WO2021012672A1 - 一种具有法拉第屏蔽装置的等离子体处理系统 - Google Patents

一种具有法拉第屏蔽装置的等离子体处理系统 Download PDF

Info

Publication number
WO2021012672A1
WO2021012672A1 PCT/CN2020/076752 CN2020076752W WO2021012672A1 WO 2021012672 A1 WO2021012672 A1 WO 2021012672A1 CN 2020076752 W CN2020076752 W CN 2020076752W WO 2021012672 A1 WO2021012672 A1 WO 2021012672A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding device
air inlet
faraday shielding
inlet nozzle
processing system
Prior art date
Application number
PCT/CN2020/076752
Other languages
English (en)
French (fr)
Inventor
李雪冬
刘小波
胡冬冬
刘海洋
孙宏博
许开东
陈璐
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to KR1020227005461A priority Critical patent/KR102656763B1/ko
Priority to US17/626,498 priority patent/US20220319817A1/en
Publication of WO2021012672A1 publication Critical patent/WO2021012672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields

Definitions

  • the invention belongs to the technical field of semiconductor etching, and in particular relates to a plasma processing system with a Faraday shielding device.
  • non-volatile materials such as Pt, Ru, Ir, NiFe, and Au are mainly dry-etched by inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • ICP inductively coupled plasma
  • the process gas in the chamber is ignited to form plasma.
  • the reaction product is difficult to be pumped away by the vacuum pump due to the low vapor pressure of the reaction product, resulting in deposition of the reaction product on the inner wall of the dielectric window and other plasma processing chambers. This will not only cause particle contamination, but also cause the process to drift over time and reduce the repeatability of the process.
  • MRAM memory-magnetic memory
  • metal gate materials such as Mo, Ta, etc.
  • high-k gate dielectric materials such as Al 2 O 3
  • the demand for dry etching of new non-volatile materials such as HfO 2 and ZrO 2 is increasing, which solves the sidewall deposition and particle contamination caused by non-volatile materials in the dry etching process, and improves the plasma processing chamber.
  • the efficiency of the cleaning process of the chamber is very necessary.
  • the Faraday shielding device is placed between the radio frequency coil and the dielectric window to reduce the erosion of the cavity wall by ions induced by the radio frequency electric field. Coupling the shielding power into the Faraday shielding device and selecting a suitable cleaning process can achieve the cleaning of the dielectric window and the inner wall of the cavity, avoiding particle pollution, radio frequency instability, and process caused by the deposition of reaction products on the dielectric window and the inner wall of the cavity. Window drift and other issues.
  • the Faraday shielding device is provided with an inlet nozzle for passing process gas into the reaction chamber, but the Faraday shielding device in the prior art cannot clean the media window around the inlet nozzle, resulting in local particle deposition, if the particles fall off And falling on the surface of the wafer will cause the uniformity and defects of the wafer surface to decrease, and reduce the life cycle of the plasma processing system.
  • the present invention proposes a plasma processing system with a Faraday shielding device, which can clean the media window in the area around the intake nozzle and reduce the failure rate of the plasma processing system.
  • the present invention proposes a plasma processing system with a Faraday shielding device.
  • the plasma processing system includes a reaction chamber, a Faraday shielding device on the reaction chamber, and an air inlet nozzle; the air inlet nozzle passes through The Faraday shielding device passes process gas into the reaction chamber; the air inlet nozzle is made of conductive material, and the air inlet nozzle is electrically connected to the Faraday shielding device.
  • an intake pipe is connected to the intake side of the intake nozzle; the intake nozzle is insulated and connected to the intake pipe.
  • the Faraday shielding device is provided with a through hole for the intake nozzle to pass through; the inner ring of the through hole is electrically connected to the intake nozzle; the wire used for supplying power to the Faraday shielding device is powered through the intake nozzle Connect the Faraday shielding device.
  • the through hole is located at the center of the Faraday shielding device.
  • the Faraday shielding device includes a plurality of petal-shaped components with symmetric centers and spaced apart; the end of each petal-shaped component close to the center of symmetry is connected with the intake nozzle.
  • the plasma processing system further includes a medium window at one end of the reaction chamber; the inner wall of the medium window is located between the reaction chamber and the Faraday shield; the process gas ejected from the inlet nozzle passes through the Faraday shield The device and the medium window lead into the reaction chamber.
  • the air outlet port of the air inlet nozzle is located outside the inner wall of the medium window.
  • an extended intake pipe made of insulating material is sleeved at the outlet port of the intake nozzle; a plurality of first intake holes communicating with the intake nozzle are provided on the extended intake pipe; the extended intake pipe passes through the medium window, The reaction chamber is communicated through the plurality of first air inlet holes; the inner wall of the medium window is located between the air outlet port of the air inlet nozzle and the reaction chamber.
  • the air outlet port of the air inlet nozzle is embedded in the media window, and the air outlet port is located between the inner wall and the outer wall of the media window; the media window is provided with a number of second air inlet holes communicating the air outlet port and the reaction chamber .
  • the inner wall of the intake nozzle is provided with a corrosion-resistant layer.
  • the inlet nozzle of conductive material is electrically connected to the Faraday shielding device.
  • the cleaning process reaction gas in the projection area of the inlet nozzle is also ionized, and the cleaning process reaction gas forms a capacitor in the entire area under the dielectric window.
  • Coupling plasma can clean the dielectric window in the area around the intake nozzle, realize the all-round cleaning of the inner wall of the dielectric window, and reduce the failure rate of the plasma processing system.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a top view of the Faraday shielding device of the present invention.
  • FIG. 3 is an application process flow chart of the present invention.
  • FIG. 4 is a structural diagram of the arrangement of the first air inlet holes of the extended air inlet pipe of the present invention.
  • Fig. 5 is another arrangement structure diagram of the first air inlet holes of the extended air inlet pipe of the present invention.
  • the present invention is a plasma processing system with a Faraday shielding device.
  • the plasma processing system includes a reaction chamber 102, a dielectric window 110 at one end of the reaction chamber 102, a Faraday shielding device 160, and an air inlet nozzle 204.
  • the inner wall of the dielectric window 110 is located between the reaction chamber 102 and the Faraday shielding device 160.
  • the Faraday shielding device 160 may be placed on the outer wall of the dielectric window 110, or the dielectric window 110 may be wrapped in the Faraday shielding device. 160 outside.
  • the process gas ejected from the inlet nozzle 204 passes through the medium window 110 and the Faraday shielding device 160 into the reaction chamber 102.
  • the air inlet nozzle 204 is made of conductive material, such as Al, Cu, stainless steel gold-plated or other conductive materials that can be used for radio frequency conduction, and the air inlet nozzle 204 is electrically connected to the Faraday shielding device 160.
  • the gas source 130 is connected to the intake nozzle 204 through the intake pipe 203.
  • the air inlet nozzle 204 and the air inlet pipe 203 are insulated and connected.
  • the air inlet pipe 203 of insulating material can be used, or the part where the air inlet nozzle 204 and the metal air inlet pipe 203 are connected should use an insulating pipe.
  • the inner wall of the intake nozzle 204 may be coated with a corrosion-resistant coating or nested with an inner tube made of other corrosion-resistant materials, such as ceramic.
  • the outlet port of the inlet nozzle 204 is placed in the medium window 110 Outside the inner wall.
  • the cleaning rate of the projection area of the inlet nozzle 204 on the medium window 110 can be adjusted. The closer the outlet port of the inlet nozzle 204 is to the inner wall of the media window 110, the better the cleaning effect of the media window in the projection area of the inlet nozzle 204.
  • Embodiment 1 The outlet port of the air inlet nozzle 204 communicates with an extended air inlet pipe 205 installed with insulating material; the extended air inlet pipe 205 is provided with a number of first air inlet holes 206; the extended air inlet pipe 205 passes through
  • the medium window 110 communicates with the reaction chamber 102 through the plurality of first air inlet holes 206; the inner wall of the medium window 110 is located between the outlet port of the air inlet nozzle 204 and the reaction chamber 102.
  • the air outlet port of the air inlet nozzle 204 can communicate with the reaction chamber 102 without extending into the reaction chamber 102.
  • the position of the outlet port of the air inlet nozzle 204 can be adjusted as required, and it can be located between the inner wall and the outer wall of the medium window 110, or can be located outside the outer wall of the medium window 110.
  • the extended intake pipe 205 is convenient for disassembly, assembly and maintenance when the first intake hole 206 is blocked or the like.
  • the plurality of first air inlet holes 206 are arranged along the outer edge of the orthographic projection area of the outlet port or the plurality of first air inlet holes 206 are evenly arranged in the orthographic projection area of the outlet port.
  • Embodiment 2 The air outlet port of the air inlet nozzle 204 is embedded in the medium window 110, and the air outlet port is located between the inner wall and the outer wall of the medium window 110; the media window 110 is provided with an air outlet port communicating with the reaction chamber 102
  • the number of second air intake holes Since the second embodiment requires a hole on the dielectric window 110, the processing cost is higher than that of the first embodiment, and it is not easy to maintain when the second air inlet is blocked or other faults.
  • the Faraday shielding device 160 of the present invention includes a plurality of petal-shaped components 202 that are symmetrically centered and arranged at intervals; one end of the plurality of petal-shaped components 202 near the center of symmetry is provided with a through hole.
  • the air inlet nozzle 204 passes through the through hole, and the inner ring of the through hole is electrically connected to the air inlet nozzle 204.
  • the connection between the inner ring of the through hole and the air inlet nozzle 204 is preferably formed by integral processing. It can also be screwed together after being processed separately.
  • the present invention also includes a shielding power supply 105 and a shielding matching network 107 for supplying power to the Faraday shielding device 160.
  • the shielding power supply 105 is tuned by the shielding matching network 107, it is connected to the intake nozzle 204 through a wire to supply power to the Faraday shielding device 160.
  • Such a configuration makes the shielding power supply 105 connect the multiple petal-shaped components 202 at an equipotential, and the capacitive coupling between the multiple petal-shaped components 202 and the plasma is more uniform.
  • the present invention also includes a radio frequency coil 108, an excitation radio frequency power supply 104, and an excitation matching network 106; the excitation radio frequency power supply 104 is tuned through the excitation matching network 106 and supplies power to the radio frequency coil 108.
  • the radio frequency coil 108 is located on the outer wall of the dielectric window 110, and the Faraday shielding device 160 is located between the radio frequency coil 108 and the inner wall of the dielectric window 110.
  • An electrode 118 is also provided in the reaction chamber 102, and the electrode 118 is powered by a bias RF power supply 114 through a bias matching network 116.
  • the shielding power supply 105, the excitation radio frequency power supply 104 and the bias radio frequency power supply 114 can be set to a specific frequency, such as 400KHz, 2MHz, 13.56MHz, 27MHz, 60MHz, 2.54GHz, or a combination of the above frequencies.
  • the wafer or substrate is placed on the electrode 118.
  • the reaction chamber 102 is also provided with a pressure control valve 142 and a vacuum pump 144 for pumping out the gas in the reaction chamber 102, maintaining the reaction chamber 102 at a specific pressure, and removing excess gas and reaction by-products from the reaction chamber 102 .
  • the wafer is placed in the reaction chamber 102.
  • a plasma treatment process reaction gas such as fluorine
  • the specific pressure of the reaction chamber 102 is maintained by the pressure control valve 142 and the vacuum pump 144.
  • the excitation radio frequency power supply 104 is tuned by the excitation matching network 106, supplies power to the radio frequency coil 108, generates plasma 112 in the reaction chamber 102 through inductive coupling, and performs a plasma processing process on the wafer.
  • the radio frequency power input is stopped, and the plasma treatment process reaction gas input is stopped.
  • the substrate sheet is placed in the reaction chamber 102.
  • the cleaning process reaction gas such as argon, oxygen, and nitrogen trifluoride, is introduced into the reaction chamber 102 through the gas inlet nozzle 204.
  • the specific pressure of the reaction chamber 102 is maintained by the pressure control valve 142 and the vacuum pump 144.
  • the excitation radio frequency power supply 104 is tuned through the excitation matching network 106 and supplies power to the radio frequency coil 108; the shielding power supply 105 is tuned through the shield matching network 107 and supplies power to the Faraday shielding device 160.
  • the power from the radio frequency coil 108 and the Faraday shielding device 160 generates argon ions, etc., which are sputtered onto the inner wall of the dielectric window 110 to clean the dielectric window 110. Since the inlet nozzle 204 is electrically connected to the Faraday shielding device 160, the cleaning process reaction gas in the projection area of the inlet nozzle 204 is also ionized to generate argon ions. The cleaning process reaction gas forms a capacitively coupled plasma in the entire area under the dielectric window 110. The omni-directional cleaning of the inner wall of the dielectric window 110 is realized, and the failure rate of the plasma processing system is reduced. After the cleaning process is completed, the radio frequency power input is stopped, and the cleaning process reaction gas input is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种具有法拉第屏蔽装置的等离子体处理系统,所述等离子体处理系统包括反应腔室、位于反应腔室上的法拉第屏蔽装置和进气喷嘴;所述进气喷嘴穿过法拉第屏蔽装置向反应腔室通入工艺气体;所述进气喷嘴是导电材质,且进气喷嘴与法拉第屏蔽装置导电连接。本发明通过导电材质的进气喷嘴与法拉第屏蔽装置导电连接,进行清洗工艺时,进气喷嘴投影区域的清洗工艺反应气体也发生电离,清洗工艺反应气体在介质窗下方整个区域形成电容耦合等离子体,能够对进气喷嘴周围区域的介质窗进行清洗,实现了对介质窗内壁的全方位清洗,降低等离子体处理系统的故障率。

Description

一种具有法拉第屏蔽装置的等离子体处理系统 技术领域
本发明属于半导体刻蚀技术领域,尤其涉及一种具有法拉第屏蔽装置的等离子体处理系统。
背景技术
目前Pt、Ru、Ir、NiFe、Au等非挥发性材料主要通过电感耦合等离子体(ICP)进行干法刻蚀。电感耦合等离子通常由置于等离子体处理腔室外部与电介质窗相邻的线圈产生,腔室内的工艺气体被点燃后形成等离子体。在对非挥发性材料的干法刻蚀工艺过程中,由于反应产物的蒸汽压较低,难以被真空泵抽走,导致反应产物沉积在电介质窗和其他等离子体处理腔室内壁上沉积。这不仅会产生颗粒沾污,也会导致工艺随时间漂移使工艺过程的重复性下降。
随着近年来第三代存储器——磁存储器(MRAM)的不断发展和集成度的不断提高,对金属栅极材料(如Mo、Ta等)和高k栅介质材料(如Al 2O 3、HfO 2和ZrO 2等)等新型非挥发性材料的干法刻蚀需求不断增加,解决非挥发性材料在干法刻蚀过程中产生的侧壁沉积和颗粒沾污,同时提高等离子体处理腔室的清洗工艺效率是十分必要的。
法拉第屏蔽装置置于射频线圈与电介质窗之间可以减少由射频电场诱发的离子对腔壁的侵蚀。将屏蔽功率耦合进法拉第屏蔽装置,选用合适的清洗工艺,可以实现对介质窗以及腔体内壁的清洗,避免了反应产物在介质窗以及腔体内壁沉积而造成的颗粒污染、射频不稳、工艺窗口漂移等问题。法拉第屏蔽装置中设置有向反应腔室通入工艺气体的进气喷嘴,但现有技术中的法拉第屏蔽装置无法实现对进气喷嘴的周围的介质窗的清洗,导致局部颗粒沉积,若颗粒脱落并掉落到晶圆表面,会造成晶圆表面均匀性降低和缺陷,并降低了等离子体处理系统的使用周期。
发明内容
为解决上述问题,本发明提出一种具有法拉第屏蔽装置的等离子体处理系统,能够对进气喷嘴周围区域的介质窗进行清洗,降低等离子体处理系统的故障率。
技术方案:本发明提出一种具有法拉第屏蔽装置的等离子体处理系统,所述等离子体处理系统包括反应腔室、位于反应腔室上的法拉第屏蔽装置和进气喷嘴;所述进气喷嘴穿过法拉第屏蔽装置向反应腔室通入工艺气体;所述进气喷嘴是导电材质,且进气喷嘴与法拉第屏蔽装置导电连接。
进一步,所述进气喷嘴的进气侧连接有进气管道;所述进气喷嘴与进气管道绝缘连接。
进一步,所述法拉第屏蔽装置上设置有供进气喷嘴穿过的通孔;所述通孔的内圈与进气喷嘴导电连接;用于为所述法拉第屏蔽装置供电的导线通过进气喷嘴供电连接法拉第屏蔽装置。
进一步,所述通孔位于法拉第屏蔽装置的中心处。
进一步,所述法拉第屏蔽装置包括多个中心对称且间隔布置的瓣状组件;每个瓣状组件靠近对称中心的一端均与进气喷嘴相连。
进一步,所述等离子体处理系统还包括位于反应腔室一端的介质窗;所述介质窗的内壁位于反应腔室与法拉第屏蔽装置之间;所述进气喷嘴喷出的工艺气体穿过法拉第屏蔽装置及介质窗通入反应腔室。
进一步,所述进气喷嘴的出气端口置于介质窗内壁外侧。
进一步,所述进气喷嘴的出气端口处套装有绝缘材质的延伸进气管;所述延伸进气管上设置有连通进气喷嘴的若干第一进气孔;所述延伸进气管穿过介质窗,并且通过所述若干第一进气孔连通反应腔室;所述介质窗的内壁位于进气喷嘴的出气端口与反应腔室之间。
进一步,所述进气喷嘴的出气端口嵌入在介质窗内,且出气端口位于介质窗的内壁和外壁之间;所述介质窗上设置有连通出气端口与反应腔室的若干第二进气孔。
进一步,所述进气喷嘴内壁设置有耐腐蚀层。
有益效果:本发明通过导电材质的进气喷嘴与法拉第屏蔽装置导电连接,进行清洗工艺时,进气喷嘴投影区域的清洗工艺反应气体也发生电离,清洗 工艺反应气体在介质窗下方整个区域形成电容耦合等离子体,能够对进气喷嘴周围区域的介质窗进行清洗,实现了对介质窗内壁的全方位清洗,降低等离子体处理系统的故障率。
附图说明
图1为本发明的结构示意图;
图2为本发明的法拉第屏蔽装置的俯视图;
图3为本发明的一种应用工艺流程图;
图4为本发明的延伸进气管的第一进气孔的一种排布结构图;
图5为本发明的延伸进气管的第一进气孔的另一种排布结构图。
具体实施方式
本发明是一种具有法拉第屏蔽装置的等离子体处理系统,所述等离子体处理系统包括反应腔室102、位于反应腔室102一端的介质窗110、法拉第屏蔽装置160,以及进气喷嘴204。所述介质窗110的内壁位于反应腔室102与法拉第屏蔽装置160之间,具体地,可将所述法拉第屏蔽装置160置于介质窗110外壁上,或者所述介质窗110包裹在法拉第屏蔽装置160外侧。所述进气喷嘴204喷出的工艺气体穿过介质窗110和法拉第屏蔽装置160通入反应腔室102。
所述进气喷嘴204是导电材质,例如可以是Al、Cu、不锈钢镀金或其他可用于射频传导的导电材料,且进气喷嘴204与法拉第屏蔽装置160导电连接。
气体源130通过进气管道203连接进气喷嘴204。为防止导电,所述进气喷嘴204与进气管道203绝缘连接,具体地可以使用绝缘材质的进气管道203,或者在进气喷嘴204与金属进气管道203相接的部分应使用绝缘管材隔开。为防止进气喷嘴204被气体腐蚀,进气喷嘴204的内壁可以镀上耐腐蚀涂层或嵌套上其他耐腐蚀材质的内管,如陶瓷。
为防止工艺气体在进气喷嘴204内部电离形成等离子体,造成等离子体打火,损伤进气喷嘴204内表面而产生颗粒,本实施例将所述进气喷嘴204的出气端口置于介质窗110内壁外侧。通过调节进气喷嘴204的出气端口距 介质窗110内壁的距离,可以调节介质窗110上进气喷嘴204的投影区域的清洗速率。进气喷嘴204的出气端口距介质窗110内壁越近,对进气喷嘴204的投影区域的介质窗清洗效果越好。
具体地,有两种实施例:
实施例1、所述进气喷嘴204的出气端口处连通安装有绝缘材质的延伸进气管205;所述延伸进气管205上设置有若干第一进气孔206;所述延伸进气管205穿过介质窗110,并且通过所述若干第一进气孔206连通反应腔室102;所述介质窗110的内壁位于进气喷嘴204的出气端口与反应腔室102之间。通过延伸进气管205,所述进气喷嘴204的出气端口可以不伸入反应腔体102内,即可连通反应腔室102。并且所述进气喷嘴204的出气端口可以根据需要调节位置,可以位于介质窗110的内壁与外壁之间,也可以位于介质窗110外壁的外侧。另外,延伸进气管205出现第一进气孔206堵塞等故障时便于拆装维修。
如图4和图5,优选地,所述若干第一进气孔206沿出气端口的正投影区域的外缘布置或者所述若干第一进气孔206均匀布置在出气端口的正投影区域。
实施例2、所述进气喷嘴204的出气端口嵌入在介质窗110内,且出气端口位于介质窗110的内壁和外壁之间;所述介质窗110上设置有连通出气端口与反应腔室102的若干第二进气孔。因实施例2需要在介质窗110上开孔,加工成本相较第一实施例更高,且第二进气孔出现堵塞等故障时不便于维修。
本发明的法拉第屏蔽装置160包括多个中心对称且间隔布置的瓣状组件202;所述多个瓣状组件202靠近对称中心的一端设置有通孔。所述进气喷嘴204穿过通孔,所述通孔的内圈与进气喷嘴204导电连接,具体的,所述通孔的内圈与进气喷嘴204的连接方式优选为一体加工成型,也可以是分别加工后通过螺纹紧固在一起。
本发明还包括用于为所述法拉第屏蔽装置160供电的屏蔽电源105和屏蔽匹配网络107。屏蔽电源105经屏蔽匹配网络107调谐后,通过导线连接进气喷嘴204,为法拉第屏蔽装置160供电。这样的构造使得屏蔽电源105以等电位连接多个瓣状组件202,多个瓣状组件202与等离子体之间的电容耦合更加均匀。
本发明还包括射频线圈108、激励射频电源104和激励匹配网络106;激励射频电源104通过激励匹配网络106调谐,供电到射频线圈108。所述射频线圈108位于介质窗110的外壁,所述法拉第屏蔽装置160位于射频线圈108和介质窗110的内壁之间。
所述反应腔室102内还设置有电极118,电极118由偏压射频电源114通过偏压匹配网络116供电。
屏蔽电源105、激励射频电源104和偏压射频电源114可以设置成特定的频率,如400KHz、2MHz、13.56MHz、27MHz、60MHz、2.54GHz,或以上频率的组合。
晶圆片或衬底片置于电极118之上。
反应腔室102上还设置有压力控制阀142和真空泵144,用于抽出反应腔室102内的气体,将反应腔室102维持在特定压力,并去除反应腔室102的多余气体与反应副产物。
在进行等离子体处理工艺时,将晶圆片置于反应腔室102中。通过进气喷嘴204向反应腔室102中通入等离子体处理工艺反应气体,例如氟。通过压力控制阀142和真空泵144维持反应腔室102的特定压力。激励射频电源104通过激励匹配网络106调谐,供电到射频线圈108,通过电感耦合在反应腔室102中产生等离子体112,对晶圆片进行等离子体处理工艺。待等离子体处理工艺完成,停止射频功率输入,并停止等离子体处理工艺反应气体输入。
当需要进行清洗工艺时,将衬底片置于反应腔室102中。通过进气喷嘴204向反应腔室102中通入清洗工艺反应气体,例如氩气、氧气和三氟化氮。通过压力控制阀142和真空泵144维持反应腔室102的特定压力。激励射频电源104通过激励匹配网络106调谐,供电到射频线圈108;屏蔽电源105通过屏蔽匹配网络107调谐,供电到位于法拉第屏蔽装置160中。来自射频线圈108和法拉第屏蔽装置160的功率,产生氩离子等,溅射到介质窗110的内壁,对介质窗110进行清洗。由于进气喷嘴204与法拉第屏蔽装置160导电相连,进气喷嘴204投影区域的清洗工艺反应气体也发生电离,产生氩离子等,清洗工艺反应气体在介质窗110下方整个区域形成电容耦合等离子体,实现了对介质窗110内壁的全方位清洗,降低等离子体处理系统的故障率。待清洗工艺完成,停止射频功率输入,停止清洗工艺反应气体输入。

Claims (10)

  1. 一种具有法拉第屏蔽装置的等离子体处理系统,所述等离子体处理系统包括反应腔室、位于反应腔室上的法拉第屏蔽装置和进气喷嘴;所述进气喷嘴穿过法拉第屏蔽装置向反应腔室通入工艺气体;其特征在于:所述进气喷嘴是导电材质,且进气喷嘴与法拉第屏蔽装置导电连接。
  2. 根据权利要求1所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述进气喷嘴的进气侧连接有进气管道;所述进气喷嘴与进气管道绝缘连接。
  3. 根据权利要求2所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述法拉第屏蔽装置上设置有供进气喷嘴穿过的通孔;所述通孔的内圈与进气喷嘴导电连接;用于为所述法拉第屏蔽装置供电的导线通过进气喷嘴供电连接法拉第屏蔽装置。
  4. 根据权利要求3所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述通孔位于法拉第屏蔽装置的中心处。
  5. 根据权利要求3所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述法拉第屏蔽装置包括多个中心对称且间隔布置的瓣状组件;每个瓣状组件靠近对称中心的一端均与进气喷嘴相连。
  6. 根据权利要求1-5任意一项所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:还包括位于反应腔室一端的介质窗;所述介质窗的内壁位于反应腔室与法拉第屏蔽装置之间;所述进气喷嘴喷出的工艺气体穿过法拉第屏蔽装置及介质窗通入反应腔室。
  7. 根据权利要求6所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述进气喷嘴的出气端口置于介质窗内壁外侧。
  8. 根据权利要求7所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述进气喷嘴的出气端口处连通安装有绝缘材质的延伸进气管;所述延伸进气管上设置有若干第一进气孔;所述延伸进气管穿过介质窗,并且通过所述若干第一进气孔连通反应腔室;所述介质窗的内壁位于进气喷嘴的出气端口与反应腔室之间。
  9. 根据权利要求7所述的具有法拉第屏蔽装置的等离子体处理系统,其 特征在于:所述进气喷嘴的出气端口嵌入在介质窗内,且出气端口位于介质窗的内壁和外壁之间;所述介质窗上设置有连通出气端口与反应腔室的若干第二进气孔。
  10. 根据权利要求1所述的具有法拉第屏蔽装置的等离子体处理系统,其特征在于:所述进气喷嘴内壁设置有耐腐蚀层。
PCT/CN2020/076752 2019-07-19 2020-02-26 一种具有法拉第屏蔽装置的等离子体处理系统 WO2021012672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227005461A KR102656763B1 (ko) 2019-07-19 2020-02-26 플라즈마 차폐 장치가 있는 플라즈마 처리 시스템
US17/626,498 US20220319817A1 (en) 2019-07-19 2020-02-26 Plasma processing system with faraday shielding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910654770.0A CN110223904A (zh) 2019-07-19 2019-07-19 一种具有法拉第屏蔽装置的等离子体处理系统
CN201910654770.0 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012672A1 true WO2021012672A1 (zh) 2021-01-28

Family

ID=67813763

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/076752 WO2021012672A1 (zh) 2019-07-19 2020-02-26 一种具有法拉第屏蔽装置的等离子体处理系统
PCT/CN2020/077307 WO2021012674A1 (zh) 2019-07-19 2020-02-28 具有法拉第屏蔽装置的等离子体处理系统及等离子体处理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077307 WO2021012674A1 (zh) 2019-07-19 2020-02-28 具有法拉第屏蔽装置的等离子体处理系统及等离子体处理方法

Country Status (6)

Country Link
US (1) US20220319817A1 (zh)
JP (1) JP7278471B2 (zh)
KR (1) KR102656763B1 (zh)
CN (3) CN110223904A (zh)
TW (2) TWI737252B (zh)
WO (2) WO2021012672A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223904A (zh) * 2019-07-19 2019-09-10 江苏鲁汶仪器有限公司 一种具有法拉第屏蔽装置的等离子体处理系统
CN111048396B (zh) * 2019-12-26 2023-07-11 北京北方华创微电子装备有限公司 半导体设备的介质窗的清洗方法以及相关半导体加工设备
CN113130285B (zh) * 2019-12-31 2022-04-15 江苏鲁汶仪器有限公司 一种陶瓷进气接射频清洗装置
CN111081525B (zh) * 2019-12-31 2021-06-08 江苏鲁汶仪器有限公司 一种阻挡工艺腔室等离子体反流保护进气结构的装置
CN113130281B (zh) * 2019-12-31 2022-07-29 江苏鲁汶仪器有限公司 一种等离子体处理系统及其包含的法拉第屏蔽装置
CN111081524B (zh) * 2019-12-31 2022-02-22 江苏鲁汶仪器有限公司 一种可旋转的法拉第清洗装置及等离子体处理系统
CN113113280B (zh) * 2020-01-09 2022-06-10 江苏鲁汶仪器有限公司 等离子体处理系统及其开合法拉第组件
CN113707527B (zh) * 2020-05-21 2022-07-29 江苏鲁汶仪器有限公司 一种阻挡等离子体反流的分离式进气结构
CN113745085A (zh) * 2020-05-28 2021-12-03 北京鲁汶半导体科技有限公司 一种法拉第屏蔽装置、等离子体刻蚀系统及其使用方法
CN211957597U (zh) * 2020-05-28 2020-11-17 北京鲁汶半导体科技有限公司 一种等离子体刻蚀系统及其可用于加热的法拉第屏蔽装置
JP2022067569A (ja) * 2020-10-20 2022-05-06 パナソニックIpマネジメント株式会社 プラズマ処理装置
CN113903649B (zh) * 2021-09-23 2024-04-12 北京北方华创微电子装备有限公司 半导体工艺设备
CN114173464B (zh) * 2021-11-10 2023-11-24 中国科学院上海天文台 一种制备氢原子频标的氢等离子体的系统
US20240145252A1 (en) * 2022-11-02 2024-05-02 Applied Materials, Inc. Faraday faceplate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685942A (en) * 1994-12-05 1997-11-11 Tokyo Electron Limited Plasma processing apparatus and method
US6123802A (en) * 1997-09-23 2000-09-26 Micron Technology, Inc. Method and apparatus for preventing plasma formation
CN105225912A (zh) * 2014-06-27 2016-01-06 朗姆研究公司 半导体衬底处理装置中包含中央气体喷射器的陶瓷喷头
CN106469636A (zh) * 2015-08-21 2017-03-01 朗姆研究公司 通电的静电法拉第屏蔽用于修复icp中的介电窗
CN107112189A (zh) * 2014-12-30 2017-08-29 应用材料公司 高传导处理配件
CN110223904A (zh) * 2019-07-19 2019-09-10 江苏鲁汶仪器有限公司 一种具有法拉第屏蔽装置的等离子体处理系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646664B2 (ja) * 1988-06-08 1997-08-27 松下電器産業株式会社 マイクロ波プラズマ膜推積装置
JP2625072B2 (ja) * 1992-09-08 1997-06-25 アプライド マテリアルズ インコーポレイテッド 電磁rf結合を用いたプラズマ反応装置及びその方法
JP3150058B2 (ja) * 1994-12-05 2001-03-26 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US6230651B1 (en) * 1998-12-30 2001-05-15 Lam Research Corporation Gas injection system for plasma processing
US20030029563A1 (en) * 2001-08-10 2003-02-13 Applied Materials, Inc. Corrosion resistant coating for semiconductor processing chamber
WO2003029513A1 (en) * 2001-09-28 2003-04-10 Tokyo Electron Limited Hybrid plasma processing apparatus
US20060054279A1 (en) * 2004-09-10 2006-03-16 Yunsang Kim Apparatus for the optimization of atmospheric plasma in a processing system
US20070187363A1 (en) * 2006-02-13 2007-08-16 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
JP2008288437A (ja) * 2007-05-18 2008-11-27 Toshiba Corp プラズマ処理装置及びプラズマ処理方法
JP2009021220A (ja) * 2007-06-11 2009-01-29 Tokyo Electron Ltd プラズマ処理装置、アンテナおよびプラズマ処理装置の使用方法
US8137463B2 (en) * 2007-12-19 2012-03-20 Applied Materials, Inc. Dual zone gas injection nozzle
US8372238B2 (en) * 2008-05-20 2013-02-12 Nordson Corporation Multiple-electrode plasma processing systems with confined process chambers and interior-bussed electrical connections with the electrodes
US10658161B2 (en) * 2010-10-15 2020-05-19 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
JP5759718B2 (ja) * 2010-12-27 2015-08-05 東京エレクトロン株式会社 プラズマ処理装置
US10304665B2 (en) * 2011-09-07 2019-05-28 Nano-Product Engineering, LLC Reactors for plasma-assisted processes and associated methods
US9947512B2 (en) * 2011-10-25 2018-04-17 Lam Research Corporation Window and mounting arrangement for twist-and-lock gas injector assembly of inductively coupled plasma chamber
US10115565B2 (en) * 2012-03-02 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and plasma processing method
JP2014072508A (ja) * 2012-10-02 2014-04-21 Hitachi High-Technologies Corp プラズマ処理装置
CN202873172U (zh) * 2012-11-08 2013-04-10 中微半导体设备(上海)有限公司 一种等离子反应器
US9536710B2 (en) * 2013-02-25 2017-01-03 Applied Materials, Inc. Tunable gas delivery assembly with internal diffuser and angular injection
US10163606B2 (en) * 2013-03-15 2018-12-25 Applied Materials, Inc. Plasma reactor with highly symmetrical four-fold gas injection
US9484190B2 (en) * 2014-01-25 2016-11-01 Yuri Glukhoy Showerhead-cooler system of a semiconductor-processing chamber for semiconductor wafers of large area
JP2016186876A (ja) * 2015-03-27 2016-10-27 住友重機械工業株式会社 イオン源
JP2015207562A (ja) * 2015-06-15 2015-11-19 芝浦メカトロニクス株式会社 プラズマ処理装置およびプラズマ処理方法
KR101633721B1 (ko) * 2015-11-27 2016-06-27 (주)이엠아이티 수직 다중 기둥 구조를 갖는 rf 안테나
US20170278680A1 (en) * 2016-03-28 2017-09-28 Lam Research Corporation Substrate processing system including coil with rf powered faraday shield
CN107301941B (zh) * 2016-04-14 2019-04-23 北京北方华创微电子装备有限公司 等离子体处理设备及其操作方法
US10818502B2 (en) * 2016-11-21 2020-10-27 Tokyo Electron Limited System and method of plasma discharge ignition to reduce surface particles
CN108257840B (zh) * 2016-12-29 2021-03-30 中微半导体设备(上海)股份有限公司 一种等离子处理装置
JP6976345B2 (ja) * 2017-02-20 2021-12-08 マトソン テクノロジー インコーポレイテッドMattson Technology, Inc. ファラデーシールドに結合された温度制御エレメントを使用したプラズマ処理装置
KR102491945B1 (ko) * 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN110416053B (zh) * 2019-07-30 2021-03-16 江苏鲁汶仪器有限公司 一种电感耦合等离子体处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685942A (en) * 1994-12-05 1997-11-11 Tokyo Electron Limited Plasma processing apparatus and method
US6123802A (en) * 1997-09-23 2000-09-26 Micron Technology, Inc. Method and apparatus for preventing plasma formation
CN105225912A (zh) * 2014-06-27 2016-01-06 朗姆研究公司 半导体衬底处理装置中包含中央气体喷射器的陶瓷喷头
CN107112189A (zh) * 2014-12-30 2017-08-29 应用材料公司 高传导处理配件
CN106469636A (zh) * 2015-08-21 2017-03-01 朗姆研究公司 通电的静电法拉第屏蔽用于修复icp中的介电窗
CN110223904A (zh) * 2019-07-19 2019-09-10 江苏鲁汶仪器有限公司 一种具有法拉第屏蔽装置的等离子体处理系统

Also Published As

Publication number Publication date
TWI737252B (zh) 2021-08-21
WO2021012674A1 (zh) 2021-01-28
CN112242289B (zh) 2022-06-10
CN112242289A (zh) 2021-01-19
JP7278471B2 (ja) 2023-05-19
CN110223904A (zh) 2019-09-10
CN212161752U (zh) 2020-12-15
US20220319817A1 (en) 2022-10-06
TW202117790A (zh) 2021-05-01
JP2022541054A (ja) 2022-09-21
TWI758786B (zh) 2022-03-21
KR20220035230A (ko) 2022-03-21
KR102656763B1 (ko) 2024-04-15
TW202106121A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
WO2021012672A1 (zh) 一种具有法拉第屏蔽装置的等离子体处理系统
TWI755798B (zh) 電感耦合電漿處理系統
TWI641065B (zh) 基板處理裝置
TWI701705B (zh) 電漿處理裝置及電漿處理方法
CN101540277B (zh) 等离子体处理装置
TW201824334A (zh) 氧氣相容電漿源
WO2020004048A1 (ja) 基板処理方法
KR101104536B1 (ko) 플라즈마 처리 장치
TWI559357B (zh) Electrode generation electrode and plasma processing device
US20150170943A1 (en) Semiconductor system assemblies and methods of operation
TWI512872B (zh) 具均勻的流動及電漿分佈之腔室
TW201619414A (zh) 預清洗腔室及電漿加工裝置
US6511577B1 (en) Reduced impedance chamber
WO2015069428A1 (en) Particle generation suppressor by dc bias modulation
KR102085409B1 (ko) 가스 공급 장치, 플라스마 처리 장치 및 가스 공급 장치의 제조 방법
US11901161B2 (en) Methods and apparatus for symmetrical hollow cathode electrode and discharge mode for remote plasma processes
JP2000031121A (ja) プラズマ放出装置及びプラズマ処理装置
TW201527587A (zh) 半導體系統組合件及操作方法
WO2020087683A1 (zh) 等离子体发生器及等离子体清洗装置
CN114914142A (zh) 下电极组件和等离子体处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005461

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20844713

Country of ref document: EP

Kind code of ref document: A1