the water-cooled condenser 4.
  • the valve assembly may include two spools, and the two spools are set up and down. Each spool can have a different kind of interface.
  • the upper spool may be provided with two front-end first ports 21 , front-end second ports 22 and front-end third ports 23 .
  • the lower valve core can be provided with a first port 21' at the rear end, a second port 22' at the rear end and a third port 23' at the rear end.
  • the heat transfer circulation pipeline may include an internal pipeline and an external pipeline, and different types of interfaces of the same valve core may be communicated through the internal pipeline.
  • the same type of ports of different spools can be connected through external pipelines. Whether the internal pipeline is conducted can be realized by the movement of the valve body inside the spool. There is no valve on the external pipeline, and whether the circuit where the external pipeline is located is connected or not depends on whether the interface connected to the end of the external pipeline is connected to other types of interfaces through the internal pipeline.
  • the external pipeline includes a fifth external pipeline 65 and a third external pipeline 63
  • the radiator 103 is serially connected to the fifth external pipeline 65
  • the driving group 101 is serially connected to the third external pipeline 63
  • the ports at both ends of the fifth external pipeline 65 are the front third port 23 and the rear third port 23 ′ respectively.
  • the third interface 23 at the front end communicates with the first interface 21 at the front end through an internal pipeline
  • the third interface 23' at the rear end communicates with the first interface 21' at the rear end through an internal pipeline
  • the fifth outer pipeline 65 is located Loop conduction.
  • it can be known how the circuit where the third outer pipeline 63 is located is conducted.
  • the radiator 103, the water-cooled condenser 4 and part of the driving group 101 can be arranged on the first side of the valve assembly.
  • two first ports and two third ports can be arranged on the first side of the valve assembly.
  • the two third interfaces may be located between the two first interfaces or the two first interfaces may be arranged between the two third interfaces. If the valve assembly is provided with the fifth port 25 mentioned below, two third ports can be arranged between the two first ports in order to avoid pipeline crossing.
  • the battery pack 102 is disposed on the second side of the valve assembly. And the two second interfaces are arranged on the second side of the valve assembly.
  • the cooling mode of the battery pack 102 will be described below.
  • the battery pack 102 can be refrigerated by the radiator 103 or by the battery cooler 3 .
  • the valve assembly may be provided with two fourth ports, which may be the fourth port at the front end 24 and the fourth port at the rear end 24 ′ respectively.
  • the heat transfer pipeline of the battery cooler 3 can be connected to the heat transfer circulation pipeline between the two fourth interfaces.
  • the air-conditioning pipeline of the battery cooler 3 participates in the refrigerant flow, that is, the refrigerant in the air-conditioning pipeline of the battery cooler 3 vaporizes and absorbs heat, and the heat transfer pipeline of the battery cooler 3 It is necessary to provide heat for the air conditioning pipeline of the battery cooler 3 .
  • the heat transfer pipeline of the battery cooler 3 is communicated with the heat transfer pipeline of the battery pack 102 so as to reduce the heat of the battery pack 102 while providing heat for the air conditioning pipeline of the battery cooler 3 .
  • the heat transfer circulation pipeline may include a fourth outer pipeline 64 and a sixth outer pipeline 66 .
  • the battery pack 102 is connected in series to the fourth external pipeline 64
  • the battery cooler 3 is connected in series to the sixth external pipeline 66 .
  • the second port 22' at the rear end can communicate with the fourth port 24' at the rear end through an internal pipeline
  • the fourth port 24' at the rear end can communicate with the fourth port 24 at the front end through the fourth port 24 at the front end.
  • the six external pipelines 66 are connected, the front fourth interface 24 can communicate with the front second interface 22 through the internal pipeline, and the front second interface 22 can communicate with the rear second interface 22 ′ through the fourth external pipeline 64 .
  • the heat transfer pipeline of the battery cooler 3 can form a heat transfer circulation loop with the battery pack 102, and the flow path of the circulation loop is: the heat transfer pipeline of the battery pack 102 ⁇ the second interface 22' at the rear end ⁇ the second interface 22' at the rear end Four interface 24 ′ ⁇ heat transfer pipeline of battery cooler 3 ⁇ front fourth interface 24 ⁇ front second interface 22 ⁇ heat transfer pipeline of battery pack 102 . And so on.
  • the battery cooler 3 can be installed on the second side of the valve assembly.
  • two fourth ports can also be arranged on the second side of the valve assembly.
  • two fourth interfaces can be located between two second interfaces.
  • the front-end first interface 21 can communicate with the front-end third interface 23 through an internal pipeline
  • the front-end third interface 23 can communicate with the rear-end third interface 23′ through the fifth external pipeline 65
  • the fourth interface 24' at the rear end can communicate with the fourth interface 24 at the front end through the sixth external pipeline 66
  • the fourth interface 24 at the front end can communicate with the second interface at the front end 22 internal pipeline communication
  • the second interface 22 at the front end can communicate with the second interface 22 at the rear end through the fourth external pipeline 64
  • the second interface 22' at the rear end can communicate with the first interface 21' at the rear end through an internal pipeline
  • the first interface 21 ′ at the rear end can communicate with the first interface 21 at the front end through the third
  • a heat transfer circulation loop is formed between the heat transfer pipeline of the battery pack 102, the heat transfer pipeline of the driving group 101, and the radiator 103.
  • the flow path of the circulation loop is: the first interface 21 at the front end ⁇ the third interface 23 at the front end ⁇ water cooling Heat transfer pipeline of condenser 4 ⁇ radiator 103 ⁇ third rear interface 23 ′ ⁇ fourth rear interface 24 ′ ⁇ heat transfer pipeline of battery cooler 3 ⁇ fourth front interface 24 ⁇ second front interface 22 ⁇ the heat transfer pipeline of the battery pack 102 ⁇ the second interface 22 ′ at the rear end ⁇ the first interface 21 ′ at the rear end ⁇ the first interface 21 at the front end. And so on.
  • the waste heat of the drive pack 101 can be used to heat the battery pack 102 and/or the passenger compartment, so as to reduce the power consumption of the battery pack 102 and improve the battery life of the electric vehicle.
  • the valve assembly can be provided with a fifth interface 25, and the valve assembly can selectively make the heat transfer circulation pipeline between the front third interface 23 and the fifth interface 25 conduct, or the front third interface 23 and the rear end
  • the heat transfer circulation pipeline between the third interfaces 23' is connected. That is to say, the third port 23 ′ at the rear end and the fifth port 25 are connected in parallel on the heat transfer circulation pipeline of the third port 23 at the front end.
  • the fifth interface 25 can be arranged on the first side of the valve assembly, and can be located between the two third interfaces, so as to simplify the pipeline.
  • the valve core located below may include a first port 21 ′ at the rear end, a second port 22 ′ at the rear end, a third port 23 ′ at the rear end, a fourth port 24 ′ at the rear end and a fifth port 25 .
  • the heat transfer circulation pipeline may include a first outer pipeline 61 , and the fifth interface 25 communicates with the third interface 23 at the front end through the first outer pipeline 61 .
  • the first external pipeline 61 and the fifth external pipeline 65 are connected in parallel to the third interface 23 at the front end.
  • the heat transfer circulation pipeline may also include a dry path arranged upstream of the first outer pipeline 61 and the fifth outer pipeline 65, and the water-cooled condenser 4 may be arranged on the main road, so that the water-cooled condenser
  • the heat transfer pipeline of 4 participates in the refrigeration and heating cycle. That is to say, the heat transfer medium coming out of the third interface 23 at the front end first passes through the heat transfer pipeline of the water-cooled condenser 4 arranged on the main road, and then enters the first outer pipeline 61 or the third outer pipeline 63 .
  • the transmission The thermal cycle part realizes the heat dissipation function.
  • the waste heat of the driving group 101 can be used to heat the battery pack 102 and/or the passenger compartment.
  • the front-end first interface 21 can communicate with the front-end third interface 23, and the front-end third interface 23 can Communicate with the fifth interface 25, the fifth interface 25 can communicate with the fourth interface 24' at the rear end, the fourth interface 24' at the rear end can communicate with the fourth interface 24 at the front end, and the fourth interface 24 at the front end can communicate with the second interface at the front end 22, the front second interface 22 can communicate with the rear front second interface 22, the rear second interface 22' can communicate with the rear first interface 21', the rear first interface 21' can communicate with the front first interface 21 connected.
  • the heat transfer pipeline of the battery pack 102 and the heat transfer pipeline of the driving group 101 form a heat transfer circulation loop, and the flow path of the circulation loop is: the first interface 21 at the front end ⁇ the third interface 23 at the front end ⁇ the heat transfer of the water-cooled condenser 4 Pipeline ⁇ the fifth interface 25 ⁇ the fourth interface 24' at the rear end ⁇ the heat transfer pipeline of the battery cooler 3 ⁇ the fourth interface 24 at the front end ⁇ the second interface 22 at the front end ⁇ the heat transfer pipeline of the battery pack 102 ⁇ the first Second interface 22 ′ ⁇ back end first interface 21 ′ ⁇ front end first interface 21 . And so on.
  • connection mode of each interface of the valve assembly is the same as that of using the waste heat of the driving group 101 mentioned above to heat the battery
  • the connections of the interfaces of the valve assemblies in group 102 in the individual heating mode are the same. The difference is that, as shown in Figure 5, the heating mode of the passenger compartment is turned on at this time, the air-conditioning pipeline of the battery cooler 3 is working, and the air-conditioning pipeline of the battery cooler 3 will absorb heat through the heat transfer pipeline of the battery cooler 3
  • the heat generated by the driving group 101 is used to improve the heating efficiency of the air conditioning cycle part.
  • valve assembly is also provided with a sixth interface 26, and the valve assembly can selectively connect the heat transfer circulation pipeline between the front second interface 22 and the rear second interface 22', or make the sixth The heat transfer circulation pipeline between the interface 26 and the second rear end 22' is connected. That is to say, the front-end second interface 22 and the sixth interface 26 are connected in parallel on the heat transfer loop of the rear-end second interface 22'.
  • the heat transfer circulation pipeline where the heat transfer pipeline of the battery pack 102 is located is conducted to realize battery Cooling mode for pack 102 or heating mode for battery pack 102 .
  • the sixth interface 26 is connected to the second interface 22 ′ at the rear end, the heat transfer pipeline of the battery pack 102 can be prevented from participating in the heat transfer cycle.
  • the sixth interface 26 can be arranged on the second side of the valve assembly.
  • the sixth interface 26 can be located between the first interface 21 at the front end and the fourth interface 24 at the front end, so as to facilitate the arrangement of pipelines.
  • the upper spool may include a front first port 21 , a front second port 22 , a front third port 23 , a front fourth port 24 and a sixth port 26 .
  • the heat transfer circulation circuit may include a second outer circuit 62 .
  • the sixth interface 26 can communicate with the second interface 22 ′ at the rear end through the second external pipeline 62 .
  • the second external pipeline 62 and the fourth external pipeline 64 are connected in parallel to the second interface 22' at the rear end.
  • the air-conditioning pipeline of the battery cooler 3 In the mode of using the waste heat of the driving group 101 to heat the passenger compartment alone (the passenger compartment is heated, the battery pack 102 is not heated), the air-conditioning pipeline of the battery cooler 3 is working at this time, and the air-conditioning pipeline of the battery cooler 3 will be The heat generated by the driving group 101 is absorbed by the heat transfer pipeline passing through the battery cooler 3 .
  • the front-end first interface 21 communicates with the front-end third interface 23, the front-end third interface 23 communicates with the fifth interface 25, the fifth interface 25 communicates with the rear-end fourth interface 24', and the rear-end fourth interface 24' communicates with the front-end
  • the fourth interface 24 communicates, the front fourth interface 24 communicates with the sixth interface 26, the sixth interface 26 communicates with the rear second interface 22', the rear second interface 22' communicates with the rear first interface 21', and the rear The end first interface 21 ′ communicates with the front end first interface 21 .
  • a heat transfer circulation loop is formed between the heat transfer pipeline of the driving group 101 and the heat transfer pipeline of the battery cooler 3, and the flow path of the circulation loop is: the first interface 21 at the front end ⁇ the third interface 23 at the front end ⁇ the fifth interface 25 ⁇ The fourth interface 24' at the rear end ⁇ the heat transfer pipeline of the battery cooler 3 ⁇ the fourth interface 24 at the front end ⁇ the sixth interface 26 ⁇ the second interface 22' at the rear end ⁇ the first interface 21' at the rear end ⁇ the first interface at the front end twenty one. And so on.
  • the thermal management device provided by the embodiment of the present application can realize the following modes: separate cooling of the passenger compartment, separate heating of the passenger compartment, separate cooling of the driving group 101, common cooling of the driving group 101 and the passenger compartment, and common cooling of the driving group 101 and the battery pack 102 Common refrigeration, common cooling of the battery pack 102 and the passenger compartment, separate heating of the battery pack 102 by using the waste heat of the driving group 101, separate heating of the passenger compartment by using the waste heat of the driving group 101, and common heating of the battery pack 102 and the passenger compartment by using the waste heat of the driving group 101 Heating.
  • valve assembly may or may not be integrated with the valve controller 12 for controlling the on-off of the internal pipeline.
  • the thermal management device may include a plurality of temperature sensors 9 , and each temperature sensor 9 may be electrically connected to a valve controller 12 .
  • At least one temperature sensor 9 can be arranged on the third outer pipeline 63 between the first interface and the heat transfer pipeline of the driving group 101, and is used to detect the temperature of the third outer pipeline 63, so as to obtain the temperature of the driving group 101.
  • At least one temperature sensor 9 can be arranged on the fourth external pipeline 64 between the second interface and the heat transfer pipeline of the battery pack 102, and is used to detect the temperature of the fourth external pipeline 64, so as to obtain the battery pack 102 temperature.
  • a first water pump 52 may also be provided on the substrate, and the first water pump 52 may be connected in series with the heat transfer pipeline of the driving group 101 between the two first interfaces, so as to control where the heat transfer pipeline of the driving group 101 is located.
  • the flow direction of the heat transfer medium of the circuit may also be provided on the substrate, and the first water pump 52 may be connected in series with the heat transfer pipeline of the driving group 101 between the two first interfaces, so as to control where the heat transfer pipeline of the driving group 101 is located. The flow direction of the heat transfer medium of the circuit.
  • a second water pump 53 may also be provided on the substrate, and the second water pump 53 may be connected in series with the heat transfer pipeline of the battery pack 102 between the two second interfaces, so as to control where the heat transfer pipeline of the battery pack 102 is located.
  • the flow direction of the heat transfer medium of the circuit may also be provided on the substrate, and the second water pump 53 may be connected in series with the heat transfer pipeline of the battery pack 102 between the two second interfaces, so as to control where the heat transfer pipeline of the battery pack 102 is located. The flow direction of the heat transfer medium of the circuit.
  • an expansion pot 51 may also be provided on the base, and the expansion pot 51 may have two water supply pipelines.
  • One of the water supply pipelines can be used to supply water to the circuit where the driving group 101 is located, and the other water supply pipeline can be used to supply water to the circuit where the battery pack 102 is located.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in direct contact with each other.
  • Features come into contact indirectly through intermediaries.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种电动车辆及其热管理装置,其中,电动车辆的热管理装置包括基体,基体上设置有阀门组件;阀门组件设有两个第一接口(21、21')、两个第二接口(22、22')以及两个第三接口(23、23'),两个第一接口(21、21')用于供驱动组(101)的传热管路接入;两个第二接口(22、22')用于供电池组(102)的传热管路接入;两个第三接口(23、23')用于供散热器(103)接入;阀门组件可选择地连通多组不同种类的两个接口,以组合出不同的传热回路,进而实现不同的传热模式的切换。电动车辆包括电池组(102)、驱动组(101)、散热器(103)、压缩机(11)、内部冷凝器(105)、内部蒸发器(104)以及如上的热管理装置。该电动车辆及其热管理装置,具有管路数量少,装置整体的体积小,零件的集成度高,易于电动车辆的装配的优点。

Description

电动车辆及其热管理装置
本申请要求于2021年9月1日提交中国专利局、申请号为202111021957.0、申请名称为“电动车辆及其热管理装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动车辆的热管理技术领域,尤其涉及电动车辆及其热管理装置。
背景技术
由于电动车辆使用电池作为动力源,因此其具有节能、环保等特点。目前电动车辆已逐步普及于市场,在实际应用场景中,电动车辆的热管理系统通常需要对电动车辆的电池组、乘员舱、驱动组等热管理对象进行热管理,以使这些管理对象的温度维持在可正常运行的工作温度范围内。
在相关技术中,热管理系统包括用于乘员舱制冷或制热的空调循环管路、用于电池组升温或降温的电池循环管路以及用于驱动组降温的动力循环管路。其中,如氟利昂等冷媒在空调循环管路中循环,如水、防冻液等传热介质在电池循环管路以及动力循环管路中循环。
然而,这三条循环管路相互独立,且每条循环管路均设置有多个阀门。操作人员在组装时需要分别组装每条管路以及每个阀门,这就导致该热管理系统组装困难。
发明内容
本申请实施例提供一种电动车辆及其热管理装置,用以解决相关技术的热管理系统体积大、布置困难的问题。
为实现上述目的,本申请提供了如下技术方案:
本申请实施例的一个方面提供一种热管理装置,用于电动车辆,所述电动车辆包括电池组、驱动组、散热器、压缩机、内部冷凝器以及内部蒸发器,所述热管理装置包括基体,所述基体上设置有阀门组件;所述阀门组件设有两个第一接口、两个第二接口以及两个第三接口,两个所述第一接口用于供所述驱动组的传热管路接入;两个所述第二接口用于供所述电池组的传热管路接入;两个所述第三接口用于供所述散热器接入;所述阀门组件可选择地连通多组不同种类的两个接口,以组合出不同的传热回路,进而实现不同的传热模式的切换。
本申请实施例的另一个方面提供一种电动车辆,包括电池组、驱动组、散热器、压缩机、内部冷凝器、内部蒸发器以及如上所述的热管理装置,所述电动车辆的模式包括:乘员舱单独制冷、乘员舱单独制热、驱动组单独制冷、驱动组与乘员舱共同制冷、驱动组与电池组共同制冷、电池组与乘员舱共同制冷、利用驱动组余热给电池组单独制热、利用驱动组余热给乘员舱单独制热、利用驱动组余热给电池组与乘员舱共同制热。
本申请提供的电动车辆及其热管理装置,通过在基体上设置阀门组件,阀门组件设有 两个第一接口、两个第二接口以及两个第三接口,且通过两个第一接口与驱动组的传热管路连接,通过两个第二接口与电池组件的传热管路连接,通过两个第三接口与散热器连接,并通过阀门组件使多组不同种类的两个接口连通,以组合出不同的传热回路。如此,不仅减少了管路的数量,缩小了装置整体的体积,还提高零件的集成度,利于电动车辆的装配。
除了上面所描述的本申请实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请实施例所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的热管理装置的示意图;
图2为图1示出的热管理装置的空调循环管路部分的等效图;
图3为图1示出的热管理装置在第一种模式下的流动示意图;
图4为图1示出的热管理装置在第二种模式下的流动示意图
图5为图1示出的热管理装置在第三种模式下的流动示意图。
附图标记说明:
11-压缩机;12-控制器;13-变电器;14-充电器;15-前电机;16-后电机;
21-前端第一接口;21′-后端第一接口;
22-前端第二接口;22′-后端第二接口;
23-前端第三接口;23′-后端第三接口;
24-前端第四接口;24′-后端第四接口;
25-第五接口;
26-第六接口;
27-截止阀;
28-膨胀阀;
29-单向阀;
3-电池冷却器;
4-水冷冷凝器;
51-膨胀水壶;511-第一供水管路;512-第二供水管路;
52-第一水泵;
53-第二水泵;
61-第一外管路;62-第二外管路;63-第三外管路;64-第四外管路;65-第五外管路;66-第六外管路;
71-第一冷凝支路;72-第二冷凝支路;73-第一蒸发支路;74-第二蒸发支路;
8-气液分离器;
9-温度传感器;
101、驱动组;102、电池组;103、散热器;104、内部蒸发器;105、内部冷凝器。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
在相关技术中,热管理系统包括空调循环管路、电池循环管路以及动力循环管路。在装配时这三条循环管路分别设置在电动车辆的不同位置,且每条管路均设有多个阀门。故操作人员在装配时,需要对每条循环管路和每个阀门进行单独组装。每条循环管路均由多条支路构成,且每条循环管路上均需要设置不同的电器件,这就导致了组装工作耗时长且组装困难。
有鉴于此,本申请实施例可将这三条循环管路中的两条或三条集成,以形成一个集成装置,以便降低组装的时间与组装的难度。其中,由于电池循环管路与动力循环管路中循环的都为传热介质,故可将电池循环管路与动力循环管路相结合。由于动力循环管路的目的在于降低驱动组的温度。电池循环管路的目的在于降低或升高电池组的温度。而电机在工作时会产生一部分热能,若这部分热能可以作用在电池上,则能够减少能源的消耗。
故在实际需求中,可能涉及以下几种模式:电池组单独升温、电池组单独降温、驱动组单独降温、电池组与驱动组一起降温。故电池组的传热管路与电池组的传热管路能够串联也能够并联。而电池组与驱动组的降温均可通过散热器实现。由于散热器一般通过进行降温,故散热器一般设置在电动车辆有格栅的位置。该位置的空间一般有限,故散热装置并不与两个循环管路集成在一起。
本申请实施例通过设置基体,并在基体上集成若干管路以及阀门组件。阀门组件设有三组接口。在组装时,可将电池组的传热管路、驱动组的传热管路以及散热器分别接入这三组接口中。在不同模式下,这三组接口中的两两不同种类的接口相连通,以组合出不同的传热回路,进而实现不同的传热模式的切换。如此,相比原来两条独立的循环管路的情况,减少了管路的数量与管路所占的空间。
此外,也可将部分空调循环管路集成在基体上,以便进一步降低组装时间。而为了将空调循环管路与传热循环管路集成,可在基体上集成电池冷却器以及水冷冷凝器。该电池冷却器与水冷冷凝器均可设有传热管路与空调管路,传热管路与对应的空调管路可进行热交换,以便于提升集成效果。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
图1为本申请实施例提供的热管理装置的示意图。如图1所示,本申请实施例提供的热管理装置可包括基体,基体上可集成有空调循环部分与传热循环部分。图1中的双点划线所绘制的方框的内部区域为本申请实施例提供的热管理装置。其中,空调循环部分可包括空调循环管路(图1中的虚线)以及设置在空调循环管路上的器件。传热循环部分可包括传热循环管路(图1中连接两个器件之间的实线)以及设置在传热循环管路上的器件。
首先来介绍空调循环部分。由图1可知,空调循环部分可与内部冷凝器105、内部蒸发器104以及压缩机11连接,以实现电动车辆的乘员舱的温度调控。其中,内部冷凝器105 与内部蒸发器104均可安装在乘员舱的内部或附近,以便实现与乘员舱内部空气换热。压缩机11可设置在乘员舱的外侧,以避免压缩机11工作时产生的噪音影响乘员舱内的乘客或驾驶员。
继续参考图1,设置在空调循环管路上的器件可有水冷冷凝器4的空调管路、电池冷却器3的空调管路以及各类阀门。其中,为了实现空调循环部分与传热循环部分的交互,以便简化管路,可将现有的风冷冷凝器换成水冷冷凝器4。
具体而言,冷凝器在参与乘员舱温度调控过程中,会产生大量的热量。风冷冷凝器是利用风机来实现冷凝器与外界空气换热的,故风冷冷凝器需要设置在车辆的排风口处,且风机的体积一般较大。而水冷冷凝器4是利用液态的传热介质进行降温。本申请实施例的水冷冷凝器4具有空调管路与传热管路。空调管路与空调循环管路连通,以供较高温的冷媒流过。传热管路与传热循环管路连通,以供较低温的传热介质流过。该水冷冷凝器4的传热管路与空调管路进行交换,使得空调管路中原较高温的冷媒大部分由气态转为液态,且冷媒的温度降低。也会使得传热管路中原较低温的传热介质温度升高,该温度升高的传热介质可流过散热器103以使得温度降下来,以便再次进入水冷冷凝器4的传热管路中。
同理,电池冷却器3也可利用液态的传热介质实现温度的调控。具体而言,电池冷却器3也可包括空调管路以及传热管路。该电池冷却器3的空调管路与空调循环管路连通,以供发生汽化的冷媒流过。该电池冷却器3的传热管路与传热循环管路连通,以供传热介质流过。由于冷媒汽化时吸热,在将空调循环管路与传热管路进行热交换后,能够使得电池冷却器3的传热管路中的传热介质的温度降低,该较低温的传热介质可通过传热循环管路使得电池组102和/或电机组降温。
图2为图1示出的热管理装置的空调循环部分的等效图。参考图1和图2,传热循环管路可包括冷凝管路以及蒸发管路。其中,压缩机11的流出端可与冷凝管路的流入端连接,冷凝管路的流出端可与蒸发管路的流入端连接,蒸发器管路的流出端可与压缩机11的流入端连接。如此,形成闭合的传热循环回路。
另外,冷凝管路可包括并联的两条冷凝支路,分别可为第一冷凝支路71以及第二冷凝支路72。第一冷凝支路71可连接有水冷冷凝器4的空调管路,第二冷凝支路72可用于供内部冷凝器105接入。也就是说,内部冷凝器105与水冷冷凝器4的空调管路并联。每条冷凝支路可各设有至少一个阀门,以使得该阀门所对应的冷凝支路导通或截止。
示例性地,图1和图2中,内部冷凝器105的上游可设有截止阀27,水冷冷凝器4的上游也可设有截止阀27。另外,为了更好地引导冷凝支路内的冷媒的流动方向,在内部冷凝器105的下游可设有单向阀29,在水冷冷凝器4的下游也设有单向阀29。
此外,蒸发管路可包括并联的两条蒸发支路,分别为第一蒸发支路73与第二蒸发支路74。第一蒸发支路73上可连接有电池冷却器3的空调管路,第二蒸发支路74可用于供内部蒸发器104接入。也就是说,内部蒸发器104与电池冷却器3的空调管路并联。每条冷凝支路可各设有至少一个阀门,以使得该阀门所对应的冷凝支路导通或截止。
示例性地,图1和图2中,内部蒸发器104的上游可设有膨胀阀28,电池冷却的上游也可设有膨胀阀28。以便在起到导通或截止蒸发支路的作用的同时,还能够起到节流的作用。可选地,第一蒸发支路73也可设有单向阀29,以便于引导冷媒的流动。
需要说明的是,空调循环部分有一下几种模式:乘员舱制冷、乘员舱制热、乘员舱除 湿。图3和图4示出的是乘员舱制冷模式,图5示出的是乘员舱制热模式。图3-图5中,空调循环管路(虚线)上的箭头均表示空调循环管路内的冷媒的流动方向。每条冷凝支路与每条蒸发支路上的阀门均用于在不同空调模式切换时导通或截止阀门所在的支路。
示例性地,参考图2-图4,在乘员舱制冷模式中,第二冷凝支路72与第一蒸发支路73导通,水冷冷凝器4与内部蒸发器104工作。水冷冷凝器4工作时,水冷冷凝器4的空调管路与传热管路均导通。另外,此时电池冷却器3的蒸发部分不工作,电池冷却器3的空调管路不导通,然而电池冷却器3的传热管路仍可导通。
参考图2和图5,在乘员舱制热模式中,第一冷凝支路71与第二蒸发支路74导通,内部冷凝器105与电池冷却器3工作。电池冷却器3工作时,电池冷却器3的空调管路与传热管路均导通。此时水冷冷凝器4的冷凝部分不工作,及水冷冷凝器4的空调管路不导通,然而水冷冷凝器4的传热管路仍可导通。
可选地,为了获得空调循环部分的制冷能力效率与制热效率,可通过在空调循环管路设置温度传感器9。示例性地,图1中,可在水冷冷凝器4与内部蒸发器104之间的空调循环管路设置温度传感器9,可在电池冷却器3与压缩机11之间的空调循环管路设置温度传感器9。
可选地,为了保护压缩机11,在压缩机11与蒸发器之间的空调循环管路可设置有气液分离器8。气液分离器8能够提高流出压缩机11的冷媒的干度。
下面来描述传热循环部分。
参考图1,设置在空调循环管路上的器件可有水冷冷凝器4的传热管路、电池冷却器3的传热管路、水泵、膨胀水壶51以及阀门组件。阀门组件可设有两个第一接口、两个第二接口以及两个第三接口。两个第一接口用于供驱动组101的传热管路接入。两个第二接口用于供电池组102的传热管路接入。两个第三接口用于供散热器103接入。阀门组件可选择地连通多组不同种类的两个接口,以组合出不同的传热回路,进而实现不同的传热模式的切换。
具体而言,两个第一接口分别可为前端第一接口21与后端第一接口21′,前端第一接口21与驱动组101的传热管路的流出端可通过传热循环管路连接,后端第一接口21′与驱动组101的传热管路的流入端可通过传热循环管路连接。
两个第二接口分别可为前端第二接口22与后端第二接口22′,前端第二接口22与电池组102的传热管路的流入端可通过传热循环管路连接,后端第二接口22′与电池组102的传热管路的流出端可通过传热循环管路连接。
两个第三接口分别可为前端第三接口23与后端第三接口23′,前端第三接口23与散热器103的流入端可通过传热循环管路连接,后端第三接口23′与散热器103的流出端可通过传热循环管路连接。
传热循环部分可有一下几种模式:驱动组101制冷模式、电池组102制冷模式、驱动组101与电池组102共同制冷模式、利用驱动组101的余热给电池组102制热模式、利用驱动组101的余热给乘员舱制热模式。
图3为图1示出的热管理装置在第一种模式下的流动示意图。参考图3,在驱动组101制冷模式中,可通过阀门组件使得驱动组101的传热管路与散热器103之间通过传热循环管路连通,以使得驱动组101产生的热量能够通过散热器103进行散热。
示例性地,图3中的传热管路上的箭头表示传热循环管路中的传热介质的流动方向。参考图3,前端第一接口21与前端第三接口23连通、前端第三接口23与后端第三接口23′连通、后端第三接口23′与后端第一接口21′连通、后端第一接口21′与前端第一接口21连通。驱动组101可与散热器103之间形成传热循环回路,该循环回路的流动路径为:前端第一接口21→前端第三接口23→散热器103→后端第三接口23′→后端第一接口21′→驱动组101的传热管路→前端第一接口21。如此循环下去。
需要说明的是,本申请实施例所提到的驱动组101的传热管路指的是能够与驱动组101进行热交换的传热管路,也就是说,驱动组101所产生的热量能够通过该驱动组101的传热管路传递。另外,图3-图5中的驱动组101可包括前电机15与后电机16,两者的传热管路可采用并联的形式接入前端第一接口21与后端第一接口21′之间。也就是说,从后端第一接口21′出来的传热介质,第一部分传热介质会经过前端电机的传热管路,第二部分传热介质会经过后端电机的传热管路。在第一部分传热介质流过前端电机的传热管路后,第二部分传热介质流过后端电机的传热管路后,两者汇合在一起进入前端第一接口21。
当然,电动车辆的驱动组101也可只设有一个电机,或者,驱动组101也可设有超过两个电机。图3-图5只是举例说明,对两个第一接口之间所连接的电机的传热管路的数量不做具体限定。另外,驱动组101还可包括控制器12、变电器13、充电器14等需要电子器件,这些电子器件的传热管路与电机的传热管路之间的连接方式采用并联还是者串联,可参考具体需求进行设置。图3-图5只是举例说明,并不做具体限定。
可选地,上文提到的水冷冷凝器4的传热管路可设置在散热器103与其中一个第三接口之间的传热循环管路上。在乘员舱制冷模式时,水冷冷凝器4工作,该水冷冷凝器4的传热管路吸收该水冷冷凝器4的空调管路的热量。该水冷冷凝器4的传热管路可与散热器103连通,以通过散热器103将该热量散发。图3中以在水冷冷凝器4的传热管路设置在散热器103与前端第三接口23之间的传热循环管路上,以提高散热效率为例示出。下文以图3中水冷冷凝器4的传热管路的位置为例来说明水冷冷凝器4的传热管路的散热方式。其中,水冷冷凝器4可与驱动组101共同散热,水冷冷凝器4也可单独散热。
示例性地,在乘员舱与驱动组101共同制冷模式下,水冷冷凝器4与驱动组101均通过散热器103进行散热,阀门组件的连接方式可参考图3中,即前端第一接口21与前端第三接口23连通、前端第三接口23与后端第三接口23′连通、后端第三接口23′与后端第一接口21′连通、后端第一接口21′与前端第一接口21连通。
另一示例性地,在乘员舱单独制冷模式下(乘员舱制冷,驱动组101不制冷),水冷冷凝器4单独散热,前端第三接口23与后端第三接口23′连通、后端第三接口23′可与下文提到的后端第四接口24′连通、后端第四接口24′与下文提到的前端第四接口24连通、前端第四接口24与前端第三接口23连通。其中,前端第四接口24与后端第四接口24′之间可设有电池冷却器3的传热管路。在乘员舱制冷模式下,电池冷却器3的空调管路不参与冷媒流动,故此时电池冷却器3的传热管路只起到通道的作用,并不与电池冷却器3的空调管路进行换热。
水冷冷凝器4的传热管路可与散热器103之间形成传热循环回路,该循环回路的流动路径为:前端第三接口23→散热器103→后端第三接口23′→后端第四接口24′→电池冷却器3的传热管路→前端第四接口24→前端第三接口23。如此循环下去。
需要说明的是,在驱动组101单独制冷模式(驱动组101制冷,乘员舱不制冷)时,水冷冷凝器4的空调管路不参与冷媒的流动,水冷冷凝器4的传热管路只起到通道的作用,并不与水冷冷凝器4的空调管路进行换热。
为了简化与阀门组件的接口连接的传热循环管路,可对阀门组件的各个接口进行优化布局。参考图1-图5,可选地,阀门组件可包括两个阀芯,两个阀芯上、下设置。每个阀芯可具有不同种类的接口。示例性地,位于上方的阀芯可设有两个前端第一接口21、前端第二接口22以及前端第三接口23。位于下方的阀芯可设有后端第一接口21′、后端第二接口22′以及后端第三接口23′。
传热循环管路可包括内部管路以及外部管路,同一个阀芯的不同种类接口之间可通过内部管路连通。不同阀芯的同种类接口可通过外部管路连通。内部管路是否导通可通过阀芯内部的阀体运动实现。外部管路上未设置阀门,外部管路所在的回路是否导通,根据该条外部管路的端部所连的接口是否与其它种类接口通过内部管路导通实现。
示例性地,外部管路包括第五外管路65以及第三外管路63,散热器103串接在第五外管路65上,驱动组101串接在第三外管路63上。第五外管路65的两端的接口分别为前端第三接口23与后端第三接口23′。图3中前端第三接口23与前端第一接口21通过内部管路连通,后端第三接口23′与后端第一接口21′通过内部管路连通,故第五外管路65所在的回路导通。同理,可知第三外管路63所在的回路如何导通。
由于散热器103的主要功用是为驱动组101和/或水冷冷凝器4散热,可将散热器103、水冷冷凝器4以及部分驱动组101布置在阀门组件的第一侧。为了缩短传热循环管路的路径,可将两个第一接口与两个第三接口设置在阀门组件的第一侧。为了避免传热循环管路之间相互交叉,可使得两个第三接口位于两个第一接口之间或者两个第一接口设置在两个第三接口之间。如果该阀门组件设置下文提到的第五接口25,则为了避免管路交叉可将两个第三接口设置在两个第一接口之间。另外,电池组102布置在阀门组件的第二侧。且两个第二接口设置在阀门组件的第二侧。下面来描述电池组102制冷模式。电池组102可通过散热器103制冷,也可通过电池冷却器3制冷。
示例性地,阀门组件可设有两个第四接口,分别可为前端第四接口24与后端第四接口24′。电池冷却器3的传热管路可连接在两个第四接口之间的传热循环管路上。在乘员舱制热、电池组102制冷模式下,电池冷却器3的空调管路参与冷媒流动,即电池冷却器3的空调管路中的冷媒汽化吸热,电池冷却器3的传热管路需要为电池冷却器3的空调管路提供热量。将该电池冷却器3的传热管路与电池组102的传热管路连通,以便于在为电池冷却器3的空调管路提供热量的同时,能够降低电池组102的热量。
具体而言,传热循环管路可包括第四外管路64与第六外管路66。电池组102串接在第四外管路64上,电池冷却器3串接在第六外管路66上。参考图3中的阀门组件的右半部分,后端第二接口22′可与后端第四接口24′通过内部管路连通、后端第四接口24′可与前端第四接口24通过第六外管路66连通、前端第四接口24可与前端第二接口22通过内部管路连通、前端第二接口22可与后端第二接口22′通过第四外管路64连通。电池冷却器3的传热管路可与电池组102之间形成传热循环回路,该循环回路的流动路径为:电池组102的传热管路→后端第二接口22′→后端第四接口24′→电池冷却器3的传热管路→前端第四接口24→前端第二接口22→电池组102的传热管路。如此循环下去。
其中,由于电池冷却器3的主要功用是为电池组102散热,故可将电池冷却器3安装在阀门组件的第二侧。为了缩短路径,两个第四接口也可设置在阀门组件的第二侧。为了避免管路交叉,可将两个第四接口位于两个第二接口之间。
另一示例性地,参考图4,在电池组102通过散热器103制冷时,可存在电池组102与驱动组101共同制冷模式。此时,前端第一接口21可与前端第三接口23通过内部管路连通、前端第三接口23可与后端第三接口23′通过第五外管路65连通、后端第三接口23′可与后端第四接口24′通过内部管路连通、后端第四接口24′可与前端第四接口24通过第六外管路66连通、前端第四接口24可与前端第二接口22内部管路连通、前端第二接口22可与后前端第二接口22通过第四外管路64连通、后端第二接口22′可与后端第一接口21′通过内部管路连通、后端第一接口21′可与前端第一接口21通过第三外管路63连通。
电池组102的传热管路、驱动组101的传热管路以及散热器103之间形成传热循环回路,该循环回路的流动路径为:前端第一接口21→前端第三接口23→水冷冷凝器4的传热管路→散热器103→后端第三接口23′→后端第四接口24′→电池冷却器3的传热管路→前端第四接口24→前端第二接口22→电池组102的传热管路→后端第二接口22′→后端第一接口21′→前端第一接口21。如此循环下去。
需要说明的是,在电池组102与驱动组101共同制冷模式下,水冷冷凝器4的传热管路与电池冷却器3的空调管路均不参与冷媒流动,水冷冷凝器4的传热管路与电池冷却器3的传热管路只起到通道的作用。水冷冷凝器4的传热管路并不与水冷冷凝器4的空调管路换热,电池冷却器3的传热管路并不与电池冷却器3的空调管路进行换热。
为了节省电池组102电能的消耗,可利用驱动组101的余热对电池组102和/或乘员舱进行制热,以减少电池组102的耗电量,提高电动车辆的续航能力。
示例性地,阀门组件可设有第五接口25,阀门组件可选择地使得前端第三接口23与第五接口25之间的传热循环管路导通,或者前端第三接口23与后端第三接口23′之间的传热循环管路导通。也就是说,后端第三接口23′与第五接口25并联在前端第三接口23的传热循环管路上。
其中,第五接口25可设置在阀门组件的第一侧,且可位于两个第三接口之间,以便于简化管路。位于下方的阀芯可包括后端第一接口21′、后端第二接口22′、后端第三接口23′、后端第四接口24′以及第五接口25。传热循环管路可包括第一外管路61,第五接口25与前端第三接口23通过第一外管路61连通。第一外管路61与第五外管路65并联接入前端第三接口23。需要说明的是,传热循环管路还可包括设置在第一外管路61与第五外管路65的上游的干路,水冷冷凝器4可设置在该干路上,以便于水冷冷凝器4的传热管路参与制冷、制热循环。也就是说,从前端第三接口23出来的传热介质先经过设置在干路上的水冷冷凝器4的传热管路后再进入第一外管路61或第三外管路63。
另外,在前端第三接口23与后端第三接口23′之间的传热循环管路导通时,即如图3和图4散热器103所在的传热循环管路导通,该传热循环部分实现的是散热功能。在前端第三接口23与第五接口25导通时,如图5所示,可利用驱动组101的余热对电池组102和/或乘员舱制热。
在利用驱动组101的余热对电池组102单独制热模式中(电池组102制热,乘员舱不 制热),前端第一接口21可与前端第三接口23连通、前端第三接口23可与第五接口25连通、第五接口25可与后端第四接口24′连通,后端第四接口24′连通可与前端第四接口24连通、前端第四接口24可与前端第二接口22连通、前端第二接口22可与后前端第二接口22连通、后端第二接口22′可与后端第一接口21′连通、后端第一接口21′可与前端第一接口21连通。电池组102的传热管路与驱动组101的传热管路形成传热循环回路,该循环回路的流动路径为:前端第一接口21→前端第三接口23→水冷冷凝器4的传热管路→第五接口25→后端第四接口24′→电池冷却器3的传热管路→前端第四接口24→前端第二接口22→电池组102的传热管路→后端第二接口22′→后端第一接口21′→前端第一接口21。如此循环下去。
另一示例性地,在利用驱动组101的余热对乘员舱与电池组102共同制热模式中,阀门组件的各个接口的连接方式,与,上文提到的利用驱动组101的余热对电池组102单独制热模式中的阀门组件的各个接口的连接方式相同。不同之处在于,如图5所示,此时乘员舱制热模式打开,电池冷却器3的空调管路工作,电池冷却器3的空调管路会通过电池冷却器3的传热管路吸收驱动组101产生的热量,以便于提高空调循环部分的制热效率。
再一示例性地,阀门组件还设有第六接口26,阀门组件可选择地使前端第二接口22与后端第二接口22′之间的传热循环管路导通,或者使得第六接口26与后端第二22′之间的传热循环管路导通。也就是说,前端第二接口22与第六接口26并联在后端第二接口22′的传热循环回路上。其中,如图3-图5所示,在前端第二接口22与后端第二接口22′导通时,电池组102的传热管路所在的传热循环管路导通,以实现电池组102的制冷或电池组102的制热模式。在第六接口26与后端第二接口22′导通时,能够避免电池组102的传热管路参与传热循环。
其中,第六接口26可设置在阀门组件的第二侧。第六接口26可位于前端第一接口21与前端第四接口24之间,以便于管路的布置。位于上方的阀芯可包括前端第一接口21、前端第二接口22、前端第三接口23、前端第四接口24以及第六接口26。传热循环管路可包括第二外管路62。第六接口26可与后端第二接口22′通过第二外管路62连通。第二外管路62与第四外管路64并联接入后端第二接口22′。
在利用驱动组101的余热对乘员舱单独制热模式(乘员舱制热,电池组102不制热)中,此时电池冷却器3的空调管路工作,电池冷却器3的空调管路会通过电池冷却器3的传热管路吸收驱动组101产生的热量。其中,前端第一接口21与前端第三接口23连通、前端第三接口23与第五接口25连通、第五接口25与后端第四接口24′连通、后端第四接口24′与前端第四接口24连通、前端第四接口24与第六接口26连通、第六接口26与后端第二接口22′连通、后端第二接口22′与后端第一接口21′连通、后端第一接口21′与前端第一接口21连通。
驱动组101的传热管路与电池冷却器3的传热管路之间形成传热循环回路,该循环回路的流动路径为:前端第一接口21→前端第三接口23→第五接口25→后端第四接口24′→电池冷却器3的传热管路→前端第四接口24→第六接口26→后端第二接口22′→后端第一接口21′→前端第一接口21。如此循环下去。
综上,本申请实施例提供的热管理装置可实现如下模式:乘员舱单独制冷、乘员舱单独制热、驱动组101单独制冷、驱动组101与乘员舱共同制冷、驱动组101与电池组102 共同制冷、电池组102与乘员舱共同制冷、利用驱动组101余热给电池组102单独制热、利用驱动组101余热给乘员舱单独制热、利用驱动组101余热给电池组102与乘员舱共同制热。
值得说明的是,阀门组件可集成用于控制内部管路通断的阀门控制器12,也可不集成该用于控制内部管路通断的阀门控制器12。
可选地,本申请实施例提供的热管理装置可包括多个温度传感器9,每个温度传感器9均可与阀门控制器12电连接。至少一个温度传感器9可设置在第一接口与驱动组101的传热管路之间的第三外管路63上,且用于检测第三外管路63的温度,以便于获得驱动组101的温度。至少一个温度传感器9可设置在第二接口与电池组102的传热管路之间的第四外管路64上,且用于检测第四外管路64的温度,以便于获得电池组102的温度。
可选地,基体上还可设有第一水泵52,第一水泵52可与驱动组101的传热管路串联在两个第一接口之间,以便控制驱动组101的传热管路所在的回路的传热介质的流动方向。
可选地,基体上还可设有第二水泵53,第二水泵53可与电池组102的传热管路串联在两个第二接口之间,以便控制电池组102的传热管路所在的回路的传热介质的流动方向。
可选地,基体上还可设有膨胀水壶51,膨胀水壶51可具有两条供水管路。其中一条供水管路可用于为驱动组101所在回路供水,另一条供水管路可用于为电池组102所在回路供水。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
其中,“上”、“下”等的用语,是用于描述各个结构在附图中的相对位置关系,仅为便于叙述的明了,而非用以限定本申请可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请可实施的范畴。
需要说明的是:在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
此外,在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电动车辆的热管理装置,所述电动车辆包括电池组、驱动组、散热器、压缩机、内部冷凝器以及内部蒸发器,其特征在于,所述电动车辆的热管理装置包括基体,所述基体上设置有阀门组件;
    所述阀门组件设有两个第一接口、两个第二接口以及两个第三接口,两个所述第一接口用于供所述驱动组的传热管路接入;两个所述第二接口用于供所述电池组的传热管路接入;两个所述第三接口用于供所述散热器接入;
    所述阀门组件可选择地连通多组不同种类的两个接口,以组合出不同的传热回路,进而实现不同的传热模式的切换。
  2. 根据权利要求1所述的电动车辆的热管理装置,其特征在于,所述基体上还设置有电池冷却器,所述阀门组件还设有两个第四接口,所述电池冷却器的传热管路连接在两个所述第四接口之间的传热循环管路上。
  3. 根据权利要求2所述的电动车辆的热管理装置,其特征在于,所述基体上还设置有水冷冷凝器,所述水冷冷凝器的传热管路串联在所述散热器与其中一个所述第三接口的传热循环管路上。
  4. 根据权利要求2或3所述的电动车辆的热管理装置,其特征在于,所述第一接口与所述第三接口设置在所述阀门组件的第一侧,且两个所述第三接口位于两个所述第一接口之间;所述第二接口设置在所述阀门组件的第二侧。
  5. 根据权利要求4所述的电动车辆的热管理装置,其特征在于,所述阀门组件还设有第五接口,所述第五接口设置在所述阀门组件的第一侧,且位于两个所述第三接口之间;
    所述阀门组件可选择地使得所述第五接口与其中一个所述第三接口之间的传热循环管路导通,或者,使得两个所述第三接口之间的传热循环管路导通。
  6. 根据权利要求4所述的电动车辆的热管理装置,其特征在于,两个所述第四接口设置在所述阀门组件的第二侧,且位于两个所述第二接口之间。
  7. 根据权利要求6所述的电动车辆的热管理装置,其特征在于,所述阀门组件还设有第六接口,所述第六接口设置在所述阀门组件的第二侧,所述第六接口位于相邻的所述第一接口与所述第四接口之间;所述阀门组件可选择地使得所述第六接口与其中一个所述第二接口之间的传热循环管路导通,或者,使得两个所述第二接口之间的传热循环管路导通。
  8. 根据权利要求1-7任一项所述的电动车辆的热管理装置,其特征在于,所述阀门组件设有两组阀芯,每组所述阀芯各设有至少三个接口,同一种接口分别设置于不同所述阀芯;和/或,
    所述基体上还设有第一水泵,所述第一水泵与所述驱动组的传热管路串联在两个所述第一接口之间;和/或,
    所述基体上还设有膨胀水壶,所述膨胀水壶具有两条供水管路,其中一条所述供水管路用于为所述驱动组所在回路供水,另一条所述供水管路用于为所述电池组所在回路供水;和/或,
    还包括多个温度传感器,至少一个所述温度传感器设置在所述驱动组的传热管路所在的传热循环管路上,且用于检测所述驱动组的传热管路的温度;至少一个所述温度传感器设置在所述电池组的传热管路所在的传热循环管路上,且用于检测所述电池组的传热管路的温度。
  9. 根据权利要求3所述的电动车辆的热管理装置,其特征在于,所述基体还设有 串联的冷凝管路与蒸发管路,所述冷凝管路的流入端与所述蒸发管路的流出端用于供所述压缩机接入;
    所述冷凝管路包括并联的两条冷凝支路,其中一条所述冷凝支路上设有所述水冷冷凝器的空调管路,另一条冷凝支路用于供所述内部冷凝器接入;
    所述蒸发管路包括并联的两条蒸发支路,其中一条蒸发支路上设有所述电池冷却器的空调管路,另一条蒸发支路用于供所述内部蒸发器接入;
    每条所述冷凝支路与每条蒸发支路均设有一个阀门,每个所述阀门均用于在不同空调模式切换时导通或截止所述阀门所在的支路。
  10. 一种电动车辆,其特征在于,包括电池组、驱动组、散热器、压缩机、内部冷凝器、内部蒸发器以及如权利要求1-9任一项所述的电动车辆的热管理装置,所述电动车辆的模式包括:乘员舱单独制冷、乘员舱单独制热、驱动组单独制冷、驱动组与乘员舱共同制冷、驱动组与电池组共同制冷、电池组与乘员舱共同制冷、利用驱动组余热给电池组单独制热、利用驱动组余热给乘员舱单独制热、利用驱动组余热给电池组与乘员舱共同制热。
PCT/CN2022/092539 2021-09-01 2022-05-12 电动车辆及其热管理装置 WO2023029577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111021957.0 2021-09-01
CN202111021957.0A CN113715576A (zh) 2021-09-01 2021-09-01 电动车辆及其热管理装置

Publications (1)

Publication Number Publication Date
WO2023029577A1 true WO2023029577A1 (zh) 2023-03-09

Family

ID=78680647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092539 WO2023029577A1 (zh) 2021-09-01 2022-05-12 电动车辆及其热管理装置

Country Status (2)

Country Link
CN (1) CN113715576A (zh)
WO (1) WO2023029577A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715576A (zh) * 2021-09-01 2021-11-30 浙江吉利控股集团有限公司 电动车辆及其热管理装置
CN113815382A (zh) * 2021-09-29 2021-12-21 浙江吉利控股集团有限公司 电动汽车及其热泵空调系统
WO2023160883A1 (de) * 2022-02-28 2023-08-31 HELLA GmbH & Co. KGaA Kühlmittelsystem für ein elektrofahrzeug und kühlsystem für ein elektrofahrzeug mit einem kühlmittelsystem und einem kältemittelkreislauf

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013670A1 (ja) * 2012-07-18 2014-01-23 株式会社デンソー 車両用熱管理システム
CN106166933A (zh) * 2015-05-20 2016-11-30 福特全球技术公司 用于车辆的热量管理系统
US20180006347A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Battery coolant circuit control
CN208615672U (zh) * 2018-06-11 2019-03-19 上海威乐汽车空调器有限公司 电动汽车热管理系统
CN209426528U (zh) * 2019-01-21 2019-09-24 吉林大学 一种电动汽车整车热管理系统
CN111376672A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 热管理系统、方法及车辆
CN112277559A (zh) * 2020-09-17 2021-01-29 华为技术有限公司 冷却液热控模块、电动车热管理系统及电动车
CN113715576A (zh) * 2021-09-01 2021-11-30 浙江吉利控股集团有限公司 电动车辆及其热管理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097664B (zh) * 2017-04-25 2024-03-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理系统
DE102017121188B3 (de) * 2017-09-13 2019-02-21 Borgward Trademark Holdings Gmbh Fahrzeug-Thermomanagementsystem und Fahrzeug
CN109927507A (zh) * 2017-12-15 2019-06-25 郑州宇通客车股份有限公司 一种电动汽车用整车液流循环热管理系统
KR20190127219A (ko) * 2018-05-04 2019-11-13 한온시스템 주식회사 차량용 열관리 시스템
CN112109518B (zh) * 2019-06-21 2024-06-14 天津天汽集团有限公司 一种电动汽车热管理系统及其控制方法、电动汽车
CN212386266U (zh) * 2020-03-10 2021-01-22 长城汽车股份有限公司 车辆的热管理系统和具有其的车辆
CN212386267U (zh) * 2020-03-10 2021-01-22 长城汽车股份有限公司 车辆的热管理系统和具有其的车辆
CN111959224A (zh) * 2020-07-07 2020-11-20 浙江吉智新能源汽车科技有限公司 一种热泵系统及车辆
CN112319181B (zh) * 2020-12-01 2022-02-01 南京协众汽车空调集团有限公司 一种新能源汽车整车集成式热管理系统及其工作方法
CN112549902B (zh) * 2020-12-18 2022-02-01 郑州大学 多模式冷媒直冷型新能源汽车热管理机组及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013670A1 (ja) * 2012-07-18 2014-01-23 株式会社デンソー 車両用熱管理システム
CN106166933A (zh) * 2015-05-20 2016-11-30 福特全球技术公司 用于车辆的热量管理系统
US20180006347A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Battery coolant circuit control
CN208615672U (zh) * 2018-06-11 2019-03-19 上海威乐汽车空调器有限公司 电动汽车热管理系统
CN111376672A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 热管理系统、方法及车辆
CN209426528U (zh) * 2019-01-21 2019-09-24 吉林大学 一种电动汽车整车热管理系统
CN112277559A (zh) * 2020-09-17 2021-01-29 华为技术有限公司 冷却液热控模块、电动车热管理系统及电动车
CN113715576A (zh) * 2021-09-01 2021-11-30 浙江吉利控股集团有限公司 电动车辆及其热管理装置

Also Published As

Publication number Publication date
CN113715576A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN111216515B (zh) 一种电动汽车热管理系统
WO2023029577A1 (zh) 电动车辆及其热管理装置
US9751378B2 (en) Air conditioning system and heat exchanger
WO2021036957A1 (zh) 用于汽车的热管理系统以及基于该系统的热管理方法
US9428032B2 (en) Electric vehicle and thermal management system therefor
WO2023045358A1 (zh) 电动车辆及其热管理器
CN107351627B (zh) 汽车热管理系统和电动汽车
CN111231770A (zh) 车辆热管理系统和车辆
CN111231656B (zh) 车辆热管理系统和车辆
CN112302778A (zh) 一种混合动力汽车整车热管理装置及管理方法
WO2023284356A1 (zh) 热管理系统和电动汽车
CN216659503U (zh) 车辆热管理系统
CN218986288U (zh) 热管理模块及具有其的车辆
CN218228565U (zh) 车辆热管理系统和具有其的车辆
US20220212518A1 (en) Thermal management system
CN111845244B (zh) 热综合管理系统
CN221113430U (zh) 热管理系统和车辆
CN219382150U (zh) 热管理模块及热管理系统
WO2023051146A1 (zh) 车辆的热管理系统以及车辆
CN221049414U (zh) 车辆的热管理系统和车辆
CN219236755U (zh) 车辆的热管理系统及车辆
CN113733848B (zh) 一种一体化水冷混合动力汽车热管理系统
CN218839120U (zh) 热泵系统和电动车
WO2024027183A1 (zh) 一种热管理组件、热管理系统、车辆
CN218505614U (zh) 混合动力车辆的热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE