WO2021036214A1 - 一种法拉第清洗装置及等离子体处理系统 - Google Patents

一种法拉第清洗装置及等离子体处理系统 Download PDF

Info

Publication number
WO2021036214A1
WO2021036214A1 PCT/CN2020/076761 CN2020076761W WO2021036214A1 WO 2021036214 A1 WO2021036214 A1 WO 2021036214A1 CN 2020076761 W CN2020076761 W CN 2020076761W WO 2021036214 A1 WO2021036214 A1 WO 2021036214A1
Authority
WO
WIPO (PCT)
Prior art keywords
faraday
capacitor
processing system
plasma processing
cleaning device
Prior art date
Application number
PCT/CN2020/076761
Other languages
English (en)
French (fr)
Inventor
刘海洋
胡冬冬
刘小波
李娜
程实然
郭颂
吴志浩
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to JP2022510959A priority Critical patent/JP7461672B2/ja
Priority to KR1020227005671A priority patent/KR102659364B1/ko
Priority to US17/627,129 priority patent/US11735400B2/en
Publication of WO2021036214A1 publication Critical patent/WO2021036214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3341Reactive etching

Definitions

  • the invention is a Faraday cleaning device and a plasma processing system, belonging to the technical field of plasma cleaning equipment.
  • etching is one of the most important processes.
  • Plasma etching is one of the commonly used etching methods.
  • etching occurs in a vacuum reaction chamber, which usually includes electrostatic adsorption.
  • the chuck is used to carry the functions of adsorbing wafers, radio frequency loads, and cooling wafers. Faraday cleaning devices and plasma processing systems are required in the plasma etching process.
  • the purpose of the present invention is to provide a Faraday cleaning device and a plasma processing system to solve the problems raised in the background art.
  • the present invention has a reasonable structure, is convenient for assembly and installation, has a good cleaning effect, and has strong practicability. .
  • a Faraday cleaning device and a plasma processing system including a reaction chamber, a bias electrode, a wafer, a chamber cover, and a cleaning mechanism
  • the reaction chamber A chamber cover is installed on the upper end surface of the chamber
  • a bias electrode is installed inside the reaction chamber
  • a wafer is installed on the upper end surface of the bias electrode
  • a cleaning mechanism is provided on the upper side of the chamber cover
  • the cleaning mechanism includes A coupling window, an intake nozzle, a three-dimensional coil, and a flange layer are installed on the upper end surface of the cavity cover, a coupling window is installed inside the coupling window, an intake nozzle is installed inside the coupling window, and a flange layer is installed on the upper end surface of the coupling window ,
  • the upper end surface of the first layer of the flange is equipped with a three-dimensional coil.
  • the flange layer is divided into a two-stage Faraday and a three-stage Faraday.
  • the two-segment Faraday is composed of a center Faraday, an edge Faraday, a Faraday capacitor, and a Faraday electrode sheet, and the outermost diameter of the two-segment Faraday is 0% larger than the maximum diameter of the coupling window exposed in the cavity cover.
  • the maximum diameter of the center Faraday accounts for 40%-65% of the overall two-segment Faraday
  • the size of the Faraday electrode sheet of the two-segment Faraday is consistent with the Faraday capacitance
  • the thickness is consistent with the center Faraday and the edge Faraday.
  • S is the area of the plates, and d is the distance between the plates.
  • the center Faraday of the two-segment Faraday is composed of two sets of completely identical sector-shaped conductive pieces, and a gap is left between the sector-shaped conductive pieces, and the sector-shaped conductive pieces are separated from each other by a conductive ring and each other.
  • the petal-shaped components are formed with gaps, and the petal-shaped components are isolated from each other, and the petal-shaped components are evenly distributed around the vertical axis in rotational symmetry, and the gaps between the petal-shaped components have the same shape and size.
  • the three-segment Faraday is composed of an internal Faraday, a middle Faraday, an external Faraday, an internal capacitor, an internal electrode sheet, an external capacitor, and an external electrode sheet.
  • the outermost diameter of the three-segment Faraday is larger than that of the coupling window.
  • the maximum diameter in the cavity cover is 0%-10% larger, the maximum internal Faraday diameter accounts for 15%-35% of the overall three-stage Faraday, and the middle Faraday range accounts for 15%-35% of the overall three-stage Faraday,
  • the size of the internal electrode sheet and the external electrode sheet of the three-segment Faraday is consistent with the internal capacitance and the external capacitance, and the thickness is consistent with the internal Faraday, the middle Faraday and the external Faraday.
  • the thickness of the internal capacitor and the external capacitor, the size of the superimposed portion with the internal Faraday, the middle Faraday, and the external Faraday, and the third interspace between the internal Faraday, the middle Faraday, and the external Faraday can be adjusted as required, and the specific adjustment calculation method can refer to the capacitor
  • the beneficial effects of the present invention a Faraday cleaning device and plasma processing system of the present invention, because the present invention adds a coupling window, an air inlet nozzle, a three-dimensional coil, and a flange layer, this design is convenient for performing the inside of the reaction chamber
  • the cleaning solves the problem of poor use effect of the original Faraday cleaning device and plasma processing system, and improves the practicability of the present invention.
  • the flange layer is divided into two-stage Faraday and three-stage Faraday, the rationality of the design is improved. Because the two-stage Faraday is composed of a center Faraday, an edge Faraday, a Faraday capacitor and a Faraday electrode sheet, the two-stage Faraday is the most The diameter of the outer edge is 0%-10% larger than the maximum diameter of the coupling window exposed in the cavity cover. The maximum diameter of the central Faraday accounts for 40%-65% of the overall two-stage Faraday. The size of the two-stage Faraday Faraday electrode is the same as that of the Faraday The capacitors are consistent, and the thickness is consistent with the center Faraday and the edge Faraday. The invention has a reasonable structure, is convenient for assembly and installation, has a good cleaning effect and strong practicability.
  • FIG. 1 is a schematic diagram of the structure of a Faraday cleaning device and plasma processing system of the present invention
  • FIG. 2 is a cross-sectional view of a two-stage Faraday structure in a Faraday cleaning device and a plasma processing system of the present invention
  • FIG. 3 is a top view of a two-stage Faraday structure in a Faraday cleaning device and a plasma processing system of the present invention
  • FIG. 4 is a cross-sectional view of a three-stage Faraday structure in a Faraday cleaning device and a plasma processing system according to the present invention
  • FIG. 5 is a top view of a three-stage Faraday structure in a Faraday cleaning device and a plasma processing system of the present invention
  • Embodiment 1 is a schematic diagram of Embodiment 1 in a Faraday cleaning device and plasma processing system of the present invention
  • FIG. 7 is a working flow chart of Embodiment 1 in a Faraday cleaning device and plasma processing system of the present invention
  • FIG. 8 is a schematic diagram of the second embodiment of a Faraday cleaning device and plasma processing system of the present invention.
  • FIG. 9 is a working flow chart of Embodiment 2 in a Faraday cleaning device and plasma processing system of the present invention.
  • Embodiment 10 is a schematic diagram of Embodiment 3 in a Faraday cleaning device and plasma processing system of the present invention
  • Embodiment 11 is a working flow chart of Embodiment 3 in a Faraday cleaning device and plasma processing system of the present invention
  • the present invention provides a technical solution: a Faraday cleaning device and plasma processing system, including a reaction chamber 1, a bias electrode 2, a wafer 3, a cavity cover 4, and a cleaning mechanism 5
  • a cavity cover 4 is installed on the upper end surface of the reaction chamber 1
  • a bias electrode 2 is installed inside the reaction chamber 1
  • a wafer 3 is installed on the upper end surface of the bias electrode 2
  • a cleaning mechanism 5 is provided on the upper side of the cavity cover 4.
  • the easy-to-clean mechanism 5 includes a coupling window 10, an air inlet nozzle 11, a three-dimensional coil 80, and a flange layer 100.
  • the upper end surface of the cavity cover 4 is equipped with a coupling window 10, and the inside of the coupling window 10 is equipped with an air inlet nozzle 11 and a coupling window 10.
  • the upper end surface is equipped with a flange layer 100, and the upper end surface of the flange layer 100 is equipped with a three-dimensional coil 80. Because the present invention adds a coupling window 10, an air inlet nozzle 11, a three-dimensional coil 80 and a flange layer 100, the The design solves the problem of poor use effect of the original Faraday cleaning device and plasma treatment system.
  • the flange layer 100 is divided into a two-stage Faraday and a three-stage Faraday, which improves the rationality of the design.
  • the two-stage Faraday is composed of a center Faraday 110, an edge Faraday 120, a Faraday capacitor 130 and a Faraday electrode sheet 140, two-stage Faraday
  • the diameter of the outermost edge of the Faraday is 0%-10% larger than the maximum diameter of the coupling window 10 exposed in the cavity cover 4.
  • the maximum diameter of the Faraday 110 in the center accounts for 40%-65% of the overall two-stage Faraday.
  • the size of the Faraday electrode sheet 140 is consistent with the Faraday capacitor 130, and the thickness is consistent with the center Faraday 110 and the edge Faraday 120.
  • S is the area of the plates, and d is the distance between the plates. This design is convenient for calculation and adjustment of the gap at the connection.
  • the center Faraday 110 of the two-segment Faraday consists of two sets of identical sector-shaped conductive members 111 and 112. There is a gap between the sector-shaped conductive members 111 and 112, and the sector-shaped conductive members 111 and 112 are composed of a conductive ring 51 and each other.
  • the petal-shaped components 50 with gaps in the middle are formed, and the petal-shaped components 50 are isolated from each other.
  • the petal-shaped components 50 are evenly distributed in rotational symmetry around the vertical axis.
  • the gaps between the petal-shaped components 50 are the same in shape and size. This design is convenient for coupling
  • the center of the window 10 is cleaned.
  • the three-segment Faraday consists of an inner Faraday 150, a central Faraday 160, an external Faraday 170, an internal capacitor 181, an internal electrode piece 182, an external capacitor 183 and an external electrode piece 184.
  • the outermost diameter of the three-stage Faraday is more exposed than the coupling window 10.
  • the maximum diameter in the cavity cover 4 is 0%-10% larger, the maximum diameter of the internal Faraday 150 accounts for 15%-35% of the overall three-stage Faraday, and the central Faraday 160 range accounts for 15%-35% of the overall three-stage Faraday.
  • the size of the internal electrode piece 182 and the external electrode piece 184 of the three-segment Faraday is consistent with the internal capacitor 181 and the external capacitor 183, and the thickness is consistent with the internal Faraday 150, the middle Faraday 160 and the external Faraday 170.
  • Embodiment 1 As shown in FIG. 6, the center and the edge of the three-dimensional coil 80 are two independent parts of the two single-dimensional coils. One short connection is connected to the external radio frequency device, and the other end is connected to the external radio frequency device. Also connected to ground; the non-grounded ends of the inner and outer coils are connected to the power distribution box of the RF matcher at the same time. There is a power distribution box to set the power allocated to the center and the edge to meet different process requirements. Adjust the power at the center and the edges to adjust the plasma density in the cavity. There is also an RF switch box between the radio frequency matcher and the power distribution box.
  • Two channels are connected from the RF switch box, one is connected to the power distribution box, and the other is connected to the Faraday layer 100.
  • the RF switch The box loads all the output power of the RF matcher into the power distribution box. There is no power on the Faraday layer 100.
  • the power distribution box then distributes power to the center and edge coils as needed.
  • the RF switch box loads all the power on the Faraday layer 100, and the power of the inner and outer coils is zero. At this time, the chamber is cleaned and the coupling window 10 is thoroughly cleaned. Reduce the deposition of non-volatile metal particles on the top.
  • the workflow of this embodiment is shown in FIG. 7.
  • the second embodiment of the present invention is shown in Figure 8.
  • the process and cleaning flow chart of this embodiment is shown in Figure 9.
  • Two RF matchers are configured. One matcher is used to load the Faraday layer with RF power, and the other is used to load the Faraday layer with RF power.
  • the inner and outer coils are loaded with radio frequency power.
  • the two radio frequency matchers are controlled by a radio frequency power supply, and an RF switch box is used between the radio frequency power supply and the radio frequency matcher to control which matcher starts working.
  • the RF The switch box connects the RF power supply to the coil RF matcher.
  • the Faraday RF matcher is not energized.
  • the power from the coil matcher is loaded into the center and edge coils through the power distribution box to ionize the process gas inside the chamber to form plasma etching Process sheet; when the process is over, start cleaning the cavity, the RF switch box connects the RF power supply to the Faraday RF matcher, the coil matcher is not energized, and the power from the Faraday matcher is all loaded on the Faraday layer 100 and ionized on the upper part of the cavity
  • the cleaning gas forms an active plasma to thoroughly clean the reaction chamber 1, especially the lower surface of the coupling window 10.
  • the third embodiment of the present invention is shown in Fig. 10, and the process and cleaning flow chart of this embodiment is shown in Fig. 11.
  • Two radio frequency power supplies and two matchers are configured. A set of radio frequency power supplies and matchers are separately provided to the inner ring. Used with the outer coil, another set of RF power supply and matcher are used separately for Faraday 100, and the two do not interfere with each other. When the chamber is processing, turn on the RF power for the coil, turn off the Faraday RF power, and use the matching for the coil.
  • the device loads the radio frequency power into the center and edge coils of the three-dimensional coil 80 through the power distribution box, ionizes the process gas in the cavity, forms plasma, and performs etching; when the process is over, the chamber cleaning starts, and the coil is turned off.
  • Power supply turn on the Faraday radio frequency power supply, load all radio frequency power on the Faraday layer 100, ionize the cleaning gas on the upper part of the cavity to form active plasma, and thoroughly clean the reaction chamber 1, especially the lower surface of the coupling window 10, The practicability of the present invention is improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本发明提供一种法拉第清洗装置及等离子体处理系统,包括反应腔室、偏置电极、晶圆、腔盖、耦合窗、进气喷嘴、立体式线圈以及法兰第层,腔盖上端面安装有耦合窗,反应腔室上端面安装有腔盖,反应腔室内部装配有偏置电极,偏置电极上端面安装有晶圆,耦合窗内部装配有进气喷嘴,耦合窗上端面安装有法兰第层,法兰第层上端面装配有立体式线圈,因本发明添加了耦合窗、进气喷嘴、立体式线圈以及法兰第层,该设计解决了原有法拉第清洗装置及等离子体处理系统使用效果不佳的问题,本发明结构合理,便于组合安装,清理效果好,实用性强。

Description

一种法拉第清洗装置及等离子体处理系统 技术领域
本发明是一种法拉第清洗装置及等离子体处理系统,属于等离子清洗设备技术领域。
背景技术
在半导体集成电路制造工艺中,刻蚀是其中最为重要的一道工序,其中等离子体刻蚀是常用的刻蚀方式之一,通常刻蚀发生在真空反应腔室内,通常真空反应腔室内包括静电吸附卡盘,用于承载吸附晶圆、射频负载及冷却晶圆等作用,在离子体刻蚀过程中需要用到法拉第清洗装置及等离子体处理系统。
现有技术中,现有的法拉第清洗装置及等离子体处理系统在使用时,清洗不彻底,使用效果不好,现在急需一种法拉第清洗装置及等离子体处理系统来解决上述出现的问题。
发明内容
针对现有技术存在的不足,本发明目的是提供一种法拉第清洗装置及等离子体处理系统,以解决上述背景技术中提出的问题,本发明结构合理,便于组合安装,清理效果好,实用性强。
为了实现上述目的,本发明是通过如下的技术方案来实现:一种法拉第清洗装置及等离子体处理系统,包括反应腔室、偏置电极、晶圆、腔盖以及便于清洗机构,所述反应腔室上端面安装有腔盖,所述反应腔室内部装配有偏置电极,所述偏置电极上端面安装有晶圆,所述腔盖上侧设置有便于清洗机构,所述便于清洗机构包括耦合窗、进气喷嘴、立体式线圈以及法兰第层,所述腔盖上端面安装有耦合窗,所述耦合窗内部装配有进气喷嘴,所述耦合窗上端面安装有法兰第层,所述法兰第层上端面装配有立体式线圈。
进一步地,所述法兰第层分为二段式法拉第和三段式法拉第。
进一步地,所述二段式法拉第由中心法拉第、边缘法拉第、法拉第电 容和法拉第电极片组成,所述二段式法拉第最外缘直径大小比耦合窗暴露在腔盖中的最大直径大0%~10%,所述中心法拉第最大直径占整体二段式法拉第的40%~65%,所述二段式法拉第的法拉第电极片大小与法拉第电容吻合,且厚度与中心法拉第和边缘法拉第保持一致。
进一步地,所述法拉第电容厚底、中心法拉第和边缘法拉第叠加部分大小、中心法拉第和边缘法拉第中间空隙可根据需要调整,且具体调整计算方式可参照以下电容计算公式,C=εS/4πkd,其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。
进一步地,所述二段式法拉第的中心法拉第由两组完全相同的扇形导电件和构成,所述扇形导电件和之间留有空隙,所述扇形导电件和又由导电环和相互中间留有空隙的花瓣状组件构成,且花瓣状组件互相隔离,花瓣状组件围绕垂直轴呈旋转对称均匀分布,花瓣状组件之间的缝隙形状、大小相同。
进一步地,所述三段式法拉第由内部法拉第、中部法拉第、外部法拉第、内部电容、内部电极片、外部电容和外部电极片组成,所述三段式法拉第最外缘直径大小比耦合窗暴露在腔盖中的最大直径大0%~10%,所述内部法拉第最大直径占整体三段式法拉第的15%~35%,所述中部法拉第范围占整体三段式法拉第的15%~35%,所述三段式法拉第的内部电极片和外部电极片大小分别与内部电容和外部电容吻合,且厚度与内部法拉第、中部法拉第和外部法拉第保持一致。
进一步地,所述内部电容和外部电容厚底及与内部法拉第、中部法拉第、外部法拉第叠加部分大小及内部法拉第、中部法拉第、外部法拉第三者中间空隙可根据需要调整,且具体调整计算方式可参照电容计算公式,C=εS/4πkd,其中ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
本发明的有益效果:本发明的一种法拉第清洗装置及等离子体处理系统,因本发明添加了耦合窗、进气喷嘴、立体式线圈以及法兰第层,该设 计便于对反应腔室内部进行清洗,解决了原有法拉第清洗装置及等离子体处理系统使用效果不佳的问题,提高了本发明的实用性。
因法兰第层分为二段式法拉第和三段式法拉第,提高了该设计的合理性,因二段式法拉第由中心法拉第、边缘法拉第、法拉第电容和法拉第电极片组成,二段式法拉第最外缘直径大小比耦合窗暴露在腔盖中的最大直径大0%~10%,中心法拉第最大直径占整体二段式法拉第的40%~65%,二段式法拉第的法拉第电极片大小与法拉第电容吻合,且厚度与中心法拉第和边缘法拉第保持一致,本发明结构合理,便于组合安装,清理效果好,实用性强。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一种法拉第清洗装置及等离子体处理系统的结构示意图;
图2为本发明一种法拉第清洗装置及等离子体处理系统中二段式法拉第结构剖面图;
图3为本发明一种法拉第清洗装置及等离子体处理系统中二段式法拉第结构俯视图;
图4为本发明一种法拉第清洗装置及等离子体处理系统中三段式法拉第结构剖面图;
图5为本发明一种法拉第清洗装置及等离子体处理系统中三段式法拉第结构俯视图;
图6为本发明一种法拉第清洗装置及等离子体处理系统中实施方式一示意图;
图7为本发明一种法拉第清洗装置及等离子体处理系统中实施方式一工作流程图;
图8为本发明一种法拉第清洗装置及等离子体处理系统中实施方式二示意图;
图9为本发明一种法拉第清洗装置及等离子体处理系统中实施方式二工作流程图;
图10为本发明一种法拉第清洗装置及等离子体处理系统中实施方式三 示意图;
图11为本发明一种法拉第清洗装置及等离子体处理系统中实施方式三工作流程图;
图中:1-反应腔室、2-偏置电极、3-晶圆、4-腔盖、5-便于清洗机构、10-耦合窗、11-进气喷嘴、80-立体式线圈、100-法兰第层、110-中心法拉第、120-边缘法拉第、130-法拉第电容、140-法拉第电极片、50-导电环、51-花瓣组件、150-内部法拉第、160-中部法拉第、170-外部法拉第、181-内部电容、182-内部电极片、183-外部电容、184-外部电极片。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
请参阅图1-图11,本发明提供一种技术方案:一种法拉第清洗装置及等离子体处理系统,包括反应腔室1、偏置电极2、晶圆3、腔盖4以及便于清洗机构5,反应腔室1上端面安装有腔盖4,反应腔室1内部装配有偏置电极2,偏置电极2上端面安装有晶圆3,腔盖4上侧设置有便于清洗机构5。
便于清洗机构5包括耦合窗10、进气喷嘴11、立体式线圈80以及法兰第层100,腔盖4上端面安装有耦合窗10,耦合窗10内部装配有进气喷嘴11,耦合窗10上端面安装有法兰第层100,法兰第层100上端面装配有立体式线圈80,因本发明添加了耦合窗10、进气喷嘴11、立体式线圈80以及法兰第层100,该设计解决了原有法拉第清洗装置及等离子体处理系统使用效果不佳的问题。
法兰第层100分为二段式法拉第和三段式法拉第,提高了该设计的合理性,二段式法拉第由中心法拉第110、边缘法拉第120、法拉第电容130和法拉第电极片140组成,二段式法拉第最外缘直径大小比耦合窗10暴露在腔盖4中的最大直径大0%~10%,中心法拉第110最大直径占整体二段式法拉第的40%~65%,二段式法拉第的法拉第电极片140大小与法拉第电容130吻合,且厚度与中心法拉第110和边缘法拉第120保持一致。
法拉第电容130厚底、中心法拉第110和边缘法拉第120叠加部分大小、中心法拉第110和边缘法拉第120中间空隙可根据需要调整,且具体调整 计算方式可参照以下电容计算公式,C=εS/4πkd,其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离,该设计便于对连接处的空隙进行计算调节。
二段式法拉第的中心法拉第110由两组完全相同的扇形导电件111和112和构成,扇形导电件111和112和之间留有空隙,扇形导电件111和112和又由导电环51和相互中间留有空隙的花瓣状组件50构成,且花瓣状组件50互相隔离,花瓣状组件50围绕垂直轴呈旋转对称均匀分布,花瓣状组件50之间的缝隙形状、大小相同,该设计便于对耦合窗10中心进行清洗。
三段式法拉第由内部法拉第150、中部法拉第160、外部法拉第170、内部电容181、内部电极片182、外部电容183和外部电极片184组成,三段式法拉第最外缘直径大小比耦合窗10暴露在腔盖4中的最大直径大0%~10%,内部法拉第150最大直径占整体三段式法拉第的15%~35%,中部法拉第160范围占整体三段式法拉第的15%~35%,三段式法拉第的内部电极片182和外部电极片184大小分别与内部电容181和外部电容183吻合,且厚度与内部法拉第150、中部法拉第160和外部法拉第170保持一致。
内部电容181和外部电容183厚底及与内部法拉第150、中部法拉第160、外部法拉第170叠加部分大小及内部法拉第150、中部法拉第160、外部法拉第170三者中间空隙可根据需要调整,且具体调整计算方式可参照电容计算公式,C=εS/4πkd,其中ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离),该设计便于对连接处的空隙进行计算调节。
作为本发明的一个实施例:实施方式一如图6所示立体式线圈80的中心和边缘两个相互独立的部分的两个单立体线圈的一短连接到一起与外部射频装置相连,另外一端也连接到一起接地;内圈和外圈的线圈非接地端同时连接至射频匹配器的功率分配盒上,有功率分配盒来设定分配至中心和边缘的功率,以根据不同的工艺需求来调整中心和边缘的功率,从而调节腔体内等离子体的密度。在射频匹配器与功率分配盒之间还设置有RF切 换盒,从RF切换盒内连接出两路,一路连接至功率分配盒,一路连接至法拉第层100,当设备准备进行工艺时,RF切换盒将射频匹配器的输出功率全部加载到功率分配盒中,法拉第层100上没有功率,功率分配盒再根据需要分配功率至中心和边缘的线圈上。当工艺结束开始进行腔室清洗时,RF切换盒将功率全部加载到法拉第层100上,内线圈和外线圈功率为零,此时对腔体内进行清洗,同时对耦合窗10进行彻底的清洗,减少非挥发性金属颗粒在顶部的沉积。本实施方式的工作流程如图7所示。
本发明实施方式二如图8所示,该实施方案的工艺及清洗流程图如图9所示,配置有两个射频匹配器,一个匹配器用来给法拉第层加载射频功率,另一个用来给内外线圈加载射频功率,同时两个射频匹配器均由一个射频电源控制,且射频电源与射频匹配器之间使用RF切换盒来控制哪一个匹配器开始工作,当腔室开始进行工艺时,RF切换盒将射频电源连接至线圈射频匹配器,法拉第射频匹配器不通电,线圈匹配器发出的功率经功率分配盒加载到中心和边缘线圈中,在腔室内部电离工艺气体,形成等离子体刻蚀工艺片;当工艺结束,开始清洗腔体,RF切换盒将射频电源连接至法拉第射频匹配器,线圈匹配器不通电,法拉第匹配器发出的功率全部加载到法拉第层100上,在腔体上部电离清洗气体,形成活性等离子体,对反应腔室1尤其是耦合窗10下表面进行彻底的清洗。
本发明实施方式三如图10所示,该实施方案的工艺及清洗流程图如图11所示,配置有两个射频电源和两个匹配器,其中一套射频电源和匹配器单独给内圈和外圈线圈使用,另一套射频电源和匹配器单独给法拉第层100使用,两者之间互不干涉,当腔室进行工艺时,打开线圈用射频电源,关闭法拉第射频电源,线圈用匹配器通过功率分配盒将射频功率加载到立体式线圈80的中心和边缘线圈中,电离腔体内的工艺气体,形成等离子体,进行刻蚀;当工艺结束,开始进行腔室清洗,关闭线圈用射频电源,打开法拉第用射频电源,将所有射频功率均加载到法拉第层100上,在腔体上部电离清洗气体,形成活性等离子体,对反应腔室1尤其是耦合窗10下表面进行彻底的清洗,提高了本发明的实用性。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且 在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

  1. 一种法拉第清洗装置及等离子体处理系统,包括反应腔室、偏置电极、晶圆、腔盖以及便于清洗机构,其特征在于:所述反应腔室上端面安装有腔盖,所述反应腔室内部装配有偏置电极,所述偏置电极上端面安装有晶圆,所述腔盖上侧设置有便于清洗机构;
    所述便于清洗机构包括耦合窗、进气喷嘴、立体式线圈以及法兰第层,所述腔盖上端面安装有耦合窗,所述耦合窗内部装配有进气喷嘴,所述耦合窗上端面安装有法兰第层,所述法兰第层上端面装配有立体式线圈。
  2. 根据权利要求1所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述法兰第层分为二段式法拉第和三段式法拉第。
  3. 根据权利要求2所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述二段式法拉第由中心法拉第、边缘法拉第、法拉第电容和法拉第电极片组成,所述二段式法拉第最外缘直径大小比耦合窗暴露在腔盖中的最大直径大0%~10%,所述中心法拉第最大直径占整体二段式法拉第的40%~65%,所述二段式法拉第的法拉第电极片大小与法拉第电容吻合,且厚度与中心法拉第和边缘法拉第保持一致。
  4. 根据权利要求3所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述法拉第电容厚底、中心法拉第和边缘法拉第叠加部分大小、中心法拉第和边缘法拉第中间空隙可根据需要调整,且具体调整计算方式可参照以下电容计算公式,C=εS/4πkd,其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。
  5. 根据权利要求3所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述二段式法拉第的中心法拉第由两组完全相同的扇形导电件和构成,所述扇形导电件和之间留有空隙,所述扇形导电件和又由导电环和相互中间留有空隙的花瓣状组件构成,且花瓣状组件互相隔离,花瓣状组件围绕垂直轴呈旋转对称均匀分布,花瓣状组件之间的缝隙形状、大小相同。
  6. 根据权利要求2所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述三段式法拉第由内部法拉第、中部法拉第、外部法拉第、内部电容、内部电极片、外部电容和外部电极片组成,所述三段式法拉第最外缘直径大小比耦合窗暴露在腔盖中的最大直径大0%~10%,所述内部法拉第最大直径占整体三段式法拉第的15%~35%,所述中部法拉第范围占整体三段式法拉第的15%~35%,所述三段式法拉第的内部电极片和外部电极片大小分别与内部电容和外部电容吻合,且厚度与内部法拉第、中部法拉第和外部法拉第保持一致。
  7. 根据权利要求6所述的一种法拉第清洗装置及等离子体处理系统,其特征在于:所述内部电容和外部电容厚底及与内部法拉第、中部法拉第、外部法拉第叠加部分大小及内部法拉第、中部法拉第、外部法拉第三者中间空隙可根据需要调整,且具体调整计算方式可参照电容计算公式,C=εS/4πkd,其中ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量,常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
PCT/CN2020/076761 2019-08-23 2020-02-26 一种法拉第清洗装置及等离子体处理系统 WO2021036214A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022510959A JP7461672B2 (ja) 2019-08-23 2020-02-26 ファラデー洗浄装置を含むプラズマ処理システム
KR1020227005671A KR102659364B1 (ko) 2019-08-23 2020-02-26 패러데이 세척 장치 및 플라즈마 처리 시스템
US17/627,129 US11735400B2 (en) 2019-08-23 2020-02-26 Faraday cleaning device and plasma processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910783185.0A CN110491760B (zh) 2019-08-23 2019-08-23 一种法拉第清洗装置及等离子体处理系统
CN201910783185.0 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021036214A1 true WO2021036214A1 (zh) 2021-03-04

Family

ID=68553269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076761 WO2021036214A1 (zh) 2019-08-23 2020-02-26 一种法拉第清洗装置及等离子体处理系统

Country Status (6)

Country Link
US (1) US11735400B2 (zh)
JP (1) JP7461672B2 (zh)
KR (1) KR102659364B1 (zh)
CN (1) CN110491760B (zh)
TW (1) TWI746119B (zh)
WO (1) WO2021036214A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491760B (zh) * 2019-08-23 2020-09-15 江苏鲁汶仪器有限公司 一种法拉第清洗装置及等离子体处理系统
CN113130285B (zh) * 2019-12-31 2022-04-15 江苏鲁汶仪器有限公司 一种陶瓷进气接射频清洗装置
CN111081524B (zh) * 2019-12-31 2022-02-22 江苏鲁汶仪器有限公司 一种可旋转的法拉第清洗装置及等离子体处理系统
CN113113280B (zh) 2020-01-09 2022-06-10 江苏鲁汶仪器有限公司 等离子体处理系统及其开合法拉第组件
CN113972125B (zh) 2020-07-24 2022-07-29 江苏鲁汶仪器有限公司 一种等离子体处理系统及其多段式法拉第屏蔽装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503856A (zh) * 2001-03-14 2004-06-09 应用材料有限公司 可变效率的法拉第屏蔽
US7833429B2 (en) * 2003-03-05 2010-11-16 Hitachi High-Technologies Corporation Plasma processing method
TW201432777A (zh) * 2012-10-23 2014-08-16 Lam Res Corp 具有變壓器耦合型電漿線圈區域間的電漿密度去耦合結構之法拉第屏蔽
CN106469636A (zh) * 2015-08-21 2017-03-01 朗姆研究公司 通电的静电法拉第屏蔽用于修复icp中的介电窗
CN110491760A (zh) * 2019-08-23 2019-11-22 江苏鲁汶仪器有限公司 一种法拉第清洗装置及等离子体处理系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075930A2 (en) * 2000-03-31 2001-10-11 Lam Research Corporation Apparatus and methods for actively controlling rf peak-to-peak voltage in an inductively coupled plasma etching system
US6677549B2 (en) * 2000-07-24 2004-01-13 Canon Kabushiki Kaisha Plasma processing apparatus having permeable window covered with light shielding film
US6459066B1 (en) * 2000-08-25 2002-10-01 Board Of Regents, The University Of Texas System Transmission line based inductively coupled plasma source with stable impedance
US20030160024A1 (en) * 2002-02-27 2003-08-28 Tadayashi Kawaguchi Plasma processing method and apparatus
JP5656458B2 (ja) * 2010-06-02 2015-01-21 株式会社日立ハイテクノロジーズ プラズマ処理装置
US9293353B2 (en) * 2011-04-28 2016-03-22 Lam Research Corporation Faraday shield having plasma density decoupling structure between TCP coil zones
JP2014154421A (ja) * 2013-02-12 2014-08-25 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法、および高周波発生器
US10553398B2 (en) * 2013-09-06 2020-02-04 Applied Materials, Inc. Power deposition control in inductively coupled plasma (ICP) reactors
US20160118284A1 (en) * 2014-10-22 2016-04-28 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus
JP6715129B2 (ja) * 2016-08-31 2020-07-01 東京エレクトロン株式会社 プラズマ処理装置
KR102658739B1 (ko) * 2017-05-03 2024-04-17 램 리써치 코포레이션 컨디셔닝 챔버 컴포넌트
US10269574B1 (en) * 2017-10-03 2019-04-23 Mattson Technology, Inc. Surface treatment of carbon containing films using organic radicals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503856A (zh) * 2001-03-14 2004-06-09 应用材料有限公司 可变效率的法拉第屏蔽
US7833429B2 (en) * 2003-03-05 2010-11-16 Hitachi High-Technologies Corporation Plasma processing method
TW201432777A (zh) * 2012-10-23 2014-08-16 Lam Res Corp 具有變壓器耦合型電漿線圈區域間的電漿密度去耦合結構之法拉第屏蔽
CN106469636A (zh) * 2015-08-21 2017-03-01 朗姆研究公司 通电的静电法拉第屏蔽用于修复icp中的介电窗
CN110491760A (zh) * 2019-08-23 2019-11-22 江苏鲁汶仪器有限公司 一种法拉第清洗装置及等离子体处理系统

Also Published As

Publication number Publication date
KR20220035246A (ko) 2022-03-21
CN110491760A (zh) 2019-11-22
TW202109612A (zh) 2021-03-01
KR102659364B1 (ko) 2024-04-23
US11735400B2 (en) 2023-08-22
TWI746119B (zh) 2021-11-11
US20220375733A1 (en) 2022-11-24
CN110491760B (zh) 2020-09-15
JP2022545224A (ja) 2022-10-26
JP7461672B2 (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2021036214A1 (zh) 一种法拉第清洗装置及等离子体处理系统
US10541113B2 (en) Chamber with flow-through source
WO2021012672A1 (zh) 一种具有法拉第屏蔽装置的等离子体处理系统
TWI431683B (zh) Plasma processing device and plasma processing method
TWI523099B (zh) 電漿處理裝置及半導體裝置之製造方法
US7112926B2 (en) Matching unit and plasma processing system
TW201824334A (zh) 氧氣相容電漿源
US7537672B1 (en) Apparatus for plasma processing
WO2021017463A1 (zh) 一种电感耦合等离子体处理系统
US20150170879A1 (en) Semiconductor system assemblies and methods of operation
CN101150044A (zh) 聚焦环和等离子体处理装置
JP2000323456A (ja) プラズマ処理装置およびそれに用いられる電極
JP6277015B2 (ja) プラズマ処理装置
TW201715561A (zh) 電漿處理裝置
TWI724183B (zh) 電漿處理裝置
JP2016063083A (ja) プラズマ処理装置
TW201931424A (zh) 電漿處理裝置
US20160027621A1 (en) Plasma processing apparatus and sample stage fabricating method
WO2003030241A1 (fr) Appareil de traitement de plasma
TW202127498A (zh) 具有開合法拉第元件的等離子體處理系統及其開合法拉第元件
US20200090907A1 (en) Systems and processes for plasma tuning
JP4322350B2 (ja) プラズマ処理装置
WO2022017089A1 (zh) 一种等离子体处理系统及其多段式法拉第屏蔽装置
TWI734436B (zh) 陶瓷進氣接射頻清洗裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510959

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227005671

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856948

Country of ref document: EP

Kind code of ref document: A1