WO2021031517A1 - 一种显示面板及其显示装置 - Google Patents

一种显示面板及其显示装置 Download PDF

Info

Publication number
WO2021031517A1
WO2021031517A1 PCT/CN2020/070985 CN2020070985W WO2021031517A1 WO 2021031517 A1 WO2021031517 A1 WO 2021031517A1 CN 2020070985 W CN2020070985 W CN 2020070985W WO 2021031517 A1 WO2021031517 A1 WO 2021031517A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cathode layer
display panel
cathode
display
Prior art date
Application number
PCT/CN2020/070985
Other languages
English (en)
French (fr)
Inventor
汪博
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/770,729 priority Critical patent/US20210408427A1/en
Publication of WO2021031517A1 publication Critical patent/WO2021031517A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel and a display device thereof.
  • Organic Light-Emitting Display Device (Full English Name: Organic Light-Emitting Diode, OLED for short) is also known as organic electro-laser display device and organic light-emitting semiconductor.
  • the basic structure of OLED is a thin, transparent, semiconductor-like indium tin oxide (ITO) connected to the positive electrode of electricity, plus another metal cathode, wrapped in a sandwich structure.
  • ITO indium tin oxide
  • OLED the characteristic of OLED is that it emits light by itself, unlike the thin film transistor liquid crystal display device (English full name: Thin The film transistor-liquid crystal display (TFT-LCD for short) needs backlight, so the visibility and brightness are high.
  • OLED has the advantages of low voltage demand, high power saving efficiency, fast response, light weight, thin thickness, simple structure, low cost, wide viewing angle, almost infinitely high contrast, low power consumption, and extremely high response speed. It has become One of today's most important display technologies is gradually replacing TFT-LCD and is expected to become the next-generation mainstream display technology after LCD.
  • CUP Camera Under Panel
  • the transmittance of the screen is relatively low, and there is no guarantee that the transmittance of each part of the screen is the same.
  • the transmittance of OLED is much higher than that of LCD.
  • the current camera technology has high requirements on the various optical lenses and lenses in front of the sensor, in order to be able to truly restore the information mapped to the sensor from the outside world to be relatively accurate, and the collected information can also be easily corrected. . Therefore, improving the transmittance of the OLED display panel is an urgent problem to be solved by the under-screen camera technology.
  • An object of the present invention is to provide a display panel and a display device thereof, which can improve the light transmittance of the display panel.
  • one embodiment of the present invention provides a display panel, which defines a display area and a transparent area, including: an anode layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode layer.
  • the hole transport layer is provided on the anode layer; the light emitting layer is provided on the hole transport layer; the electron transport layer is provided on the light emitting layer; the cathode layer is provided on the On the electron transport layer.
  • the cathode layer includes a first portion corresponding to the display area and a second portion corresponding to the transparent area.
  • the first portion includes a first cathode layer and a first portion provided on the first cathode layer.
  • Two cathode layers, the second part includes only the first cathode layer.
  • the constituent material of the first cathode layer includes one or more of transparent conductive oxide and graphene.
  • the transparent conductive oxide includes one or more of ITO, AZO, and IZO.
  • constituent material of the second cathode layer includes one or more of Ag, Au, Cu, Al, and Mg.
  • the display panel in the transparent area further includes an inorganic layer, and the inorganic layer is disposed on the surface of the first cathode layer away from the anode layer.
  • the display panel in the display area further includes an inorganic layer, and the inorganic layer is disposed between the first cathode layer and the second cathode layer.
  • composition material of the inorganic layer includes one or more of SiN, SiO2, and SiNO.
  • the thickness of the first cathode layer ranges from 20 to 200 nm.
  • the thickness of the second cathode layer ranges from 8 to 30 nm.
  • Another embodiment of the present invention also provides a display device, which includes the display panel related to the present invention.
  • the invention relates to a display panel and a display device thereof.
  • the cathode layer of the transparent area of the present invention adopts a single-layer structure composed of a first cathode layer; the cathode layer of the display area adopts a first cathode layer and a second cathode disposed thereon. Layered laminated structure.
  • the present invention also prepares an inorganic layer on the first cathode layer to avoid water and oxygen intrusion, and in the preparation of the second cathode Protect the first cathode layer from being affected when layering.
  • FIG. 1 is a schematic diagram of the structure of a display panel of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a display panel according to Embodiment 2 of the present invention.
  • the component can be directly placed on the other component; there may also be an intermediate component on which the component is placed , And the intermediate component is placed on another component.
  • a component is described as “installed to” or “connected to” another component, both can be understood as directly “installed” or “connected”, or a component is “installed to” or “connected to” through an intermediate component Another component.
  • a display panel 100 is defined with a display area 101 and a transparent area 102, which includes an anode layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and a cathode layer 5.
  • the anode layer 1 includes a first anode layer 11, a second anode layer 12 and a third anode layer 13 arranged in sequence.
  • the constituent material of the first anode layer 11 includes ITO; the constituent material of the second anode layer 12 includes Ag; the constituent material of the third anode layer 13 includes ITO.
  • the thickness of the second anode layer 12 is greater than 100 nm, so that the light emitted by the light emitting layer 3 can be totally reflected. In this embodiment, the thickness of the second anode layer 12 is preferably set to 150 nm.
  • the second anode layer 12 can assist the second anode layer 12 to completely reflect the light emitted from the light emitting layer to the cathode layer, thereby improving the luminous efficiency of the display panel 100.
  • the hole transport layer 2 is disposed on the anode layer 1.
  • the component materials of the hole transport layer 2 include 4,4',4''-tris[2-naphthylphenylamino]triphenylamine, N,N'-diphenyl-N,N'- (1-naphthyl)-1,1'-biphenyl-4,4'-diamine, 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline]kind or more.
  • the hole transport layer 2 thus made can transport the holes in the anode layer 1 to the light emitting layer 3 well.
  • the hole transport layer 2 can be prepared by vacuum thermal evaporation and deposition, and its thickness ranges from 40 to 150 nm.
  • the thickness of the hole transport layer 2 is less than 40 nm, the effect of transporting the holes in the anode layer 1 to the light-emitting layer 3 cannot be achieved.
  • the thickness exceeds 150 nm, it will cause waste of materials and increase production costs. Therefore, in this embodiment, the thickness is preferably set to 95 nm.
  • the light-emitting layer 3 is disposed on the hole transport layer 2.
  • the composition material of the light-emitting layer 3 includes aniline, 4,4'-(1,4-phenylene-2,1-ethanediyl) bis[N-(2-ethyl-6-methylphenyl) )-N-phenyl, 4,4'-bis(9-ethyl-3-carbazole vinyl)-1,1'-biphenyl, one of bis(2-hydroxyphenylpyridine) beryllium Or multiple.
  • the light-emitting layer 3 thus formed can well combine the holes of the anode layer 1 and the electrons of the cathode layer 5 to achieve a light-emitting effect.
  • the thickness of the light-emitting layer 3 is in the range of 20-50nm. If the thickness of the light-emitting layer 3 is less than 20nm, it may cause a short circuit between the anode layer 1 and the cathode layer 5, resulting in device failure; if the thickness of the light-emitting layer 3 is higher than 50nm, Will cause waste of materials and increase production costs. Therefore, the thickness of this embodiment is preferably set to 35 nm.
  • the electron transport layer 4 is disposed on the light-emitting layer 3.
  • the constituent material of the electron transport layer 4 includes 1,3,5-tris (1-phenyl-1H-benzimidazol-2-yl)benzene, 4,7-diphenyl-1,10-ferro Morpholine, 3,3'-[5'-[3-(3-pyridyl)phenyl][1,1':3',1''-terphenyl]-3,3''-diyl]bis One or more of pyridine.
  • the electron transport layer 4 thus made can transport electrons in the cathode layer 5 to the light emitting layer 3 well.
  • the electron transport layer 4 can be prepared by vacuum thermal evaporation deposition, and its thickness ranges from 20 to 80 nm.
  • the thickness of the electron transport layer 4 is less than 20 nm, the effect of transporting electrons in the cathode layer 5 to the light-emitting layer 3 cannot be achieved.
  • the thickness exceeds 80 nm, it will cause waste of materials and increase production costs. Therefore, the thickness of this embodiment is preferably set to 50 nm.
  • the cathode layer 5 is disposed on the electron transport layer 4.
  • the cathode layer 5 includes a first portion corresponding to the display area 101 and a second portion corresponding to the transparent area 102.
  • the first portion includes a first cathode layer 51 and a first cathode layer.
  • the second cathode layer 52 on 51, the second part includes only the first cathode layer 51.
  • the constituent material of the first cathode layer 51 includes one or more of transparent conductive oxide and graphene.
  • the transparent conductive oxide includes one or more of ITO, AZO, and IZO.
  • the first cathode layer 51 may be formed into a film by PVD (Physical Vapor Deposition), ALD (Atomic Layer Deposition) or PLD (Pulsed Laser Deposition) process, and its thickness ranges from 20 to 200 nm. If its thickness is less than 20nm, it will cause unevenness in the film, leading to problems with optical taste; if its thickness is greater than 200nm, mass production efficiency will be reduced and production costs will increase. Therefore, the phenomenon that the light transmittance of the display panel 100 is very low due to the high extinction coefficient of the traditional metal cathode layer 5 can be avoided, thereby increasing the light transmittance of the transparent region 102.
  • PVD Physical Vapor Deposition
  • ALD Atomic Layer Deposition
  • PLD Pulsed Laser Deposition
  • the constituent materials of the second cathode layer 52 include one or more of Ag, Au, Cu, Al, and Mg.
  • This embodiment is preferably an alloy of Ag and Mg. Therefore, the photons generated in the light-emitting layer 3 have a certain probability to be reflected back into the optical microcavity in the second cathode layer 52.
  • the photons reflected back to the microcavity are resonantly strengthened in the anode and cathode electrodes. After the photons are reflected back and forth several times, there is a certain probability that they will pass through the second cathode layer 52 for emission processing.
  • the spectrum composed of such photons is narrower than the spectrum without reflection, the energy is more concentrated, and the luminous efficiency is higher.
  • the thickness of the second cathode layer 52 is in the range of 8-30 nm, and in this embodiment, it is preferably 15 nm. If its thickness is less than 8nm, it will cause unevenness in the film, leading to problems with optical taste; if its thickness is greater than 30nm, it will cause a decrease in transmittance and increase production costs.
  • the difference between this embodiment and Embodiment 1 is that the display panel 100 of the transparent area 102 in this embodiment further includes an inorganic layer 6, and the inorganic layer 6 is disposed on the A cathode layer 51 is on the surface away from the anode layer 1.
  • the display panel 102 of the display area 101 in this embodiment further includes an inorganic layer 6, and the inorganic layer 6 is disposed between the first cathode layer 51 and the second cathode layer 52.
  • the inorganic layer 6 is disposed on the first cathode layer 51 of the display area 101 and the transparent area 102.
  • the composition material of the inorganic layer 6 includes one or more of SiN, SiO2, and SiNO.
  • SiN is preferred as the material for preparing the inorganic layer 6. It can be formed by PECVD deposition.
  • the thickness range is 0.5-5um. If the thickness is less than 0.5um, the film will be uneven and cause the problem of optical taste; if the thickness is higher than 5um, the mass production efficiency will be reduced and the production cost will increase, so this implementation For example, it is preferably 1um.
  • Another embodiment of the present invention also provides a display device, which includes the display panel 100 related to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种显示面板及其显示装置。其中所述显示面板包括:阳极层、空穴传输层、发光层、电子传输层以及阴极层。一方面,本发明所述透明区域的所述阴极层采用由第一阴极层构成的单层结构;所述显示区域的所述阴极层采用由第一阴极层以及设置于其上的第二阴极层构成的叠层结构。以此既可以提高透明区域的透光率;又可以同时提高显示区域的发光效率。

Description

一种显示面板及其显示装置
本申请要求于2019年08月21日提交中国专利局、申请号为201910774572.8、发明名称为“一种显示面板及其显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种显示面板及其显示装置。
背景技术
有机发光显示装置(英文全称:Organic Light-Emitting Diode, 简称OLED)又称为有机电激光显示装置、有机发光半导体。OLED的基本结构是由一薄而透明具有半导体特性的铟锡氧化物(ITO)与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。
首先OLED的特性是自己发光,不像薄膜晶体管液晶显示装置(英文全称:Thin film transistor-liquid crystal display,简称TFT-LCD)需要背光,因此可视度和亮度均高。其次OLED具有电压需求低、省电效率高、反应快、重量轻、厚度薄,构造简单,成本低、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,已经成为当今最重要的显示技术之一,正在逐步替代 TFT-LCD,有望成为继LCD之后的下一代主流显示技术。
技术问题
目前行业存在的最大问题是屏下摄像头技术(Camera Under Panel,CUP)。目前不管是哪一种显示屏,即便是不显示的时候,屏幕的透过率都比较低,而且还不能保证屏体各部分的透过率是一样的。目前,OLED的透过率远远高于LCD的透过率。众所周知,现在的摄像头技术对传感器前面的各种光学镜头和镜片的要求都很高,为的就是能够真正的还原出外界映射到传感器上的信息能够相对准确,并且采集的信息也容易纠正外理。因此,提高OLED显示面板的透过率是屏下摄像头技术亟待解决的问题。
技术解决方案
本发明的一个目的是提供一种显示面板及其显示装置,其能够提高显示面板的透光率。
为了解决上述问题,本发明的一个实施方式提供了一种显示面板,其定义有显示区域和透明区域,其中包括:阳极层、空穴传输层、发光层、电子传输层以及阴极层。其中所述空穴传输层设置于所述阳极层上;所述发光层设置于所述空穴传输层上;所述电子传输层设置于所述发光层上;所述阴极层设置于所述电子传输层上。其中所述阴极层包括对应于所述显示区域设置的第一部分和对应于所述透明区域设置的第二部分,所述第一部分包括第一阴极层及设置在所述第一阴极层上的第二阴极层,所述第二部分仅包括第一阴极层。
进一步的,其中所述第一阴极层的组成材料包括透明导电氧化物、石墨烯中的一种或多种。
进一步的,其中所述透明导电氧化物包括ITO、AZO、IZO中的一种或多种。
进一步的,其中所述第二阴极层的组成材料包括Ag、Au、Cu、Al、Mg中的一种或多种。
进一步的,其中所述透明区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层远离所述阳极层的表面上。
进一步的,其中所述显示区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层与所述第二阴极层之间。
进一步的,其中所述无机层的组成材料包括SiN、SiO2、SiNO中的一种或多种。
进一步的,其中所述第一阴极层的厚度范围为20-200nm。
进一步的,其中所述第二阴极层的厚度范围为8-30nm。
本发明的另一个实施方式还提供了一种显示装置,其中包括本发明所涉及的显示面板。
有益效果
本发明涉及一种显示面板及其显示装置。一方面,本发明所述透明区域的所述阴极层采用由第一阴极层构成的单层结构;所述显示区域的所述阴极层采用由第一阴极层以及设置于其上的第二阴极层构成的叠层结构。以此既可以提高透明区域的透光率;又可以同时提高显示区域的发光效率;最后,本发明还在第一阴极层上制备无机层,以此避免水氧入侵,并且在制备第二阴极层时保护第一阴极层不受影响。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1的显示面板的结构示意图。
图2是本发明实施例2的显示面板的结构示意图。
图中部件标识如下:
100、显示面板                  101、显示区域
102、透明区域
1、阳极层                      2、空穴传输层
3、发光层                      4、电子传输层
5、阴极层                      11、第一阳极层
12、第二阳极层                 13、第三阳极层
51、第一阴极层                 52、第二阴极层
6、无机层
本发明的实施方式
以下结合说明书附图详细说明本发明的优选实施例,以向本领域中的技术人员完整介绍本发明的技术内容,以举例证明本发明可以实施,使得本发明公开的技术内容更加清楚,使得本领域的技术人员更容易理解如何实施本发明。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例,下文实施例的说明并非用来限制本发明的范围。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,本文所使用的方向用语是用来解释和说明本发明,而不是用来限定本发明的保护范围。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。此外,为了便于理解和描述,附图所示的每一组件的尺寸和厚度是任意示出的 ,本发明并没有限定每个组件的尺寸和厚度。
当某些组件,被描述为“在”另一组件“上”时,所述组件可以直接置于所述另一组件上;也可以存在一中间组件,所述组件置于所述中间组件上,且所述中间组件置于另一组件上。当一个组件被描述为“安装至”或“连接至”另一组件时,二者可以理解为直接“安装”或“连接”,或者一个组件通过一中间组件“安装至”或“连接至”另一个组件。
实施例1
如图1所示,一种显示面板100,其定义有显示区域101和透明区域102,其中包括:阳极层1、空穴传输层2、发光层3、电子传输层4以及阴极层5。
如图1所示,其中所述阳极层1包括依次设置的:第一阳极层11、第二阳极层12以及第三阳极层13。其中所述第一阳极层11的组成材料包括ITO;所述第二阳极层12的组成材料包括Ag;所述第三阳极层13的组成材料包括ITO。其中所述第二阳极层12的厚度大于100nm,由此可以使其对发光层3发出的光线进行全反射,本实施例优选的将第二阳极层12的厚度设置为150nm。通过设置ITO组成的第一阳极层11和第三阳极层13可以协助第二阳极层12将发光层射出的光线完全反射至阴极层射出,从而提高显示面板100的发光效率。
如图1所示,所述空穴传输层2设置于所述阳极层1上。其中所述空穴传输层2的组成材料包括4,4',4''-三[2-萘基苯基氨基]三苯基胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]中的一种或多种。由此制成的空穴传输层2可以很好的将阳极层1中的空穴传输至发光层3。其中空穴传输层2可以通过真空热蒸镀沉积的方式制备形成,并且其厚度范围为40-150nm。当所述空穴传输层2的厚度低于40nm时无法达到将阳极层1中的空穴传输至发光层3的效果,当其厚度超过150nm时,会造成材料的浪费,增加生产成本。因此,本实施例优选将其厚度设置为95nm。
如图1所示,所述发光层3设置于所述空穴传输层2上。其中所述发光层3的组成材料包括苯胺,4,4'-(1,4-亚苯基-2,1-乙二基)双[N-(2-乙基-6-甲基苯基)-N-苯基、4,4'-双(9-乙基-3-咔唑乙烯基)-1,1'-联苯、二(2-羟基苯基吡啶)合铍中的一种或多种。由此形成的发光层3可以很好的将阳极层1的空穴与阴极层5的电子进行结合从而产生达成发光效果。其中所述发光层3的厚度范围为20-50nm,如果发光层3厚度低于20nm,可能会导致阳极层1和阴极层5的短路,从而导致器件失效;如果发光层3厚度高于50nm,会造成材料的浪费,增加生产成本。因此,本实施例优选将其厚度设置为35nm。
如图1所示,所述电子传输层4设置于所述发光层3上。其中所述电子传输层4的组成材料包括1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、4,7-二苯基-1,10-菲罗啉、3,3'-[5'-[3-(3-吡啶基)苯基][1,1':3',1''-三联苯]-3,3''-二基]二吡啶中的一种或多种。由此制成的电子传输层4可以很好的将阴极层5中的电子传输至发光层3中。其中电子传输层4可以通过真空热蒸镀沉积的方式制备形成,并且其厚度范围为20-80nm。当所述电子传输层4的厚度低于20nm时无法达到将阴极层5中的电子传输至发光层3的效果,当其厚度超过80nm时,会造成材料的浪费,增加生产成本。因此,本实施例优选将其厚度设置为50nm。
如图1所示,所述阴极层5设置于所述电子传输层4上。所述阴极层5包括对应于所述显示区域101设置的第一部分和对应于所述透明区域102设置的第二部分,所述第一部分包括第一阴极层51及设置在所述第一阴极层51上的第二阴极层52,所述第二部分仅包括第一阴极层51。其中所述第一阴极层51的组成材料包括透明导电氧化物、石墨烯中的一种或多种。具体的,其中所述透明导电氧化物包括ITO、AZO、IZO中的一种或多种。所述第一阴极层51可以通过PVD(物理气相沉积)或ALD(原子层沉积)或PLD(脉冲激光沉积)工艺进行成膜,且其厚度范围为20-200nm。如果其厚度低于20nm,会造成膜不均匀,导致光学品味的问题;如果其厚度高于200nm,会降低量产效率,并且会增加生产成本。由此可以避免传统的金属阴极层5的消光系数高而导致的显示面板100的透光率很低的现象,从而提高透明区域102的透光率。
其中所述第二阴极层52的组成材料包括Ag、Au、Cu、Al、Mg中的一种或多种。本实施例优选为Ag和Mg的合金。由此可以使发光层3中产生的光子有一定几率在第二阴极层52发生反射回到光学微腔中。反射回微腔的光子在阴阳电极中会发生谐振加强。光子来回反射几次后有一定的几率透过第二阴极层52发射处理,这种光子组成的光谱比没有经过反射的光谱更窄,能量更集中,发光效率更高。由此可以提高显示区域101的显示面板100的发光效率。其中所述第二阴极层52的厚度范围为8-30nm,本实施例优选为15nm。如果其厚度低于8nm,会造成膜不均匀,导致光学品味的问题;如果其厚度高于30nm,会导致透过率降低,并且会增加生产成本。
实施例2
如图1、图2所示,本实施例与实施例1的不同之处在于:本实施例所述透明区域102的显示面板100还包括无机层6,所述无机层6设置于所述第一阴极层51远离所述阳极层1的表面上。本实施例所述显示区域101的显示面板102还包括无机层6,所述无机层6设置于所述第一阴极层51与所述第二阴极层52之间。
如图2所示,所述无机层6设置于所述显示区域101和透明区域102的第一阴极层51上。其中所述无机层6的组成材料包括SiN、SiO2、SiNO中的一种或多种。本实施例优选SiN作为制备无机层6的材料。其可以通过PECVD的沉积方式制备形成。其厚度范围为0.5-5um,如果其厚度低于0.5um,会造成膜不均匀,导致光学品味的问题;如果其厚度高于5um,会降低量产效率,并且会增加生产成本,因此本实施例优选为1um。通过设置无机层6,一方面可以防止水氧的侵蚀,另一方面,在制备第二阴极层52时,可以保护第一阴极层51不受影响。
本发明的另一个实施方式还提供了一种显示装置,其中包括本发明所涉及的显示面板100。
以上对本发明所提供的显示面板及其显示装置进行了详细介绍。应理解,本文所述的示例性实施方式应仅被认为是描述性的,用于帮助理解本发明的方法及其核心思想,而并不用于限制本发明。在每个示例性实施方式中对特征或方面的描述通常应被视作适用于其他示例性实施例中的类似特征或方面。尽管参考示例性实施例描述了本发明,但可建议所属领域的技术人员进行各种变化和更改。本发明意图涵盖所附权利要求书的范围内的这些变化和更改,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种显示面板,其定义有显示区域和透明区域,其中包括:
    阳极层;
    空穴传输层,所述空穴传输层设置于所述阳极层上;
    发光层,所述发光层设置于所述空穴传输层上;
    电子传输层,所述电子传输层设置于所述发光层上;以及
    阴极层,所述阴极层设置于所述电子传输层上;
    所述阴极层包括对应于所述显示区域设置的第一部分和对应于所述透明区域设置的第二部分,所述第一部分包括第一阴极层及设置在所述第一阴极层上的第二阴极层,所述第二部分仅包括第一阴极层。
  2. 根据权利要求1所述的显示面板,其中所述第一阴极层的组成材料包括透明导电氧化物、石墨烯中的一种或多种。
  3. 根据权利要求2所述的显示面板,其中所述透明导电氧化物包括ITO、AZO、IZO中的一种或多种。
  4. 根据权利要求1所述的显示面板,其中所述第二阴极层的组成材料包括Ag、Au、Cu、Al、Mg中的一种或多种。
  5. 根据权利要求1所述的显示面板,其中所述透明区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层远离所述阳极层的表面上。
  6. 根据权利要求1所述的显示面板,其中所述显示区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层与所述第二阴极层之间。
  7. 根据权利要求5所述的显示面板,其中所述无机层的组成材料包括SiN、SiO2、SiNO中的一种或多种。
  8. 根据权利要求6所述的显示面板,其中所述无机层的组成材料包括SiN、SiO2、SiNO中的一种或多种。
  9. 根据权利要求1所述的显示面板,其中所述第一阴极层的厚度范围为20-200nm。
  10. 根据权利要求1所述的显示面板,其中所述第二阴极层的厚度范围为8-30nm。
  11. 一种显示装置,其包括显示面板,所述显示面板定义有显示区域和透明区域,其中所述显示面板包括:
    阳极层;
    空穴传输层,所述空穴传输层设置于所述阳极层上;
    发光层,所述发光层设置于所述空穴传输层上;
    电子传输层,所述电子传输层设置于所述发光层上;以及
    阴极层,所述阴极层设置于所述电子传输层上;
    所述阴极层包括对应于所述显示区域设置的第一部分和对应于所述透明区域设置的第二部分,所述第一部分包括第一阴极层及设置在所述第一阴极层上的第二阴极层,所述第二部分仅包括第一阴极层。
  12. 根据权利要求11所述的显示装置,其中所述第一阴极层的组成材料包括透明导电氧化物、石墨烯中的一种或多种。
  13. 根据权利要求12所述的显示装置,其中所述透明导电氧化物包括ITO、AZO、IZO中的一种或多种。
  14. 根据权利要求11所述的显示装置,其中所述第二阴极层的组成材料包括Ag、Au、Cu、Al、Mg中的一种或多种。
  15. 根据权利要求11所述的显示装置,其中所述透明区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层远离所述阳极层的表面上。
  16. 根据权利要求11所述的显示装置,其中所述显示区域的显示面板还包括无机层,所述无机层设置于所述第一阴极层与所述第二阴极层之间。
  17. 根据权利要求15所述的显示装置,其中所述无机层的组成材料包括SiN、SiO2、SiNO中的一种或多种。
  18. 根据权利要求16所述的显示装置,其中所述无机层的组成材料包括SiN、SiO2、SiNO中的一种或多种。
  19. 根据权利要求11所述的显示装置,其中所述第一阴极层的厚度范围为20-200nm。
  20. 根据权利要求11所述的显示装置,其中所述第二阴极层的厚度范围为8-30nm。
PCT/CN2020/070985 2019-08-21 2020-01-08 一种显示面板及其显示装置 WO2021031517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,729 US20210408427A1 (en) 2019-08-21 2020-01-08 Display panel and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910774572.8 2019-08-21
CN201910774572.8A CN110611041A (zh) 2019-08-21 2019-08-21 一种显示面板及其显示装置

Publications (1)

Publication Number Publication Date
WO2021031517A1 true WO2021031517A1 (zh) 2021-02-25

Family

ID=68890623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070985 WO2021031517A1 (zh) 2019-08-21 2020-01-08 一种显示面板及其显示装置

Country Status (3)

Country Link
US (1) US20210408427A1 (zh)
CN (1) CN110611041A (zh)
WO (1) WO2021031517A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611041A (zh) * 2019-08-21 2019-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
CN112259699A (zh) * 2020-10-21 2021-01-22 京东方科技集团股份有限公司 一种显示基板的制备方法、显示基板及显示装置
CN113054141A (zh) * 2021-04-02 2021-06-29 深圳市芯视佳半导体科技有限公司 一种采用倒置oled结构的硅基微显示器件、制备方法及其应用
CN115283820B (zh) * 2022-08-29 2024-08-27 苏州科韵激光科技有限公司 一种基于Micro OLED的激光修复系统及修复方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767709A (zh) * 2005-10-21 2006-05-03 友达光电股份有限公司 半穿透半反射型有机电致发光面板
US20130032841A1 (en) * 2011-08-04 2013-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Device and Lighting Device
CN110010666A (zh) * 2019-03-28 2019-07-12 武汉华星光电半导体显示技术有限公司 Oled屏幕的屏下摄像头结构及oled屏幕
CN110611041A (zh) * 2019-08-21 2019-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192413A (ja) * 2009-01-22 2010-09-02 Sony Corp 有機電界発光素子および表示装置
CN103779377A (zh) * 2012-10-25 2014-05-07 友达光电股份有限公司 有机发光显示器及其制作方法
KR20150101508A (ko) * 2014-02-26 2015-09-04 삼성디스플레이 주식회사 유기 발광 표시장치 및 그의 제조방법
CN104701351B (zh) * 2015-03-20 2018-04-10 京东方科技集团股份有限公司 Oled基板及其制作方法、oled显示面板和电子设备
CN106920827B (zh) * 2017-03-08 2019-11-01 京东方科技集团股份有限公司 一种发光二极管、阵列基板、发光器件及显示装置
KR102392503B1 (ko) * 2017-11-07 2022-04-29 엘지디스플레이 주식회사 유기발광 표시장치
CN109742122B (zh) * 2019-01-10 2021-08-06 京东方科技集团股份有限公司 显示基板及其制作方法、显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767709A (zh) * 2005-10-21 2006-05-03 友达光电股份有限公司 半穿透半反射型有机电致发光面板
US20130032841A1 (en) * 2011-08-04 2013-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Device and Lighting Device
CN110010666A (zh) * 2019-03-28 2019-07-12 武汉华星光电半导体显示技术有限公司 Oled屏幕的屏下摄像头结构及oled屏幕
CN110611041A (zh) * 2019-08-21 2019-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置

Also Published As

Publication number Publication date
US20210408427A1 (en) 2021-12-30
CN110611041A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2021031517A1 (zh) 一种显示面板及其显示装置
WO2018113018A1 (zh) Oled显示面板及其制作方法
KR100752716B1 (ko) 유기 전계발광디바이스
US7772762B2 (en) White light organic electroluminescent element
KR101954220B1 (ko) 박막 봉지 유닛, 이를 포함하는 유기 발광 표시 장치 및 그의 제조 방법
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
TWI227094B (en) Organic light-emitting display device and fabricating thereof
TWI613808B (zh) 光遮斷構件和包括其之顯示裝置
JP2005209651A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
TWI299239B (en) Organic light emitting display
US20130140982A1 (en) Organic light emitting display device and manufacturing method thereof
JP2011171275A (ja) 有機発光表示装置およびその製造方法
WO2020248348A1 (zh) 一种显示面板及其显示装置
WO2018107532A1 (zh) 双面oled显示器件及其制作方法
KR20160006520A (ko) 유기전계발광 표시장치 및 그 제조방법
JP2014032945A (ja) 有機発光装置
US20210226170A1 (en) Display panel and manufacturing method thereof, electroluminescent device and display device
CN104466025A (zh) 一种反射电极及其制备方法和应用
KR102078271B1 (ko) 박막 봉지 유닛 및 이를 포함하는 유기 발광 표시 장치
US20160372712A1 (en) Electroluminescent device and display apparatus
JP2009529779A (ja) 有機発光素子の製造方法及びこれによって製造された有機発光素子
JP2009117500A (ja) 有機el素子
US20200168833A1 (en) Organic light-emitting device and electrode thereof
WO2022247056A1 (zh) 显示面板及显示装置
WO2020062486A1 (zh) 显示面板及其制作方法、显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854078

Country of ref document: EP

Kind code of ref document: A1