WO2021031548A1 - 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 - Google Patents
一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 Download PDFInfo
- Publication number
- WO2021031548A1 WO2021031548A1 PCT/CN2020/077111 CN2020077111W WO2021031548A1 WO 2021031548 A1 WO2021031548 A1 WO 2021031548A1 CN 2020077111 W CN2020077111 W CN 2020077111W WO 2021031548 A1 WO2021031548 A1 WO 2021031548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- electrolyte
- arc oxidation
- tetraborate
- coating
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/026—Anodisation with spark discharge
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/024—Anodisation under pulsed or modulated current or potential
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
Definitions
- the invention belongs to the technical field of material surface modification, and relates to a micro-arc oxidation electrolyte for preparing a titanium dioxide (TiO 2) coating on the surface of a titanium alloy.
- Titanium and titanium alloys are widely used in human hard tissue implants or replacement materials, but the surface of titanium and titanium alloys lacks biological activity. Constructing surface microstructures through surface modification technology is the main way to improve the biological activity of titanium and titanium alloys.
- Micro-arc oxidation also known as anodic spark oxidation or plasma electrolytic oxidation
- an oxide coating can be grown in situ on the surface of titanium and titanium alloys.
- porous oxide coatings prepared on the surface of titanium and titanium alloys by micro-arc oxidation are crater-like or discrete porous structures.
- the pores of this surface structure are independent of each other, lack of connectivity, and have limited improvement in porosity and hydrophilicity.
- these coatings usually have a relatively single structural scale and do not have hierarchical structure characteristics.
- the interconnected pores or grooves, the composite hierarchical structure of different scales and the high hydrophilicity are all conducive to improving the biological activity of the material surface.
- the patent CN201210096780.5 uses tetraborate as the electrolyte to prepare a super-hydrophilic fold-hole-shaped TiO 2 coating on the titanium surface.
- the coating has a hierarchical structure and super-hydrophilicity, which can significantly improve the biological activity of the titanium surface.
- Ti-6Al-4V grade TC4
- Ti-6Al-7Nb grade TC20
- the tetraborate electrolyte alone is not enough to prepare a uniform pore-shaped TiO 2 coating on the surface.
- the invention prepares uniform pore-shaped TiO 2 coating on the surface of Ti-6Al-4V and Ti-6Al-7Nb by adjusting the composition of the electrolyte.
- the present invention proposes a titanium dioxide micro-arc oxidation coating electrolyte.
- This electrolyte is able to prepare porous surfaces with hierarchical structure and high porosity on the surface of titanium alloys (such as Ti-6Al-4V, Ti-6Al-7Nb) by adding strong alkali to the tetraborate electrolyte.
- the titanium dioxide coating makes the surface obtain high hydrophilicity and improves the biological activity of the surface.
- An electrolyte for preparing a porous coating on the surface of a titanium alloy by micro-arc oxidation Based on the electrolyte of the present invention, a micro-arc oxidation method can be used to prepare a titanium dioxide coating on the surface of a titanium alloy, including a solvent and a solute;
- the solvent is deionized water;
- the solute is tetraborate and strong base, wherein the molar concentration of tetraborate is 0.07-0.15 mol/L, and the molar concentration of strong base is 0.10-0.40 mol/L.
- the tetraborate is selected from one of lithium tetraborate (Li 2 B 4 O 7 ), sodium tetraborate (Na 2 B 4 O 7 ), and potassium tetraborate (K 2 B 4 O 7 ).
- the strong base is selected from one of potassium hydroxide (KOH) and sodium hydroxide (NaOH).
- the micro-arc oxidation method can be used to prepare a titanium dioxide coating on the surface of a titanium alloy.
- the coating has uniformly distributed and interconnected micro-pores or grooves, and also has randomly distributed nano-pores.
- the surface structure of the coating has certain internal holes, forming a layered structure.
- the above-mentioned surface structure makes the coating have high porosity and super hydrophilicity.
- micro-arc oxidation electrolyte of the present invention can be prepared by a conventional method in the field. Tetraborate and strong alkali are added to deionized water according to the proportion, stirred uniformly and fully dissolved.
- the micro-arc oxidation electrolyte of the present invention can prepare a titanium dioxide coating on the surface of a titanium alloy.
- the coating prepared by the micro-arc oxidation electrolyte of the present invention on the surface of the titanium alloy has high porosity and super-hydrophilicity, and has the characteristics of a hierarchical structure-uniformly distributed micropores or grooves and randomly distributed nanopores ,
- the surface holes and grooves are connected with each other, and have certain internal holes and layered structure.
- Figure 1 is a scanning electron microscope surface morphology (3000X) of the coating prepared in Example 1;
- Figure 2 is a scanning electron microscope surface morphology (5000X) of the coating prepared in Example 1;
- Figure 3 is an image of the water contact angle of the surface of the coating prepared in Example 1;
- Figure 4 is a scanning electron microscope surface morphology (5000X) of the coating prepared in Example 2;
- Figure 5 is the scanning electron microscope surface morphology (5000X) of the coating prepared in Example 3.
- the polished Ti-6Al-4V or Ti-6Al-7Nb titanium alloy is used for micro-arc oxidation.
- the parameters of micro-arc oxidation are as follows:
- Micro-arc oxidation power supply Micro-arc oxidation power supply
- Polished titanium alloy sheet (length 15 mm, width 15 mm, thickness 2 mm)
- Micro-arc oxidation control method constant voltage or constant current
- Micro-arc oxidation pulse mode unidirectional pulse
- Micro-arc oxidation frequency 600 Hz
- Polished Ti-6Al-4V serves as anode.
- the components are weighed according to the molar concentration and mixed and stirred to form an electrolyte.
- Solvent deionized water; solute: sodium tetraborate (Na 2 B 4 O 7 ) 0.10 mol/L, potassium hydroxide (KOH) 0.25 mol/L.
- the power control mode is constant voltage, the setting value is 300 V, and the processing time is 10 min.
- Scanning electron microscope images show that the coating has a hierarchical structure composed of microgrooves and nanopores, and a layered structure composed of internal pores and outer pores;
- X-ray diffraction analysis shows that the prepared micro-arc oxidation coating is mainly composed of rutile phase Titanium dioxide and anatase phase titanium dioxide;
- energy spectrum shows that the atomic percentage of aluminum in the prepared micro-arc oxidation coating is 0.06%, and the atomic percentage of vanadium is 0.3%;
- the contact angle test shows that the prepared micro-arc oxidation coating is in water contact The angle is 10.2°, indicating that the coating is super-hydrophilic.
- Polished Ti-6Al-4V serves as anode.
- the components are weighed according to the molar concentration and mixed and stirred to form an electrolyte.
- Solvent deionized water; solute: lithium tetraborate (Li 2 B 4 O 7 ) 0.07 mol/L, sodium hydroxide (NaOH) 0.10 mol/L.
- the power control mode is constant current, the setting value is 4 A, and the processing time is 30 min.
- Scanning electron microscope images show that the coating has a hierarchical structure composed of microgrooves and nanopores, and a layered structure composed of internal pores and outer pores;
- X-ray diffraction analysis shows that the prepared micro-arc oxidation coating is mainly composed of rutile phase Titanium dioxide and anatase phase titanium dioxide;
- energy spectrum shows that the atomic percentage of aluminum in the prepared micro-arc oxidation coating is 0.64%, and the atomic percentage of vanadium is 0.52%;
- the contact angle test shows that the prepared micro-arc oxidation coating is in water contact The angle is 10.5°, indicating that the coating is super-hydrophilic.
- Polished Ti-6Al-7Nb serves as anode.
- the components are weighed according to the molar concentration and mixed and stirred to form an electrolyte.
- Solvent deionized water; solute: potassium tetraborate (K 2 B 4 O 7 ) 0.15 mol/L, potassium hydroxide (KOH) 0.40 mol/L.
- the power control mode is constant current, the setting value is 5 A, and the processing time is 10 min.
- Scanning electron microscope images show that the coating has a hierarchical structure composed of microgrooves and nanopores, and a layered structure composed of internal pores and outer pores;
- X-ray diffraction analysis shows that the prepared micro-arc oxidation coating is mainly composed of rutile phase Titanium dioxide and anatase phase titanium dioxide;
- energy spectrum shows that the atomic percentage of aluminum in the prepared micro-arc oxidation coating is 0.05%, and the atomic percentage of niobium is 1%;
- the contact angle test shows that the prepared micro-arc oxidation coating is in water contact The angle is 9.3°, indicating that the coating is super hydrophilic.
- the above examples can illustrate that the present invention can prepare a titanium dioxide micro-arc oxidation coating on the surface of Ti-6Al-4V or Ti-6Al-7Nb titanium alloy by adding strong alkali to the tetraborate solution.
- the prepared titanium dioxide coating has a hierarchical structure composed of interconnected micro-grooves or micro-pores and randomly distributed nano-pores, and has a layered structure composed of internal pores and outer pores and grooves.
- the coating has high surface porosity, uniform surface structure distribution, certain connectivity between micropores, and super-hydrophilic characteristics.
- the titanium dioxide coating prepared by the present invention has a hierarchical structure and a layered structure, and the surface structure of the coating is even and flat, which can effectively improve the porosity, pore connectivity and hydrophilicity of the micro-arc oxidation coating, thereby improving Biological activity of titanium alloy surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液,属于材料表面改性技术领域。基于本发明的电解液,采用微弧氧化法,能够在钛合金表面制备具有高孔隙度分级结构的二氧化钛涂层,该电解液由0.07–0.15 mol/L四硼酸盐和0.10–0.40 mol/L强碱组成。四硼酸盐包含四硼酸锂、四硼酸钠和四硼酸钾中的一种。强碱选自氢氧化钾和氢氧化钠中的一种。该电解液制备的涂层具有相互连通的微米沟槽或微米孔洞和随机分布的纳米孔构成的分级结构、内部孔洞和外层孔槽构成的分层结构、高孔隙度和超亲水性,可用于骨科材料和牙种植体等领域的表面改性。
Description
本发明属于材料表面改性技术领域,涉及一种在钛合金表面制备二氧化钛(TiO
2)涂层的微弧氧化电解液。
钛和钛合金广泛用于人体硬组织植入或替代材料,但是钛和钛合金表面缺乏生物活性,通过表面改性技术构建表面微结构是提高钛和钛合金表面生物活性的主要途径。
微弧氧化(又称阳极火花氧化或等离子体电解氧化)是一种适用于钛和钛合金的表面改性技术,通过微弧氧化处理能够在钛和钛合金表面原位生长出氧化物涂层。
目前,使用微弧氧化在钛和钛合金表面制备的多孔氧化物涂层多为火山口状或分立的多孔状结构。这种表面结构孔洞之间相互独立,缺乏连通性,对孔隙度的提高和亲水性的改善较为有限。同时,这些涂层通常结构尺度较为单一,不具有分级结构特征。相互连通的孔洞或沟槽和不同尺度复合的分级结构以及高亲水性均有利于提高材料表面的生物活性。为提高微结构的连通性和亲水性,同时构建分级结构,专利CN201210096780.5使用四硼酸盐作为电解液,在钛表面制备了一种超亲水性褶皱孔槽状TiO
2涂层。该涂层具有分级结构和超亲水性,能够显著改善钛表面的生物活性。
Ti–6Al–4V(牌号TC4)和Ti–6Al–7Nb(牌号TC20)是常用的钛合金材料。仅使用四硼酸盐电解液不足以在其表面制备出均匀的孔槽状TiO
2涂层。本发明在此基础上,通过调整电解液成分,在Ti–6Al–4V和Ti–6Al–7Nb表面制备出均匀的孔槽状TiO
2涂层。
本发明针对目前钛合金微弧氧化涂层在生物活性上的局限性,提出一种二氧化钛微弧氧化涂层电解液。该电解液通过在四硼酸盐电解液中添加强碱,能够在钛合金(如Ti–6Al–4V、Ti–6Al–7Nb)表面通过微弧氧化制备出具有分级结构和高孔隙度的多孔二氧化钛涂层,使其表面获得高亲水性,提高其表面的生物活性。
为了达到上述目的,本发明的技术方案为:
一种在钛合金表面微弧氧化制备多孔涂层的电解液,基于本发明的电解液,采用微弧氧化法,能够在钛合金表面制备出二氧化钛涂层,包含溶剂和溶质两部分;其中,所述的溶剂为去离子水;所述的溶质为四硼酸盐和强碱,其中四硼酸盐摩尔浓度为0.07–0.15 mol/L,强碱摩尔浓度为0.10–0.40 mol/L。
所述四硼酸盐选自四硼酸锂(Li
2B
4O
7)、四硼酸钠(Na
2B
4O
7)、四硼酸钾(K
2B
4O
7)中的一种,所述强碱选自氢氧化钾(KOH)和氢氧化钠(NaOH)中的一种。
基于上述微弧氧化电解液,采用微弧氧化法,可在钛合金表面制备出二氧化钛涂层,该涂层具有均匀分布并相互连通的微米孔或沟槽,同时具有随机分布的纳米孔,是一种典型的分级结构表面。并且该涂层表面结构具有一定内部孔洞,形成一种分层结构。上述表面结构使该涂层具有高孔隙度和超亲水性。
本发明所述的微弧氧化电解液,可采用本领域常规方法进行制备,将四硼酸盐和强碱按配比加入去离子水中,搅拌均匀并使其充分溶解。
本发明的有益效果是:
(1)本发明的微弧氧化电解液能够在钛合金表面制备出二氧化钛涂层。
(2)本发明的微弧氧化电解液在钛合金表面制备的涂层具有高孔隙度和超亲水性,具有分级结构的特征——均匀分布的微米孔或沟槽和随机分布的纳米孔,其表面孔洞和沟槽相互连通,并具有一定的内部孔洞和分层结构。
图1为实施例1所制备涂层的扫描电子显微镜表面形貌(3000X);
图2为实施例1所制备涂层的扫描电子显微镜表面形貌(5000X);
图3为实施例1所制备涂层表面的水接触角图像;
图4为实施例2所制备涂层的扫描电子显微镜表面形貌(5000X);
图5为实施例3所制备涂层的扫描电子显微镜表面形貌(5000X)。
下面结合具体实施例对本发明进行进一步的说明,本发明的具体实施例及其说明仅用于解释本发明,并不对本发明的范围进行限定。
将抛光后的Ti–6Al–4V或Ti–6Al–7Nb钛合金用于微弧氧化,微弧氧化参数如下:
电源:微弧氧化电源
阳极:抛光钛合金片(长15 mm,宽15 mm,厚度2 mm)
阴极:不锈钢电解槽
微弧氧化控制方式:恒定电压或恒定电流
微弧氧化脉冲方式:单向脉冲
微弧氧化频率:600 Hz
微弧氧化占空比:9%
实施例1
抛光的Ti–6Al–4V作为阳极。按摩尔浓度称量各组分并混合搅拌配置成电解液。溶剂为:去离子水;溶质为:四硼酸钠(Na
2B
4O
7)0.10 mol/L,氢氧化钾(KOH)0.25 mol/L。电源控制方式为恒定电压,设置值为300 V,处理时长为10 min。扫描电子显微镜图像显示该涂层具有由微米沟槽与纳米孔构成的分级结构和内部孔洞与外层孔槽构成的分层结构;X射线衍射分析显示制备的微弧氧化涂层主要由金红石相二氧化钛和锐钛矿相二氧化钛组成;能谱显示制备的微弧氧化涂层铝元素的原子百分比为0.06%,钒元素的原子百分比为0.3%;接触角测试显示制备的微弧氧化涂层水接触角为10.2°,表明该涂层具有超亲水性。
实施例2
抛光的Ti–6Al–4V作为阳极。按摩尔浓度称量各组分并混合搅拌配置成电解液。溶剂为:去离子水;溶质为:四硼酸锂(Li
2B
4O
7)0.07 mol/L,氢氧化钠(NaOH)0.10 mol/L。电源控制方式为恒定电流,设置值为4 A,处理时长为30 min。扫描电子显微镜图像显示该涂层具有由微米沟槽与纳米孔构成的分级结构和内部孔洞与外层孔槽构成的分层结构;X射线衍射分析显示制备的微弧氧化涂层主要由金红石相二氧化钛和锐钛矿相二氧化钛组成;能谱显示制备的微弧氧化涂层铝元素的原子百分比为0.64%,钒元素的原子百分比为0.52%;接触角测试显示制备的微弧氧化涂层水接触角为10.5°,表明该涂层具有超亲水性。
实施例3
抛光的Ti–6Al–7Nb作为阳极。按摩尔浓度称量各组分并混合搅拌配置成电解液。溶剂为:去离子水;溶质为:四硼酸钾(K
2B
4O
7)0.15 mol/L,氢氧化钾(KOH)0.40 mol/L。电源控制方式为恒定电流,设置值为5 A,处理时长为10 min。扫描电子显微镜图像显示该涂层具有由微米沟槽与纳米孔构成的分级结构和内部孔洞与外层孔槽构成的分层结构;X射线衍射分析显示制备的微弧氧化涂层主要由金红石相二氧化钛和锐钛矿相二氧化钛组成;能谱显示制备的微弧氧化涂层铝元素的原子百分比为0.05%,铌元素的原子百分比为1%;接触角测试显示制备的微弧氧化涂层水接触角为9.3°,表明该涂层具有超亲水性。
通过以上实施例可以说明本发明能够通过在四硼酸盐溶液中添加强碱在Ti–6Al–4V或Ti–6Al–7Nb钛合金表面制备出二氧化钛微弧氧化涂层,本发明在钛合金表面制备出的二氧化钛涂层具有由相互连通的微米沟槽或微米孔洞和随机分布的纳米孔构成的分级结构,同时具有内部孔洞与外层孔槽构成的分层结构。该涂层表面孔隙度较高,表面结构分布均匀,微孔洞之间具有一定连通性,并具有超亲水性特征。
与以往研究相比,使用本发明制备的二氧化钛涂层具有分级结构和分层结构并且涂层表面结构均匀平整,能够有效提高微弧氧化涂层孔隙度、孔洞连通性和亲水性,从而提高钛合金表面的生物活性。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (3)
- 一种在钛合金表面微弧氧化制备多孔涂层的电解液,其特征在于,基于该电解液,采用微弧氧化法能够在钛合金表面制备具有高孔隙度、超亲水性且具有分级结构的二氧化钛涂层,该涂层具有均匀分布并相互连通的微米孔或沟槽;所述的电解液包含溶剂和溶质两部分;其中,所述的溶剂为去离子水;所述的溶质为四硼酸盐和强碱,其中四硼酸盐摩尔浓度为0.07–0.15 mol/L,强碱摩尔浓度为0.10–0.40 mol/L。
- 根据权利要求1所述的一种在钛合金表面微弧氧化制备多孔涂层的电解液,其特征在于,所述四硼酸盐选自四硼酸锂Li 2B 4O 7、四硼酸钠Na 2B 4O 7、四硼酸钾K 2B 4O 7中的一种。
- 根据权利要求2所述的一种在钛合金表面微弧氧化制备多孔涂层的电解液,其特征在于,所述强碱选自氢氧化钾KOH和氢氧化钠NaOH中的一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/962,761 US20210156046A1 (en) | 2019-08-21 | 2020-02-28 | Electrolyte for preparing porous coating with hierarchical structure on surface of titanium alloy by means of micro-arc oxidation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910775468.0A CN110438546B (zh) | 2019-08-21 | 2019-08-21 | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 |
CN201910775468.0 | 2019-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031548A1 true WO2021031548A1 (zh) | 2021-02-25 |
Family
ID=68437018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/077111 WO2021031548A1 (zh) | 2019-08-21 | 2020-02-28 | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210156046A1 (zh) |
CN (1) | CN110438546B (zh) |
WO (1) | WO2021031548A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110438546B (zh) * | 2019-08-21 | 2021-02-19 | 大连理工大学 | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 |
CN112062600A (zh) * | 2020-09-21 | 2020-12-11 | 顾聪颖 | 混凝土除氯系统及其制作方法 |
TWI736433B (zh) * | 2020-09-26 | 2021-08-11 | 羅政立 | 晶體取向結構鈦合金牙科植體及其製造方法 |
CN112962132B (zh) * | 2021-02-02 | 2022-02-18 | 山东省科学院新材料研究所 | 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用 |
CN113089047A (zh) * | 2021-04-12 | 2021-07-09 | 四川九洲电器集团有限责任公司 | 一种铝合金构件及其制备方法、应用 |
CN114411221A (zh) * | 2021-12-21 | 2022-04-29 | 西安泰金工业电化学技术有限公司 | 一种提高阴极辊钛侧板耐腐蚀性的表面处理方法 |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1003663A (en) * | 1963-06-28 | 1965-09-08 | Ibm | Anodizing method |
GB1175613A (en) * | 1966-04-23 | 1969-12-23 | Roberto Piontelli | Electrochemical Process for the Surface Treatment of Titanium or Alloys thereof or Niobium or Tantalum |
JPH0273997A (ja) * | 1988-09-09 | 1990-03-13 | Tokai Kinzoku Kk | チタン及びチタン合金の着色皮膜形成方法 |
FR2877018A1 (fr) * | 2004-10-25 | 2006-04-28 | Snecma Moteurs Sa | Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation |
WO2009108286A1 (en) * | 2008-02-28 | 2009-09-03 | Corning Incorporated | Electrochemical methods of making nanostructures |
CN102242364A (zh) * | 2011-06-23 | 2011-11-16 | 沈阳理工大学 | 铝及铝合金化学转化-微弧氧化制备陶瓷膜的方法 |
CN102321902A (zh) * | 2011-06-23 | 2012-01-18 | 兰州理工大学 | 一种钛合金表面复合膜层的制备方法及其溶液配方 |
CN103286995A (zh) * | 2012-02-24 | 2013-09-11 | 比亚迪股份有限公司 | 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体 |
CN105522783A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用和电子产品外壳及制备方法 |
CN105522782A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法 |
CN105522781A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法 |
CN108486626A (zh) * | 2018-06-14 | 2018-09-04 | 大连大学 | 基于四硼酸钾的Al-Cu-Mg系铝合金表面复合陶瓷膜层的制备方法 |
CN108505089A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 一种基于四硼酸钠的铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108505092A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 基于四硼酸钠的Al-Cu-Mg系铝合金表面复合陶瓷膜层的制备方法 |
CN108505090A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 基于四硼酸钠的6063铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108754564A (zh) * | 2018-06-14 | 2018-11-06 | 大连大学 | 一种基于四硼酸钾的铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108754563A (zh) * | 2018-06-14 | 2018-11-06 | 大连大学 | 基于四硼酸钾的6063铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN109487323A (zh) * | 2018-12-20 | 2019-03-19 | 大连理工大学 | 一种在钛金属表面微弧氧化制备含生物活性元素多孔膜的电解液 |
CN109881234A (zh) * | 2019-04-16 | 2019-06-14 | 北京石油化工学院 | 一种通过微弧氧化对铝合金进行着色的方法 |
CN110438546A (zh) * | 2019-08-21 | 2019-11-12 | 大连理工大学 | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 |
-
2019
- 2019-08-21 CN CN201910775468.0A patent/CN110438546B/zh active Active
-
2020
- 2020-02-28 US US16/962,761 patent/US20210156046A1/en not_active Abandoned
- 2020-02-28 WO PCT/CN2020/077111 patent/WO2021031548A1/zh active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1003663A (en) * | 1963-06-28 | 1965-09-08 | Ibm | Anodizing method |
GB1175613A (en) * | 1966-04-23 | 1969-12-23 | Roberto Piontelli | Electrochemical Process for the Surface Treatment of Titanium or Alloys thereof or Niobium or Tantalum |
JPH0273997A (ja) * | 1988-09-09 | 1990-03-13 | Tokai Kinzoku Kk | チタン及びチタン合金の着色皮膜形成方法 |
FR2877018A1 (fr) * | 2004-10-25 | 2006-04-28 | Snecma Moteurs Sa | Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation |
WO2009108286A1 (en) * | 2008-02-28 | 2009-09-03 | Corning Incorporated | Electrochemical methods of making nanostructures |
CN102242364A (zh) * | 2011-06-23 | 2011-11-16 | 沈阳理工大学 | 铝及铝合金化学转化-微弧氧化制备陶瓷膜的方法 |
CN102321902A (zh) * | 2011-06-23 | 2012-01-18 | 兰州理工大学 | 一种钛合金表面复合膜层的制备方法及其溶液配方 |
CN103286995A (zh) * | 2012-02-24 | 2013-09-11 | 比亚迪股份有限公司 | 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体 |
CN105522783A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用和电子产品外壳及制备方法 |
CN105522782A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法 |
CN105522781A (zh) * | 2014-12-25 | 2016-04-27 | 比亚迪股份有限公司 | 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法 |
CN108486626A (zh) * | 2018-06-14 | 2018-09-04 | 大连大学 | 基于四硼酸钾的Al-Cu-Mg系铝合金表面复合陶瓷膜层的制备方法 |
CN108505089A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 一种基于四硼酸钠的铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108505092A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 基于四硼酸钠的Al-Cu-Mg系铝合金表面复合陶瓷膜层的制备方法 |
CN108505090A (zh) * | 2018-06-14 | 2018-09-07 | 大连大学 | 基于四硼酸钠的6063铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108754564A (zh) * | 2018-06-14 | 2018-11-06 | 大连大学 | 一种基于四硼酸钾的铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN108754563A (zh) * | 2018-06-14 | 2018-11-06 | 大连大学 | 基于四硼酸钾的6063铝合金表面Al2O3-AlB12复合陶瓷膜层的制备方法 |
CN109487323A (zh) * | 2018-12-20 | 2019-03-19 | 大连理工大学 | 一种在钛金属表面微弧氧化制备含生物活性元素多孔膜的电解液 |
CN109881234A (zh) * | 2019-04-16 | 2019-06-14 | 北京石油化工学院 | 一种通过微弧氧化对铝合金进行着色的方法 |
CN110438546A (zh) * | 2019-08-21 | 2019-11-12 | 大连理工大学 | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 |
Also Published As
Publication number | Publication date |
---|---|
CN110438546B (zh) | 2021-02-19 |
CN110438546A (zh) | 2019-11-12 |
US20210156046A1 (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031548A1 (zh) | 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液 | |
Yeung et al. | In vitro biological response of plasma electrolytically oxidized and plasma‐sprayed hydroxyapatite coatings on Ti–6Al–4V alloy | |
CN109487323B (zh) | 一种在钛金属表面微弧氧化制备含生物活性元素多孔膜的电解液 | |
CN101871118B (zh) | 一种在医用钛表面制备具有多级孔结构二氧化钛层的方法 | |
Simka | Preliminary investigations on the anodic oxidation of Ti–13Nb–13Zr alloy in a solution containing calcium and phosphorus | |
CN103556204B (zh) | 镁表面超声微弧氧化-hf-硅烷偶联剂多级复合生物活性涂层制备方法 | |
Escada et al. | Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5 Mo alloy surface for biomedical application | |
Li et al. | Surface roughness and hydrophilicity of titanium after anodic oxidation | |
CN104562145A (zh) | 一种复合氧化制备生物陶瓷膜的方法 | |
Li et al. | A super-hydrophilic coating with a macro/micro/nano triple hierarchical structure on titanium by two-step micro-arc oxidation treatment for biomedical applications | |
Rautray et al. | Nanoelectrochemical coatings on titanium for bioimplant applications | |
Li et al. | Enhanced corrosion resistance of hydroxyapatite/magnesium-phosphate-composite-coated AZ31 alloy co-deposited by electrodeposition method | |
Ju et al. | Fabrication of Ti/TiO2 (Ca)/hydroxyapatite bioceramic material by micro-arc oxidation and electrochemical deposition | |
Park et al. | Effects of anodic oxidation parameters on a modified titanium surface | |
CN106676605A (zh) | 具有点阵结构多孔的纯钛或钛合金表面多孔生物活性陶瓷膜的制备方法及其应用 | |
Wei et al. | Formation of CaTiO3/TiO2 composite coating on titanium alloy for biomedical applications | |
Neupane et al. | Sonochemical assisted synthesis of nano-structured titanium oxide by anodic oxidation | |
CN112458514A (zh) | 在医用多孔钛或钛合金表面生成纳米管阵列氧化膜的方法 | |
CN104746120B (zh) | 含有生物活性磷酸钙涂层的碳/碳复合材料及其制备方法 | |
CN105420786A (zh) | 一种钛表面纳米硅钛酸钠/二氧化钛生物涂层的制备方法 | |
CN103290455A (zh) | 一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法 | |
CN102115901A (zh) | 镁合金表面沉积Al2O3陶瓷涂层的方法 | |
CN103046102A (zh) | 二步法制备具有宏观多孔微弧氧化涂层的方法 | |
CN115055697A (zh) | 一种3d打印镍钛植入物超亲水微纳表面的制备方法 | |
WO2004062705A1 (ja) | 生体骨誘導性の人工骨とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20853824 Country of ref document: EP Kind code of ref document: A1 |