WO2021036336A1 - 一种大跨度桥梁检测作业机器人用导向移动机构 - Google Patents

一种大跨度桥梁检测作业机器人用导向移动机构 Download PDF

Info

Publication number
WO2021036336A1
WO2021036336A1 PCT/CN2020/089506 CN2020089506W WO2021036336A1 WO 2021036336 A1 WO2021036336 A1 WO 2021036336A1 CN 2020089506 W CN2020089506 W CN 2020089506W WO 2021036336 A1 WO2021036336 A1 WO 2021036336A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
mobile station
inner cavity
roller
bottom end
Prior art date
Application number
PCT/CN2020/089506
Other languages
English (en)
French (fr)
Inventor
李欣然
齐武
Original Assignee
南京涵曦月自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京涵曦月自动化科技有限公司 filed Critical 南京涵曦月自动化科技有限公司
Publication of WO2021036336A1 publication Critical patent/WO2021036336A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases

Definitions

  • the invention relates to the related technical field of guided movement for a bridge inspection operation robot, in particular to a guided movement mechanism for a large-span bridge inspection operation robot.
  • the purpose of the present invention is to provide a guided movement mechanism for a large-span bridge inspection robot to solve the above-mentioned problems in the background art.
  • a guided moving mechanism for a large-span bridge inspection robot comprising a moving table, a data processing module embedded on one side of the inner cavity of the moving table, a steering mechanism and two traction mechanisms, both of the traction mechanisms include a turntable ,
  • the first buffer sleeve, the first telescopic rod, the first magnet, the second magnet, the first roller mounting seat and the first roller, the two traction mechanisms are respectively located at the left and right ends of the rear side of the bottom end surface of the mobile platform, and They are respectively rotatably connected with the bottom end surface of the mobile platform through a turntable
  • the steering mechanism includes a servo motor, a second buffer sleeve, a second telescopic rod, a third magnet, a fourth magnet, a second roller mounting seat and a second roller,
  • the steering mechanism is located in the middle of the front end of the bottom end surface of the mobile station, the signal input port of the data processing module is connected with a D/A conversion module, and the signal input port of
  • a detection robot installation groove is recessed downward in the center of the top surface of the mobile platform, and a detection hole penetrating the bottom end surface of the mobile platform is opened downward in the center of the bottom end surface of the inner cavity of the detection robot installation groove.
  • a plurality of threaded installation grooves evenly spaced are provided on the edge of the bottom end surface of the detection robot installation groove.
  • the smart touch screen is embedded on the right side of the front face of the mobile station, and the front face of the smart touch screen and the front face of the mobile station are flush with each other.
  • a power cavity is provided in the middle of the front side of the inner cavity of the mobile platform
  • the servo motor is fixedly installed on the top surface of the inner cavity of the power cavity through a fixed disk
  • the servo motor is connected with a transmission rod through a power shaft
  • the bottom end of the transmission rod is fixedly connected with the rectangular transmission head
  • the second buffer sleeve is fixed at the middle position of the front end of the bottom end surface of the mobile platform, and is located directly below the power chamber
  • the second telescopic rod is slidably inserted in the second Below the inner cavity of the buffer sleeve
  • the third magnet and the fourth magnet are both located in the inner cavity of the second buffer sleeve and have the same magnetic poles on the opposite side walls.
  • the third magnet is fixedly arranged on the top end of the inner cavity of the second buffer sleeve Surface
  • the bottom end surface of the fourth magnet is fixedly connected with the top end surface of the second telescopic rod
  • a rectangular limit groove is embedded in the center of the top end surface of the second telescopic rod
  • the axial center of the fourth magnet is provided with Rectangular limiting hole, and the rectangular limiting hole and the rectangular limiting slot are upside down
  • the transmission rod rotates through the axial center of the third magnet
  • the rectangular transmission head is slidably inserted in the rectangular limiting hole and the rectangular limiting slot
  • the second roller mounting seat is fixedly mounted on the bottom end surface of the second telescopic rod
  • the second roller is rotatably arranged at the bottom end of the second roller mounting seat
  • the right side wall of the second roller mounting seat is provided
  • the drive motor is connected to the signal output port of the data processing module through a wire. The drive motor penetrates the right side wall of the second roller mounting seat through the rotation
  • the radial outer wall of the transmission rod is fixedly sleeved with a limit plate
  • the inner cavity of the mobile table is provided with a limit slot below the power cavity
  • the limit plate is rotatably arranged in the inner cavity of the limit slot.
  • the first magnet and the second magnet are both located in the inner cavity of the first buffer sleeve, and have the same magnetic poles on the opposite side walls, and the first magnet is fixedly arranged on the top surface of the inner cavity of the first buffer sleeve.
  • the bottom end surface of the second magnet is fixedly connected with the top end surface of the first telescopic rod
  • the first roller mounting seat is fixedly mounted on the bottom end surface of the first telescopic rod
  • the first roller is rotatably arranged on the bottom of the first roller mounting seat. end.
  • the specific method of use is:
  • the external battery When in use, the external battery is installed on the top surface of the mobile platform and supplies power to the entire circuit.
  • the drive motor is started through the data processing module, and the second roller is driven by the drive motor to rotate, and the first rollers of the two traction mechanisms follow Move, so that the steering mechanism facilitates the overall structure to move forward.
  • the third magnet and the fourth magnet with the same magnetic poles in the second buffer sleeve of the steering mechanism use the principle of mutual repulsion with the same magnetic poles, so that A buffer gap is formed between the third magnet and the fourth magnet.
  • the first magnet and the second magnet with the same magnetic pole in the inner cavity of the first buffer sleeve of the two traction mechanisms utilize the principle of mutual repulsion with the same magnetic pole, so that the first magnet and A buffer gap is formed between the second magnets, so that in the process of moving forward, once jitter is generated, the buffer gap generated by magnetic pole repulsion is used to buffer the jitter;
  • the data processing module controls the servo motor to reverse, so that the rectangular transmission head at the bottom of the transmission rod is slidably inserted into the rectangular limit hole and the inner cavity of the rectangular limit slot, and drives the second telescopic rod to reverse, so that the second telescopic rod is reversed.
  • the roller corrects the current trajectory, so that the mobile station still moves forward according to the preset monitoring distance threshold of the distance between the infrared distance measuring sensor and the bridge guardrail, so that the mobile station uses the detection robot to the bridge roadbed according to the preset forward path. Perform testing.
  • the present invention is a guided moving mechanism for a large-span bridge inspection robot, which is convenient to install the inspection robot, and senses the distance between the bridge guardrail through the infrared distance sensor. Once the overall structure is pulled, the side wall of the mobile platform deviates The monitoring distance threshold of the distance between the infrared ranging sensor and the bridge guardrail, the data processing module controls the rotation of the servo motor, so that the second roller corrects the current trajectory, so that the mobile station still moves forward according to the preset threshold signal, saving operators Physical expenditure.
  • the present invention utilizes the principle of mutual repulsion of the same magnetic poles, so that a buffer gap is formed between the first magnet and the second magnet, and a buffer gap is formed between the third magnet and the fourth magnet, so that in the process of moving forward, once Jitter is generated, and the buffer gap generated by magnetic pole repulsion is used to buffer the jitter, so as to reduce the vibration force during the traveling process, improve the maneuverability of the guided movement, and reduce the work intensity of the operator.
  • Figure 1 is a schematic diagram of the main structure of the present invention.
  • Figure 2 is a cross-sectional view of the traction mechanism of the present invention
  • Figure 3 is a cross-sectional view of the steering mechanism of the present invention.
  • Fig. 4 is a block diagram of the working principle of the present invention.
  • this embodiment provides a guided moving mechanism for a large-span bridge inspection robot, including a moving table 1, a data processing module 10 embedded on one side of the inner cavity of the moving table 1, and a steering mechanism 7. And two traction mechanisms 5, both of which include a turntable 55, a first buffer sleeve 51, a first telescopic rod 52, a first magnet 56, a second magnet 57, a first roller mounting seat 53 and a first
  • the roller 54 and the two traction mechanisms 5 are respectively located at the left and right ends of the rear side of the bottom end surface of the mobile platform 1, and are respectively rotatably connected to the bottom end surface of the mobile platform 1 through a turntable 55.
  • the steering mechanism 7 includes a servo motor 711 and a second buffer sleeve.
  • the barrel 71, the second telescopic rod 72, the third magnet 77, the fourth magnet 78, the second roller mounting seat 73 and the second roller 74, the steering mechanism 7 is located in the middle of the front end of the bottom end surface of the mobile platform 1, and the data processing module 10
  • the signal input port is connected to the D/A conversion module 11
  • the signal input port of the D/A conversion module 11 is connected to the smart touch screen 8
  • the infrared distance sensor 6 is embedded in the middle position of the left and right sides of the mobile station 1
  • the signal output ports of the two infrared ranging sensors 6 are respectively connected to the signal input port of the data processing module 10, and the signal input port of the data processing module 10 is connected to the servo motor 711 through a wire.
  • the center of the top surface of the mobile platform 1 is recessed downwards with a detection robot installation slot 2, and the center of the bottom end surface of the inner cavity of the detection robot installation slot 2 is downwardly provided with a detection hole 4 that penetrates the bottom end surface of the mobile platform 1.
  • the bottom of the detection robot installation slot 2 There are several evenly spaced threaded installation grooves 3 on the edge of the end surface.
  • the detection robot is installed in the inner cavity of the detection robot installation groove 2 through the threaded installation groove 3, and the detection mechanism of the detection robot is leaked out of the detection hole 4 to facilitate the detection of the robot. It is used to detect the roadbed of the bridge.
  • the smart touch screen 8 is embedded on the right side of the front face of the mobile station 1, and the front face of the smart touch screen 8 and the front face of the mobile station 1 are flush with each other, which facilitates the operation of the smart touch screen 8.
  • a power chamber 101 is provided in the middle of the front side of the inner cavity of the mobile platform 1, and a servo motor 711 is fixedly installed on the top surface of the inner cavity of the power chamber 101 through a fixed plate 712.
  • the servo motor 711 is connected with a transmission rod 75 through a power shaft.
  • the bottom end is fixedly connected to the rectangular transmission head 710
  • the second buffer sleeve 71 is fixed at the middle position of the front end of the bottom end surface of the mobile platform 1, and is located directly below the power chamber 101
  • the second telescopic rod 72 is slidably inserted into the second buffer sleeve Below the inner cavity of the cylinder 71
  • the third magnet 77 and the fourth magnet 78 are both located in the inner cavity of the second buffer sleeve 71 and have the same poles on the opposite side walls.
  • the third magnet 77 is fixedly arranged on the top end of the inner cavity of the second buffer sleeve 71
  • the bottom end surface of the fourth magnet 78 is fixedly connected with the top end surface of the second telescopic rod 72.
  • a rectangular limit slot 79 is embedded in the center of the top end surface of the second telescopic rod 72, and the axial center of the fourth magnet 78 is provided with a rectangular shape.
  • the limit hole, and the rectangular limit hole and the rectangular limit slot 79 are directly opposite, the transmission rod 75 rotates and penetrates the axial center of the third magnet 77, and the rectangular transmission head 710 is slidably inserted into the rectangular limit hole and the rectangular limit slot
  • the second roller mounting seat 73 is fixedly mounted on the bottom end surface of the second telescopic rod 72, the second roller 74 is rotatably arranged at the bottom end of the second roller mounting seat 73, and the right side wall of the second roller mounting seat 73
  • a drive motor 9 is provided, and the drive motor 9 is connected to the signal output port of the data processing module 10 through a wire.
  • the drive motor 9 passes through the right side wall of the second roller mounting seat 73 through the rotation of the power shaft, and is axially centered with the second roller 74 The side wall is
  • the radial outer wall of the transmission rod 75 is fixedly sleeved with the limit plate 76, the inner cavity of the mobile platform 1 is provided with a limit slot located below the power chamber 101, and the limit plate 76 is rotatably arranged in the inner cavity of the limit slot to pass the limit The position plate 76 rotates in the inner cavity of the limit groove to enhance the transmission stability of the transmission rod 75.
  • the first magnet 56 and the second magnet 57 are both located in the inner cavity of the first buffer sleeve 51, and have the same magnetic poles on the opposite side walls.
  • the first magnet 56 is fixedly arranged on the top surface of the inner cavity of the first buffer sleeve 51, and the second magnet 57
  • the bottom end surface of the first telescopic rod 52 is fixedly connected to the top end surface of the first telescopic rod 52
  • the first roller mounting seat 53 is fixedly mounted on the bottom end surface of the first telescopic rod 52
  • the first roller 54 is rotatably arranged at the bottom end of the first roller mounting seat 53.
  • the inspection robot before use, the inspection robot is installed in the cavity of the inspection robot installation slot 2, and the inspection mechanism of the inspection robot is leaked out of the inspection hole 4, so that the inspection robot can be used to inspect the roadbed of the bridge; ,
  • the external battery is installed on the top surface of the mobile station 1 and supplies power to the entire circuit.
  • the drive motor 9 is started by the data processing module 10, and the second roller 74 is driven to rotate by the drive motor 9, and the first roller 54 of the two traction mechanisms 5 follow the movement, so that the steering mechanism 7 facilitates the overall structure to move forward.
  • the third magnet 77 and the fourth magnet 78 with the same magnetic poles in the cavity of the second buffer sleeve 71 of the steering mechanism 7 use the same magnetic poles.
  • the principle of mutual repulsion makes a buffer gap formed between the third magnet 77 and the fourth magnet 78.
  • the first magnet 56 and the second magnet 57 with the same inner cavity of the first buffer sleeve 51 of the traction mechanism 5 are used
  • the principle of mutual repulsion of the same magnetic poles makes a buffer gap formed between the first magnet 56 and the second magnet 57, so that once the jitter occurs during the forward movement, the buffer gap generated by the magnetic pole repulsion is used to buffer the jitter; the overall mechanism moves forward
  • one of the two infrared distance measuring sensors 6 is selected as detection and sensing during driving, the overall structure is placed on the roadbed of the bridge, and the sensing distance signal of the infrared distance measuring sensor 6 is preset through the smart touch screen 8.
  • the digital signal input by the smart touch screen 8 is converted into the sensing signal value through the D/A conversion module 11, which is convenient for the data processing module 10 to analyze Processing, once the side wall of the mobile station 1 deviates from the monitoring distance threshold of the distance between the infrared ranging sensor 6 and the bridge guardrail during the overall structure traction process, the infrared ranging sensor 6 uploads the distance sensing signal value to the data processing module 10.
  • the data processing module 10 controls the servo motor 711 to rotate forward so that the rectangular transmission head 710 at the bottom end of the transmission rod 75 is slidably inserted into the rectangular limit hole and the rectangular limit slot 79, and drive the second telescopic rod 72 to rotate forward, so that the second roller 74 corrects the current trajectory, so that the mobile station 1 is still in accordance with the preset distance between the infrared distance measuring sensor 6 and the bridge guardrail.
  • the threshold is moved forward.
  • the data processing module 10 controls the servo motor 711 to reverse, so that the rectangular drive head 710 at the bottom of the transmission rod 75 is slidably inserted into the rectangular limit hole and the rectangular limit. Position the inner cavity of the slot 79 and drive the second telescopic rod 72 to reverse, so that the second roller 74 corrects the current trajectory, so that the mobile station 1 still monitors the distance between the infrared distance sensor 6 and the bridge guardrail according to the preset
  • the distance threshold is moved forward, so that the mobile station 1 uses the detection robot to detect the bridge roadbed according to the preset forward path, which improves the detection efficiency and reduces the physical expenditure of the operator.
  • the model of the data processing module 10 is DSP28335, the model of the infrared ranging sensor 6 is GP2D12, the model of the D/A conversion module 11 is HI-565A, and the model of the servo motor 711 is EMMS-AS-140-M-RMB,
  • the model of the smart touch screen 8 is LDTM150, and the model of the drive motor 9 is WD-90YC60, which can also be set freely according to actual usage requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

一种大跨度桥梁检测作业机器人用导向移动机构,包括移动台(1)、内嵌于移动台(1)内腔的一侧的数据处理模块(10)、转向机构(7)和两个牵引机构(5),两个所述牵引机构(5)均包括有转盘(55)、第一缓冲套筒(51)、第一伸缩杆(52)、第一磁铁(56)、第二磁铁(57)、第一滚轮安装座(53)和第一滚轮(54),转向机构(7)包括有伺服电机(711)、第二缓冲套筒(71)、第二伸缩杆(72)、第三磁铁(77)、第四磁铁(78)、第二滚轮安装座(73)和第二滚轮(74),移动台(1)的左右两侧中段位置均内嵌有红外测距传感器(6),且两个红外测距传感器(6)的信号输出端口分别与数据处理模块(10)的信号输入端口连接。该导向移动机构便于将移动台沿着预设的检测路线进行检测,且在行进过程中能够减缓震动力,提高导向移动的机动性,同时减轻操作人员工作强度。

Description

一种大跨度桥梁检测作业机器人用导向移动机构 技术领域
本发明涉及桥梁检测作业机器人用导向移动相关技术领域,具体为一种大跨度桥梁检测作业机器人用导向移动机构。
背景技术
随着我国桥梁事业的发展,桥梁越来越多,同时既有的许多桥梁亦逐渐进入了养护维修阶段,有关专家认为桥梁使用超过25年以上则进入老化期,据统计,我国桥梁总数的40%已经属于此范畴,均属“老龄”桥梁;而且随着时间的推移,其数量还在不断增长,桥梁管理者对桥梁的养护已日益重视,通常情况下,需要借助检测设备对桥梁进行桥梁主要承重构件缺陷检查、桥梁专项检测、桥梁附属构造缺陷检查等方面的检测,其中,对桥面路基进行检测,就需要检测人员手持设备对桥面进行检测,但是操作人员手持检测设备检测,一方面影响检测的效率,另一方面造成操作人员的体力支出很大,很是不便,也会导致检测误差提高,这里设计了一种大跨度桥梁检测作业机器人用导向移动机构,以便于解决上述问题。
技术问题
本发明的目的在于提供一种大跨度桥梁检测作业机器人用导向移动机构,以解决上述背景技术中提出的问题。
技术解决方案
一种大跨度桥梁检测作业机器人用导向移动机构,包括移动台、内嵌于移动台内腔的一侧的数据处理模块、转向机构和两个牵引机构,两个所述牵引机构均包括有转盘、第一缓冲套筒、第一伸缩杆、第一磁铁、第二磁铁、第一滚轮安装座和第一滚轮,两个所述牵引机构分别位于移动台的底端面后侧左右两端,且分别通过转盘与移动台的底端面转动连接,所述转向机构包括有伺服电机、第二缓冲套筒、第二伸缩杆、第三磁铁、第四磁铁、第二滚轮安装座和第二滚轮,所述转向机构位于移动台的底端面前端中部位置,所述数据处理模块的信号输入端口连接有D/A转换模块,所述D/A转换模块的信号输入端口连接有智能触控屏,所述移动台的左右两侧中段位置均内嵌有红外测距传感器,且两个红外测距传感器的信号输出端口分别与数据处理模块的信号输入端口连接,所述数据处理模块的信号输入端口通过导线与伺服电机连接。
优选的,所述移动台的顶端面中心向下凹陷有检测机器人安装槽,所述检测机器人安装槽的内腔底端面中心向下开设有贯穿移动台底端面的检测孔。
优选的,所述检测机器人安装槽的底端面边缘位置开设有若干个均匀间隔分布的螺纹安装槽。
优选的,所述智能触控屏内嵌于移动台的前端面右侧,且智能触控屏的前端面与移动台的前端面相互齐平。
优选的,所述移动台的内腔前侧中段位置设有动力腔,所述伺服电机通过固定盘固定安装在动力腔的内腔顶端面,所述伺服电机通过动力轴连接有传动杆,所述传动杆的底端固定连接矩形传动头,所述第二缓冲套筒固定在移动台的底端面前端中段位置,且位于动力腔的正下方,所述第二伸缩杆滑动插接在第二缓冲套筒内腔下方,所述第三磁铁和第四磁铁均位于第二缓冲套筒的内腔,且相对侧壁磁极相同,所述第三磁铁固定设置在第二缓冲套筒内腔顶端面,所述第四磁铁的底端面与第二伸缩杆的顶端面固定连接,所述第二伸缩杆的顶端面中心内嵌有矩形限位槽,所述第四磁铁的轴向中心开设有矩形限位孔,且矩形限位孔与矩形限位槽上下正对,所述传动杆转动贯穿第三磁铁轴向中心,且矩形传动头滑动插接在矩形限位孔以及矩形限位槽的内腔,所述第二滚轮安装座固定安装在第二伸缩杆的底端面,所述第二滚轮转动设置在第二滚轮安装座的底端,所述第二滚轮安装座右侧侧壁设置驱动电机,且驱动电机通过导线与数据处理模块的信号输出端口连接,所述驱动电机通过动力轴转动贯穿第二滚轮安装座右侧侧壁,且与第二滚轮轴向中心侧壁连接。
优选的,所述传动杆的径向外壁固定套接有限位板,所述移动台的内腔设有位于动力腔下方的限位槽,且限位板转动设置在限位槽的内腔。
优选的,所述第一磁铁和第二磁铁均位于第一缓冲套筒的内腔,且相对侧壁磁极相同,所述第一磁铁固定设置在第一缓冲套筒内腔顶端面,所述第二磁铁的底端面与第一伸缩杆的顶端面固定连接,所述第一滚轮安装座固定安装在第一伸缩杆的底端面,所述第一滚轮转动设置在第一滚轮安装座的底端。
优选的,其具体使用方法为:
(S1)、使用前,将检测机器人安装在检测机器人安装槽内腔,并将检测机器人的检测机构漏出检测孔,以便于检测机器人用于对桥面路基进行检测使用;
(S2)、使用时,外接蓄电池安装在移动台的顶端面,并为整个电路供电,通过数据处理模块启动驱动电机,通过驱动电机带动第二滚轮转动,而两个牵引机构的第一滚轮跟随移动,使得转向机构便于带动整体结构向前移动,前移的过程中,通过转向机构的第二缓冲套筒内腔磁极相同的第三磁铁和第四磁铁,利用磁极相同相互排斥的原理,使得第三磁铁和第四磁铁之间形成缓冲间隙,通过两个牵引机构的第一缓冲套筒内腔磁极相同的第一磁铁与第二磁铁,利用磁极相同相互排斥的原理,使得第一磁铁与第二磁铁之间形成缓冲间隙,使得前移的过程中,一旦产生抖动,利用磁极排斥产生的缓冲间隙来缓冲抖动;
(S3)、整体机构前移的过程中,选定两个红外测距传感器中其中一个作为行驶过程中检测感应使用,将整体结构置于桥面路基,通过智能触控屏预设红外测距传感器的感应距离信号,即移动台侧壁的红外测距传感器距离桥面护栏之间的距离,通过D/A转换模块将智能触控屏输入的数值信号转换成感应信号值,便于数据处理模块分析处理,一旦整体结构牵引过程中,移动台侧壁偏离红外测距传感器距离桥面护栏之间的距离的监测距离的阈值,则红外测距传感器将距离感应信号值上传至数据处理模块,若移动台侧壁距离小于预设的阈值,则数据处理模块控制伺服电机正转,使得传动杆底端的矩形传动头滑动插接在矩形限位孔以及矩形限位槽的内腔,并带动第二伸缩杆正转,使得第二滚轮纠正现行轨迹,使得移动台依然按照预设的红外测距传感器距离桥面护栏之间的距离的监测距离的阈值前移,若移动台侧壁距离大于预设的阈值,则数据处理模块控制伺服电机反转,使得传动杆底端的矩形传动头滑动插接在矩形限位孔以及矩形限位槽的内腔,并带动第二伸缩杆反转,使得第二滚轮纠正现行轨迹,使得移动台依然按照预设的红外测距传感器距离桥面护栏之间的距离的监测距离的阈值前移,使得移动台按照预设的前移路线利用检测机器人对桥面路基进行检测。
有益效果
1.本发明为一种大跨度桥梁检测作业机器人用导向移动机构,便于安装检测机器人,通过红外测距传感器感应距离桥面护栏之间的距离,一旦整体结构牵引过程中,移动台侧壁偏离红外测距传感器距离桥面护栏之间的距离的监测距离的阈值,数据处理模块控制伺服电机转动,使得第二滚轮纠正现行轨迹,使得移动台依然按照预设的阈值信号前移,节省操作人员体力支出。
2.本发明,利用磁极相同相互排斥的原理,使得第一磁铁与第二磁铁之间形成缓冲间隙,以及使得第三磁铁和第四磁铁之间形成缓冲间隙,使得前移的过程中,一旦产生抖动,利用磁极排斥产生的缓冲间隙来缓冲抖动,实现在行进过程中能够减缓震动力,提高导向移动的机动性,同时减轻操作人员工作强度。
附图说明
图1为本发明主体结构示意图;
图2为本发明的牵引机构剖视图;
图3为本发明的转向机构剖视图;
图4为本发明的工作原理框图。
图中:1、移动台;101、动力腔;2、检测机器人安装槽;3、螺纹安装槽;4、检测孔;5、牵引机构;51、第一缓冲套筒;52、第一伸缩杆;53、第一滚轮安装座;54、第一滚轮;55、转盘;56、第一磁铁;57、第二磁铁;6、红外测距传感器;7、转向机构;71、第二缓冲套筒;72、第二伸缩杆;73、第二滚轮安装座;74、第二滚轮;75、传动杆;76、限位板;77、第三磁铁;78、第四磁铁;79、矩形限位槽;710、矩形传动头;711、伺服电机;712、固定盘;8、智能触控屏;9、驱动电机;10、数据处理模块;11、D/A转换模块。
本发明的实施方式
本申请实施例通过提供一种大跨度桥梁检测作业机器人用导向移动机构,解决了现有技术中提出的问题;下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本实施例提供了一种大跨度桥梁检测作业机器人用导向移动机构,包括移动台1、内嵌于移动台1内腔的一侧的数据处理模块10、转向机构7和两个牵引机构5,两个牵引机构5均包括有转盘55、第一缓冲套筒51、第一伸缩杆52、第一磁铁56、第二磁铁57、第一滚轮安装座53和第一滚轮54,两个牵引机构5分别位于移动台1的底端面后侧左右两端,且分别通过转盘55与移动台1的底端面转动连接,转向机构7包括有伺服电机711、第二缓冲套筒71、第二伸缩杆72、第三磁铁77、第四磁铁78、第二滚轮安装座73和第二滚轮74,转向机构7位于移动台1的底端面前端中部位置,数据处理模块10的信号输入端口连接有D/A转换模块11,D/A转换模块11的信号输入端口连接有智能触控屏8,移动台1的左右两侧中段位置均内嵌有红外测距传感器6,且两个红外测距传感器6的信号输出端口分别与数据处理模块10的信号输入端口连接,数据处理模块10的信号输入端口通过导线与伺服电机711连接。
移动台1的顶端面中心向下凹陷有检测机器人安装槽2,检测机器人安装槽2的内腔底端面中心向下开设有贯穿移动台1底端面的检测孔4,检测机器人安装槽2的底端面边缘位置开设有若干个均匀间隔分布的螺纹安装槽3,通过螺纹安装槽3将检测机器人安装在检测机器人安装槽2内腔,并将检测机器人的检测机构漏出检测孔4,以便于检测机器人用于对桥面路基进行检测使用。
智能触控屏8内嵌于移动台1的前端面右侧,且智能触控屏8的前端面与移动台1的前端面相互齐平,便于对智能触控屏8进行操作。
移动台1的内腔前侧中段位置设有动力腔101,伺服电机711通过固定盘712固定安装在动力腔101的内腔顶端面,伺服电机711通过动力轴连接有传动杆75,传动杆75的底端固定连接矩形传动头710,第二缓冲套筒71固定在移动台1的底端面前端中段位置,且位于动力腔101的正下方,第二伸缩杆72滑动插接在第二缓冲套筒71内腔下方,第三磁铁77和第四磁铁78均位于第二缓冲套筒71的内腔,且相对侧壁磁极相同,第三磁铁77固定设置在第二缓冲套筒71内腔顶端面,第四磁铁78的底端面与第二伸缩杆72的顶端面固定连接,第二伸缩杆72的顶端面中心内嵌有矩形限位槽79,第四磁铁78的轴向中心开设有矩形限位孔,且矩形限位孔与矩形限位槽79上下正对,传动杆75转动贯穿第三磁铁77轴向中心,且矩形传动头710滑动插接在矩形限位孔以及矩形限位槽79的内腔,第二滚轮安装座73固定安装在第二伸缩杆72的底端面,第二滚轮74转动设置在第二滚轮安装座73的底端,第二滚轮安装座73右侧侧壁设置驱动电机9,且驱动电机9通过导线与数据处理模块10的信号输出端口连接,驱动电机9通过动力轴转动贯穿第二滚轮安装座73右侧侧壁,且与第二滚轮74轴向中心侧壁连接。
传动杆75的径向外壁固定套接有限位板76,移动台1的内腔设有位于动力腔101下方的限位槽,且限位板76转动设置在限位槽的内腔,通过限位板76在限位槽的内腔转动,增强传动杆75的传动稳定性。
第一磁铁56和第二磁铁57均位于第一缓冲套筒51的内腔,且相对侧壁磁极相同,第一磁铁56固定设置在第一缓冲套筒51内腔顶端面,第二磁铁57的底端面与第一伸缩杆52的顶端面固定连接,第一滚轮安装座53固定安装在第一伸缩杆52的底端面,第一滚轮54转动设置在第一滚轮安装座53的底端。
本发明实时例中,使用前,将检测机器人安装在检测机器人安装槽2内腔,并将检测机器人的检测机构漏出检测孔4,以便于检测机器人用于对桥面路基进行检测使用;使用时,外接蓄电池安装在移动台1的顶端面,并为整个电路供电,通过数据处理模块10启动驱动电机9,通过驱动电机9带动第二滚轮74转动,而两个牵引机构5的第一滚轮54跟随移动,使得转向机构7便于带动整体结构向前移动,前移的过程中,通过转向机构7的第二缓冲套筒71内腔磁极相同的第三磁铁77和第四磁铁78,利用磁极相同相互排斥的原理,使得第三磁铁77和第四磁铁78之间形成缓冲间隙,通过两个牵引机构5的第一缓冲套筒51内腔磁极相同的第一磁铁56与第二磁铁57,利用磁极相同相互排斥的原理,使得第一磁铁56与第二磁铁57之间形成缓冲间隙,使得前移的过程中,一旦产生抖动,利用磁极排斥产生的缓冲间隙来缓冲抖动;整体机构前移的过程中,选定两个红外测距传感器6中其中一个作为行驶过程中检测感应使用,将整体结构置于桥面路基,通过智能触控屏8预设红外测距传感器6的感应距离信号,即移动台1侧壁的红外测距传感器6距离桥面护栏之间的距离,通过D/A转换模块11将智能触控屏8输入的数值信号转换成感应信号值,便于数据处理模块10分析处理,一旦整体结构牵引过程中,移动台1侧壁偏离红外测距传感器6距离桥面护栏之间的距离的监测距离的阈值,则红外测距传感器6将距离感应信号值上传至数据处理模块10,若移动台1侧壁距离小于预设的阈值,则数据处理模块10控制伺服电机711正转,使得传动杆75底端的矩形传动头710滑动插接在矩形限位孔以及矩形限位槽79的内腔,并带动第二伸缩杆72正转,使得第二滚轮74纠正现行轨迹,使得移动台1依然按照预设的红外测距传感器6距离桥面护栏之间的距离的监测距离的阈值前移,若移动台1侧壁距离大于预设的阈值,则数据处理模块10控制伺服电机711反转,使得传动杆75底端的矩形传动头710滑动插接在矩形限位孔以及矩形限位槽79的内腔,并带动第二伸缩杆72反转,使得第二滚轮74纠正现行轨迹,使得移动台1依然按照预设的红外测距传感器6距离桥面护栏之间的距离的监测距离的阈值前移,使得移动台1按照预设的前移路线利用检测机器人对桥面路基进行检测,提高检测效率,减少提操作人员体力支出。
其中,数据处理模块10的型号为DSP28335,红外测距传感器6的型号为GP2D12,D/A转换模块11的型号为HI-565A,伺服电机711的型号为EMMS-AS-140-M-RMB,智能触控屏8的型号为LDTM150,驱动电机9的型号为WD-90YC60,也可根据实际使用需求来自由设定。
本发明的描述中,需要说明的是,术语“竖直”、“上”、“下”、“水平”等指示的方位或者位置关系为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或者暗示相对重要性。
本发明的描述中,还需要说明的是,除非另有明确的规定和限制,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接,可以是机械连接,也可以是电连接,可以是直接连接,也可以是通过中间媒介相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种大跨度桥梁检测作业机器人用导向移动机构,包括移动台(1)、内嵌于移动台(1)内腔的一侧的数据处理模块(10)、转向机构(7)和两个牵引机构(5),其特征在于:两个所述牵引机构(5)均包括有转盘(55)、第一缓冲套筒(51)、第一伸缩杆(52)、第一磁铁(56)、第二磁铁(57)、第一滚轮安装座(53)和第一滚轮(54),两个所述牵引机构(5)分别位于移动台(1)的底端面后侧左右两端,且分别通过转盘(55)与移动台(1)的底端面转动连接,所述转向机构(7)包括有伺服电机(711)、第二缓冲套筒(71)、第二伸缩杆(72)、第三磁铁(77)、第四磁铁(78)、第二滚轮安装座(73)和第二滚轮(74),所述转向机构(7)位于移动台(1)的底端面前端中部位置,所述数据处理模块(10)的信号输入端口连接有D/A转换模块(11),所述D/A转换模块(11)的信号输入端口连接有智能触控屏(8),所述移动台(1)的左右两侧中段位置均内嵌有红外测距传感器(6),且两个红外测距传感器(6)的信号输出端口分别与数据处理模块(10)的信号输入端口连接,所述数据处理模块(10)的信号输入端口通过导线与伺服电机(711)连接。
  2. 根据权利要求1所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述移动台(1)的顶端面中心向下凹陷有检测机器人安装槽(2),所述检测机器人安装槽(2)的内腔底端面中心向下开设有贯穿移动台(1)底端面的检测孔(4)。
  3. 根据权利要求2所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述检测机器人安装槽(2)的底端面边缘位置开设有若干个均匀间隔分布的螺纹安装槽(3)。
  4. 根据权利要求1所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述智能触控屏(8)内嵌于移动台(1)的前端面右侧,且智能触控屏(8)的前端面与移动台(1)的前端面相互齐平。
  5. 根据权利要求1所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述移动台(1)的内腔前侧中段位置设有动力腔(101),所述伺服电机(711)通过固定盘(712)固定安装在动力腔(101)的内腔顶端面,所述伺服电机(711)通过动力轴连接有传动杆(75),所述传动杆(75)的底端固定连接矩形传动头(710),所述第二缓冲套筒(71)固定在移动台(1)的底端面前端中段位置,且位于动力腔(101)的正下方,所述第二伸缩杆(72)滑动插接在第二缓冲套筒(71)内腔下方,所述第三磁铁(77)和第四磁铁(78)均位于第二缓冲套筒(71)的内腔,且相对侧壁磁极相同,所述第三磁铁(77)固定设置在第二缓冲套筒(71)内腔顶端面,所述第四磁铁(78)的底端面与第二伸缩杆(72)的顶端面固定连接,所述第二伸缩杆(72)的顶端面中心内嵌有矩形限位槽(79),所述第四磁铁(78)的轴向中心开设有矩形限位孔,且矩形限位孔与矩形限位槽(79)上下正对,所述传动杆(75)转动贯穿第三磁铁(77)轴向中心,且矩形传动头(710)滑动插接在矩形限位孔以及矩形限位槽(79)的内腔,所述第二滚轮安装座(73)固定安装在第二伸缩杆(72)的底端面,所述第二滚轮(74)转动设置在第二滚轮安装座(73)的底端,所述第二滚轮安装座(73)右侧侧壁设置驱动电机(9),且驱动电机(9)通过导线与数据处理模块(10)的信号输出端口连接,所述驱动电机(9)通过动力轴转动贯穿第二滚轮安装座(73)右侧侧壁,且与第二滚轮(74)轴向中心侧壁连接。
  6. 根据权利要求5所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述传动杆(75)的径向外壁固定套接有限位板(76),所述移动台(1)的内腔设有位于动力腔(101)下方的限位槽,且限位板(76)转动设置在限位槽的内腔。
  7. 根据权利要求1所述的一种大跨度桥梁检测作业机器人用导向移动机构,其特征在于:所述第一磁铁(56)和第二磁铁(57)均位于第一缓冲套筒(51)的内腔,且相对侧壁磁极相同,所述第一磁铁(56)固定设置在第一缓冲套筒(51)内腔顶端面,所述第二磁铁(57)的底端面与第一伸缩杆(52)的顶端面固定连接,所述第一滚轮安装座(53)固定安装在第一伸缩杆(52)的底端面,所述第一滚轮(54)转动设置在第一滚轮安装座(53)的底端。
  8. 根据权利要求1所述的一种大跨度桥梁检测作业机器人用导向移动机构,其具体使用方法为:
    (S1)、使用前,将检测机器人安装在检测机器人安装槽(2)内腔,并将检测机器人的检测机构漏出检测孔(4),以便于检测机器人用于对桥面路基进行检测使用;
    (S2)、使用时,外接蓄电池安装在移动台(1)的顶端面,并为整个电路供电,通过数据处理模块(10)启动驱动电机(9),通过驱动电机(9)带动第二滚轮(74)转动,而两个牵引机构(5)的第一滚轮(54)跟随移动,使得转向机构(7)便于带动整体结构向前移动,前移的过程中,通过转向机构(7)的第二缓冲套筒(71)内腔磁极相同的第三磁铁(77)和第四磁铁(78),利用磁极相同相互排斥的原理,使得第三磁铁(77)和第四磁铁(78)之间形成缓冲间隙,通过两个牵引机构(5)的第一缓冲套筒(51)内腔磁极相同的第一磁铁(56)与第二磁铁(57),利用磁极相同相互排斥的原理,使得第一磁铁(56)与第二磁铁(57)之间形成缓冲间隙,使得前移的过程中,一旦产生抖动,利用磁极排斥产生的缓冲间隙来缓冲抖动;
    (S3)、整体机构前移的过程中,选定两个红外测距传感器(6)中其中一个作为行驶过程中检测感应使用,将整体结构置于桥面路基,通过智能触控屏(8)预设红外测距传感器(6)的感应距离信号,即移动台(1)侧壁的红外测距传感器(6)距离桥面护栏之间的距离,通过D/A转换模块(11)将智能触控屏(8)输入的数值信号转换成感应信号值,便于数据处理模块(10)分析处理,一旦整体结构牵引过程中,移动台(1)侧壁偏离红外测距传感器(6)距离桥面护栏之间的距离的监测距离的阈值,则红外测距传感器(6)将距离感应信号值上传至数据处理模块(10),若移动台(1)侧壁距离小于预设的阈值,则数据处理模块(10)控制伺服电机(711)正转,使得传动杆(75)底端的矩形传动头(710)滑动插接在矩形限位孔以及矩形限位槽(79)的内腔,并带动第二伸缩杆(72)正转,使得第二滚轮(74)纠正现行轨迹,使得移动台(1)依然按照预设的红外测距传感器(6)距离桥面护栏之间的距离的监测距离的阈值前移,若移动台(1)侧壁距离大于预设的阈值,则数据处理模块(10)控制伺服电机(711)反转,使得传动杆(75)底端的矩形传动头(710)滑动插接在矩形限位孔以及矩形限位槽(79)的内腔,并带动第二伸缩杆(72)反转,使得第二滚轮(74)纠正现行轨迹,使得移动台(1)依然按照预设的红外测距传感器(6)距离桥面护栏之间的距离的监测距离的阈值前移,使得移动台(1)按照预设的前移路线利用检测机器人对桥面路基进行检测。
PCT/CN2020/089506 2019-08-27 2020-05-10 一种大跨度桥梁检测作业机器人用导向移动机构 WO2021036336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794176.1 2019-08-27
CN201910794176.1A CN110549369A (zh) 2019-08-27 2019-08-27 一种大跨度桥梁检测作业机器人用导向移动机构

Publications (1)

Publication Number Publication Date
WO2021036336A1 true WO2021036336A1 (zh) 2021-03-04

Family

ID=68738296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089506 WO2021036336A1 (zh) 2019-08-27 2020-05-10 一种大跨度桥梁检测作业机器人用导向移动机构

Country Status (2)

Country Link
CN (1) CN110549369A (zh)
WO (1) WO2021036336A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110549369A (zh) * 2019-08-27 2019-12-10 南京涵曦月自动化科技有限公司 一种大跨度桥梁检测作业机器人用导向移动机构
CN111949031B (zh) * 2020-08-17 2023-02-07 合肥德泰科通测控技术有限公司 基于护栏机器人自动定位系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015220A (zh) * 2008-04-23 2011-04-13 韩国道路公司 能够攀爬障碍物的桥梁检测机器人
CN202138402U (zh) * 2011-04-17 2012-02-08 陆霞 手推车消震装置
CN106368121A (zh) * 2016-09-29 2017-02-01 南京祖航航空科技有限公司 一种吸顶式探测装置
CN107186690A (zh) * 2017-06-09 2017-09-22 李红星 一种应用于桥梁维护检测的智能机器人
CN109502015A (zh) * 2018-12-23 2019-03-22 朱光玺 一种用于临近空间太阳能无人机的起落架减震结构
CN110549369A (zh) * 2019-08-27 2019-12-10 南京涵曦月自动化科技有限公司 一种大跨度桥梁检测作业机器人用导向移动机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013493B1 (ko) * 2008-06-05 2011-02-10 한양대학교 산학협력단 교량점검용 장치
CN206721671U (zh) * 2017-03-28 2017-12-08 安徽理工大学 一种用于连续钢桁梁铁路桥的减震检修车
CN108729351A (zh) * 2018-07-27 2018-11-02 黄仕平 一种桥梁检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015220A (zh) * 2008-04-23 2011-04-13 韩国道路公司 能够攀爬障碍物的桥梁检测机器人
CN202138402U (zh) * 2011-04-17 2012-02-08 陆霞 手推车消震装置
CN106368121A (zh) * 2016-09-29 2017-02-01 南京祖航航空科技有限公司 一种吸顶式探测装置
CN107186690A (zh) * 2017-06-09 2017-09-22 李红星 一种应用于桥梁维护检测的智能机器人
CN109502015A (zh) * 2018-12-23 2019-03-22 朱光玺 一种用于临近空间太阳能无人机的起落架减震结构
CN110549369A (zh) * 2019-08-27 2019-12-10 南京涵曦月自动化科技有限公司 一种大跨度桥梁检测作业机器人用导向移动机构

Also Published As

Publication number Publication date
CN110549369A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021036336A1 (zh) 一种大跨度桥梁检测作业机器人用导向移动机构
WO2022041807A1 (zh) 一种电气自动化设备的检测装置及检测方法
CN204154292U (zh) 一种陶瓷砖超高精度平整度检测装置
CN103226186A (zh) 一种压缩机转子反电动势检测设备
CN112540264A (zh) 一种电缆故障定位排查方法和装置
CN109357654A (zh) 一种螺孔检测装置
CN219550089U (zh) 可升降结构及挂轨式巡检机器人
CN209784261U (zh) 一种探伤检测装置
CN209264601U (zh) 一种检测土壤不同深度重金属的设备
CN106926853A (zh) 一种便携可折叠的全自动铁路轨道检测车
CN106338516A (zh) 一种换向器视觉检测设备
CN209706708U (zh) 一种轴类外径高效防错检测设备
CN205063444U (zh) 一种水电站泄洪流道检修平台
CN214502401U (zh) 一种建筑结构裂缝宽度检测装置
CN203053396U (zh) 一种显示器背板原材平面度检测机
CN204422689U (zh) 一种电网用破损电缆检测装置
CN210803150U (zh) 一种实验仪器运行自动捕捉设备
CN207127380U (zh) 应用于固定式闪光焊对中系统的移动结构及自动对中系统
CN208872278U (zh) 一种螺孔检测装置
CN202970696U (zh) 一种用于溜井井壁扫描的检测装置
CN216208786U (zh) 钢桥面板顶板贯穿型疲劳裂纹电涡流检测装置
CN206475273U (zh) 一种木板加工用的封边侧孔一体机
CN212747842U (zh) 环境检测装置
CN211452406U (zh) 一种在线测试设备用固定仪器
CN216339740U (zh) 一种基桩承载力鉴定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855992

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/08/2022)