WO2021036921A1 - 移相器及天线 - Google Patents

移相器及天线 Download PDF

Info

Publication number
WO2021036921A1
WO2021036921A1 PCT/CN2020/110420 CN2020110420W WO2021036921A1 WO 2021036921 A1 WO2021036921 A1 WO 2021036921A1 CN 2020110420 W CN2020110420 W CN 2020110420W WO 2021036921 A1 WO2021036921 A1 WO 2021036921A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
branch structure
electrode layer
branch
electrode
Prior art date
Application number
PCT/CN2020/110420
Other languages
English (en)
French (fr)
Inventor
唐粹伟
武杰
丁天伦
王瑛
贾皓程
李亮
李强强
车春城
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/290,399 priority Critical patent/US11936083B2/en
Publication of WO2021036921A1 publication Critical patent/WO2021036921A1/zh
Priority to US18/441,927 priority patent/US20240186670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present disclosure belongs to the field of communication technology, and specifically relates to a phase shifter and an antenna.
  • the liquid crystal phase shifter by adjusting the voltage difference loaded on two metal plates on different sides, the liquid crystal molecules are driven to deflect, and different liquid crystal material characteristics are obtained, and the capacitance value of the variable capacitor is correspondingly obtained.
  • the ground electrode and signal electrode of the CPW structure are in the same plane.
  • the signal electrode of the CPW in the liquid crystal cell and the periodic capacitor patch loaded on different sides form an overlapping capacitor, forming a voltage difference between the two planes.
  • This structure requires a capacitor patch Connect the ground electrode on the side of the signal electrode to form a current loop.
  • the current method of connecting the capacitor patch and the ground electrode is realized by adding metal balls (particles) that are slightly thicker than the liquid crystal cell.
  • the specific area realized by the particles The controllability of the conductive properties is low.
  • phase shifter which includes a first substrate and a second substrate that are oppositely disposed, and a dielectric layer located between the first substrate and the second substrate, wherein,
  • the first substrate includes a first substrate, a first electrode layer disposed on a side of the first substrate close to the dielectric layer, and the second substrate includes a second substrate, disposed close to the second substrate.
  • One of the first electrode layer and the second electrode layer includes a main structure and a branch structure connected to the main structure,
  • the orthographic projection of the end of the branch structure facing away from the main structure on the first substrate is similar to the orthographic projection of the second electrode layer on the first substrate.
  • the orthographic projections overlap,
  • the orthographic projection of the end of the branch structure away from the main structure on the first substrate is the same as that of the first electrode layer on the first substrate The orthographic projections overlap.
  • the first electrode layer includes a main structure and a branch structure; the branch structure includes a first branch structure connected to the first side of the main structure, and a first branch structure connected to the main structure.
  • the second branch structure on the second side opposite to one side,
  • the second electrode layer includes a first reference electrode and a second reference electrode spaced apart, and the reference voltage lead-in terminal is connected to the first reference electrode and the second reference electrode,
  • the orthographic projection of the main structure of the first electrode layer on the first substrate is located between the orthographic projections of the first reference electrode and the second reference electrode on the first substrate,
  • the orthographic projection of the first reference electrode on the first substrate overlaps the orthographic projection of the end of the first branch structure facing away from the main structure on the first substrate,
  • the orthographic projection of the second reference electrode on the first substrate overlaps the orthographic projection of the end of the second branch structure facing away from the main structure on the first substrate.
  • the second electrode layer includes a main structure and a branch structure
  • the main structure includes a first main structure and a second main structure
  • the branch structure includes a first branch structure and a second branch structure
  • the first branch structure is connected to a side of the first main structure close to the second main structure
  • the second branch structure is connected to a side of the second main structure close to the first main structure. side
  • the reference voltage lead-in terminal is connected to the first main body structure and the second main body structure,
  • the orthographic projection of the first electrode layer on the first substrate is located between the orthographic projections of the first body structure and the second body structure on the first substrate;
  • the orthographic projection of the first electrode layer on the first substrate and the end of the first branch structure away from the first main structure, and the end of the second branch structure away from the second main structure overlap.
  • first branch structure and the second branch structure are arranged in a one-to-one correspondence, and the correspondingly arranged first branch structure and the second branch structure are connected to form an integral structure.
  • the second electrode layer includes a main structure and a branch structure; the branch structure is connected to a side of the main structure close to the first electrode layer, and the branch structure is close to the The orthographic projection of one end of the first electrode layer on the first substrate overlaps the orthographic projection of the first electrode layer on the first substrate, and the reference voltage introduction end is connected to the main structure.
  • the first electrode layer includes a main structure and a branch structure
  • the branch structure includes a first branch structure connected to the first side of the main structure, and a first branch structure connected to the main structure.
  • the second branch structure on the second side opposite to one side,
  • the second electrode layer includes a first reference electrode and a second reference electrode arranged at intervals, a third branch structure connected to a side of the first reference electrode close to the second reference electrode, and a third branch structure connected to the A fourth branch structure of the second reference electrode on the side close to the first reference electrode,
  • the reference voltage lead-in terminal is connected to the first reference electrode and the second reference electrode
  • the orthographic projection of the main structure on the first substrate is located between the orthographic projections of the first reference electrode and the second reference electrode on the first substrate,
  • the first branch structure and the third branch structure are arranged in a one-to-one correspondence, and the orthographic projections on the first substrate are at least partially overlapped,
  • the second branch structure and the fourth branch structure are arranged in one-to-one correspondence, and the orthographic projections on the first substrate at least partially overlap.
  • the first electrode layer includes a main structure and a branch structure connected to a side of the main structure close to the second electrode layer
  • the second electrode layer includes a reference electrode and a branch structure connected to The branch structure of the reference electrode on the side close to the first electrode layer, the branch structure of the first electrode layer and the branch structure of the second electrode layer are arranged in one-to-one correspondence, and the two are in the first electrode layer.
  • the orthographic projection on a substrate at least partially overlaps, and the reference voltage lead-in terminal is connected to the reference electrode.
  • the reference voltage lead-in terminal includes a ground signal lead-in terminal.
  • the reference voltage lead-in terminal is connected to the reference voltage through a signal connection line.
  • the second electrode layer is connected,
  • the signal connection line and the reference voltage lead-in terminal are formed of the same material and the same layer, or the second electrode layer is formed of the same material and the same layer.
  • the main structure and the branch structure are integrally formed structures.
  • the branch structures on the same side of the main structure are arranged periodically.
  • the dielectric layer includes liquid crystal molecules.
  • An embodiment of the present disclosure also provides an antenna, which includes the above-mentioned phase shifter.
  • FIG. 1 is a top view of an implementation manner of a liquid crystal phase shifter according to an embodiment of the disclosure
  • FIG. 2 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 1;
  • FIG. 3 is a top view of an implementation manner of the liquid crystal phase shifter according to an embodiment of the disclosure.
  • FIG. 4 is a top view of an implementation manner of the liquid crystal phase shifter according to the embodiment of the disclosure.
  • FIG. 5 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 4;
  • FIG. 6 is a top view of an implementation manner of the liquid crystal phase shifter according to an embodiment of the disclosure.
  • FIG. 7 is a top view of an implementation manner of the liquid crystal phase shifter according to an embodiment of the disclosure.
  • FIG. 8 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 7;
  • FIG. 9 is a top view of an implementation manner of the liquid crystal phase shifter according to an embodiment of the disclosure.
  • FIG. 10 is a cross-sectional view of the liquid crystal phase shifter shown in FIG. 9;
  • FIG. 11 is a top view of an implementation manner of the liquid crystal phase shifter according to an embodiment of the disclosure.
  • the embodiment of the present disclosure provides a phase shifter, which is specifically an improvement of a co-surface waveguide (CPW) type phase shifter.
  • the phase shifter includes a first substrate, a second substrate, and a dielectric layer provided between the first substrate and the second substrate.
  • the dielectric layer includes, but is not limited to, liquid crystal molecules.
  • the phase shifter is a liquid crystal phase shifter.
  • the liquid crystal phase shifter is taken as an example to describe the phase shifter in the embodiments of the present disclosure in detail.
  • the first substrate of the phase shifter in the embodiment of the present disclosure includes a first substrate, a first electrode layer disposed on the side of the first substrate close to the dielectric layer, and the second substrate includes a second substrate disposed on the first substrate.
  • the second electrode layer on the side of the two substrate close to the dielectric layer.
  • One of the first electrode layer and the second electrode layer includes a main body structure, and a branch structure connected to the main body structure.
  • the first electrode layer includes a main structure and a branch structure
  • the orthographic projection of the end of the branch structure facing away from the main structure on the first substrate overlaps the orthographic projection of the second electrode layer on the first substrate;
  • the second electrode layer When the main structure and the branch structure are included, the orthographic projection of the end of the branch structure facing away from the main structure on the first substrate overlaps the orthographic projection of the first electrode layer on the first substrate.
  • a reference voltage lead-in terminal is provided on the side of the second substrate close to the dielectric layer, and the reference voltage lead-in terminal is electrically connected to the second electrode layer, so that when a microwave signal is input to the first electrode layer, The first electrode layer and the second electrode layer form a current loop.
  • the first electrode layer is used to input microwave signals, that is, the microwave signal is input through the first electrode layer, and the second electrode layer is used as a reference electrode.
  • the first electrode layer includes a main structure and a branch structure
  • the orthographic projection of the branch structure of the first electrode layer on the first substrate overlaps the orthographic projection of the second electrode layer on the first substrate.
  • the second The electrode layer is used as a reference electrode, and in this embodiment, the second electrode layer is directly connected to the reference voltage lead-in terminal, and the reference voltage is written into the second electrode layer through the reference voltage lead-in terminal, which can make the main structure and branch of the first electrode layer
  • the structure forms a current loop with the second electrode layer.
  • the second electrode layer on the second substrate is connected to the reference voltage introduction terminal (that is, the ground terminal) on the first substrate through a conductive metal ball.
  • the structure of the liquid crystal phase shifter in the embodiment is simple and the integration is high.
  • the second electrode layer may also include a main structure and a branch structure.
  • the reference voltage introduction terminal may be connected to the main structure or branch structure of the second electrode layer, so that the main structure, branch structure, and second electrode layer of the second electrode layer can be connected.
  • An electrode layer forms a current loop.
  • the specific working principle is similar to the above-mentioned principle, so it will not be repeated here.
  • the following takes the first electrode layer as the signal electrode, the second electrode layer as the reference electrode, and the reference voltage lead-in terminal and the second electrode layer are arranged in the same layer as an example. Description.
  • the liquid crystal phase shifter of the embodiment of the present disclosure includes a first substrate and a second substrate disposed oppositely, and a liquid crystal disposed between the first substrate and the second substrate. Layer 30.
  • the first substrate may include a first substrate 10, and a signal electrode 1 disposed on a side of the first substrate 10 close to the liquid crystal layer 30.
  • the signal electrode 1 includes a main structure 11 and a branch structure.
  • the branch structure includes a first branch structure 12 and The second branch structure 13, the first branch structure 12 is connected to the first side of the main structure 11, and the second branch structure 13 is connected to the second side of the main structure 11 opposite to the first side.
  • the second substrate may include a second substrate 20, a reference electrode 2 disposed on the second substrate 20 close to the liquid crystal layer 30, and a reference voltage introduction terminal 3.
  • the reference electrode 2 includes a first reference electrode 21 and a second reference electrode 22 arranged at intervals , And the orthographic projection of the main structure 11 of the signal electrode 1 on the first substrate 10 is located between the orthographic projections of the first reference electrode 21 and the second reference electrode 22 on the first substrate 10, and the first reference electrode 21 is on the first substrate 10.
  • the orthographic projection on the substrate 10 overlaps with the orthographic projection of the end of the first branch structure 12 of the signal electrode 1 away from the main structure 11 on the first substrate 10; the orthographic projection of the second reference electrode 22 on the first substrate 10 overlaps The orthographic projection of the end of the second branch structure 13 of the signal electrode 1 away from the main structure 11 on the first substrate 10 overlaps.
  • first reference electrode 21 and the second reference electrode 22 can be connected to the same reference voltage lead-in terminal 3, or can be connected to different reference voltage lead-in terminals 3, but it should be understood that no matter they are connected to the same reference voltage
  • the voltage lead-in terminal 3 is still connected to a different reference voltage lead-in terminal 3.
  • the reference voltage signals input by the first reference electrode 21 and the second reference electrode 22 are usually the same, and can make the signal electrode 1 input a microwave signal when the signal electrode 1 inputs a microwave signal.
  • a signal voltage lead-in terminal is provided on the first substrate, and the signal voltage lead-in terminal is connected to the signal electrode 1 through a signal connection line to provide a signal voltage for the signal electrode 1, and the signal voltage is connected to the reference voltage.
  • the voltage value is different.
  • both the first branch structure 12 and the second branch structure 13 of the signal electrode 1 are arranged periodically.
  • the first branch structure 12 and the second branch structure 13 may be symmetrically arranged along the main structure, and the distance between any two adjacent first branch structures 12 may be the same, or monotonically increase or decrease according to a certain rule.
  • the distance between any two adjacent second branch structures 13 may be the same, or monotonically increase or decrease according to a certain rule.
  • the distance between any two adjacent first branch structures 12 may also be different, and may not be arranged according to the law; the orthographic projection of each first branch structure 12 on the first substrate 10 and the first reference electrode 21
  • the overlapping area of the orthographic projection on the first substrate 10 can also be different; similarly, the distance between any two adjacent second branch structures 12 can also be different, and may not be arranged according to the law;
  • the overlap area of the orthographic projection of the second branch structure 12 on the first substrate 10 and the orthographic projection of the second reference electrode 21 on the first substrate 10 may also be different.
  • the signal electrode 1 may also include only one of the first branch structure 12 and the second branch structure 13, and the main body structure 11; and the signal electrode 1 includes the first branch structure
  • the reference electrode 2 includes the first reference electrode 21 but does not include the second reference electrode 22.
  • the reference electrode 1 includes the second reference electrode 22 but does not include the first reference electrode 21.
  • the working principle of the liquid crystal phase shifter of this structure is substantially the same as the working principle of the liquid crystal phase shifter of the above structure, and will not be described in detail here.
  • the liquid crystal phase shifter of the embodiment of the present disclosure includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal disposed between the first substrate and the second substrate. Layer 30.
  • the first substrate may include a first substrate 10 and a signal electrode 1 disposed on a side of the first substrate 10 close to the liquid crystal layer 30.
  • the second substrate may include a second substrate 20, a reference electrode 2 disposed on a side of the second substrate 20 close to the liquid crystal layer 30, and a reference voltage lead-in terminal 3.
  • the reference electrode 2 includes a first reference electrode 21 and a second reference electrode 22.
  • the first reference electrode 21 includes a first body structure 211, and a first branch structure 212 connected to a side of the first body structure 211 close to the signal electrode 1
  • the second reference electrode 22 includes a second body structure 221, and
  • the second branch structure 222 connected to the side of the second main structure 221 close to the signal electrode 1, the first main structure 211 and the second main structure 221 are both connected to the reference voltage introduction terminal 3. It should be understood that it is also feasible to connect both the first branch structure 212 and the second branch structure 222 to the reference voltage introduction terminal 3.
  • a signal voltage lead-in terminal is provided on the first substrate 10, and the signal voltage lead-in terminal is connected to the signal electrode 1 through a signal connection line to provide a signal voltage for the signal electrode 1.
  • the signal voltage is connected to the reference The voltage value of the voltage is different.
  • the orthographic projection of the signal electrode 1 on the first substrate 10 is located on the front of the first body structure 211 of the first reference electrode 21 and the second body structure 221 of the second reference electrode 22 on the first substrate 10. Between projections. The orthographic projections of the first branch structure 212 of the first reference electrode 21 and the second branch structure 222 of the second reference electrode 22 on the first substrate 10 overlap with the orthographic projection of the signal electrode 1 on the first substrate 10, respectively. .
  • the signal electrode 1 inputs a microwave signal
  • the voltage applied to the signal electrode 1, the first branch structure 212 of the first reference electrode 21 and the second branch structure 222 of the second reference electrode 22 can be used to make
  • the dielectric constant of the liquid crystal layer 30 in the liquid crystal capacitor formed by the signal electrode 1 and the first branch structure 212 of the first reference electrode 21 and the second branch structure 222 of the second reference electrode 22 is changed to change the phase of the microwave signal .
  • the first branch structure 212 of the first reference electrode 21 and the second branch structure 222 of the second reference electrode 22 may both be periodically arranged.
  • the spacing between any two adjacent first branch structures 212 of the first reference electrode 21 may be the same, or monotonically increase or decrease according to a certain rule; similarly, any two adjacent first branch structures 212 of the second reference electrode 22
  • the distance between the two branch structures 222 may be the same, or monotonically increase or decrease according to a certain rule.
  • the phase shift of the microwave signal input from the signal electrode 1 is controlled.
  • the distance between any two adjacent first branch structures 12 may also be different, and may not be arranged according to the law; the orthographic projection of each first branch structure 12 on the first substrate 10 and the first reference electrode 21
  • the overlapping area of the orthographic projection on the first substrate 10 can also be different; similarly, the distance between any two adjacent second branch structures 12 can also be different, and may not be arranged according to the law;
  • the overlap area of the orthographic projection of the second branch structure 12 on the first substrate 10 and the orthographic projection of the second reference electrode 21 on the first substrate 10 may also be different.
  • the reference electrode 2 may include the first reference electrode 21 instead of the second reference electrode 22, and the first reference electrode 21 may include the first reference electrode 21.
  • the main structure 211 and the first branch structure 212, the working principle of the liquid crystal phase shifter of this structure is substantially the same as the working principle of the above liquid crystal phase shifter, and will not be described in detail here.
  • the reference electrode 2 may also include a second reference electrode 22 instead of the first reference electrode 21, and the second reference electrode 22 may include a second body structure 221 and a second branch structure 222.
  • the working principle of the phase shifter is also roughly the same as the working principle of the above-mentioned liquid crystal phase shifter, and will not be described in detail here.
  • the first branch structure 212 of the first reference electrode 21 and the second branch structure 222 of the second reference electrode 22 It can be arranged in one-to-one correspondence, and the correspondingly arranged first branch structure 212 and second branch structure 222 can be an integrally formed structure. In this case, it is only necessary to connect the reference voltage lead-in terminal 3 to one of the first main structure 211 and the second main structure 221.
  • the working principle of this liquid crystal phase shifter is the same as that of the above liquid crystal phase shifter, so it will not be repeated here.
  • the liquid crystal phase shifter of the embodiment of the present disclosure includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal disposed between the first substrate and the second substrate. Layer 30.
  • the first substrate may include a first substrate 10, and a signal electrode 1 disposed on a side of the first substrate 10 close to the liquid crystal layer 30.
  • the signal electrode 1 includes a main structure 11 and a branch structure.
  • the branch structure includes a first branch structure 12 and The second branch structure 13, the first branch structure 12 is connected to the first side of the main structure 11; the second branch structure 13 is connected to the second side of the main structure 11 opposite to the first side.
  • the second substrate may include a second substrate 20, a reference electrode 2 disposed on the second substrate 20 close to the liquid crystal layer 30, and a reference voltage introduction terminal 3.
  • the reference electrode 2 includes a first reference electrode 21 and a second reference electrode 22 arranged at intervals ,
  • the third branch structure 23 connected to the side of the first reference electrode 21 close to the main structure 11 of the signal electrode 1, and the fourth branch structure 23 connected to the side of the second reference electrode 22 close to the main structure 11 of the signal electrode 1.
  • Branch structure 24 is
  • the orthographic projection of the main structure 11 of the signal electrode 1 on the first substrate 10 is located between the orthographic projections of the first reference electrode 21 and the second reference electrode 22 on the first substrate 10, and the first branch structure 12 and the third branch structure 23 are arranged in one-to-one correspondence, and the orthographic projections of the two on the first substrate 10 are at least partially overlapped.
  • the orthographic projections on the substrate 10 overlap at least partially.
  • the first reference electrode 21 and the second reference electrode 22 can be connected to the same reference voltage lead-in terminal 3, or can be connected to different reference voltage lead-in terminals 3, but it should be understood that whether they are connected to the same reference voltage lead-in terminal 3 or different
  • the reference voltage introduction terminal 3 the reference voltage signal input by the first reference electrode 21 and the second reference electrode 22 is usually the same, and can make the signal electrode 1 input microwave signal, the signal electrode 1 and the reference electrode 2 (first reference electrode 21 There is a certain voltage difference between the second reference electrode 22), and the liquid crystal capacitor formed by the overlap of the first branch structure 12 and the third branch structure 23, and the second branch structure 13 and the fourth branch structure 24 overlap
  • the dielectric constant of the liquid crystal layer 30 in the formed liquid crystal capacitor is changed to change the phase of the microwave signal.
  • first branch structure 12 and the second branch structure 13 of the signal electrode 1 may both be arranged periodically.
  • the third branch structure 23 and the fourth branch structure 24 may also be arranged periodically. cloth.
  • first branch structure 12 and the second branch structure 13 may be symmetrically arranged with respect to the main structure 11.
  • the distance between any two adjacent first branch structures 12 can be the same, or monotonically increase or decrease according to a certain rule; similarly, the distance between any two adjacent second branch structures 13 can be the same, or according to a certain rule. Regularly increase or decrease monotonously.
  • the dielectric constant of the liquid crystal layer 30 between the two can be changed in a certain pattern, which is convenient for comparison.
  • the phase shift of the microwave signal input from the signal electrode 1 is controlled.
  • the spacing between any two adjacent first branch structures 12 may also be different, and may not be arranged according to the law; the orthographic projection of each first branch structure 12 on the first substrate 10 and the third branch structure 23
  • the overlapping area of the orthographic projection on the first substrate 10 can also be different; similarly, the distance between any two adjacent second branch structures 12 can also be different, and may not be arranged according to the law;
  • the overlap area of the orthographic projection of the second branch structure 12 on the first substrate 10 and the orthographic projection of the fourth branch structure 24 on the first substrate 10 may also be different.
  • the signal electrode 1 may include only one of the first branch structure 12 and the second branch structure 13 and the main structure 11; and the signal electrode includes When the first branch structure 12 does not include the second branch structure 13, the reference electrode 2 includes the first reference electrode 21 and the third branch structure 23 but does not include the second reference electrode 22 and the fourth branch structure 24. It should be understood that when the signal electrode 1 includes the second branch structure 13 but does not include the first branch structure 12, the reference electrode 2 includes the second reference electrode 22 and the fourth branch structure 24 but does not include the first reference electrode 21 and The third branch structure 23.
  • the first branch structure 12 and the third branch structure 23 can be arranged in one-to-one correspondence, and The orthographic projections of the two on the first substrate 10 at least partially overlap, and the reference voltage introduction terminal 3 can be connected to the first reference electrode 21 or the third branch structure 23.
  • the working principle of the liquid crystal phase shifter of this structure is roughly the same as the working principle of the above-mentioned liquid crystal phase shifter, and will not be described in detail here.
  • the signal voltage introduction terminal is arranged on the first substrate 10 and can be connected to the signal electrode 1 through a signal connection line, and the signal connection line and the signal voltage introduction terminal can be formed with the same material and the same layer, Or it can be formed with the same material and the same layer as the signal electrode 1;
  • the reference voltage lead-in terminal 3 is arranged on the second substrate 20 and can be connected to the reference electrode 2 through a signal connection line, and the signal connection line can be connected to the reference voltage lead-in terminal 3
  • the same material and the same layer can be used, or the reference electrode 2 can be formed with the same material and the same layer.
  • the reference voltage lead-in terminal and the signal voltage lead-in terminal are usually formed of a metal material (for example, copper), and the signal electrode 1 and the reference electrode 2 are usually formed of a transparent conductive material (for example, indium tin oxide).
  • the main structure and the branch structure connected to it in the embodiments of the present disclosure are integrally formed. In this way, one preparation process can be used to complete the preparation of the main structure and the branch structure connected to it at the same time, thereby reducing The production cost of the phase shifter improves production efficiency.
  • the reference voltage lead-in terminal in the embodiments of the present disclosure may specifically be a ground signal lead-in terminal, that is, a ground signal is used as a reference signal to provide a reference voltage.
  • a ground signal is used as a reference signal to provide a reference voltage.
  • the reference voltage introduction terminal Any signal introduced can be used as a reference voltage.
  • the material of the medium layer includes liquid crystal molecules.
  • the liquid crystal molecules in the medium layer can be positive liquid crystal molecules or negative liquid crystal molecules.
  • the angle between the long axis direction of the liquid crystal molecules and the second electrode layer of the disclosed embodiment should be less than or equal to 45°.
  • the angle between the long axis direction of the liquid crystal molecules and the second electrode layer in the embodiments of the present disclosure should be greater than or equal to 90°, which ensures that the liquid crystal molecules are deflected and the liquid crystal layer is changed. Dielectric constant to achieve the purpose of phase shifting.
  • the embodiment of the present disclosure further provides an antenna, which includes the above-mentioned phase shifter, wherein at least two patches are further provided on the side of the second substrate away from the liquid crystal medium layer, wherein each of the two patches The gap therebetween is corresponding to the gap between the electrode strips of the electrode layer.
  • an antenna which includes the above-mentioned phase shifter, wherein at least two patches are further provided on the side of the second substrate away from the liquid crystal medium layer, wherein each of the two patches The gap therebetween is corresponding to the gap between the electrode strips of the electrode layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种移相器及一种天线。所述移相器包括相对设置的第一基板和第二基板、以及位于第一基板和第二基板之间的介质层,第一基板包括第一基底、设置在第一基底的靠近介质层的一侧的第一电极层,第二基板包括第二基底、设置在第二基底的靠近介质层的一侧的第二电极层和参考电压引入端,参考电压引入端与第二电极层连接,第一电极层和第二电极层中的一者包括主体结构、连接在主体结构的分支结构;当第一电极层包括主体结构和分支结构时,分支结构的背离主体结构的一端在第一基底上的正投影与第二电极层在第一基底上的正投影交叠;当第二电极层包括主体结构和分支结构时,分支结构的背离主体结构的一端在第一基底上的正投影与第一电极层在第一基底上的正投影交叠。

Description

移相器及天线 技术领域
本公开属于通信技术领域,具体涉及移相器及天线。
背景技术
液晶移相器结构中,通过调节异面两金属板上加载的电压差,驱动液晶分子偏转,得到不同的液晶材料特性,对应得到可变电容的容值。共表面波导(CPW)结构的接地电极和信号电极在同一平面内。
共面波导(CPW)液晶移相器结构中,液晶盒内CPW的信号电极与异面加载的周期电容贴片形成交叠电容,在两个平面之间形成电压差,该结构需要电容贴片连接信号电极一侧的接地电极,形成电流回路。目前连接电容贴片和接地电极的方式例如通过添加比液晶盒盒厚稍大的金属球(粒子)来实现,但由于掺杂浓度的限制,且粒子位置难以精准控制,通过粒子实现的特定区域导电特性的可控性较低。
公开内容
本公开的实施例提供一种移相器,包括相对设置的第一基板和第二基板、以及位于所述第一基板和所述第二基板之间的介质层,其中,
所述第一基板包括第一基底、设置在第一基底的靠近所述介质层的一侧的第一电极层,所述第二基板包括第二基底、设置在所述第二基底的靠近所述介质层的一侧的第二电极层和参考电压引入端,所述参考电压引入端与所述第二电极层连接,
所述第一电极层和所述第二电极层中的一者包括主体结构、以及连接至所述主体结构的分支结构,
当所述第一电极层包括主体结构和分支结构时,所述分支结构的背离所述主体结构的一端在所述第一基底上的正投影与所述第二 电极层在所述第一基底上的正投影交叠,
当所述第二电极层包括主体结构和分支结构时,所述分支结构背离所述主体结构的一端在所述第一基底上的正投影与所述第一电极层在所述第一基底上的正投影交叠。
在一些实施方式中,所述第一电极层包括主体结构和分支结构;所述分支结构包括连接在所述主体结构的第一侧的第一分支结构、以及连接在所述主体结构的与第一侧相对的第二侧的第二分支结构,
所述第二电极层包括间隔设置的第一参考电极和第二参考电极,所述参考电压引入端与所述第一参考电极和所述第二参考电极连接,
所述第一电极层的主体结构在所述第一基底上的正投影位于所述第一参考电极和所述第二参考电极在所述第一基底上的正投影之间,
所述第一参考电极在所述第一基底上的正投影与所述第一分支结构的背离所述主体结构的一端在所述第一基底上的正投影交叠,
所述第二参考电极在所述第一基底上的正投影与所述第二分支结构的背离所述主体结构的一端在所述第一基底上的正投影交叠。
在一些实施方式中,所述第二电极层包括主体结构和分支结构,所述主体结构包括第一主体结构和第二主体结构,所述分支结构包括第一分支结构和第二分支结构,
所述第一分支结构连接在所述第一主体结构的靠近所述第二主体结构的一侧,所述第二分支结构连接在所述第二主体结构的靠近所述第一主体结构的一侧,
所述参考电压引入端与所述第一主体结构和所述第二主体结构连接,
所述第一电极层在所述第一基底上的正投影位于所述第一主体结构和所述第二主体结构在所述第一基底上的正投影之间;
所述第一电极层在所述第一基底上的正投影与所述第一分支结构的背离所述第一主体结构的一端、以及与第二分支结构的背离所述第二主体结构的一端在所述第一基底上的正投影交叠。
在一些实施方式中,所述第一分支结构和所述第二分支结构一 一对应设置,且对应设置的第一分支结构和第二分支结构连接为一体成型结构。
在一些实施方式中,所述第二电极层包括主体结构和分支结构;所述分支结构连接在所述主体结构的靠近所述第一电极层的一侧,且所述分支结构的靠近所述第一电极层的一端在所述第一基底上的正投影与所述第一电极层的在所述第一基底上的正投影交叠,所述参考电压引入端与所述主体结构连接。
在一些实施方式中,所述第一电极层包括主体结构和分支结构,所述分支结构包括连接在所述主体结构的第一侧的第一分支结构、以及连接在所述主体结构的与第一侧相对的第二侧的第二分支结构,
所述第二电极层包括间隔设置的第一参考电极和第二参考电极、连接在所述第一参考电极的靠近所述第二参考电极的一侧的第三分支结构、以及连接在所述第二参考电极的靠近所述第一参考电极的一侧的第四分支结构,
所述参考电压引入端与所述第一参考电极和所述第二参考电极连接,
所述主体结构在所述第一基底上的正投影位于所述第一参考电极和所述第二参考电极在所述第一基底上的正投影之间,
所述第一分支结构与所述第三分支结构一一对应设置,且在所述第一基底上的正投影至少部分重叠,
所述第二分支结构与所述第四分支结构一一对应设置,且在所述第一基底上的正投影至少部分重叠。
在一些实施方式中,所述第一电极层包括主体结构和连接在所述主体结构的靠近所述第二电极层的一侧的分支结构,所述第二电极层包括参考电极、以及连接在所述参考电极的靠近所述第一电极层的一侧的分支结构,所述第一电极层的分支结构与所述第二电极层的分支结构一一对应设置,且二者在所述第一基底上的正投影至少部分重叠,所述参考电压引入端与所述参考电极连接。
在一些实施方式中,所述参考电压引入端包括地信号引入端。
在一些实施方式中,所述参考电压引入端通过信号连接线与所
述第二电极层连接,
所述信号连接线与所述参考电压引入端采用相同的材料同层形成,或者与所述第二电极层采用相同的材料同层形成。
在一些实施方式中,所述主体结构和所述分支结构为一体成型结构。
在一些实施方式中,位于所述主体结构的同一侧的分支结构呈周期性排布。
在一些实施方式中,所述介质层包括液晶分子。
本公开的实施例还提供一种天线,其包括上述的移相器。
附图说明
图1为本公开实施例的液晶移相器的一种实现方式的俯视图;
图2为图1所示液晶移相器的截面图;
图3为本公开实施例的液晶移相器的一种实现方式的俯视图;
图4为本公开实施例的液晶移相器的一种实现方式的俯视图;
图5为图4所示液晶移相器的截面图;
图6为本公开实施例的液晶移相器的一种实现方式的俯视图;
图7为本公开实施例的液晶移相器的一种实现方式的俯视图;
图8为图7所示液晶移相器的截面图;
图9为本公开实施例的液晶移相器的一种实现方式的俯视图;
图10为图9所示液晶移相器的截面图;
图11为本公开实施例的液晶移相器的一种实现方式的俯视图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开的技术方案作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一” 或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意在指出现该词语前面的元件或者物件涵盖出现在该词语后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。词语“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供一种移相器,其具体是对共表面波导(CPW)型移相器的改进。该移相器包括相对设置的第一基板、第二基板、以及设置在第一基板和第二基板之间的介质层,该介质层包括但不限于液晶分子。当介质层包括液晶分子时,该移相器则为液晶移相器,在下述实施例中以液晶移相器为例对本公开实施例的移相器进行具体说明。
具体的,本公开实施例中的移相器的第一基板包括第一基底、设置在第一基底的靠近介质层的一侧的第一电极层,第二基板包括第二基底、设置在第二基底的靠近介质层的一侧的第二电极层。
第一电极层和第二电极层中的一者包括主体结构、以及连接至主体结构的分支结构。当第一电极层包括主体结构和分支结构时,分支结构的背离主体结构的一端在第一基底上的正投影与第二电极层在第一基底上的正投影交叠;当第二电极层包括主体结构和分支结构时,分支结构的背离主体结构的一端在第一基底上的正投影与第一电极层在第一基底上的正投影交叠。
特别的是,在第二基底上靠近介质层的一侧设置有参考电压引入端,且该参考电压引入端与第二电极层电连接,用以在给第一电极层输入微波信号时,使第一电极层、第二电极层形成电流回路。
在此需要说明的是,在本公开实施例中,第一电极层用以输入微波信号,也就是说,通过第一电极层输入微波信号,第二电极层作为参考电极。当第一电极层包括主体结构和分支结构时,第一电极层 的分支结构在第一基底上的正投影与第二电极层在第一基底上的正投影存在交叠,此时,第二电极层作为参考电极,而在本实施例中第二电极层直接连接参考电压引入端,且通过参考电压引入端给第二电极层写入参考电压,能够使得第一电极层的主体结构和分支结构与第二电极层形成电流回路,与相关技术中将第二基板上的第二电极层通过导电金属球连接至第一基板上的参考电压引入端(也即接地端)相比,本公开实施例中液晶移相器的结构简单,且集成度高。
当然,也可以是第二电极层包括主体结构和分支结构,此时参考电压引入端可以与第二电极层的主体结构或分支结构连接,以使第二电极层的主体结构和分支结构、第一电极层形成电流回路。具体工作原理与上述原理相似,故在此不再重复赘述。
为了更清楚本公开实施例中的液晶移相器的结构,以下以第一电极层为信号电极,第二电极层为参考电极,且参考电压引入端与第二电极层同层设置为例进行说明。
在一些实施方式中,如图1和图2所示,本公开的实施例的液晶移相器包括相对设置第一基板和第二基板、以及设置在第一基板和第二基板之间的液晶层30。
第一基板可包括第一基底10、设置在第一基底10的靠近液晶层30的一侧的信号电极1,该信号电极1包括主体结构11和分支结构,分支结构包括第一分支结构12和第二分支结构13,第一分支结构12连接在主体结构11的第一侧,第二分支结构13连接在主体结构11的与第一侧相对的第二侧。
第二基板可包括第二基底20、设置在第二基底20的靠近液晶层30的参考电极2和参考电压引入端3,参考电极2包括间隔设置的第一参考电极21和第二参考电极22,且信号电极1的主体结构11在第一基底10上的正投影位于第一参考电极21和第二参考电极22在第一基底10上的正投影之间,第一参考电极21在第一基底10上的正投影与信号电极1的第一分支结构12背离主体结构11的一端在第一基底10上的正投影存在交叠;第二参考电极22在第一基底10上 的正投影与信号电极1的第二分支结构13背离主体结构11的一端在第一基底10上的正投影存在交叠。
在此需要说明的是,第一参考电极21和第二参考电极22可以连接同一参考电压引入端3,也可以分别连接不同的参考电压引入端3,但应当理解的是,不管是连接同一参考电压引入端3,还是连接不同的参考电压引入端3,第一参考电极21和第二参考电极22输入的参考电压信号通常是相同,且能够使得在信号电极1输入微波信号时,信号电极1与参考电极2(第一参考电极21和第二参考电极22)之间存在一定的电压差,而使得信号电极1的分支结构(第一分支结构12和第二分支结构13)与参考电极2交叠所形成的液晶电容中的液晶层的介电常数发生改变,以改变微波信号的相位。
在此需要说明的是,第一基板上设置有信号电压引入端,该信号电压引入端是通过信号连接线与信号电极1连接的,用以为信号电极1提供信号电压,该信号电压与参考电压的电压值是不同的。
在一些实施方式中,信号电极1的第一分支结构12和第二分支结构13均呈周期性排布。例如,第一分支结构12和第二分支结构13可沿主体结构对称设置,任意两相邻的第一分支结构12之间的间距可相同、或者按照一定规律单调增或者单调减。类似地,任意两相邻的第二分支结构13之间的间距可相同、或者按照一定规律单调增或者单调减。这样一来,可以在给信号电极1、参考电极2(第一参考电极21和第二参考电极22)施加电压时,使得二者之间液晶层30的介电常数呈一定规律变化,方便对信号电极1输入的微波信号的移相度进行控制。当然,任意两相邻的第一分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第一分支结构12在第一基底10上的正投影与第一参考电极21在第一基底10上的正投影的交叠面积也可以是不同的;类似地,任意两相邻的第二分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第二分支结构12在第一基底10上的正投影与第二参考电极21在第一基底10上的正投影的交叠面积也可以是不同的。
同时,应当理解的是,如图3所示,信号电极1也可以仅包括 第一分支结构12和第二分支结构13中的一者、以及主体结构11;而在信号电极1包括第一分支结构12而不包括第二分支结构13时,参考电极2则包括第一参考电极21而不包括第二参考电极22。应当理解的是,在信号电极1包括第二分支结构13而不包括第一分支结构12时,参考电极1则包括第二参考电极22而不包括第一参考电极21。该种结构的液晶移相器的工作原理与上述结构的液晶移相器的工作原理大致相同,在此不再详细描述。
在一些实施方式中,如图4和图5所示,本公开的实施例的液晶移相器包括相对设置第一基板和第二基板、以及设置在第一基板和第二基板之间的液晶层30。
第一基板可包括第一基底10、设置在第一基底10靠近液晶层30一侧的信号电极1。
第二基板可包括第二基底20、设置在第二基底20的靠近液晶层30的一侧的参考电极2和参考电压引入端3,该参考电极2包括第一参考电极21和第二参考电极22,第一参考电极21包括第一主体结构211、以及连接在第一主体结构211的靠近信号电极1的一侧的第一分支结构212,第二参考电极22包括第二主体结构221、以及连接在第二主体结构221的靠近信号电极1的一侧的第二分支结构222,第一主体结构211和第二主体结构221均与参考电压引入端3连接。应当理解的是,将第一分支结构212和第二分支结构222均与参考电压引入端3连接也是可行的。
在此需要说明的是,第一基板10上设置有信号电压引入端,该信号电压引入端是通过信号连接线与信号电极1连接的,用以为信号电极1提供信号电压,该信号电压与参考电压的电压值是不同的。
在一些实施方式中,信号电极1在第一基底10上的正投影位于第一参考电极21的第一主体结构211和第二参考电极22的第二主体结构221在第一基底10上的正投影之间。第一参考电极21的第一分支结构212和第二参考电极22的第二分支结构均222在第一基底10上的正投影分别与信号电极1在第一基底10上的正投影存在交叠。 这样一来,当信号电极1输入微波信号时,可以通过加载在信号电极1、第一参考电极21的第一分支结构212和第二参考电极22的第二分支结构222上的电压,以使信号电极1分别与第一参考电极21的第一分支结构212和第二参考电极22的第二分支结构222形成的液晶电容中的液晶层30的介电常数发生改变,以改变微波信号的相位。
在一些实施方式中,第一参考电极21的第一分支结构212和第二参考电极22的第二分支结构222可均呈周期性排布。例如,第一参考电极21的任意两相邻的第一分支结构212之间的间距可相同、或者按照一定规律单调增或者单调减;类似地,第二参考电极22的任意两相邻的第二分支结构222之间的间距可相同、或者按照一定规律单调增或者单调减。这样一来,可以在给信号电极1、参考电极2(第一参考电极21和第二参考电极22)施加电压时,使得二者之间液晶层30的介电常数呈一定规律变化,方便对信号电极1输入的微波信号的移相度进行控制。当然,任意两相邻的第一分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第一分支结构12在第一基底10上的正投影与第一参考电极21在第一基底10上的正投影的交叠面积也可以是不同的;类似地,任意两相邻的第二分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第二分支结构12在第一基底10上的正投影与第二参考电极21在第一基底10上的正投影的交叠面积也可以是不同的。
与上述结构相似,如图6所示,本公开实施例的液晶移相器中,参考电极2可包括第一参考电极21而不包括第二参考电极22,第一参考电极21可包括第一主体结构211和第一分支结构212,该种结构的液晶移相器的工作原理与上述液晶移相器的工作原理大致相同,在此不再详细描述。应当理解的是,参考电极2也可包括第二参考电极22而不包括第一参考电极21,第二参考电极22可包括第二主体结构221和第二分支结构222,该种结构的液晶移相器的工作原理也与上述液晶移相器的工作原理大致相同,在此不再详细描述。
在一些实施方式中,如图7和图8所示,本公开的实施例的液晶移相器中,第一参考电极21的第一分支结构212和第二参考电极 22的第二分支结构222可一一对应设置,且对应设置的第一分支结构212和第二分支结构222可为一体成型结构。该情况下,仅需将参考电压引入端3连接在第一主体结构211和第二主体结构221中的一者即可。该种液晶移相器与上述的液晶移相器的工作原理相同,故在不再赘述。
在一些实施方式中,如图9和图10所示,本公开的实施例的液晶移相器包括相对设置第一基板和第二基板、以及设置在第一基板和第二基板之间的液晶层30。
第一基板可包括第一基底10、设置在第一基底10的靠近液晶层30的一侧的信号电极1,该信号电极1包括主体结构11和分支结构,分支结构包括第一分支结构12和第二分支结构13,第一分支结构12连接在主体结构11的第一侧;第二分支结构13连接在主体结构11的与第一侧相对的第二侧。
第二基板可包括第二基底20、设置在第二基底20的靠近液晶层30的参考电极2和参考电压引入端3,参考电极2包括间隔设置的第一参考电极21和第二参考电极22、连接在第一参考电极21的靠近信号电极1的主体结构11的一侧的第三分支结构23、以及连接在第二参考电极22的靠近信号电极1的主体结构11的一侧的第四分支结构24。
在一些实施方式中,信号电极1的主体结构11在第一基底10上的正投影位于第一参考电极21和第二参考电极22在第一基底10上的正投影之间,第一分支结构12与第三分支结构23一一对应设置,且二者在第一基底10上的正投影至少部分重叠,第二分支结构12与第四分支结构24一一对应设置,且二者在第一基底10上的正投影至少部分重叠。第一参考电极21和第二参考电极22可以连接同一参考电压引入端3,也可以分别连接不同的参考电压引入端3,但应当理解的是,无论是连接同一参考电压引入端3还是不同的参考电压引入端3,第一参考电极21和第二参考电极22输入的参考电压信号通常是相同,且能够使得信号电极1输入微波信号时,信号电极1和参 考电极2(第一参考电极21和第二参考电极22)之间存在一定的电压差,而使得第一分支结构12和第三分支结构23交叠所形成的液晶电容、以及第二分支结构13和第四分支结构24交叠所形成的液晶电容中的液晶层30的介电常数发生改变,以改变微波信号的相位。
在一些实施方式中,信号电极1的第一分支结构12和第二分支结构13可均呈周期性排布,类似地,第三分支结构23和第四分支结构24也可均呈周期性排布。例如,第一分支结构12和第二分支结构13可关于主体结构11对称设置。任意两相邻的第一分支结构12之间的间距可相同、或者按照一定规律单调增或者单调减;类似地,任意两相邻的第二分支结构13之间的间距可相同、或者按照一定规律单调增或者单调减。这样一来,可以在给信号电极1、参考电极2(第一参考电极21和第二参考电极22)施加电压时,使得二者之间液晶层30的介电常数呈一定规律变化,方便对信号电极1输入的微波信号的移相度进行控制。当然,任意两相邻的第一分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第一分支结构12在第一基底10上的正投影与第三分支结构23在第一基底10上的正投影的交叠面积也可以是不同的;类似地,任意两相邻的第二分支结构12之间的间距也可以是不同的,且可不按照规律排布;各个第二分支结构12在第一基底10上的正投影与第四分支结构24在第一基底10上的正投影的交叠面积也可以是不同的。
与上述结构相似,在本公开实施例中,如图11所示,信号电极1可以仅包括第一分支结构12和第二分支结构13中的一者、以及主体结构11;而在信号电极包括第一分支结构12而不包括第二分支结构13时,参考电极2则包括第一参考电极21和第三分支结构23而不包括第二参考电极22和第四分支结构24。应当理解的是,在信号电极1包括第二分支结构13而不包括第一分支结构12时,参考电极2则包括第二参考电极22和第四分支结构24而不包括第一参考电极21和第三分支结构23。以信号电极1包括主体结构11和第一分支结构12、参考电极包括第一参考电极21和第三分支结构23为例,第一分支结构12和第三分支结构23可一一对应设置,且二者在第一基 底10上的正投影至少部分重叠,参考电压引入端3可连接第一参考电极21或第三分支结构23。该种结构的液晶移相器的工作原理与上述液晶移相器的工作原理大致相同,在此不再详细描述。
在本公开的实施例中,信号电压引入端设置在第一基底10上,可通过信号连接线与信号电极1连接,且该信号连接线可与信号电压引入端采用相同的材料同层形成,或者可与信号电极1采用相同的材料同层形成;参考电压引入端3设置在第二基底20上,可通过信号连接线与参考电极2连接,且该信号连接线可与参考电压引入端3采用相同的材料同层设置,或者可与参考电极2采用相同的材料同层形成。这样一来,可以使得移相器的结构更加轻薄,且能够降低移相器的生成成本,提高生产效率。本公开实施例中的参考电压引入端、信号电压引入端通常采用金属材料(例如铜)形成,信号电极1和参考电极2通常采用透明导电材料(例如氧化铟锡)形成。
在一些实施方式中,本公开的实施例中的主体结构和与之连接分支结构为一体成型结构,这样一来,可以采用一次制备工艺同时完成主体结构和与之连接分支结构的制备,从而降低移相器的生成成本,提高生产效率。
在一些实施方式中,本公开的实施例中的参考电压引入端具体可以是地信号引入端,即将地信号作为参考信号来提供参考电压。当然,应当理解的是,只要在移相器工作时能够使得第一电极层和第二电极层之间存在一定电压差,使得第一电极层和第二电极层形成电流回路,参考电压引入端所引入的任何信号都能够作为参考电压。
在一些实施方式中,介质层的材料包括液晶分子,例如,介质层中的液晶分子可以为正性液晶分子或负性液晶分子,需要说明的是,当液晶分子为正性液晶分子时,本公开的实施例的液晶分子的长轴方向与第二电极层之间的夹角应小于等于45°。当液晶分子为负性液晶分子时,本公开的实施例的液晶分子的长轴方向与第二电极层之间的夹角应大于等于90°,保证了液晶分子发生偏转后,改变液晶层的介电常数,以达到移相的目的。
本公开实施例还提供一种天线,该天线包括上述的移相器,其 中,在第二基底的背离液晶介质层的一侧还设置有至少两个贴片,其中,每两个贴片之间的间隙与电极层的电极条之间的间隙对应设置。这样一来,可以使得经过上述的移相器进行相位调整后的微波信号可以从贴片之间的间隙辐射出去。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和修改,这些变型和修改视为落入本公开的保护范围内。

Claims (13)

  1. 一种移相器,包括相对设置的第一基板和第二基板、以及位于所述第一基板和所述第二基板之间的介质层,其中,
    所述第一基板包括第一基底、设置在第一基底的靠近所述介质层的一侧的第一电极层,
    所述第二基板包括第二基底、设置在所述第二基底的靠近所述介质层的一侧的第二电极层和参考电压引入端,所述参考电压引入端与所述第二电极层连接,
    所述第一电极层和所述第二电极层中的一者包括主体结构、以及连接至所述主体结构的分支结构,
    当所述第一电极层包括主体结构和分支结构时,所述分支结构的背离所述主体结构的一端在所述第一基底上的正投影与所述第二电极层在所述第一基底上的正投影交叠,
    当所述第二电极层包括主体结构和分支结构时,所述分支结构的背离所述主体结构的一端在所述第一基底上的正投影与所述第一电极层在所述第一基底上的正投影交叠。
  2. 根据权利要求1所述的移相器,其中,所述第一电极层包括主体结构和分支结构,所述分支结构包括连接在所述主体结构的第一侧的第一分支结构、以及连接在所述主体结构的与第一侧相对的第二侧的第二分支结构,
    所述第二电极层包括间隔设置的第一参考电极和第二参考电极,所述参考电压引入端与所述第一参考电极和所述第二参考电极连接,
    所述第一电极层的主体结构在所述第一基底上的正投影位于所述第一参考电极和所述第二参考电极在所述第一基底上的正投影之间,
    所述第一参考电极在所述第一基底上的正投影与所述第一分支结构的背离所述主体结构的一端在所述第一基底上的正投影交叠,
    所述第二参考电极在所述第一基底上的正投影与所述第二分支 结构的背离所述主体结构的一端在所述第一基底上的正投影交叠。
  3. 根据权利要求1所述的移相器,其中,所述第二电极层包括主体结构和分支结构,所述主体结构包括第一主体结构和第二主体结构,所述分支结构包括第一分支结构和第二分支结构,
    所述第一分支结构连接在所述第一主体结构的靠近所述第二主体结构的一侧,所述第二分支结构连接在所述第二主体结构的靠近所述第一主体结构的一侧,
    所述参考电压引入端与所述第一主体结构和第二主体结构连接,
    所述第一电极层在所述第一基底上的正投影位于所述第一主体结构和所述第二主体结构在所述第一基底上的正投影之间;
    所述第一电极层在所述第一基底上的正投影与所述第一分支结构的背离所述第一主体结构的一端、以及与所述第二分支结构的背离所述第二主体结构的一端在所述第一基底上的正投影交叠。
  4. 根据权利要求3所述的移相器,其中,所述第一分支结构和所述第二分支结构一一对应设置,且对应设置的第一分支结构和第二分支结构为一体成型结构。
  5. 根据权利要求1所述的移相器,其中,所述第二电极层包括主体结构和分支结构,所述分支结构连接在所述主体结构的靠近所述第一电极层的一侧,且所述分支结构的靠近所述第一电极层的一端在所述第一基底上的正投影与所述第一电极层在所述第一基底上的正投影交叠,所述参考电压引入端与所述主体结构连接。
  6. 根据权利要求1所述的移相器,其中,所述第一电极层包括主体结构和分支结构,所述分支结构包括连接在所述主体结构的第一侧的第一分支结构、以及连接在所述主体结构的与第一侧相对的第二侧的第二分支结构,
    所述第二电极层包括间隔设置的第一参考电极和第二参考电极、 连接在所述第一参考电极的靠近所述第二参考电极的一侧的第三分支结构、以及连接在所述第二参考电极的靠近所述第一参考电极的一侧的第四分支结构,
    所述参考电压引入端与所述第一参考电极和所述第二参考电极连接,
    所述主体结构在所述第一基底上的正投影位于所述第一参考电极和所述第二参考电极在所述第一基底上的正投影之间,
    所述第一分支结构与所述第三分支结构一一对应设置,且在所述第一基底上的正投影至少部分重叠,
    所述第二分支结构与所述第四分支结构一一对应设置,且在所述第一基底上的正投影至少部分重叠。
  7. 根据权利要求1所述的移相器,其中,所述第一电极层包括主体结构和连接在所述主体结构的靠近所述第二电极层的一侧的分支结构,所述第二电极层包括参考电极、以及连接在所述参考电极的靠近所述第一电极层的一侧的分支结构,所述第一电极层的分支结构与所述第二电极层的分支结构一一对应设置,且二者在所述第一基底上的正投影至少部分重叠,所述参考电压引入端与所述参考电极连接。
  8. 根据权利要求1-7中任一项所述的移相器,其中,所述参考电压引入端包括地信号引入端。
  9. 根据权利要求1-7中任一项所述的移相器,其中,所述参考电压引入端通过信号连接线与所述第二电极层连接,
    所述信号连接线与所述参考电压引入端采用相同的材料同层形成,或者与所述第二电极层采用相同的材料同层形成。
  10. 根据权利要求1-7中任一项所述的移相器,其中,所述主体结构和所述分支结构为一体成型结构。
  11. 根据权利要求1-7中任一项所述的移相器,其中,位于所述主体结构的同一侧的分支结构呈周期性排布。
  12. 根据权利要求1-7中任一项所述的移相器,其中,所述介质层包括液晶分子。
  13. 一种天线,包括权利要求1-12中任一项所述的移相器。
PCT/CN2020/110420 2019-08-29 2020-08-21 移相器及天线 WO2021036921A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/290,399 US11936083B2 (en) 2019-08-29 2020-08-21 Phase shifter usable with an antenna including first and second substrates having electrode layers formed thereon, where the electrode layers include body and branch structures
US18/441,927 US20240186670A1 (en) 2019-08-29 2024-02-14 Phase shifter usable with an antenna including first and second substrates having electrode layers formed thereon, where the electrode layers include body and branch structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910808959.0 2019-08-29
CN201910808959.0A CN112448105B (zh) 2019-08-29 2019-08-29 移相器及天线

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/290,399 A-371-Of-International US11936083B2 (en) 2019-08-29 2020-08-21 Phase shifter usable with an antenna including first and second substrates having electrode layers formed thereon, where the electrode layers include body and branch structures
US18/441,927 Continuation US20240186670A1 (en) 2019-08-29 2024-02-14 Phase shifter usable with an antenna including first and second substrates having electrode layers formed thereon, where the electrode layers include body and branch structures

Publications (1)

Publication Number Publication Date
WO2021036921A1 true WO2021036921A1 (zh) 2021-03-04

Family

ID=74684196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110420 WO2021036921A1 (zh) 2019-08-29 2020-08-21 移相器及天线

Country Status (3)

Country Link
US (2) US11936083B2 (zh)
CN (2) CN112448105B (zh)
WO (1) WO2021036921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159635A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 移相器和天线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組
WO2023283756A1 (zh) * 2021-07-12 2023-01-19 京东方科技集团股份有限公司 透明天线及通信系统
CN115693156B (zh) * 2021-07-29 2024-02-27 北京京东方技术开发有限公司 天线、天线阵列及通信系统
WO2023225983A1 (zh) * 2022-05-27 2023-11-30 京东方科技集团股份有限公司 移相器及电子设备
CN117317545A (zh) * 2022-06-24 2023-12-29 京东方科技集团股份有限公司 移相器及电子设备
WO2024020834A1 (zh) * 2022-07-27 2024-02-01 京东方科技集团股份有限公司 一种移相器、天线及电子设备
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128459A2 (en) * 2000-02-21 2001-08-29 Stanley Electric Co., Ltd. Variable phase shifter
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN107453013A (zh) * 2017-09-04 2017-12-08 电子科技大学 一种基于液晶材料的移相器
CN108563050A (zh) * 2018-05-31 2018-09-21 成都天马微电子有限公司 液晶移相器和天线
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
JP3994170B2 (ja) * 2005-09-16 2007-10-17 防衛省技術研究本部長 浮遊電極付コプレナー線路
US8013694B2 (en) * 2006-03-31 2011-09-06 Kyocera Corporation Dielectric waveguide device, phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device, high frequency transmitter, high frequency receiver, high frequency transceiver, radar device, array antenna, and method of manufacturing dielectric waveguide device
WO2010063307A1 (en) * 2008-12-01 2010-06-10 Telefonaktiebolaget L M Ericsson (Publ) Tunable microwave arrangements
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN103995402A (zh) * 2013-07-02 2014-08-20 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置及其驱动方法
JP6482390B2 (ja) * 2015-06-05 2019-03-13 東京エレクトロン株式会社 電力合成器およびマイクロ波導入機構
CN108511858B (zh) * 2018-04-13 2020-04-14 京东方科技集团股份有限公司 一种液晶移相器以及电子设备
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线
CN208818972U (zh) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 移相器及液晶天线
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN208723092U (zh) * 2018-09-28 2019-04-09 北京京东方传感技术有限公司 液晶天线单元和液晶相控阵天线
CN110137636B (zh) * 2019-05-23 2021-08-06 京东方科技集团股份有限公司 移相器和液晶天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128459A2 (en) * 2000-02-21 2001-08-29 Stanley Electric Co., Ltd. Variable phase shifter
CN107394318A (zh) * 2017-07-14 2017-11-24 合肥工业大学 一种用于反射式可调移相器的液晶移相单元
CN107453013A (zh) * 2017-09-04 2017-12-08 电子科技大学 一种基于液晶材料的移相器
CN108563050A (zh) * 2018-05-31 2018-09-21 成都天马微电子有限公司 液晶移相器和天线
CN208384288U (zh) * 2018-08-10 2019-01-15 京东方科技集团股份有限公司 液晶移相器及液晶天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159635A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 移相器和天线

Also Published As

Publication number Publication date
CN114122649B (zh) 2023-12-22
US20240186670A1 (en) 2024-06-06
US11936083B2 (en) 2024-03-19
CN112448105A (zh) 2021-03-05
US20220006188A1 (en) 2022-01-06
CN114122649A (zh) 2022-03-01
CN112448105B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021036921A1 (zh) 移相器及天线
US11119364B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US10826192B2 (en) Antenna and method of manufacturing the same, display panel
CN208818972U (zh) 移相器及液晶天线
US11158916B2 (en) Phase shifter and liquid crystal antenna
US10338444B2 (en) Array substrate with conductive black matrix, manufacturing method thereof and display device
CN208384288U (zh) 液晶移相器及液晶天线
CN110137636A (zh) 移相器和液晶天线
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
WO2021189238A1 (zh) 移相器及天线
WO2021031559A1 (zh) 液晶显示面板及其制备方法
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
WO2021073500A1 (zh) 液晶移相器及天线
WO2021189409A1 (zh) 移相器及其制备方法、天线
US11646488B2 (en) Liquid crystal phase shifter having a delay line with line spacing and/or line width that provides a specified cell thickness and an antenna formed therefrom
CN105093756A (zh) 液晶显示像素结构及其制作方法
US20140085577A1 (en) Array substrate and display device comprising the same
US11721898B2 (en) Phase shifter and antenna
CN108108059A (zh) 一种显示面板及其制备方法和显示装置
CN108390656A (zh) 参量放大器及控制方法、液晶天线及显示面板、终端
CN105242435A (zh) 阵列基板及制作方法、液晶显示面板
CN206421131U (zh) 液晶显示装置
CN105572994A (zh) 阵列基板及液晶显示屏及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858470

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20858470

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20858470

Country of ref document: EP

Kind code of ref document: A1