WO2021033377A1 - 基板の位置合わせ方法 - Google Patents

基板の位置合わせ方法 Download PDF

Info

Publication number
WO2021033377A1
WO2021033377A1 PCT/JP2020/019236 JP2020019236W WO2021033377A1 WO 2021033377 A1 WO2021033377 A1 WO 2021033377A1 JP 2020019236 W JP2020019236 W JP 2020019236W WO 2021033377 A1 WO2021033377 A1 WO 2021033377A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
edge
position data
stage
optical
Prior art date
Application number
PCT/JP2020/019236
Other languages
English (en)
French (fr)
Inventor
剛 古林
結城 徹
樹里 平田
Original Assignee
株式会社ジェーイーエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェーイーエル filed Critical 株式会社ジェーイーエル
Priority to KR1020227007495A priority Critical patent/KR102717443B1/ko
Priority to US17/636,764 priority patent/US20220299317A1/en
Priority to CN202080058556.XA priority patent/CN114258474B/zh
Publication of WO2021033377A1 publication Critical patent/WO2021033377A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Definitions

  • the present invention relates to a substrate alignment method. More specifically, the present invention relates to a substrate alignment method capable of accurately centering or accurately aligning a substrate having a warped peripheral edge.
  • the aligner device used in the alignment process of a semiconductor wafer (hereinafter referred to as a substrate)
  • the accurate center alignment of the substrate placed on the stage is performed. Is done.
  • angle adjustment is performed using reference marks such as orientation flats and notches and various marks attached to the surface of the substrate.
  • the aligner device disclosed in Patent Document 1 is equipped with a fixed focus camera and a half mirror that focus on a very narrow range in order to image the periphery of the substrate.
  • This aligner device images the edge of the substrate illuminated by illumination and the outside of the substrate, and detects a position where the brightness component in the captured image shows a remarkable rate of change as the position of the edge of the substrate.
  • the aligner device rotates the substrate, measures the position of the edge of the substrate at a predetermined angle, and uses the measurement result to align the center of the substrate and adjust the angle of the reference mark. ..
  • the angle ⁇ obtained by measurement and the distance r from the center of rotation of the substrate are used to align the center of the substrate and the angle of the reference mark.
  • the distance between the camera lens and the board differs depending on the state of warpage from the distance between the lens and the board in the case of a flat board without warpage.
  • the optical magnification at the time of imaging changes depending on the state of warpage.
  • there is a difference in the measured values of the edge positions and the calculation accuracy of the substrate center position and the substrate edge angle is lowered.
  • the aligner device described in Patent Document 1 provides a stage on which the substrate is placed to the extent that the rate of change in the luminance distribution clearly appears in the captured image when a substrate having a warp around the edge is handled. Raise and lower to correct the height of the board.
  • this aligner device corrects the height of the board and focuses the camera focus on the edge of the board, it only obtains the correction amount of the height of the board for four points when the board is rotated by 90 °. Is. Further, this aligner device only estimates the warp over the entire circumference of the substrate by curve fitting with a spline curve according to a predetermined algorithm.
  • an object of the present invention is to provide a substrate alignment method capable of solving the problems of the above-mentioned conventional techniques and accurately centering the substrate on which the peripheral edge is warped. It is in. Alternatively, it is an object of the present invention to provide a method for aligning a substrate capable of performing accurate angle alignment.
  • the substrate alignment method of the present invention uses optical means to measure the position of each edge portion of the substrate over the entire circumference of the substrate placed on the stage.
  • Steps to acquire secondary position data indicating the position of each edge part Using the primary position data and the secondary position data, a step of calculating the difference amount of the positions of the edges before and after the stage moves, and The ratio of the optical magnification of each part of the edge is calculated from each of the difference amount and the movement amount of the stage, and each of the edges of the primary position data is based on the calculated ratio of the optical magnification of each part of the edge.
  • the step of correcting the position of the part and acquiring the corrected position data It is characterized by including.
  • the position of each portion of the edge is preferably indicated by the position on the image sensor when the image pickup means provided with the image sensor images the substrate mounted on the stage.
  • the ratio of the optical magnification is the ratio of the optical magnification when the flat substrate without warp is imaged by the optical means to the optical magnification when the warped substrate is imaged by the optical means. Is preferable.
  • the optical power ratio changes according to the state of warpage generated in the substrate, and the reciprocal of the optical power ratio is multiplied by the coordinates indicating the positions of the edges of the primary position data. It is preferable to obtain the coordinates indicating the position of each portion of the edge of the correction position data.
  • accurate center alignment can be performed with respect to a substrate having a warp on the peripheral edge.
  • accurate angle adjustment can be performed.
  • the plan view which shows typically the aligner apparatus shown in FIG. FIG. 3 is a plan view of an eccentric substrate aligned by the substrate alignment method according to the embodiment.
  • the substrate at each rotation angle when the substrate is rotated once around the ⁇ axis is schematically shown, and the edge positions on the image sensor when the substrate is imaged by the image sensor are continuously schematically shown.
  • FIG. 6A is a developed view in which the amount of warpage is expanded in the circumferential direction in order to show the state of warpage generated at a predetermined position on the edge of the substrate shown in FIG. 6A.
  • a conceptual diagram of the optical system of the aligner device that captures the edge position of the warped substrate.
  • Results edge is warped upward, when the substrate distance is moved by a predetermined amount of the substrate in the Y direction is D U, conceptual view of an optical system provided aligner apparatus. Results edge is warped downward, when the substrate distance is moved by a predetermined amount of the substrate in the Y direction is D L, conceptual view of an optical system provided aligner apparatus.
  • the flowchart of the alignment process which concerns on embodiment of this invention.
  • the flowchart of the position data correction processing which concerns on embodiment of this invention.
  • a CG model diagram visually showing the state of warpage generated on the substrate in 3D.
  • FIG. 1 is a front view of the aligner device 10 that aligns the substrate W by the method of aligning the substrate W according to the embodiment of the present invention.
  • FIG. 2 is a plan view thereof. Note that FIG. 1 shows a part of the internal configuration in addition to the appearance of the aligner device 10 for easy understanding.
  • a drive device built in the device main body 13 (hereinafter, simply referred to as the main body 13) places the substrate W on the upper surface of the stage 11 protruding from the upper surface of the main body 13, and the stage 11 is the stage 11 thereof.
  • the substrate W is held by adsorbing the substrate W.
  • the aligner device 10 acquires the edge position information of the held substrate W, measures the center position of the substrate W and the position of a reference mark such as a notch formed on the edge of the substrate W, and adjusts the angle. ..
  • an arm of a substrate transfer robot conveys the substrate W to the aligner device 10, and the substrate W is placed on the circular stage 11 in a plan view.
  • the substrate W is placed so that its center substantially coincides with the rotation axis (that is, the ⁇ axis 12) of the stage 11, as shown by virtual lines in FIGS. 1 and 2.
  • the substrate W is attracted by a known vacuum chuck or the like (not shown) incorporated in the stage 11 and held on the stage 11.
  • the stage 11 slides horizontally in the X and Y directions shown in FIG. 2 by a drive device (not shown) incorporated in the main body 13, and further rotates in the forward and reverse directions by a rotation axis ( ⁇ axis 12). To do.
  • the stage 11 gives a predetermined translation and rotation to the substrate W that is attracted and held on the upper surface of the stage 11 by operating the drive device by a command from a control unit (not shown).
  • the aligner device 10 includes a camera 20 that images the edge of the substrate W in order to acquire edge position information of the substrate W on the stage 11, and an illumination 30 that secures the amount of light at the time of imaging. And have.
  • the camera 20 is housed in a box 21 which is provided upright from the main body 13 so as to secure a predetermined distance in order to image the edge of the substrate W held on the stage 11.
  • a fixed focus camera in which the focus of the lens 23 is fixed is used.
  • the lens 23 is located on the lower surface of the opened box 21. Further, the lens 23 has a focal length such that the upper surface of the substrate is located substantially in the center within the depth of field.
  • an image sensor 24 is arranged at the position of the image plane of the lens barrel accommodating the lens 23, and a predetermined work distance (WD) is set on the substrate side of the image sensor 24.
  • a CMOS (Complementary Metal Oxide Semiconductor) linear image sensor hereinafter, the CMOS linear image sensor is simply referred to as an image sensor
  • the image sensor 24 is used as the image sensor 24.
  • the camera 20 and the drive device described above can synchronize the imaging timing of the substrate W, the interval between the imaging timings, and the rotation amount of the substrate W at the time of imaging by a command from the control unit 25 in the box 21. .. Further, the imaging timing of the substrate W can be synchronized when the substrate W is rotated by a predetermined rotation amount by the stage 11. Further, the time interval of imaging can be set according to the amount of rotation of the substrate W.
  • the camera 20 is an example of an imaging means as defined in the present specification and claims.
  • the lens 23 is an example of optical means.
  • the illumination 30 is arranged between the lens 23 and the upper surface of the main body 13 and below the edge of the substrate W held by the stage 11.
  • the illumination 30 uses LED illumination that functions as a surface light source.
  • the camera 20 takes an image of the back surface (upper surface of the substrate) of the substrate W illuminated by the illumination 30 below, as shown in the enlarged view portion of FIG.
  • the image sensor is provided with a rod-shaped light receiving surface, an image is formed on the light receiving surface separated by a dark portion shaded by the substrate W and a bright portion illuminated by the incident light from the illumination 30.
  • edge position information of the substrate W which is basic information for aligning the center of the substrate W and aligning the angle of the reference mark, calculating the center position of the substrate W, and calculating the angle of the reference mark.
  • the procedure of FIG. 3 will be described with reference to FIGS. 3 to 5.
  • the procedure for calculating the center position using the edge position information of the substrate W will be described with reference to FIGS. 3 and 4.
  • the substrate W is temporarily mounted on the stage 11 of the aligner device 10 by using the arm of the substrate transfer robot, but at this time, the rotation axis ( ⁇ axis 12) of the stage 11 and the center position of the substrate W are slightly aligned. It may be eccentric.
  • FIG. 3 is a plan view of the eccentric substrate W aligned by the alignment method of the substrate W according to the embodiment.
  • the position information for acquiring the edge position information of the substrate W is schematically shown on the substrate W.
  • the center position (X W , Y W ) of the substrate W is deviated from the rotation center (X R , Y R ) of the substrate W, that is, the rotation axis ( ⁇ axis 12) of the stage 11. There is. As a result, the substrate W is in a state of being eccentric from the rotation axis ( ⁇ axis 12) by an eccentric amount (a, b).
  • the range of the notch n as the reference mark position (for example, before and after r n and ⁇ n) is determined. Accordingly, the reference mark position (r n, ⁇ n) to obtain the (step S12).
  • edge position except these reference mark position (r i, ⁇ i) calculate the substrate radius R from the edge position used in the calculation (r i, ⁇ i) and the substrate radius R calculated The amount of eccentricity (a, b) is obtained from. Then, the center positions (X W , Y W ) of the substrate W are finally calculated from the obtained eccentricity amounts (a, b) (step S13).
  • the angle calculation of the reference marks indicate the reference mark position (r n, ⁇ n) and the substrate center position (X W, Y W) and the angle theta nw can be calculated with (FIG. 5 shown in FIG. 3 Step S21).
  • FIG. 6A schematically shows the substrate W at each rotation angle when the substrate W is rotated once around the ⁇ axis 12, and is on the image sensor 24 when the substrate W is imaged by the image sensor 24. It is a development view which showed the edge position of a continuous schematic.
  • FIG. 6B is an enlarged development view of the edge position shown in FIG. 6A.
  • the edge position on the image sensor 24 draws a smooth curve as shown in FIG. 6B when the position of the substrate W with respect to the rotation angle around the ⁇ axis 12 is plotted. Since this curve is in a discontinuous state at the reference mark (notch) position, it is necessary to determine and exclude the reference mark position as described above when acquiring edge position information.
  • FIG. 7A is a plan view of the substrate W having a curved surface due to warpage.
  • FIG. 7B is a developed view of the edge position of the substrate W shown in FIG. 7A developed in the circumferential direction. Note that FIG. 7A shows the substrate W viewed in a plan view as well as the substrate W viewed in a side view for ease of understanding.
  • FIG. 7B the edge position of the warped substrate W shown in FIG. 7A smoothly changes from the reference position to the upper side or the lower side when the position without the warp is set as the reference position.
  • the warp of the substrate W is maximized upward at an angle of 90 ° and 270 °.
  • FIG. 6C is a developed view in which the amount of warpage is developed in the circumferential direction in order to show the state of warpage generated at a predetermined position on the edge of the substrate W shown in FIG. 6A.
  • FIG. 8 is a conceptual diagram of the optical system of the aligner device 10 that images the edge position of the warped substrate W.
  • FIG. 8 shows a flat plate-shaped substrate W without warping for the sake of explanation.
  • the substrate W warped downward is also shown in addition to the substrate W warped upward.
  • the substrates W in the three states are drawn in an overlapping manner.
  • the distance from the edge to the lens 23 (hereinafter referred to as the substrate side distance) D L or DU is the substrate side of the flat plate-shaped substrate W without the warp. It is different from the distance D 0. Since the aligner device 10 employs a fixed-focus optical system, if the substrate-side distances D L and DU are different from the substrate-side distance D 0 , as shown in FIG. 8, the image sensor starts from the center of the lens 23. The distance to the position where the edge of the substrate W of 24 is imaged (hereinafter, referred to as the sensor-side distance) is also different from the sensor-side distance of the flat plate-shaped substrate W without warpage.
  • the edge position of the image formed on the image sensor 24 changes depending on the presence or absence of the warp and the degree of the warp.
  • the optical magnification fluctuates.
  • the distance on the substrate side is not the center (that is, the principal point) in the thickness direction of the lens 23, but the distance from the surface of the lens 23 on the substrate side (object side) to the substrate W. ..
  • FIG. 6D is a developed view of the edge position on the image sensor 24 developed in the circumferential direction when the substrate W (see FIGS. 6A and 6C) having a warped portion is imaged by the image sensor 24.
  • the edge position of the substrate W having the warped portion is indicated by a broken line.
  • the position of the edge of the substrate W having the warped portion is deviated from the position of the edge of the substrate W having no warp.
  • the edge of the substrate W having the warped portion is projected on the image sensor 24 at a position different from the edge of the substrate W having no warp.
  • FIG. 9 is a conceptual diagram showing a change in optical magnification due to a warp generated in the substrate W.
  • the scale is displayed to show the change in the optical magnification.
  • the optical magnification is larger than that of the flat plate-shaped substrate W. Further, in the case of the substrate W which is curved downward and has an edge on the lower side, the optical magnification is smaller than that of the flat plate-shaped substrate W. Therefore, if the optical magnification of the optical system is constant when acquiring the position information of the edge of the warped substrate W, the accuracy of the acquired position information is obviously lowered.
  • the resolution Re is defined as a premise for removing the influence of the warp of the substrate W. That is, the amount of movement of the end of the subject from the reference distance between the lens 23 and the subject (hereinafter referred to as the reference distance) is projected onto the image pickup surface (that is, the light receiving surface described above) on the image sensor 24.
  • the ratio with the amount of movement of the edge of the subject is defined as the resolution Re.
  • the amount of movement of the subject end on the imaging surface of the image sensor 24 when the distance between the lens 23 and the subject end (subject side distance) is unknown and the subject end moves by ⁇ i (mm).
  • Figure 10A is a result of the edge is warped upward, when the substrate side distance moves the substrate W is D U in the Y direction by a predetermined amount [Delta] Y
  • Figure 10B is a result of the edge is warped downward, when the substrate side distance moves the substrate W is D L in the Y direction by a predetermined amount [Delta] Y
  • Figure 10A and FIG. 10B in order to facilitate understanding, an optical system when the flat plate-shaped substrate W is moved in the Y direction by a predetermined amount ⁇ Y is also shown.
  • the movement amount ⁇ U on the imaging surface of the image sensor 24 is larger than the movement amount ⁇ 0 in the case of the flat plate-shaped substrate W.
  • the movement amount ⁇ L on the imaging surface of the image sensor 24 is smaller than the movement amount ⁇ 0 in the case of the flat plate-shaped substrate W. ..
  • the optical magnification when the reference distance D 0 the distance from the reference distance D 0 predetermined distance D U (or distance D L)
  • the reciprocal (1 / R) can be multiplied by the position data before the movement to correct the position data before the movement and convert it into the position data in a state without warpage.
  • FIG. 11 is a flowchart of alignment processing
  • FIG. 12 is a flowchart of position data correction processing.
  • the position data is corrected over the entire circumference of the substrate W having a warp on the peripheral edge by utilizing the relationship of the ratio R of the optical magnification described above.
  • the position data after correction is used to calculate the center position of the substrate and the angle of the reference mark.
  • the warped substrate W is placed on the stage 11 of the aligner device 10 and held by the stage 11. Subsequently, by rotating the rotation axis ( ⁇ axis 12) of the stage 11, the substrate W is rotated around the rotation axis ( ⁇ axis 12), and during the rotation of the substrate W, the edge of the substrate W is rotated by the camera 20. To image. Then, in each of the captured images, the coordinates in the image of the edge image portion in which the edge of the substrate W is captured are measured. Thus, as shown in FIG. 11, and acquires the entire circumference over a primary edge position of the substrate W (r i, ⁇ i) ( step S31). Then, the acquired position data (primary position data) is saved in the storage unit.
  • step S31 the substrate W is rotated around the rotation axis ( ⁇ axis 12) of the stage 11 after movement, and the edge of the rotating substrate W is imaged by the camera 20. Then, the in-image coordinates of the edge image portion are measured for each of the captured images. As a result, the secondary edge positions (r j , ⁇ j ) are acquired over the entire circumference of the substrate W (step S33).
  • the position data (secondary position data) is stored in the storage unit.
  • position data correction is performed based on the primary position data and the secondary position data (step S34).
  • the ratio of the optical magnification at each position is calculated (step S342).
  • the primary position data is corrected to the data in a state without warpage (step S343).
  • Equation 3 shown below corrects each primary edge positions of the primary position data (r i, ⁇ i).
  • correction position data indicating the edge position in a state without warpage is obtained.
  • the data is updated.
  • the correction edge position of the formula 3 is the correction position data shown in FIG.
  • the primary edge position is the primary position data shown in FIG. With the above, the correction of the position data is completed.
  • Corrected edge position (primary edge position x 1 / R) ... (Equation 3)
  • the process returns to the alignment process shown in FIG. Subsequently, the substrate center position is calculated using the corrected position data (step S35). Next, the angle of the reference mark is calculated (step S36). After that, the position of the substrate W is corrected by rotating and sliding the substrate W (step S37). The alignment process is completed by the above steps. By this alignment processing, it is possible to accurately align the center of the substrate W and the angle of the reference mark with respect to the warped substrate W by removing the influence of the warp.
  • the edge of the substrate W is shown as a point cloud, and the amount of warpage is drawn in a 3D format to obtain the direction of warpage (occurrence). Location), the amount of warpage can be easily confirmed visually.
  • a point cloud A displaying the reference height of the edge of the substrate W without warpage and a point cloud group B displaying the edge height of the substrate W with warp are drawn together. For example, when a specified value is set for the warp amount of the substrate W as a product, in the inspection of whether or not the warp amount satisfies the specified value, the drawing color of the point cloud in the range exceeding the specified value is set.
  • the substrate is circular in a plan view, but in the present invention, the plan view shape of the substrate is arbitrary. For example, it may have a shape other than a circular shape in a plan view, such as a rectangle in a plan view.
  • the image sensor includes a rod-shaped light receiving surface, but the shape of the light receiving surface of the image sensor is also arbitrary. The light receiving surface may be rectangular.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

光学手段を用いて、ステージ上に載置された基板の全周にわたって基板のエッジ各部分の位置を測定することにより、エッジ各部分の位置を示す1次位置データを取得するステップ(S31)と、ステージを所定方向に所定量だけ移動させ、光学手段を用いて、ステージが移動した後の基板の全周にわたって基板のエッジ各部分の位置を測定することにより、移動後のエッジ各部分の位置を示す2次位置データを取得するステップ(S33)と、1次位置データと2次位置データを用いて、ステージが移動する前と移動した後でのエッジ各部分の位置の差分量を算出するステップと、差分量それぞれとステージの移動量とからエッジ各部分の光学倍率の比率を算出し、算出されたエッジ各部分の光学倍率の比率をもとに1次位置データのエッジ各部分の位置を補正して、補正位置データを取得するステップ(S34)と、を含む。

Description

基板の位置合わせ方法
 本発明は基板の位置合わせ方法に係る。詳細には、本発明は、周縁に反りが生じている基板に対しても、正確な中心位置合わせをすることができ、或いは、正確な角度合わせをすることができる基板の位置合わせ方法に関する。
 従来、半導体ウエハ(以下、基板と記す。)のアライメント工程で用いられるアライナ装置では、基板の正確な位置と向きを設定するため、ステージ上に載置された基板の正確な中心位置合わせが行なわれる。また、オリフラ、ノッチ等の基準マークや基板表面に付された各種のマーク等を利用した角度合わせが行なわれる。
 このようなアライナ装置では、鏡面状、透明、半透明等であったり、レーザーマークが表面に付されたりする基板に対応するため、基板の周縁の一部を撮像するカメラを備えた装置が提案されている(特許文献1)。
 特許文献1に開示されたアライナ装置には、基板周縁を撮像するために、ごく狭い範囲に合焦する固定焦点カメラとハーフミラーとが搭載されている。このアライナ装置は、照明で照らされた基板のエッジと基板外とを撮像し、撮像された画像内の輝度分が顕著な変化率を示す位置を基板のエッジの位置として検出する。
特開2016-63028号公報
 アライナ装置は、アライメント工程において、基板を回転させて、所定の角度にある基板のエッジの位置を測定し、その測定結果を用いて、基板の中心位置合わせ、基準マークの角度合わせを行っている。たとえば、測定して得られた角度θと基板回転中心からの距離rを用いて、基板の中心位置合わせ、基準マークの角度合わせを行っている。
 ところが、反りがある基板を扱った場合、反りの状態によってカメラのレンズと基板との間の距離が、反りのない平らな基板の場合のレンズと基板のとの距離と異なってしまう。その結果、反りの状態によって撮像時の光学倍率が変化してしまう。これにより、エッジの位置の測定値に差が生じてしまい、基板中心位置、基板エッジの角度の算出精度が低下してしまう。
 また、特許文献1に記載のアライナ装置は、エッジ周辺に反りがある基板を扱った場合に、撮像された画像で輝度分布の変化率が明確に表れる程度まで、基板が載置されたステージを昇降して、基板の高さを補正する。
 しかし、このアライナ装置は、基板の高さを補正してカメラ焦点を基板エッジに合焦させる場合でも、基板を90°ずつ回転させたときの4点について基板の高さの補正量を求めるだけである。また、このアライナ装置は、所定のアルゴリズムによるスプライン曲線でカーブフィッティングさせることにより、基板の全周にわたる反りを推定するだけである。
 このように、特許文献1に記載のアライナ装置では、基板の中心位置合わせの精度が低下し、さらに、エッジに設けられた基準マークの角度位置合わせの精度が低下する。また、基板の全周にわたる反りの状態を正確に把握することができない。
 そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、周縁に反りが生じている基板に対して正確な中心位置合わせをすることができる基板の位置合わせ方法を提供することにある。或いは、正確な角度合わせをすることができる基板の位置合わせ方法を提供することにある。
 上記目的を達成するために、本発明の基板の位置合わせ方法は、光学手段を用いて、ステージ上に載置された基板の全周にわたって前記基板のエッジ各部分の位置を測定することにより、前記エッジ各部分の位置を示す1次位置データを取得するステップと、
 前記ステージを所定方向に所定量だけ移動させ、前記光学手段を用いて、前記ステージが移動した後の前記基板の全周にわたって前記基板のエッジ各部分の位置を測定することにより、移動後の前記エッジ各部分の位置を示す2次位置データを取得するステップと、
 前記1次位置データと前記2次位置データを用いて、前記ステージが移動する前と移動した後での前記エッジ各部分の位置の差分量を算出するステップと、
 前記差分量それぞれと前記ステージの移動量とから前記エッジ各部分の光学倍率の比率を算出し、算出された前記エッジ各部分の光学倍率の比率をもとに前記1次位置データの前記エッジ各部分の位置を補正して、補正位置データを取得するステップと、
 を含むことを特徴とする。
 さらに、前記補正位置データをもとに、前記基板の中心位置または、前記基板に設けられた基準マークの位置を合わせるステップを含むことが好ましい。
 前記エッジ各部分の位置は、画像センサを備える撮像手段が前記ステージ上に載置された前記基板を撮像したときの、前記画像センサ上の位置で示されることが好ましい。
 前記光学倍率の比率は、反りのない平板状の基板を前記光学手段で結像させたときの光学倍率に対する、反りのある基板を前記光学手段で結像させたときの光学倍率の比であることが好ましい。
 前記光学倍率の比率は、基板に生じた反りの状態に応じて変化し、その光学倍率の比率の逆数が前記1次位置データの前記エッジ各部分の位置を示す座標に乗じられることにより、前記補正位置データの前記エッジ各部分の位置を示す座標を求めることが好ましい。
 本発明の構成によれば、周縁に反りが生じている基板に対して正確な中心位置合わせをすることができる。或いは、正確な角度合わせをすることができる。
本発明の実施形態に係る基板の位置合わせ方法を用いるアライナ装置を模式的に示した正面図。 図1に示したアライナ装置を模式的に示した平面図。 実施形態に係る基板の位置合わせ方法で位置合わせされる偏心した基板の平面図。 基板中心位置を算出する処理のフローチャート。 基準マークの角度を算出する処理のフローチャート。 基板をθ軸周りに1周回転させたときの、各回転角度での基板を模式的に示すと共に、その基板を画像センサで撮像したときの画像センサ上のエッジ位置を連続して模式的に示した展開図。 図6Aに示すエッジ位置の拡大展開図。 図6Aに示す基板のエッジの所定箇所に生じた反りの状態を示すために反り量を周方向に展開した展開図。 反ったエッジ部分がある基板を画像センサで撮像したときの、画像センサ上のエッジ位置を周方向に展開した展開図。 反りが生じて曲面状になっている基板の平面図。 図7Aに示す基板のエッジ位置を周方向に展開した展開図。 反った基板のエッジ位置を撮像する、アライナ装置の光学系の概念図。 基板に生じた反りによる光学倍率の変化を示した概念図。 エッジが上側に反った結果、基板側距離がDUである基板をY方向に所定量だけ移動させた場合の、アライナ装置が備える光学系の概念図。 エッジが下側に反った結果、基板側距離がDLである基板をY方向に所定量だけ移動させた場合の、アライナ装置が備える光学系の概念図。 本発明の実施形態に係るアライメント処理のフローチャート。 本発明の実施形態に係る位置データの補正処理のフローチャート。 基板に生じた反りの状態を3Dで視覚的に示したCGモデル図。
 以下、本発明の基板の位置合わせ方法の一実施形態について添付図面を参照して説明する。
 図1は、本発明の実施形態に係る基板Wの位置合わせ方法によって基板Wのアライメントを行うアライナ装置10の正面図である。図2はその平面図である。なお、図1では、理解を容易にするため、アライナ装置10の外観のほかに、内部構成の一部を示している。
 アライナ装置10では、装置本体13(以下、単に本体13と記す)に内蔵された駆動装置(図示せず)が本体13上面から突出したステージ11上面に基板Wを載置し、ステージ11がその基板Wを吸着することにより、基板Wを保持する。そして、アライナ装置10は、保持された基板Wのエッジ位置情報を取得し、基板Wの中心位置と、基板Wのエッジに形成されたノッチ等の基準マークの位置を測定し、角度合わせを行う。
 詳細には、図示しない基板搬送ロボットのアームがアライナ装置10まで基板Wを搬送し、その基板Wを平面視で円形状のステージ11の上に載置する。このとき基板Wは、図1、図2に仮想線で示すように、ステージ11の回転軸(すなわちθ軸12)にその中心がおおよそ一致するように載置される。そして、基板Wは、ステージ11に組み込まれた公知の真空チャック等(図示せず)によって吸着され、ステージ11に保持される。
 ステージ11は、本体13内に組み込まれた、上記とは別の図示しない駆動装置によって図2に示すX,Y方向に水平スライドし、さらに、回転軸(θ軸12)によって正逆方向に回転する。ステージ11は、図示しない制御部からの指令によって、駆動装置が動作することにより、ステージ11上面に吸着保持された基板Wに所定の並行移動、回転を付与する。
[アライナ装置の構成]
 図1に示すように、アライナ装置10は、ステージ11上の基板Wのエッジ位置情報を取得するために、基板Wのエッジを撮像するカメラ20と、撮像時の光量を確保するための照明30とを備えている。
 カメラ20は、ステージ11上に保持された基板Wのエッジを撮像するため、所定距離を確保するように本体13から起立して設けられたボックス21内に収容されている。カメラ20には、レンズ23の焦点が固定された固定焦点カメラが用いられている。そのレンズ23は、開放されたボックス21の下面に位置する。また、レンズ23は、基板上面が被写界深度内のほぼ中央に位置する程度の焦点距離を有する。さらに、レンズ23を収容する鏡筒の結像面位置には画像センサ24が配置され、その画像センサ24には、基板側に所定のワークディスタンス(WD)が設定されている。本実施形態では、画像センサ24としてCMOS(Complementary Metal Oxide Semiconductor)リニアイメージセンサ(以下、CMOSリニアイメージセンサを単にメージセンサと記す)が用いられている。
 なお、カメラ20と上述した駆動装置は、ボックス21内の制御部25からの指令により、基板Wの撮像タイミング、撮像タイミングの間隔と、撮像時の基板Wの回転量とを同期させることができる。また、基板Wの撮像タイミングを、基板Wがステージ11によって所定の回転量だけ回転したときに同期させることができる。さらに、撮像の時間的間隔を基板Wの回転量に応じた間隔にすることができる。
 また、カメラ20は、本明細書、請求の範囲でいうところの撮像手段の一例である。レンズ23は、光学手段の一例である。
 一方、照明30は、レンズ23と本体13上面の間かつ、ステージ11に保持された基板Wのエッジの下側に配置されている。本実施形態では、照明30に、面光源として機能するLED照明が用いられている。これにより、カメラ20は、図2の拡大図部分に示すように、下方にある照明30によって照射された基板Wの裏面(基板上面)側を撮像することになる。そして、イメージセンサは棒状をなす受光面を備えるところ、その受光面には基板Wが遮光した暗部と照明30からの入射光で照らされた明部とで区切られた像が結像する。
[エッジ位置情報の取得方法]
 ここで、基板Wの中心位置合わせと基準マークの角度合わせを行うための基本情報となる基板Wのエッジ位置情報を取得する取得方法と、基板Wの中心位置の算出及び、基準マークの角度算出の手順とについて、図3~図5を参照して説明する。
 基板Wのエッジ位置情報を用いた中心位置の算出手順について、図3,図4を参照して説明する。基板Wは通常、基板搬送ロボットのアームを用いてアライナ装置10のステージ11上に仮載置されるが、このときステージ11の回転軸(θ軸12)と基板Wの中心位置とがわずかに偏心している場合がある。
 図3は実施形態に係る基板Wの位置合わせ方法で位置合わせされる偏心した基板Wの平面図である。なお、図3では、基板Wのエッジ位置情報の取得のための位置情報を基板W上に模式的に示している。
 図3に示すように、基板Wの中心位置(XW,YW)は、基板Wの回転中心(XR,YR)、すなわちステージ11の回転軸(θ軸12)に対してずれている。その結果、基板Wは、回転軸(θ軸12)から偏心量(a,b)だけ偏心した状態にある。
 この状態で、図4のフローチャートに示すように、基板Wをθ軸12周りに360°回転させ、その基板Wが回転しているときに、カメラ20で基板Wを撮像する。そして、撮像された画像を用いて、エッジの位置を測定する。詳細には、所定のサンプリング数s(たとえばs=20,000)で、基板Wを撮像する。そして、撮像された画像を用いて、極座標データで示されるエッジ位置(ri,θi)を取得する(ステップS11)。
 次に、基板Wが円形であることを前提として、基準マーク位置としてのノッチnの範囲(たとえばrn,θnの前後)を判別する。これにより、基準マーク位置(r,θ)を取得する(ステップS12)。
 続いて、これらの基準マーク位置を除いたエッジ位置(ri,θi)から基板半径Rを算出し、その算出で用いたエッジ位置(ri,θi)と算出された基板半径Rとから偏心量(a,b)を求める。そして、求めた偏心量(a,b)から最終的に基板Wの中心位置(XW,YW)を算出する(ステップS13)。
 なお、対象体の回転中心から対象物の中心座標を求める公知の方法は各種知られているので、本方法以外の算出方法を適宜採用できることは言うまでもない。
 さらに、基準マークの角度算出は、図3に示す基準マーク位置(rn,θn)と基板中心位置(XW,YW)とのなす角度θnwを算出すればよい(図5に示すステップS21)。なお、基板中心位置、基準マークの角度の算出過程において、各座標値は、演算に好適な座標系に変換して扱うことが好ましい。
 図6Aは、基板Wをθ軸12周りに1周回転させたときの、各回転角度での基板Wを模式的に示すと共に、その基板Wを画像センサ24で撮像したときの画像センサ24上のエッジ位置を連続して模式的に示した展開図である。図6Bは、図6Aに示すエッジ位置の拡大展開図である。
 図6Aに示す状態では、基板Wは、中心位置が回転中心から偏心してステージ11上に載置されている。このため、画像センサ24上のエッジ位置は、基板Wのθ軸12周りの回転角度に対する位置をプロットすると、図6Bに示すように滑らかな曲線を描く。この曲線は基準マーク(ノッチ)位置において不連続な状態となるので、エッジ位置情報を取得する場合には、上述したようにこの基準マーク位置を判別して除外することが必要である。
[基板の反りの影響]
 ところで、アライナ装置10では、使用に支障のない程度の反りがある基板Wのアライメントを行う場合がある。図7Aは、反りが生じて曲面状になっている基板Wの平面図である。図7Bは、図7Aに示す基板Wのエッジ位置を周方向に展開した展開図である。なお、図7Aには、理解を容易にするため、平面視した基板Wのほか、側面視した基板Wも示している。
 図7Aに示す反りがある基板Wのエッジ位置は、図7Bに示すように、反りのない位置を基準位置とすると、その基準位置から上側あるいは下側に滑らかに変化する。なお、図7A及び図7Bでは、基板Wの反りは角度90°、270°の位置で上側に最大となっている。また、図7Bと同様に、図6Cは、図6Aに示す基板Wのエッジの所定箇所に生じた反りの状態を示すために反り量を周方向に展開した展開図である。
 図8は、反った基板Wのエッジ位置を撮像する、アライナ装置10の光学系の概念図である。なお、図8では、反りのある基板Wのほか、説明のために、反りのない平板状の基板Wを示している。また、反りのある基板Wについても、説明のため、上に反った基板Wに加えて、下に反った基板Wも示している。その結果、図8では、3状態の基板Wが重ねて描かれている。
 図8に示すように、反りがある基板Wでは、そのエッジからレンズ23までの距離(以下、基板側距離と記す。)DL又はDUが、反りのない平板状の基板Wの基板側距離D0と異なっている。アライナ装置10には固定焦点式の光学系が採用されているため、基板側距離DL、DUが基板側距離D0と異なると、図8に示すように、レンズ23の中心から画像センサ24の基板Wのエッジが結像する位置までの距離(以下、センサ側距離と記す。)も、上記反りのない平板状の基板Wのセンサ側距離と異なってしまう。これにより、反りの有無と反りの程度に応じて、画像センサ24上に結像するエッジ位置が変化してしまう。その結果、光学倍率が変動してしまう。なお、図8では、説明を容易にするため、基板側距離はレンズ23の厚み方向の中心(すなわち主点)でなく、レンズ23の基板側(物体側)表面から基板Wまでの距離としている。
 この光学倍率の変動を別の図面を参照して説明する。図6Dは、反った部分がある基板W(図6A及び図6C参照)を画像センサ24で撮像したときの、画像センサ24上のエッジ位置を周方向に展開した展開図である。なお、図6Dでは、反った部分がある基板Wのエッジ位置を破線で示している。
 図6Dに示すように、画像センサ24上では、反った部分がある基板Wのエッジの位置は、反りのない基板Wのエッジの位置とずれている。その結果、反った部分がある基板Wのエッジは、画像センサ24上、反りのない基板Wのエッジと異なる位置に投影されることになる。
 図9は、基板Wに生じた反りによる光学倍率の変化を示した概念図である。なお、図9では、光学倍率の変化を示すため、スケールを表示している。
 図9に示すように、上側に反って上側にエッジがある基板Wの場合、光学倍率は平板状の基板Wのそれよりも大きくなる。また、下側に反って下側にエッジがある基板Wの場合、光学倍率は平板状の基板Wのそれよりも小さくなる。このため、反りのある基板Wのエッジの位置情報を取得するときに、光学系の光学倍率が一定であるとすると、取得した位置情報の精度が明らかに低下してしまう。
[反りの影響の除去]
(分解能の定義)
 本実施形態では、図9に示す基板側距離の変化によって光学倍率が変化する点に着目する。そして、本実施形態では、基準となる位置(高さ)で基板Wを、たとえば水平方向に移動させたときの、基板Wの実際の移動量と、そのときの画像センサ24上に投影されるセンサ上の移動量と、を測定し、得られた実際の移動量に対するセンサ上の移動量の対応関係を用いて、画像センサ24上に投影されたエッジの位置情報から反りのある基板Wの基板側距離を推定する(図10A及び図10B参照)。
(基準距離での分解能)
 基板Wの反りの影響を除去する前提として、まず分解能Reを定義する。すなわち、レンズ23と被写体との間の基準となる距離(以下、基準距離と記す。)からの被写体端部の移動量と、画像センサ24上の撮像面(すなわち上述した受光面)に投影される被写体端部の移動量との比を分解能Reとして定義する。
 より詳細には、被写体端部の移動量(ステージの移動量)をA(単位はmm)、画像センサの撮像面に投影される被写体端部の移動量をB(単位はpixel)とする場合に、分解能Reは、
 Re=B/A(pixel/mm)・・・(式1)
と表される。
 よって、被写体端部をΔ(mm)移動(スライド)したときの画像センサ24上での被写体端部の移動量δ(pixel)は、
 δ=Re×Δ(pixel)・・・(式2)
となる。
(光学倍率比率の設定)
 図9に示すB状態は、レンズ23から基準距離にある被写体端部が所定量Δだけ移動した際の画像センサ24上の撮像面に投影された被写体端部の移動量δ0を示している。そして、図9では、この移動量δ0を基準値とし、移動量δ0をスケールで表示している。このとき、基準距離での光学倍率R0は、R0=δ0/Δである。そして、レンズ23と被写体端部との距離(被写体側距離)が未知であり、被写体端部がΔ(mm)だけ移動したときの、画像センサ24の撮像面での被写体端部の移動量がδ(pixel)であるとき、測定値δ(pixel)と基準値δ0(pixel)には、次の関係が成り立つ。
 δ/δ0>1…被写体は基準距離より近くにある(図9に示すA状態)
 δ/δ0=1…被写体は基準距離にある(図9に示すB状態)
 δ/δ0<1…被写体は基準距離より遠くにある(図9に示すC状態)
(位置データの補正)
 図10Aは、エッジが上側に反った結果、基板側距離がDUである基板WをY方向に所定量ΔYだけ移動させた場合の、アライナ装置10が備える光学系の概念図である。図10Bは、エッジが下側に反った結果、基板側距離がDLである基板WをY方向に所定量ΔYだけ移動させた場合の、光学系の概念図である。なお、図10A及び図10Bでは、理解を容易にするため、平板状の基板WをY方向に所定量ΔYだけ移動させた場合の光学系もあわせて示している。
 図10Aに示すように、エッジが上側に反った基板Wの場合、画像センサ24の撮像面での移動量δUは、平板状の基板Wの場合の移動量δ0よりも大きい。また、図10Bに示すように、エッジが下側に反った基板Wの場合、画像センサ24の撮像面での移動量δLは、平板状の基板Wの場合の移動量δ0よりも小さい。このときに、基準距離D0であるときの光学倍率と、基準距離D0から所定距離だけ離れた距離DU(あるいは距離DL)であるときの光学倍率とから求められるこれらの比率Rが分かれば、その逆数(1/R)を移動前の位置データに乗ずることにより、移動前の位置データを補正して、反りのない状態での位置データに変換することができる。
[本実施形態によるアライメントの手順]
 図11は、アライメント処理のフローチャートであり、図12は、位置データの補正処理のフローチャートである。図11及び図12に示すように、アライメント処理では、上述した光学倍率の比率Rの関係を利用して周縁に反りのある基板Wの全周にわたって位置データを補正する。さらに補正後の位置データを用いて基板中心位置の算出、基準マークの角度算出を行う。以下、図11及び図12を参照して詳細に説明する。
 まず、図示しないが、反りのある基板Wをアライナ装置10のステージ11上に載置し、ステージ11に保持させる。続いて、ステージ11の回転軸(θ軸12)を回転させることにより、基板Wを回転軸(θ軸12)の周りに回転させ、その基板Wの回転中に、カメラ20で基板Wのエッジを撮像する。そして、撮像した画像それぞれで、基板Wのエッジが撮像されているエッジ画像部分の画像内座標を測る。これにより、図11に示すように、基板Wの全周にわたり1次エッジ位置(ri,θi)を取得する(ステップS31)。そして、取得した位置データ(1次位置データ)を記憶部に保存する。
 1次エッジ位置を取得した後、基板Wを保持したステージ11の回転軸(θ軸12)をY方向に所定量(ΔY)だけスライドさせる(ステップS32、図2,図10A及び図10B参照)。本実施の形態ではΔY=2mmとする。
 続いて、ステップS31と同様に、基板Wを移動後のステージ11の回転軸(θ軸12)周りに回転させ、その回転する基板Wのエッジをカメラ20で撮像する。そして、撮像した画像それぞれで、エッジ画像部分の画像内座標を測る。これにより、基板Wの全周にわたって2次エッジ位置(rj,θj)を取得する(ステップS33)。その位置データ(2次位置データ)を記憶部に保存する。
 次に、1次位置データと2次位置データに基づいて位置データ補正を行う(ステップS34)。
 その位置データ補正の処理では、図12に示すように、記憶部から1次位置データと2次位置データを読み出し、読み出された1次位置データと2次位置データの各エッジ位置(ri,θi)、(rj,θj)の差分量δi=jを全周にわたって算出する(ステップS341)。
 次いで、各位置での光学倍率の比率を算出する(ステップS342)。ここで、比率Rは、Ri=j=(δi=j/ΔY)である。
 続いて、算出したこの比率Rを用いて、1次位置データを反りのない状態のデータに補正する(ステップS343)。詳細には、以下に示す式3を用いて、1次位置データの各1次エッジ位置(ri,θi)を補正する。これにより、反りのない状態のエッジ位置を示す補正位置データを得る。その結果、データを更新する。ここで、式3の補正エッジ位置とは、図12に記載の補正位置データのことである。1次エッジ位置とは、図12に記載の1次位置データのことである。以上により、位置データの補正が完了する。
 補正エッジ位置=(1次エッジ位置×1/R)・・・(式3)
 位置データ補正が完了すると、図11のアライメント処理に戻る。続いて、補正後の位置データを用いて基板中心位置の算出を行う(ステップS35)。次いで、基準マークの角度の算出を行う(ステップS36)。その後、基板Wを回転させ、スライドさせることにより、基板Wの位置を修正する(ステップS37)。以上のステップにより、アライメント処理が終了する。このアライメント処理により、反りがある基板Wに対して、反りの影響を除去した基板Wの中心位置合わせと基準マークの角度合わせを高精度に行うことができる。
 また、図13に示すように、パーソナルコンピュータを用いたCG(computer graphics)モデルで、基板Wのエッジを点群で示して、反りの量を3D形式で描画することにより、反りの向き(発生箇所)、反り量を視覚的に容易に確認することができる。図13では、反りのない基板Wのエッジの基準高さを表示した点群Aと、反りのある基板Wのエッジの高さを表示した点群Bとが合わせて描画されている。たとえば、製品としての基板Wの反り量に規定値が設定されている場合の、反り量が規定値を満たしているか否かの検査において、規定値を超えた範囲の点群の描画色を、たとえば反り量に応じて黄色(許容範囲内)→赤色(許容範囲以上)に区分して表示させることで、反りの状態に対する検査結果を視覚的に容易に確認、把握することができる。これにより、基板Wの品質管理の効率化、高精度化を図ることができる。
 以上、本発明に係る実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。例えば、上述した実施形態では、基板は平面視円形であるが、本発明では、基板の平面視形状は任意である。例えば、平面視矩形のように、平面視円形以外の形状であってもよい。また、上述した実施形態では、イメージセンサが棒状をなす受光面を備えるが、イメージセンサの受光面の形状も任意である。受光面は矩形状であってもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2019年8月22日に出願された日本国特許出願特願2019-152239号に基づく。本明細書中に日本国特許出願特願2019-152239号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
10 アライナ装置
11 ステージ
12 回転軸(θ軸)
20 カメラ
23 レンズ
24 画像センサ
30 照明
W 基板

Claims (5)

  1.  光学手段を用いて、ステージ上に載置された基板の全周にわたって前記基板のエッジ各部分の位置を測定することにより、前記エッジ各部分の位置を示す1次位置データを取得するステップと、
     前記ステージを所定方向に所定量だけ移動させ、前記光学手段を用いて、前記ステージが移動した後の前記基板の全周にわたって前記基板のエッジ各部分の位置を測定することにより、移動後の前記エッジ各部分の位置を示す2次位置データを取得するステップと、
     前記1次位置データと前記2次位置データを用いて、前記ステージが移動する前と移動した後での前記エッジ各部分の位置の差分量を算出するステップと、
     前記差分量それぞれと前記ステージの移動量とから前記エッジ各部分の光学倍率の比率を算出し、算出された前記エッジ各部分の光学倍率の比率をもとに前記1次位置データの前記エッジ各部分の位置を補正して、補正位置データを取得するステップと、
     を含むことを特徴とする基板の位置合わせ方法。
  2.  さらに、前記補正位置データをもとに、前記基板の中心位置または、前記基板に設けられた基準マークの位置を合わせるステップを含む請求項1に記載の基板の位置合わせ方法。
  3.  前記エッジ各部分の位置は、画像センサを備える撮像手段が前記ステージ上に載置された前記基板を撮像したときの、前記画像センサ上の位置で示される請求項1に記載の基板の位置合わせ方法。
  4.  前記光学倍率の比率は、反りのない平板状の基板を前記光学手段で結像させたときの光学倍率に対する、反りのある基板を前記光学手段で結像させたときの光学倍率の比である請求項1に記載の基板の位置合わせ方法。
  5.  前記光学倍率の比率は、基板に生じた反りの状態に応じて変化し、その光学倍率の比率の逆数が前記1次位置データの前記エッジ各部分の位置を示す座標に乗じられることにより、前記補正位置データの前記エッジ各部分の位置を示す座標を求める請求項1に記載の基板の位置合わせ方法。
PCT/JP2020/019236 2019-08-22 2020-05-14 基板の位置合わせ方法 WO2021033377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227007495A KR102717443B1 (ko) 2019-08-22 2020-05-14 기판의 위치 맞춤 방법
US17/636,764 US20220299317A1 (en) 2019-08-22 2020-05-14 Method for positioning substrate
CN202080058556.XA CN114258474B (zh) 2019-08-22 2020-05-14 基板的位置对准方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152239A JP7344047B2 (ja) 2019-08-22 2019-08-22 基板の位置合わせ方法
JP2019-152239 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021033377A1 true WO2021033377A1 (ja) 2021-02-25

Family

ID=74661037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019236 WO2021033377A1 (ja) 2019-08-22 2020-05-14 基板の位置合わせ方法

Country Status (6)

Country Link
US (1) US20220299317A1 (ja)
JP (1) JP7344047B2 (ja)
KR (1) KR102717443B1 (ja)
CN (1) CN114258474B (ja)
TW (1) TWI758737B (ja)
WO (1) WO2021033377A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185419A (ja) * 2001-12-20 2003-07-03 Sumitomo Metal Ind Ltd 反り形状計測方法及び装置
JP2008196855A (ja) * 2007-02-08 2008-08-28 Yamatake Corp ウェハの位置決め方法および位置決め装置
JP2008203182A (ja) * 2007-02-22 2008-09-04 Yamatake Corp エッジ検出装置
US20170329241A1 (en) * 2016-05-11 2017-11-16 Semiconductor Manufacturing International (Shanghai) Corporation Alignment method and alignment system thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634487B2 (ja) * 1996-02-09 2005-03-30 キヤノン株式会社 位置合せ方法、位置合せ装置、および露光装置
JP4615114B2 (ja) * 2000-11-13 2011-01-19 株式会社ダイヘン ウェハアライナ装置
US20070258085A1 (en) * 2006-05-02 2007-11-08 Robbins Michael D Substrate illumination and inspection system
US7557910B2 (en) * 2004-12-19 2009-07-07 Kla-Tencor Corporation System and method for controlling a beam source in a workpiece surface inspection system
JP4309874B2 (ja) * 2005-08-05 2009-08-05 株式会社ブイ・テクノロジー 露光装置
US7508504B2 (en) * 2006-05-02 2009-03-24 Accretech Usa, Inc. Automatic wafer edge inspection and review system
WO2012029142A1 (ja) * 2010-09-01 2012-03-08 三菱電機株式会社 レーザ加工装置および基板位置検出方法
CN107742613B (zh) * 2012-04-25 2021-03-09 应用材料公司 晶片边缘的测量和控制
JP6394220B2 (ja) 2014-09-17 2018-09-26 東京エレクトロン株式会社 アライメント装置及び基板処理装置
US10056224B2 (en) * 2015-08-10 2018-08-21 Kla-Tencor Corporation Method and system for edge-of-wafer inspection and review
NL2017860B1 (en) * 2015-12-07 2017-07-27 Ultratech Inc Systems and methods of characterizing process-induced wafer shape for process control using cgs interferometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185419A (ja) * 2001-12-20 2003-07-03 Sumitomo Metal Ind Ltd 反り形状計測方法及び装置
JP2008196855A (ja) * 2007-02-08 2008-08-28 Yamatake Corp ウェハの位置決め方法および位置決め装置
JP2008203182A (ja) * 2007-02-22 2008-09-04 Yamatake Corp エッジ検出装置
US20170329241A1 (en) * 2016-05-11 2017-11-16 Semiconductor Manufacturing International (Shanghai) Corporation Alignment method and alignment system thereof

Also Published As

Publication number Publication date
JP2021032662A (ja) 2021-03-01
US20220299317A1 (en) 2022-09-22
TW202109724A (zh) 2021-03-01
KR102717443B1 (ko) 2024-10-15
TWI758737B (zh) 2022-03-21
CN114258474B (zh) 2024-08-09
KR20220073733A (ko) 2022-06-03
CN114258474A (zh) 2022-03-29
JP7344047B2 (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
TWI661495B (zh) 工件處理裝置、工件輸送系統
TWI457685B (zh) 用以定位及檢驗基底之補償校正方法及配置
TWI431704B (zh) 用以定位基底之偏移校正技術
KR101735403B1 (ko) 검사 방법, 템플릿 기판 및 포커스 오프셋 방법
CN103759638B (zh) 一种零件检测方法
US20080144922A1 (en) Pattern alignment method, pattern inspection apparatus, and pattern inspection system
TW201606260A (zh) 膜厚測定裝置、膜厚測定方法及非暫時性電腦記錄媒體
TW201007346A (en) Photomask defect inspection apparatus and photomask defect inspection method
US8810799B2 (en) Height-measuring method and height-measuring device
CN109916304A (zh) 镜面/类镜面物体三维测量系统标定方法
CN109978960A (zh) 基于摄影测量的高精度屏幕-相机位姿标定方法
WO2021135044A1 (zh) 一种缺陷检查的装置和方法
US7197176B2 (en) Mark position detecting apparatus and mark position detecting method
CN110044266B (zh) 基于散斑投影的摄影测量系统
WO2024174944A1 (zh) 一种用于大尺寸晶圆的厚度和弯曲度的检测系统和方法
TWI638239B (zh) 位置偏移檢測方法、位置偏移檢測裝置、描繪裝置及基板檢查裝置
WO2021033377A1 (ja) 基板の位置合わせ方法
JP3254704B2 (ja) 露光装置および露光方法
TW201929116A (zh) 工件處理裝置、工件輸送系統
JP6879484B2 (ja) 画像取得装置、露光装置、及び画像取得方法
JP2008209295A (ja) 寸法測定装置
JPH10288517A (ja) ウェーハ測定方法
JP2005197483A (ja) 撮像手段の回転誤差計測方法、及びこの回転誤差計測方法を用いた調整方法又は計測方法、及びこの回転誤差計測方法で計測された回転誤差を使用する位置計測装置、及びこの位置計測装置を備えた露光装置
TWI674422B (zh) 非接觸式光學量測方法與系統
JP2597754B2 (ja) 基板の回転補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854695

Country of ref document: EP

Kind code of ref document: A1