WO2021035677A1 - 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法 - Google Patents

增材制造金属粉末、增材制造及制备增材制造金属粉末的方法 Download PDF

Info

Publication number
WO2021035677A1
WO2021035677A1 PCT/CN2019/103636 CN2019103636W WO2021035677A1 WO 2021035677 A1 WO2021035677 A1 WO 2021035677A1 CN 2019103636 W CN2019103636 W CN 2019103636W WO 2021035677 A1 WO2021035677 A1 WO 2021035677A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
powder
particles
additive manufacturing
preparing
Prior art date
Application number
PCT/CN2019/103636
Other languages
English (en)
French (fr)
Inventor
李长鹏
张卿卿
斯维纳连科卡特瑞娜
陈国锋
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to PCT/CN2019/103636 priority Critical patent/WO2021035677A1/zh
Priority to CN201980098571.4A priority patent/CN114364472A/zh
Publication of WO2021035677A1 publication Critical patent/WO2021035677A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the present invention relates to the field of additive manufacturing, in particular to additive manufacturing of metal powder, additive manufacturing and a method for preparing additive manufacturing of metal powder.
  • Additive Manufacturing has received more and more attention due to its rapid manufacturing based on pre-designed CAD models, which can produce components with complex shapes and structures in a short advance event.
  • SLM Selected Laser Melting
  • SLM selective laser melting uses a high-power laser to melt metal powder, and build parts/components layer by layer through 3D CAD input, so that components with complex internal channels can be successfully manufactured.
  • additive manufacturing technology has development prospects, there are still challenges in applying additive manufacturing technology to key components with expected mechanical properties.
  • additively manufactured metal materials generally show lower fatigue properties and higher high temperature creep properties.
  • the reduction in grain size during the high solidification rate additive manufacturing process is conducive to improved fatigue life, but at the same time it also makes high temperature creep worse.
  • Adding reinforcing particles to additive manufacturing composites can improve the functionality of pure metal alloys.
  • reinforcement particles can further improve mechanical properties, loss and chemical resistance, so as to ensure that key components can be processed by additive manufacturing.
  • the strengthening particles of the traditional manufacturing process can improve the high temperature creep performance.
  • some typical reinforcement particles are carbide materials, such as tungsten carbide (WC) and titanium carbide (TiC).
  • the melting pool temperature can be higher than 2000°C, which is much higher than the decomposition temperature of carbides, so carbides will decompose as strengthening particles.
  • heat-resistant, high-stress and corrosion-resistant alloys need to be solution heat treated at high temperatures.
  • the heating process temperature will be higher than 1100°C, and the heating temperature will be higher than the normal decomposition temperature of carbide materials of 900°C.
  • niobium (Nb) or nickel (Ni) has a stronger bonding force with carbon atoms
  • carbon atoms are usually easier to interact with niobium (Nb) or nickel (Ni) during the decomposition process of carbides in heat-resistant, high-stress and corrosion-resistant alloys.
  • tungsten carbide (WC) and titanium carbide (TiC) will not produce corresponding strengthening particles, but will deprive the alloy components of niobium (Nb) and nickel (Ni) elements.
  • Ni3Nb ( ⁇ " phase) composed of niobium (Nb) or nickel (Ni) is the main strengthening phase in the precipitation stage of heat-resistant, high-stress and corrosion-resistant alloys.
  • the formation of niobium carbide will reduce the generation of strengthening phases, thus leading to High temperature creep characteristics deteriorate.
  • carbide reinforcement particles can act as pinning points to hinder the generation and expansion of slip, thereby improving the mechanical strength of the material.
  • the size of the reinforcement particles is too large, it will cause defects similar to fatigue and cracks, promote crack initiation and reduce the fatigue performance of the material. This is because the elastic modulus of the large-size reinforcement particles and the metal matrix are different and the hardness is different. If the two are subjected to the same pulling force or deformation, they will slowly separate and cause cracks.
  • One of the solutions in the prior art is to select nano-reinforced particles, but it is very difficult to obtain a uniform distribution of nano-reinforced particles in an additively manufactured alloy. The uneven distribution of reinforcing particles in the color-enhancing manufacturing of metal composites can also lead to particle agglomeration and defects.
  • the present invention provides a method for preparing additive manufacturing metal powder, which includes the following steps: decomposing the metal base powder into a metal alloy powder matrix through a mechanical grinding process; adding reinforcing particles to the metal alloy powder matrix and mixing the metal Alloy powder matrix and the reinforcing particles to obtain composite metal particles, wherein the reinforcing particles are tantalum carbide or hafnium carbide, and the size of the composite metal particles ranges from 15 microns to 53 microns;
  • the spray drying process uses the binder to bond the metal alloy powder matrix and the reinforcing particles together to obtain dispersed particles; and uses the sintering process to remove the binder in the dispersed particles to obtain an additive Manufactured metal composite powder.
  • the method further includes the following step: sieving the dispersed particles to select the dispersed particles of a specific size.
  • the mechanical grinding step further includes the following step: decomposing two or more metal base powders into a metal alloy powder matrix through a mechanical grinding process.
  • the particle size of the metal composite powder ranges from 15 ⁇ m to 53 ⁇ m.
  • the range of the particle size of the reinforcing particles is 50 nm to 1 ⁇ m.
  • the process used in the mixing step is a mechanical grinding process or an ultrasonic process.
  • the reinforcing particles also include pure tantalum or pure hafnium.
  • the additively manufactured metal powder is prepared in a selective laser melting device, wherein the laser power of the selective laser melting device ranges from 200W to 500W, and the scanning of the selective laser melting device The speed range is 500mm/s ⁇ 2000mm/s.
  • the second aspect of the present invention provides an additive manufacturing metal powder, wherein the additive manufacturing powder is prepared by the method of the first aspect of the present invention.
  • the third aspect of the present invention provides an additive manufacturing method, characterized in that the additive manufacturing method includes the method prepared by the method of the first aspect of the present invention.
  • the particles of the metal powder provided by the present invention have a circular shape and a controllable particle size, and the particle size is close to 15-53 ⁇ m, so it has good fluidity and is more suitable for a selective laser melting device.
  • the composite metal powder is heated by laser energy and immediately breaks into distributed particles with a size of 50 nm to 1 ⁇ m.
  • the invention can achieve the expected uniform particle strength to ensure the reinforcement effect and avoid defects caused by uneven texture.
  • crack cracking usually leads to flaws or maximum effective size, such as pores or carbides.
  • maximum pore size ranges from ten microns, which is much larger than nano-reinforced particles. Therefore, the degradation of fatigue characteristics caused by the reinforcement particles can be ignored.
  • the components manufactured by the additive manufacturing composite metal powder provided by the present invention have good surface quality, which is due to the use of nano-particle melting and improved fatigue characteristics.
  • the present invention can choose tantalum carbide (TaC) or hafnium carbide (HfC), which has higher temperature stability And the bonding degree with carbon atoms is higher than that of niobium to reduce the possibility of formation of niobium carbide.
  • the addition of tantalum or hafnium metal nanoparticles in the present invention can capture the carbon atoms in the niobium carbide to form carbide reinforcement particles, and at the same time release the niobium atoms to obtain more Ni3Nb ( ⁇ " phase).
  • Figure 1 is a schematic diagram of selective laser melting equipment
  • Figure 2 is a schematic diagram of a method for preparing additively manufactured metal powders according to a specific embodiment of the present invention
  • Figure 3 is a schematic diagram showing the comparison of the surface quality of 3D printed parts made of metal powder with and without reinforcing particles;
  • Figure 4 is a schematic diagram of the creep strain comparison of 3D printed parts made of metal powder with and without reinforcing particles
  • Fig. 5 is a schematic diagram of a method for preparing additively manufactured metal powder according to another specific embodiment of the present invention.
  • the invention provides a composite powder used in a selective laser melting device, which can ensure the uniform distribution of nano-strengthened particles of an alloy material for additive manufacturing.
  • the Selected Laser Melting (SLM) process is a type of additive manufacturing (Additive manufacturing) technology, which can quickly manufacture parts that are the same as the CAD model by means of laser sintering.
  • SLM Selected Laser Melting
  • additive manufacturing is based on the completely opposite material incremental manufacturing philosophy.
  • selective laser melting uses high-power lasers to melt metal powder, and inputs layer by layer through 3D CAD.
  • the components/components can be built up to the ground, so that components with complex internal channels can be successfully manufactured.
  • FIG. 1 is a schematic diagram of a selective laser melting device.
  • the selective laser melting device 100 includes a laser source 110, a mirror scanner 120, a prism 130, a powder feeding cylinder 140, a forming cylinder 150 and a recovery cylinder 160.
  • the laser source 110 is arranged above the selective laser melting device 100 and serves as a heating source for the metal powder, that is, the metal powder is melted for additive manufacturing.
  • first piston (not shown) that can move up and down at the lower part of the powder feeding cylinder 140.
  • a spare metal powder is placed in the cavity space above the first piston of the powder feeding cylinder 140, and it follows the first piston.
  • the metal powder is sent from the powder feeding cylinder 140 to the forming cylinder 150 by moving up and down.
  • An additive manufacturing part placement table 154 is provided in the forming cylinder 150, an additive manufacturing part C is clamped above the placement table 154, and a second piston 152 is fixed below the placement table 154, wherein the second piston 152 and the placement table 154
  • the stage 154 is set vertically. During the additive manufacturing process, the second piston 152 moves from top to bottom to form a printing space in the forming cylinder 220.
  • the laser source 110 for laser scanning should be set above the forming cylinder 150 of the selective laser melting equipment.
  • the mirror scanner 120 adjusts the position of the laser by adjusting the angle of a prism 130, and determines which area of the laser is melted by the adjustment of the prism 130.
  • the powder feeding cylinder 140 further includes a roller (not shown).
  • the metal powder P is stacked on the upper surface of the first piston, and the first piston moves vertically from bottom to top to transfer the metal powder to the upper part of the powder feeding cylinder 140.
  • the selective laser melting device 100 further includes a roller, and the powder for additive manufacturing can be laid on the forming cylinder 220 by the rolling of the roller. The roller may roll on the metal powder P to send the metal powder P to the forming cylinder 150.
  • the laser scanning is continuously performed on the metal powder to decompose the metal powder into a powder matrix, and the laser scanning of the powder matrix is continued until the powder matrix is sintered from the bottom to the top into a print C of a preset shape.
  • the selective laser melting device 100 further includes a recovery cylinder 160 for recovering the used metal powder in the forming cylinder 150.
  • the method for preparing additive manufacturing metal powder provided by the present invention includes the following steps:
  • step S1 is performed to decompose the metal base powder into a metal alloy base powder through a mechanical strength (mechanical strength). Specifically, the metal powder is soaked in a solvent to prevent oxidation of the powder during the grinding stage.
  • mechanical grinding specifically includes ball milling.
  • Ball milling is a process for grinding and mixing materials. It is widely used in paints, pyrotechnics, and ceramics. And selective laser sintering (selective laser sintering). Ball milling includes a hollow cylindrical shell that rotates along an axis. The axis of the hollow cylindrical shell is horizontal or substantially horizontal, and it partially fills the sphere.
  • the grinding medium of the ball grinding technology is a sphere
  • the material of the sphere is steel (chromium steel), stainless steel, or ceramics.
  • the inner surface of the cylindrical shell is usually consistent with a wear-resistant material, which includes manganese steel or ceramics. The force during grinding is provided by the ball in the cylindrical shell falling from the top of the shell, thereby reducing the size of the material being ground.
  • step S1 is first performed to decompose the metal base powder into a metal alloy powder matrix through a mechanical grinding process.
  • the metal base powder includes a metal alloy powder, which is a small-sized high-temperature alloy powder, such as IN718.
  • the metal base powder is decomposed into a metal alloy powder matrix 20.
  • the size of the metal alloy powder matrix ranges from 50 nm to 1 ⁇ m.
  • the dispersed metal matrix particles and the reinforcing particles of a predetermined size can be obtained by mechanically grinding a liquid powder, such as liquid methanol.
  • liquid nitrogen can also be used to improve the brittleness of particles, thereby improving the grinding efficiency.
  • the grinding time depends on the type and efficiency of the metal matrix powder.
  • step S2 is performed, adding reinforcing particles to the metal alloy powder matrix, and mixing the metal alloy powder matrix and the reinforcing particles to obtain composite metal particles 40, wherein the reinforcing particles are tantalum carbide or hafnium carbide 30, and the composite
  • the size of the metal particles ranges from 15 microns to 53 microns.
  • the process used in the mixing step S2 is a mechanical grinding process or an ultrasonic process.
  • the present invention can simultaneously complete the step of decomposing the metal alloy powder matrix into a small-sized metal alloy powder matrix and the step of mixing the metal alloy powder matrix and the reinforcing particles during the mechanical grinding process, without an additional mixing step.
  • the mixed powder at this time includes a metal alloy powder matrix 20 and reinforcing particles.
  • the metal alloy powder matrix 20 and the reinforcing particles in the mixed powder also exist in the liquid.
  • the ground metal alloy powder matrix 20 and the reinforcement particles are mixed together in a short time mechanical grinding or ultrasonic process to obtain a uniform distribution of the reinforcement particles, and the reinforcement amount is adjusted by a predetermined ratio of the reinforcement particles.
  • Figure 3 is a metallographic photo of samples with and without reinforcement particles, where P1 is without reinforcement particles and P2 is with reinforcement particles. As shown in Figure 3, P1 has relatively large crystal grains, while P2 has smaller crystal grains after adding reinforcing particles, and the crystal grains are refined, so the strength of the material has been improved.
  • Figure 4 is a schematic diagram of the comparison of creep strains with and without reinforcement particles, where the abscissa is time and the ordinate is creep strain.
  • the curve S1 is the creep strain curve of the material without reinforcing particles
  • the curve S2 is the creep strain curve of the sample with reinforcing particles. Comparing the curves S1 and S2, the creep strain of the curve S2 is lower at the same time, the same temperature and the same force, so the addition of reinforcing particles can increase the creep resistance.
  • step S3 a binder is added, and the metal alloy powder matrix and the reinforcing particles are bonded together by using the binder through a spray drying process to obtain dispersed particles.
  • the binder is used to bond the mixed powder including the metal alloy powder matrix 20 and the reinforcing particles together into a powder with a larger size.
  • the spray drying process the metal alloy powder matrix 20 and the reinforcing particles bonded together by mechanical action are dispersed into particles, which are "granulated", and then the drying process is accelerated by increasing the evaporation area of the water to remove most of the water.
  • the bonded metal alloy powder matrix 20 and the reinforcing particles are dried into powder.
  • the bonded metal alloy powder matrix 20 and the reinforcing particles are all in the liquid, showing a slurry state.
  • the spray drying process most of the water is removed, and the dried dispersed particles 50 are obtained.
  • the composite particles can be prepared by spray drying and have dispersed particles.
  • the size of the composite particles will be controlled by spray drying parameters, which include the selected sieve size.
  • the composite powder is heated and degummed under a mixture of argon and hydrogen to remove the binder.
  • the reinforcing particles further include pure tantalum or pure hafnium 60. That is, in step S2, reinforcing particles are added to the metal alloy powder matrix 20, and the metal alloy powder matrix 20 and the reinforcing particles are mixed to obtain composite metal particles, wherein the reinforcing particles are tantalum carbide or hafnium carbide 30, The reinforcing particles also include pure tantalum or pure hafnium 60.
  • step S3 is performed, a binder is added, and the metal alloy powder matrix 20 and the reinforcing particles of tantalum carbide or hafnium carbide 30 and pure tantalum or pure hafnium 60 are bonded to each other by using the binder through a spray drying process. Together, the dispersed particles 50' are thus obtained.
  • step S4 is performed to remove the binder in the dispersed particles using a degumming process, so as to obtain an additively manufactured metal composite powder.
  • a degumming process sining is a process in which the dispersed particles 50 or 50' are heated and then cooled to room temperature.
  • bonding occurs between the components in the dispersed particles 50 or 50', the strength of the sintered body is increased, and the binder is removed to obtain a metal composite powder that can be used for 3D printing.
  • the degumming process needs to be carried out in an argon or hydrogen gas atmosphere to prevent oxidation of the particles.
  • the method further includes the following step: sieving the dispersed particles to select the dispersed particles of a specific size.
  • the mechanical grinding step further includes the following step: decomposing two or more metal base powders into a metal alloy powder matrix through a mechanical grinding process.
  • the particle size of the metal composite powder ranges from 15 ⁇ m to 53 mm (how much is it?).
  • the range of the particle size of the reinforcing particles is 50 nm to 1 ⁇ m (how much is it?).
  • the process used in the mixing step is a mechanical grinding process or an ultrasonic process.
  • the additively manufactured metal powder is prepared in a selective laser melting device, wherein the laser power of the selective laser melting device ranges from 200W to 500W, and the scanning of the selective laser melting device The speed range is 500mm/s ⁇ 2000mm/s.
  • the second aspect of the present invention provides an additive manufacturing metal powder prepared by the method provided in the first aspect of the present invention.
  • the third aspect of the present invention provides an additive manufacturing method, wherein the additive manufacturing method includes the step of preparing an additive manufacturing metal powder by the method according to the first aspect of the present invention.
  • the particles of the metal powder provided by the present invention have a circular shape and a controllable particle size, and the particle size is close to 15-53 ⁇ m, so it has good fluidity and is more suitable for a selective laser melting device.
  • the composite metal powder is heated by laser energy and immediately breaks into distributed particles with a size of 50 nm to 1 ⁇ m.
  • the invention can achieve the expected uniform particle strength to ensure the reinforcement effect and avoid defects caused by uneven texture.
  • crack cracking usually leads to flaws or maximum effective size, such as pores or carbides.
  • maximum pore size ranges from ten microns, which is much larger than nano-reinforced particles. Therefore, the degradation of fatigue characteristics caused by the reinforcement particles can be ignored.
  • the components manufactured by the additive manufacturing composite metal powder provided by the present invention have good surface quality, which is due to the use of nano-particle melting and improved fatigue characteristics.
  • the present invention can choose tantalum carbide (TaC) or hafnium carbide (HfC), which has higher temperature stability And the bonding degree with carbon atoms is higher than that of niobium to reduce the possibility of formation of niobium carbide.
  • the addition of tantalum or hafnium metal nanoparticles in the present invention can capture the carbon atoms in the niobium carbide to form carbide reinforcement particles, and at the same time release the niobium atoms to obtain more Ni3Nb ( ⁇ " phase).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备增材制造金属粉末的方法,包括如下步骤:通过机械研磨工艺将金属基础粉末分解为金属合金粉末基体(20);添加加强粒子(30)于金属合金粉末基体,并混合所述金属合金粉末基体和所述加强粒子从而得到复合金属粒子(40),其中所述加强粒子为碳化钽或者碳化铪,所述复合金属粒子的尺寸取值范围为15微米~53微米;添加粘结剂,并通过喷雾干燥工艺利用所述粘结剂将所述金属合金粉末基体和所述加强粒子粘结在一起,从而得到分散粒子;利用烧结工艺将所述分散粒子中的粘结剂去除,从而得到增材制造的金属复合粉末。该方法能够改善增材制造复合金属粉末制造的元件的表面质量及其疲劳特性。还涉及由上述方法制造的粉末以及增材制造的方法。

Description

增材制造金属粉末、增材制造及制备增材制造金属粉末的方法 技术领域
本发明涉及增材制造领域,尤其涉及增材制造金属粉末、增材制造及制备增材制造金属粉末的方法。
背景技术
增材制造工艺(Additive Manufacturing)由于其在基于预先设计的CAD模型上的快速制造而得到越来越多的关注,其能够在短超前事件内生产出形状结构复杂的元件。选择性激光熔化(Selected Laser Melting,SLM)工艺是增材制造(Additive manufacturing)技术的一种,其能够应用于金属和塑料材质。其中,选择性激光熔化利用高功率激光熔化金属粉末,并通过3D CAD输入来一层一层地建立部件/元件,这样可以成功制造出具有复杂内部沟道的元件。
尽管增材制造技术具有发展前景,仍存在将增材制造技术应用到具有预期机械性能的关键元件中的挑战。基于最近的研究,尽管具有足够的室温延展性能,增材制造的金属材料通常显示出更低的疲劳特性和更高的高温蠕变性能。在高凝固速度增材制造制程中的晶粒尺寸减小有利于改进的疲劳寿命,但同时也会使得高温蠕变恶化。
增材制造复合材料如果添加了强化粒子,能够改善纯金属合金的功能。例如,加固粒子可以进一步改进机械性能、损耗以及耐化学性,从而能够保证关键元件可以采用增材制造加工工艺。同时,传统制造制程的强化粒子能够提高高温蠕变性能。
然而,一些典型加固粒子是碳化物材料,例如碳化钨(WC)和碳化钛(TiC)。由于增材制造采用高功率激光,融池温度能够高于2000℃,其远远高于碳化物的分解温度,因此碳化物作为强化粒子会产生分解。此外,为了减少在增材制造制程中形成的易碎莱夫斯相(fragile laves phase),通常耐热高应力耐蚀合金需要在高温做固溶热处理。例如,增材制造技术常用得In718材料,其加热制程的温度会高于1100℃,加热 温度高于碳化物材料的正常分解温度900℃。并且,由于铌(Nb)或者镍(Ni)和碳原子具有更强的结合力,在耐热高应力耐蚀合金的碳化物分解过程中,碳原子通常更易和铌(Nb)或者镍(Ni)结合。碳化钨(WC)和碳化钛(TiC)的添加不仅不会产生相应的强化颗粒,反而会夺取合金成份中的铌(Nb)和镍(Ni)元素。而由铌(Nb)或者镍(Ni)构成的Ni3Nb(γ”相)是耐热高应力耐蚀合金沉淀阶段的主要强化相。此外,碳化铌的形成会减少强化相的产生,因此会导致高温蠕变特性恶化。
虽然碳化物强化粒子能够充当钉扎点来阻碍滑移的产生和扩展,从而提高材料的机械强度。但是加固粒子如果尺寸过大,会导致类似于疲劳和裂纹的缺陷,促进裂纹萌生从而降低材料的疲劳性能。这是由于大尺寸加固粒子和金属基体的弹性模量不同硬度不同,两者如果承受相同的拉扯力或者变形就会慢慢分离导致裂纹。现有技术的其中一个解决方案是选择纳米加固粒子,但是在增材制造的合金中获得均一的纳米加固粒子分布非常困难。而不匀一的加固粒子在增彩制造金属复合材料中的分布也会导致颗粒的团聚和缺陷的产生。
发明内容
本发明提供了一种制备增材制造金属粉末的方法,其中,包括如下步骤:通过机械研磨工艺将金属基础粉末分解为金属合金粉末基体;添加加强粒子于金属合金粉末基体,并混合所述金属合金粉末基体和所述加强粒子从而得到复合金属粒子,其中所述加强粒子为碳化钽或者碳化铪,所述复合金属粒子的尺寸取值范围为15微米~53微米;添加粘结剂,并通过喷雾干燥工艺利用所述粘结剂将所述金属合金粉末基体和所述加强粒子粘结在一起,从而得到分散粒子;利用烧结工艺将所述分散粒子中的粘结剂去除,从而得到增材制造的金属复合粉末。
进一步地,在所述喷雾干燥步骤同时或者以后还包括如下步骤:将所述分散粒子过筛,以选取特定尺寸的所述分散粒子。
进一步地,所述机械研磨步骤还包括如下步骤:通过机械研磨工艺将两种或以上金属基础粉末分别分解为金属合金粉末基体。
进一步地,所述金属复合粉末的粒径的取值范围为15μm~53μm。
进一步地,所述增强粒子粒径的取值范围为50nm~1μm。
进一步地,所述混合步骤采用的工艺为机械研磨工艺或者超声工艺。
进一步地,所述加强粒子还包括纯钽或者纯铪。
进一步地,所述增材制造金属粉末是在选择性激光熔化设备中制备的,其中,所述选择性激光熔化设备的激光功率取值范围为200W~500W,所述选择性激光熔化设备的扫描速率取值范围为500mm/s~2000mm/s。
本发明第二方面提供了一种增材制造金属粉末,其中,所述增材制造粉末是由本发明第一方面所述方法所制备的。
本发明第三方面提供了一种增材制造方法,其特征在于,所述增材制造方法包括由本发明第一方面所述方法所制备的。
本发明提供的金属粉末的粒子具有圆形形状和可控的粒子尺寸,所述粒子尺寸接近于在15-53μm,因此具有良好流动性,并且更适合选择性激光熔化装置。在选择性激光熔化制程中,复合金属粉末通过激光能量进行加热,并立刻破裂为尺寸为50nm~1μm的分布粒子。本发明能够达到预期的均一的粒子强度,以保证加固效果,并且避免由于质地不均匀导致的缺陷。
对疲劳断裂来说,裂纹开裂通常会导致瑕疵或者最大有效尺寸,例如气孔或者碳化物。对增材制造的超耐热高应力耐蚀合金材料来说,最大孔径取值范围为十个微米级,其比纳米加固粒子大得多。因此由加固粒子带来的疲劳特性退化影响能够忽略。利用本发明提供的用于增材制造复合金属粉末制造的元件具有良好的表面质量,其是由于采用了纳米粒子融化,并且改善了疲劳特性。
考虑到相对低的稳定性,并且考虑到在碳化物材料中与碳原子之间结合力更小,本发明能够选择碳化钽(TaC)或者碳化铪(HfC),其具有更高的温度稳定性,并且与碳原子的结合度较铌更高,以减少碳化铌的形成可能性。此外,本发明额外添加了钽或者铪金属纳米粒子能够抓住碳化铌中的碳原子,以形成碳化加固粒子,并且同时释放铌原子来获得更多Ni3Nb(γ”相)。
附图说明
图1是选择性激光熔化设备的示意图;
图2是根据本发明一个具体实施例制备增材制造金属粉末的方法的示意图;
图3是添加和未添加加强粒子的金属粉末制造的3D打印件表面质量对比示意图;
图4是添加和未添加加强粒子的金属粉末制造的3D打印件蠕变应变对比示意图;
图5是根据本发明又一具体实施例制备增材制造金属粉末的方法的示意图。
具体实施方式
以下结合附图,对本发明的具体实施方式进行说明。
本发明提供了一种用于选择性激光熔化装置的复合粉末,其能够保证增材制造合金材料的纳米强化粒子的均一分布。
选择性激光熔化(Selected Laser Melting,SLM)工艺是增材制造(Additive manufacturing)技术的一种,其通过激光烧结的方式可快速地将与CAD模型相同的零部件制造出来。目前选择性激光熔化工艺得到了广泛的应用。和传统材料去除机制不同,增材制造是基于完全相反的材料增加制造哲理(materials incremental manufacturing philosophy),其中,选择性激光熔化利用高功率激光熔化金属粉末,并通过3D CAD输入来一层一层地建立部件/元件,这样可以成功制造出具有复杂内部沟道的元件。
图1是选择性激光熔化设备的示意图。如图1所示,选择性激光熔化设备100包括一个激光源110、一个镜面扫描器120、一个棱镜130、一个送粉缸140、一成型缸150和一个回收缸160。其中,激光源110设置于选择性激光融化设备100上方,充当金属粉末的加热源,即融化金属粉末来进行增材制造。
其中,送粉缸140下部有一个能够上下移动的第一活塞(未示出),在送粉缸140的第一活塞上面的腔体空间放置了备用的金属粉末,并随着第一活塞的上下移动从送粉缸140将金属粉末送入成型缸150。在成型缸150中设置有一个增材制造件放置台154,放置台154上方夹持有一个增材制造件C,放置台154下方固定有一个第二活塞152,其中,第 二活塞152和放置台154垂直设置。在增材制造过程中,第二活塞152自上而下移动,以在成型缸220中形成打印空间。激光扫描的激光源110应设置于选择性激光融化设备的成型缸150的上方,镜面扫描器120通过调整一个棱镜130的角度调整激光的位置,通过棱镜130的调节来决定激光融化哪个区域的金属粉末。送粉缸140还包括一个滚轮(未示出),金属粉末P堆设于第一活塞的上表面,第一活塞垂直地自下而上移动传递金属粉末至送粉缸140上部。选择性激光熔化设备100还包括一滚轮,通过所述滚轮的滚动能够铺设所述增材制造用粉末于成型缸220。滚轮可在金属粉末P上滚动,以将金属粉末P送至成型缸150中。从而持续对金属粉末执行激光扫描,将金属粉末分解为粉末基体,继续对所述粉末基体进行激光扫描直至使所述粉末基体自下而上地烧结为预设形状的打印件C。此外,选择性激光熔化设备100还包括一个回收缸160,回收缸160用于回收成型缸150中的使用过的金属粉末。
本发明提供的制备增材制造金属粉末的方法包括如下步骤:
首先执行步骤S1,通过机械研磨工艺(mechanical strength)将金属基础粉末分解为金属合金基体粉末。具体地,所述金属粉末是泡在溶剂里,以防止粉末在研磨阶段的氧化。具体地,机械研磨特别地包括球研磨(ball mill),球研磨是一种用于研磨和混合材料的工艺,广泛应用于绘画油漆(paints)、烟火制造(pyrotechnics)、制陶业(ceramics)以及选择性激光烧结(selective laser sintering)。球研磨包括一个沿着轴旋转的空心柱状壳体,其空心柱状壳体的轴是水平方向的或者大体成水平方向的,其部分填满了球体。具体地,球研磨技术的研磨中介为球体,球体的材料为钢铁(铬钢)、不锈钢、或者陶瓷。柱状壳体的内表面通常与一个耐磨材料一致,耐磨材料包括锰钢或者陶瓷。研磨中的力量是由柱状壳体中的球体从壳体顶部掉落下来提供的,从而减小所研磨材料的尺寸。
如图2所示,根据本发明一个实施例,首先执行步骤S1,通过机械研磨工艺将金属基础粉末分解为金属合金粉末基体。其中,在本实施例中,所述金属基础粉末包括一种金属合金粉末,其为小尺寸高温合金粉末,例如IN718。在本步骤中,将金属基础粉末分解为金属合金粉末基体20。其中,金属合金粉末基体的尺寸取值范围为50nm~1μm。分散的 金属基体粒子和预定尺寸的加强粒子能够通过机械研磨液体粉末来获取,例如液体甲醇。另外也可以通过液氮提高颗粒脆性,从而提高研磨的粉碎效率。其中,研磨时间取决于金属基体粉末的类型和效率。
然后执行步骤S2,添加加强粒子于金属合金粉末基体,并混合所述金属合金粉末基体和所述加强粒子从而得到复合金属粒子40,其中所述加强粒子为碳化钽或者碳化铪30,所述复合金属粒子的尺寸取值范围为15微米~53微米。具体地,所述混合步骤S2采用的工艺为机械研磨工艺或者超声工艺。本发明可以在机械研磨过程中同时完成将金属合金粉末基体分解为小尺寸的金属合金粉末基体的步骤,以及混合所述金属合金粉末基体和所述加强粒子的步骤,不用额外设置混合步骤。根据本发明的一个变形例,在执行完机械研磨步骤S1以后,采用超声工艺混合所述金属粉末基体和所述加强粒子。具体地,在本实施例中,如图3所示,此时混合好的粉末中包括金属合金粉末基体20以及加强粒子。此时,混合好的粉末中金属合金粉末基体20以及加强粒子也存在在液体中。具体地,研磨金属合金粉末基体20和加强粒子会在短时间机械研磨或者超声波工艺混合在一起,以获得加固粒子的均一分布,并且通过加强粒子的预定比例来调整加固量。
增强粒子的作用在于固定晶体中的晶界,减少晶粒的变形和滑移带的产生和扩展,从而加强材料强度,并且阻碍最终3D打印件裂缝的产生。图3是添加和未添加加强粒子的样品金相照片,其中,P1未添加加强粒子而P2是利用添加了强化粒子。如图3所示,P1其晶粒比较大,而P2在加了加强粒子以后晶粒变得很小,晶粒细化,因此材料强度得到了提高。
图4是添加和未添加加强粒子的蠕变应变对比示意图,其中,横坐标是时间,纵坐标是蠕变应变。如图4所示,曲线S1是未添加加强粒子的材料蠕变应变曲线,曲线S2是添加加强粒子的样件蠕变应变曲线。对比曲线S1和S2,在同样时间同一温度和实施同样力度下,曲线S2的蠕变应变更低,所以添加了加强粒子能够增加抗蠕变性。
接着执行步骤S3,添加粘结剂,并通过喷雾干燥工艺利用所述粘结剂将所述金属合金粉末基体和所述加强粒子粘结在一起,从而得到分散粒子。具体地,如图2所示,粘结剂用于将所述混合好的粉末中包括金 属合金粉末基体20和加强粒子粘结在一起成为尺寸更大的粉末。喷雾干燥(spray drying)工艺通过机械作用粘结在一起的金属合金粉末基体20和加强粒子分散成微粒,进行“造粒”,然后通过增大水分蒸发面积加速干燥过程,将大部分水分除去,使粘结在一起的金属合金粉末基体20和加强粒子干燥成粉末。在通过喷雾干燥工艺以前,粘结在一起的金属合金粉末基体20和加强粒子都在液体中,呈现浆状,经过喷雾干燥工艺以后去除了大部分水分,得到了干燥的分散粒子50。其中,由于研磨浆中添加了粘合剂,复合粒子能够通过喷雾干燥(spray drying)制备,并具有分散的粒子。复合粒子的尺寸会通过喷雾干燥的参数来控制,其包括了选择的筛号。最后,复合粉末会被加热并在氩气和氢气的混合下脱胶,以移除粘合剂。
根据上述优选实施例的一个变化例,如图5所示,所述加强粒子还包括纯钽或者纯铪60。即,在步骤S2中,添加加强粒子于金属合金粉末基体20,并混合所述金属合金粉末基体20和所述加强粒子从而得到复合金属粒子,其中所述加强粒子为碳化钽或者碳化铪30,所述加强粒子还包括纯钽或者纯铪60。接着执行步骤S3,添加粘结剂,并通过喷雾干燥工艺利用所述粘结剂将所述金属合金粉末基体20和所述加强粒子碳化钽或者碳化铪30以及纯钽或者纯铪60粘结在一起,从而得到分散粒子50’。
最后执行步骤S4,利用脱胶工艺将所述分散粒子中的粘结剂去除,从而得到增材制造的金属复合粉末。具体地,脱胶工艺(sintering)将分散粒子50或者50’加热,然后冷却到室温的过程。脱胶的结果是分散粒子50或者50’中成分之间发生粘结,烧结体的强度增加,并把粘结剂去除,获得可以用于3D打印的金属复合粉末。其中,脱胶过程需要在氩(argon)或者氢(hydrogen)气气氛中实行,从而防止颗粒的氧化。
进一步地,在所述喷雾干燥步骤同时或者以后还包括如下步骤:将所述分散粒子过筛,以选取特定尺寸的所述分散粒子。
进一步地,所述机械研磨步骤还包括如下步骤:通过机械研磨工艺将两种或以上金属基础粉末分别分解为金属合金粉末基体。
进一步地,所述金属复合粉末的粒径的取值范围为15μm~53mm(是多少?)。
进一步地,所述增强粒子粒径的取值范围为50nm~1μm(是多少?)。
进一步地,所述混合步骤采用的工艺为机械研磨工艺或者超声工艺。
进一步地,所述增材制造金属粉末是在选择性激光熔化设备中制备的,其中,所述选择性激光熔化设备的激光功率取值范围为200W~500W,所述选择性激光熔化设备的扫描速率取值范围为500mm/s~2000mm/s。
本发明第二方面提供了一种增材制造金属粉末,所述增材制造粉末是由本发明第一方面提供的方法所制备的。
本发明第三方面提供了一种增材制造方法,其中,所述增材制造方法包括由本发明第一方面所述的方法来制备增材制造金属粉末的步骤。
本发明提供的金属粉末的粒子具有圆形形状和可控的粒子尺寸,所述粒子尺寸接近于在15-53μm,因此具有良好流动性,并且更适合选择性激光熔化装置。在选择性激光熔化制程中,复合金属粉末通过激光能量进行加热,并立刻破裂为尺寸为50nm~1μm的分布粒子。本发明能够达到预期的均一的粒子强度,以保证加固效果,并且避免由于质地不均匀导致的缺陷。
对疲劳断裂来说,裂纹开裂通常会导致瑕疵或者最大有效尺寸,例如气孔或者碳化物。对增材制造的超耐热高应力耐蚀合金材料来说,最大孔径取值范围为十个微米级,其比纳米加固粒子大得多。因此由加固粒子带来的疲劳特性退化影响能够忽略。利用本发明提供的用于增材制造复合金属粉末制造的元件具有良好的表面质量,其是由于采用了纳米粒子融化,并且改善了疲劳特性。
考虑到相对低的稳定性,并且考虑到在碳化物材料中与碳原子之间结合力更小,本发明能够选择碳化钽(TaC)或者碳化铪(HfC),其具有更高的温度稳定性,并且与碳原子的结合度较铌更高,以减少碳化铌的形成可能性。此外,本发明额外添加了钽或者铪金属纳米粒子能够抓住碳化铌中的碳原子,以形成碳化加固粒子,并且同时释放铌原子来获得更多Ni3Nb(γ”相)。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因 此,本发明的保护范围应由所附的权利要求来限定。此外,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;“包括”一词不排除其它权利要求或说明书中未列出的装置或步骤;“第一”、“第二”等词语仅用来表示名称,而并不表示任何特定的顺序。

Claims (10)

  1. 制备增材制造金属粉末的方法,其中,包括如下步骤:
    通过机械研磨工艺将金属基础粉末分解为金属合金粉末基体;
    添加加强粒子于金属合金粉末基体,并混合所述金属合金粉末基体和所述加强粒子从而得到复合金属粒子,其中所述加强粒子为碳化钽或者碳化铪,所述复合金属粒子的尺寸取值范围为15微米~53微米;
    添加粘结剂,并通过喷雾干燥工艺利用所述粘结剂将所述金属合金粉末基体和所述加强粒子粘结在一起,从而得到分散粒子;
    利用烧结工艺将所述分散粒子中的粘结剂去除,从而得到增材制造的金属复合粉末。
  2. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,在所述喷雾干燥步骤同时或者以后还包括如下步骤:将所述分散粒子过筛,以选取特定尺寸的所述分散粒子。
  3. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述机械研磨步骤还包括如下步骤:通过机械研磨工艺将两种或以上金属基础粉末分别分解为金属合金粉末基体。
  4. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述金属复合粉末的粒径的取值范围为15μm~53μm。
  5. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述增强粒子粒径的取值范围为50nm~1μm。
  6. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述混合步骤采用的工艺为机械研磨工艺或者超声工艺。
  7. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述加强粒子还包括纯钽或者纯铪。
  8. 根据权利要求1所述的制备增材制造金属粉末的方法,其特征在于,所述增材制造金属粉末是在选择性激光熔化设备中制备的,其中,所述选择性激光熔化设备的激光功率取值范围为200W~500W,所述选择性激光熔化设备的扫描速率取值范围为500mm/s~2000mm/s。
  9. 增材制造金属粉末,其特征在于,所述增材制造粉末是由权利要求1至8任一项所述的方法所制备的。
  10. 增材制造方法,其特征在于,所述增材制造方法包括由权利要求1至8任一项所述的方法来制备增材制造金属粉末的步骤。
PCT/CN2019/103636 2019-08-30 2019-08-30 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法 WO2021035677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103636 WO2021035677A1 (zh) 2019-08-30 2019-08-30 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法
CN201980098571.4A CN114364472A (zh) 2019-08-30 2019-08-30 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103636 WO2021035677A1 (zh) 2019-08-30 2019-08-30 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法

Publications (1)

Publication Number Publication Date
WO2021035677A1 true WO2021035677A1 (zh) 2021-03-04

Family

ID=74683503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103636 WO2021035677A1 (zh) 2019-08-30 2019-08-30 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法

Country Status (2)

Country Link
CN (1) CN114364472A (zh)
WO (1) WO2021035677A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067004A (zh) * 2021-03-19 2021-07-02 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
CN114054761A (zh) * 2021-11-17 2022-02-18 株洲硬质合金集团有限公司 一种3d打印用金属陶瓷粉末的制备方法
CN115780798A (zh) * 2022-12-02 2023-03-14 上海交通大学 一种纳米碳化硼/铜复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831571A (zh) * 2010-05-31 2010-09-15 福达合金材料股份有限公司 一种银镍基电触头材料及其制备方法
WO2018084056A1 (ja) * 2016-11-02 2018-05-11 コニカミノルタ株式会社 金属粉末、粉末焼結積層造形物及びその製造方法
CN108472726A (zh) * 2015-12-21 2018-08-31 第六元素公司 制造硬质合金材料的方法
CN108752014A (zh) * 2018-05-14 2018-11-06 广东工业大学 一种用于选区激光烧结(sls)/选区激光融化(slm)的粉末及其制备方法和应用
CN109070216A (zh) * 2016-04-26 2018-12-21 H.C.斯达克钨股份有限公司 具有韧性增强结构的碳化物
US20180369909A1 (en) * 2015-12-22 2018-12-27 Fujimi Incorporated Additive manufacturing material for powder lamination manufacturing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004209A1 (en) * 1995-07-14 1997-02-06 U.S. Synthetic Corporation Polycrystalline diamond cutter with integral carbide/diamond transition layer
JP6499546B2 (ja) * 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
CN106925770A (zh) * 2015-12-30 2017-07-07 西门子公司 3d打印用粉末及3d打印方法
CN106319512A (zh) * 2016-09-22 2017-01-11 上海工程技术大学 一种耐腐蚀抗高温氧化的双相金属基复合涂层及制备方法
CN106636844A (zh) * 2016-11-23 2017-05-10 武汉华智科创高新技术有限公司 一种适用于激光3d打印的铌合金粉末及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831571A (zh) * 2010-05-31 2010-09-15 福达合金材料股份有限公司 一种银镍基电触头材料及其制备方法
CN108472726A (zh) * 2015-12-21 2018-08-31 第六元素公司 制造硬质合金材料的方法
US20180369909A1 (en) * 2015-12-22 2018-12-27 Fujimi Incorporated Additive manufacturing material for powder lamination manufacturing
CN109070216A (zh) * 2016-04-26 2018-12-21 H.C.斯达克钨股份有限公司 具有韧性增强结构的碳化物
WO2018084056A1 (ja) * 2016-11-02 2018-05-11 コニカミノルタ株式会社 金属粉末、粉末焼結積層造形物及びその製造方法
CN108752014A (zh) * 2018-05-14 2018-11-06 广东工业大学 一种用于选区激光烧结(sls)/选区激光融化(slm)的粉末及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067004A (zh) * 2021-03-19 2021-07-02 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
CN113067004B (zh) * 2021-03-19 2022-07-19 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
CN114054761A (zh) * 2021-11-17 2022-02-18 株洲硬质合金集团有限公司 一种3d打印用金属陶瓷粉末的制备方法
CN115780798A (zh) * 2022-12-02 2023-03-14 上海交通大学 一种纳米碳化硼/铜复合材料及其制备方法

Also Published As

Publication number Publication date
CN114364472A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021035677A1 (zh) 增材制造金属粉末、增材制造及制备增材制造金属粉末的方法
WO2020151476A1 (zh) 一种钛镍形状记忆合金的4d打印方法及应用
JP5502725B2 (ja) 17−4phスチールの金属焼結方法
CN107794430B (zh) 一种超细晶粒金属陶瓷及其制备方法
KR102075751B1 (ko) 체심입방구조 고엔트로피 합금 구상 분말의 제조방법
CN112191854B (zh) 一种3d打印用硬质合金粉末及其应用
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
CN1660540A (zh) 含有金属间钛铝合金构件或半成品的制造方法及相应构件
CN105695786A (zh) 一种采用3d打印技术制备钛基石墨烯复合材料的方法
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
CN109989059B (zh) 一种TiBw-Ti复合层及其激光原位制备方法
Wang et al. Powder metallurgy of titanium alloys: A brief review
CN110893465A (zh) 3d打印金属粉末、3d打印及制备3d打印金属粉末的方法
US7297310B1 (en) Manufacturing method for aluminum matrix nanocomposite
CN113414406B (zh) 提高激光选区熔化增材制造镁/镁合金零件致密度的方法
CN114703394A (zh) 一种高温材料及其制备方法与应用
CN112609180A (zh) 一种原位自生纳米TiC颗粒增强梯度复合涂层及其制备方法
WO2022067554A1 (zh) 3d打印粉末以及3d打印方法
CN112663050A (zh) 原位自生纳米核壳结构TiC/Ti5Si3颗粒增强复合涂层及其制备方法
CN111842914A (zh) 一种高强度铝铜合金的3d打印工艺方法
KR101195066B1 (ko) 질화물 강화 텅스텐 나노복합재료 및 그 제조방법
CN115635077A (zh) 一种增材制造陶瓷颗粒增强金属基复合材料的制备方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
CN115109981A (zh) 一种氧化物弥散强化TaNbVTi难熔高熵合金及其制备方法和用途
CN107326240A (zh) 一种超细晶TiC和Y2O3掺杂W基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943262

Country of ref document: EP

Kind code of ref document: A1