WO2022247056A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2022247056A1
WO2022247056A1 PCT/CN2021/117259 CN2021117259W WO2022247056A1 WO 2022247056 A1 WO2022247056 A1 WO 2022247056A1 CN 2021117259 W CN2021117259 W CN 2021117259W WO 2022247056 A1 WO2022247056 A1 WO 2022247056A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
layer
cathode layer
optical coupling
thickness
Prior art date
Application number
PCT/CN2021/117259
Other languages
English (en)
French (fr)
Inventor
汪博
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/600,387 priority Critical patent/US20240049563A1/en
Publication of WO2022247056A1 publication Critical patent/WO2022247056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel and a display device.
  • OLED organic light-emitting diode
  • OLED display panel using OLED devices has a wide viewing angle, short response time, high contrast, and can achieve ultra-thin and flexible.
  • OLED display panels can be divided into bottom-emitting OLED display panels and top-emitting OLED display panels according to the position of the light source. Compared with bottom-emitting OLED display panels, top-emitting OLED display panels have a larger aperture ratio and higher Display color purity and other characteristics make the top emission OLED display panel have a good development prospect.
  • the top-emitting OLED display panel uses the effect of optical microcavity to improve the luminous efficiency in the vertical direction, so that at other viewing angles, the brightness of the top-emitting OLED display panel will be significantly reduced, and at the same time, color shift will occur.
  • the curved OLED display panel includes a flat display area and a curved display area located on the side of the flat display area. Since the curved OLED display panel is a Lambertian luminous body, its luminous intensity is proportional to the cosine of the normal angle of the surface light source. When using an OLED display panel, the angle between the curved display area and the normal of the surface light source is larger than that of the flat display area, resulting in lower brightness of the curved display area than that of the flat display area.
  • the existing curved OLED display panel has the problem that the brightness of the curved display area is lower than that of the flat display area. Therefore, it is necessary to provide a display panel and a display device to improve this defect.
  • Embodiments of the present application provide a display panel and a display device, which are used to solve the problem in the existing curved OLED display panel that the brightness of the curved display area is lower than that of the flat display area.
  • An embodiment of the present application provides a display panel.
  • the display panel includes a flat display area and a curved display area located on at least one side of the flat display area.
  • the display panel includes:
  • the optical coupling layer is disposed on the cathode layer; wherein:
  • the thickness of at least one of the cathode layer and the light coupling layer in the curved display area is different from that in the flat display area, and the luminous efficiency of the light emitting layer in the curved display area is greater than that in the curved display area.
  • the luminous efficiency of the flat display area is greater than that in the curved display area.
  • the thickness of the cathode layer in the curved display area is less than or equal to the thickness of the cathode layer in the flat display area.
  • the difference between the thickness of the cathode layer in the flat display area and the thickness of the cathode layer in the curved display area is greater than or equal to 2 nanometers and less than or equal to 10 nanometers.
  • the portion of the cathode layer corresponding to the curved display area is provided with a groove.
  • the cathode layer includes:
  • the first cathode layer is arranged in the flat display area and the curved display area;
  • the second cathode layer, the second cathode layer is located between the first cathode layer and the optical coupling layer, and is arranged in the flat display area;
  • the thickness of the first cathode layer is greater than or equal to 8 nanometers and less than or equal to 20 nanometers, and the thickness of the second cathode layer is greater than or equal to 2 nanometers and less than or equal to 10 nanometers.
  • the material of the first cathode layer is the same as that of the second cathode layer.
  • the material of the first cathode layer is different from that of the second cathode layer, and the refractive index of the first cathode layer is less than or equal to the refractive index of the second cathode layer; or, The refractive index of the first cathode layer is greater than or equal to the refractive index of the second cathode layer.
  • the material of the first cathode layer includes at least one of ytterbium, calcium, magnesium and silver
  • the material of the second cathode layer includes at least one of ytterbium, calcium, magnesium and silver .
  • the thickness of the optical coupling layer in the curved display area is greater than or equal to the thickness of the optical coupling layer in the flat display area.
  • the difference between the thickness of the optical coupling layer in the curved display area and the thickness of the optical coupling layer in the flat display area is greater than or equal to 10 nanometers.
  • the portion of the optical coupling layer corresponding to the curved display area is provided with a protrusion on a side away from the cathode layer.
  • the optical coupling layer includes:
  • the first optical coupling layer is disposed on the curved display area
  • a second optical coupling layer, the second optical coupling layer is disposed on the curved display area and the flat display area;
  • the first optical coupling layer is disposed between the second optical coupling layer and the cathode layer; or, the first optical coupling layer is disposed on a side of the second optical coupling layer away from the cathode layer .
  • the thickness of the first optical coupling layer is greater than or equal to 10 nm and less than or equal to 60 nm, and the thickness of the second optical coupling layer is greater than or equal to 50 nm and less than or equal to 200 nm.
  • the material of the first optical coupling layer is the same as that of the second optical coupling layer.
  • the material of the first optical coupling layer is different from that of the second optical coupling layer, and the refractive index of the first optical coupling layer is greater than or equal to the refractive index of the second optical coupling layer. ; or, the refractive index of the first optical coupling layer is less than or equal to the refractive index of the second optical coupling layer.
  • the material of the first optical coupling layer and the material of the second optical coupling layer are organic small molecule hole transport materials.
  • An embodiment of the present application also provides a display device, including a display panel, the display panel includes a flat display area and a curved display area located on at least one side of the flat display area, and the display panel includes:
  • the optical coupling layer is disposed on the cathode layer; wherein:
  • the thickness of at least one of the cathode layer and the light coupling layer in the curved display area is different from that in the flat display area, and the luminous efficiency of the light emitting layer in the curved display area is greater than that in the curved display area.
  • the luminous efficiency of the flat display area is greater than that in the curved display area.
  • the thickness of the cathode layer in the curved display area is less than or equal to the thickness of the cathode layer in the flat display area.
  • the difference between the thickness of the cathode layer in the flat display area and the thickness of the cathode layer in the curved display area is greater than or equal to 2 nanometers and less than or equal to 10 nanometers.
  • the portion of the cathode layer corresponding to the curved display area is provided with a groove.
  • the embodiments of the present application provide a display panel and a display device
  • the display panel includes a flat display area and a curved display area located on at least one side of the flat display area
  • the display panel includes a light emitting layer, a cathode layer and an optical coupling layer
  • the cathode layer covers the luminescent layer
  • the optical coupling layer is disposed on the cathode layer
  • at least one of the cathode layer and the optical coupling layer has a thickness equal to that of the curved surface display area
  • the thickness of the flat display area is different, and the luminous efficiency of the light-emitting layer in the curved display area is greater than that in the flat display area, so as to improve the brightness of the curved display area, thereby improving the display of the display panel on the curved surface.
  • the problem that the brightness of the display area is lower than that of the flat display area.
  • FIG. 1 is a schematic structural diagram of a first display panel provided by an embodiment of the present application.
  • Fig. 2 is the simulated luminance curve diagram of the curved surface display area provided by the embodiment of the present application under different cathode layer thicknesses and different observation angles;
  • FIG. 3 is a schematic structural diagram of a second display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third display panel provided by an embodiment of the present application.
  • Fig. 5 is a simulated luminance curve diagram of the curved display area provided by the embodiment of the present application under different thicknesses of the optical coupling layer and different observation angles;
  • FIG. 6 is a schematic structural diagram of a fourth display panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fifth display panel provided by an embodiment of the present application.
  • FIG. 8 is a flow chart of the first method of manufacturing a display panel provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of the first method for manufacturing a display panel provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a mask plate provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of a second method of manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a second method for manufacturing a display panel provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel, the display panel includes a flat display area A1 and a curved display area A2 located on at least one side of the flat display area, the display panel includes a light emitting layer 140, a cathode layer 110 and an optical coupling layer 120, the cathode layer 110 covers the luminescent layer 140, the light coupling layer 120 is disposed on the cathode layer 110, and at least one of the cathode layer 110 and the light coupling layer 120 is displayed on the curved surface
  • the thickness of the area A2 is different from that in the flat display area A1, and the luminous efficiency of the light emitting layer 140 in the curved display area A2 is greater than that in the flat display area A1, so that the curved display area A2 can be improved. reduce the brightness difference between the curved display area A2 and the flat display area A1 at large viewing angles, thereby improving the problem that the brightness of the curved display area A2 of the display panel is lower than that of the flat display area A1.
  • FIG. 1 is a schematic structural diagram of a first display panel provided in an embodiment of the present application, and the display panel includes a display area and a non-display area surrounding the display area (in the figure not shown), the display area includes a flat display area A1 and a curved display area A2 located on the left and right sides of the flat display area A1, and the curved display area A2 has a curved cross-section in the thickness direction of the display panel.
  • the curved display area A2 is not limited to being set on the left and right sides of the flat display area A1, but can also be set on any side of the top, bottom, left, right, or The opposite sides, or the four sides of the flat display area A1 (that is, the so-called waterfall screen).
  • the display panel is a top-emitting OLED display panel, and the display panel also includes a base substrate 101, a driving circuit layer 102, an anode layer 130, and a light emitting layer 140, and the driving circuit layer 102 is arranged on the substrate
  • the anode layer 130 is disposed on the drive circuit layer 102 and is located on the side of the cathode layer 110 away from the optical coupling layer 120
  • the light emitting layer 140 is disposed between the anode layer 130 and between the cathode layers 110 .
  • the anode layer 130 is a fully reflective electrode structure
  • the cathode layer 110 is a translucent electrode structure
  • the anode layer 130 , the light emitting layer 140 and the cathode layer 110 form an optical microcavity structure.
  • the anode layer 130 is a stacked structure formed by laminating indium tin oxide, silver, and indium tin oxide materials sequentially from bottom to top, wherein the thickness of the indium tin oxide at the bottom is 50 nanometers, and the thickness of the indium tin oxide at the middle is The silver is 150 nanometers thick and the top layer of indium tin oxide is 50 nanometers thick.
  • indium tin oxide can also be replaced by other transparent conductive materials, such as indium zinc oxide, zinc oxide or gallium zinc oxide, etc.
  • silver can also be replaced by other conductive and opaque metal materials, such as copper, aluminum or molybdenum, etc.
  • the thickness of the ITO at the bottom layer can also be 10 nanometers, 30 nanometers, 70 nanometers or 100 nanometers, etc., and only needs to be between 10 and 100 nanometers.
  • the thickness of the silver in the middle can also be 100 nanometers, 130 nanometers, 170 nanometers or 200 nanometers, etc., and only needs to be between 100 and 200 nanometers.
  • the thickness of the ITO on the top layer can also be 10 nanometers, 30 nanometers, 70 nanometers or 100 nanometers, etc., and only needs to be between 10 and 100 nanometers.
  • the thickness of the cathode layer 110 in the curved display area A2 is less than or equal to the thickness of the cathode layer 110 in the flat display area A1.
  • the thickness of the cathode layer 110 in the curved display area A2 is smaller than the thickness of the cathode layer 110 in the flat display area A1, so that the thickness of the cathode layer 110 in the curved display area A2 can be weakened.
  • the microcavity effect of the microcavity structure makes the microcavity effect of the curved surface display area A2 weaker than the microcavity effect of the flat display area A1, thereby improving the luminous efficiency of the light emitting layer 140 in the curved surface display area A2, so that the light emitting layer 140 in the curved surface display area A2
  • the luminous efficiency of the curved display area A2 is greater than the luminous efficiency of the flat display area A1, which is conducive to improving the brightness of the curved display area A2 under large viewing angles.
  • the transmittance of the cathode layer 110 is inversely proportional to the thickness of the cathode layer 110, so that the transmittance of the cathode layer 110 in the curved display area A2 can be greater than the transmittance of the cathode layer 110 in the plane display area A1, thereby further
  • the brightness of the display panel in the curved display area A2 is increased, thereby solving the problem that the brightness of the display panel in the curved display area A2 is lower than the brightness of the flat display area A1.
  • Figure 2 is the simulated luminance curve of the curved display area provided by the embodiment of the present application under different cathode layer thicknesses and different viewing angles
  • Table 1 is the simulated luminance of the curved display area under different cathode layer thicknesses
  • the value table, the observation angle is the angle between the observation angle and the normal of the panel.
  • the thickness of the optical coupling layer 120 in the curved surface display area A2 is a fixed value of 150 nanometers.
  • This experiment is divided into three groups of control groups, namely: the first group L1, the thickness of the cathode layer 110 in the curved surface display area A2 is 13 nanometers ; In the second group L2, the thickness of the cathode layer 110 in the curved display area A2 is 10 nanometers; in the third group L3, the thickness of the cathode layer 110 in the curved display area A2 is 8 nanometers.
  • the difference between the thickness of the cathode layer 110 in the flat display area A1 and the thickness of the cathode layer 110 in the curved display area A2 is greater than or equal to 2 nanometers and less than or equal to 10 nanometers.
  • the difference between the thickness of the cathode layer 110 in the flat display area A1 and the thickness of the cathode layer 110 in the curved display area A2 is 6 nanometers.
  • the difference between the thickness of the cathode layer 110 in the flat display area A1 and the thickness of the cathode layer 110 in the curved display area A2 is not limited to the above-mentioned 6 nanometers, but may also be 2 nanometers, 5 nanometers, or 5 nanometers. Nano, 7 nanometers or 10 nanometers, etc., only need to be between 2 nanometers and 10 nanometers.
  • the portion of the cathode layer 110 corresponding to the curved display area A2 is provided with a groove 113 .
  • the cathode layer 110 is integrally formed, and the cathode layer 110 is provided with grooves 113 on the two curved surface display areas A2 on both sides of the plane display area A1, and the opening area of the groove 113 is The area is equal to that of the curved display area A2, so that the thickness of the cathode layer 110 in the curved display area A2 is smaller than that in the flat display area A1.
  • the depth of the groove 113 in the thickness direction of the display panel may be 6 nanometers.
  • the depth of the groove 113 in the thickness direction of the display panel is not limited to 6 nanometers, but can also be 2 nanometers, 5 nanometers, 7 nanometers or 10 nanometers, etc., and only needs to be between 2 nanometers and 10 nanometers. between nanometers.
  • the cathode layer 110 includes a first cathode layer 111 and a second cathode layer 112 , the The first cathode layer 111 is disposed in the flat display area A1 and the curved display area A2, the second cathode layer 112 is located between the first cathode layer 111 and the optical coupling layer 120, and is disposed in the flat display area A1 and the curved display area A2.
  • the first cathode layer 111 and the second cathode layer 112 are prepared by two vapor deposition processes respectively.
  • the first cathode layer 111 has the same thickness in the flat display area A1 and the curved display area A2, and the second cathode layer 112 has the same thickness in the flat display area A1. are equal, wherein the thickness of the first cathode layer 111 is 14 nanometers, and the thickness of the second cathode layer 112 is 6 nanometers. In this way, it can be avoided that the resistance of the first cathode layer 111 is too large due to the thickness of the first cathode layer 111 being too thin, which affects the conduction effect of the cathode layer 110 . At the same time, it can also avoid the reduction of the transmittance of the cathode layer 110 caused by the excessive thickness of the second cathode layer 112 , which will affect the display effect of the flat display area A1 .
  • the thickness of the first cathode layer 111 is not limited to the above-mentioned 14 nanometers, but may also be 8 nanometers, 10 nanometers, 12 nanometers, 16 nanometers, 18 nanometers or 20 nanometers, etc., and only needs to be between 8 and 20 nanometers. between nanometers.
  • the thickness of the second cathode layer 112 is not limited to the above-mentioned 6 nanometers, and may also be 2 nanometers, 4 nanometers, 8 nanometers or 10 nanometers, etc., and only needs to be between 2 and 10 nanometers.
  • the material of the first cathode layer 111 includes at least one of ytterbium, calcium, magnesium and silver
  • the material of the second cathode layer 112 includes at least one of ytterbium, calcium, magnesium and silver.
  • the material of the first cathode layer 111 is a silver-magnesium alloy with a molar ratio of 10:1, by combining the metal magnesium with active properties and low work function with the metal silver with stable chemical properties and high work function Forming the first cathode layer by evaporation can not only form a stable and strong alloy electrode on the light emitting layer 140, but also improve the quantum efficiency and stability of the OLED device.
  • the material of the second cathode layer 112 is the same as that of the first cathode layer 111 , which is a silver-magnesium alloy with a molar ratio of 10:1.
  • the material of the first cathode layer 111 and the second cathode layer 112 is not limited to the above-mentioned silver-magnesium alloy, and the material of the first cathode layer 111 may include ytterbium, calcium, magnesium and silver. At least one, the material of the second cathode layer 112 may also include at least one of ytterbium, calcium, magnesium and silver, and the materials of the first cathode layer 111 and the second cathode layer 112 may be the same, or Can be different.
  • the materials of the first cathode layer 111 and the second cathode layer 112 are different, and the refractive index of the first cathode layer 111 is smaller than the refractive index of the second cathode layer 112, for example, the first The first cathode layer 111 can be made of silver-magnesium alloy, and the second cathode layer 112 can be made of silver or other metal materials with a higher refractive index, so that the light emitted by the light-emitting layer 140 can be prevented from being transmitted from the first cathode layer 111 to the second cathode layer. Total reflection occurs in 112, thereby ensuring the brightness and display effect of the display panel in the flat display area A1.
  • the refractive index of the first cathode layer 111 may also be greater than or equal to the refractive index of the second cathode layer 112 .
  • the thickness of the optical coupling layer 120 in the curved display area A2 is greater than or equal to the thickness of the optical coupling layer 120 in the flat display area A1.
  • the thickness of the optical coupling layer 120 in the curved display area A2 is equal to the thickness of the optical coupling layer 120 in the flat display area A1 .
  • FIG. 4 is a schematic structural diagram of the third display panel provided in the embodiment of the present application, which is different from the first display panel shown in FIG. 1 and the second display panel shown in FIG.
  • the difference in panel structure is that in the third display panel shown in FIG. 4 , the cathode layer 110 has the same thickness in the flat display area A1 and the curved display area A2, and the optical coupling layer 120 displays in the curved surface
  • the thickness of the region A2 is greater than the thickness of the light coupling layer 120 in the planar display region A1.
  • Figure 5 is the simulated luminance curves of the curved display area provided by the embodiment of the present application under different thicknesses of the optical coupling layer and different observation angles
  • Table 2 shows the curves of the curved display area under different thicknesses of the optical coupling layer. Table of simulated brightness values.
  • the thickness of the cathode layer 110 in the curved surface display area A2 is a fixed value of 13 nanometers.
  • This experiment is divided into four groups of control groups, namely: the fourth group L4, the thickness of the optical coupling layer 120 in the curved surface display area A2 80 nanometers; the fifth group L5, the thickness of the optical coupling layer 120 in the curved display area A2 is 100 nanometers; the sixth group, the thickness of the optical coupling layer 120 in the curved display area A2 is 120 nanometers; the seventh group, the optical coupling layer The thickness of 120 in the curved display area A2 is 150 nanometers.
  • the difference between the thickness of the optical coupling layer 120 in the curved display area A2 and the thickness of the optical coupling layer 120 in the flat display area A1 is greater than or equal to 10 nanometers.
  • the difference between the thickness of the optical coupling layer 120 in the curved display area A2 and the thickness of the optical coupling layer 120 in the flat display area A1 is 20 nanometers. According to FIG. 4 and Table 2, if the difference between the thickness of the optical coupling layer 120 in the curved display area A2 and the thickness of the optical coupling layer 120 in the flat display area A1 is less than 10 nanometers, the display panel will be in the curved display area A2 and the flat display area.
  • the brightness of A1 is equal or the difference is not large, by limiting the difference between the thickness of the optical coupling layer 120 in the curved display area A2 and the thickness of the optical coupling layer 120 in the flat display area A1 to be 20 nanometers, it can be effectively
  • the brightness of the display panel in the curved display area A2 is increased, thereby reducing the brightness difference between the curved display area A2 and the flat display area A1 of the display panel.
  • the difference between the thickness of the optical coupling layer in the curved display area A2 and the thickness of the optical coupling layer 120 in the flat display area A1 is not limited to the above-mentioned 20 nanometers, and may also be 11 nanometers, 15 nanometers, or 15 nanometers. Nanometer, 30nm, etc., only need to be larger than 10nm.
  • the portion of the optical coupling layer 120 corresponding to the curved display area A is provided with a protrusion 123 on a side away from the cathode layer 110 .
  • the optical coupling layer 120 is integrally formed, and the optical coupling layer 120 is provided on the side of the two curved display areas A2 located on both sides of the flat display area A1 that is away from the cathode layer 110
  • the thickness of the protrusion 123 is 20 nanometers.
  • the thickness of the protrusions in the thickness direction of the display panel is not limited to 20 nanometers, but can also be 11 nanometers, 15 nanometers, 30 nanometers, etc., and only needs to be greater than 10 nanometers.
  • the optical coupling layer 120 includes a first optical coupling layer 121 and a second optical coupling layer 122, the first optical coupling layer 121 is disposed on the curved display area A2, and the second optical coupling layer 122 is disposed In the curved display area A2 and the flat display area A1, the first optical coupling layer 121 is disposed between the second optical coupling layer 122 and the cathode layer 110; or, the first optical coupling The layer 121 is disposed on a side of the second light coupling layer 122 away from the cathode layer 110 .
  • the optical coupling layer 120 includes a first optical coupling layer 121 and a second optical coupling layer 122 , the first optical coupling layer 121 is disposed on the curved display area A2, the second optical coupling layer 122 is disposed on the flat display area A1 and the curved display area A2, and the first optical coupling layer 121 It is disposed between the second light coupling layer 122 and the cathode layer 110 .
  • the position of the first optical coupling layer 121 is not only limited to be set between the second optical coupling layer 122 and the cathode layer 110, but also can be located where the second optical coupling layer 122 is away from the One side of the cathode layer 110, so that the thickness of the optical coupling layer 120 in the curved display area A2 is greater than the thickness of the optical coupling layer 120 in the flat display area A1.
  • the thickness of the first optical coupling layer 121 is greater than or equal to 10 nm and less than or equal to 60 nm, and the thickness of the second optical coupling layer 122 is greater than or equal to 50 nm and less than or equal to 200 nm.
  • the thickness of the first optical coupling layer 121 is 20 nanometers
  • the thickness of the second optical coupling layer 122 is 100 nanometers
  • the thickness difference of 121 is 20 nanometers.
  • the brightness of the display panel in the curved display area A2 is greater than that in the flat display area A1.
  • the thickness of the first optical coupling layer 121 is not limited to the above-mentioned 20 nanometers, but may also be 10 nanometers, 40 nanometers or 60 nanometers, etc., and only needs to be between 10 nanometers and 60 nanometers.
  • the thickness of the second optical coupling layer 122 is not limited to the above-mentioned 100 nanometers, but can also be 50 nanometers, 80 nanometers, 120 nanometers, 150 nanometers, 180 nanometers or 200 nanometers, etc., and only needs to be between 50 nanometers and 100 nanometers. That's it.
  • the material of the first light coupling layer 121 and the material of the second light coupling layer 122 are organic small molecule hole transport materials.
  • the first optical coupling layer 121 and the second optical coupling layer 122 are made of the same material, which is NPB.
  • the materials of the first optical coupling layer 121 and the second optical coupling layer 122 may also be small organic molecule hole transport materials such as 2TNATA.
  • the material of the first optical coupling layer 121 is different from that of the second optical coupling layer 122 , and the refractive index of the first optical coupling layer 121 is greater than that of the second optical coupling layer 122 Refractive index, so that the first optical coupling layer 121 and the second optical coupling layer 122 form a stacked structure with a graded refractive index, which can reduce the internal reflection loss of light in the curved display area A2, and increase the OLED device in the curved display area A2 The exit angle of the outgoing light further improves the brightness of the curved display area A2 under a large viewing angle.
  • the refractive index of the first optical coupling layer 121 may also be less than or equal to the refractive index of the second optical coupling layer 122 , which is not limited here.
  • the thickness of the cathode layer 110 in the curved display area A2 is smaller than the thickness of the cathode layer 110 in the flat display area A1, and the optical coupling layer 120 in the curved display area A2 The thickness is greater than the thickness of the light coupling layer 120 in the planar display area A1.
  • FIG. 7 is a schematic structural diagram of a fifth display panel provided by the embodiment of the present application.
  • the cathode layer 110 includes a first cathode layer 111 and a second cathode layer 112.
  • the first cathode layer 111 is arranged on The flat display area A1 and the curved display area A2 are located on the light emitting layer 140 , and the first cathode layer 111 has the same thickness in the flat display area A1 and the curved display area A2 .
  • the second cathode layer 112 is only disposed in the curved display area A2 and is located on the first cathode layer 111 , and the thickness of the second cathode layer 112 in the curved display area A2 is equal.
  • the thickness of the first cathode layer 111 is between 8 and 20 nanometers, and the thickness of the second cathode layer 112 is between 2 and 10 nanometers.
  • the thickness of the film layers of the first cathode layer 111 and the second cathode layer 112 may be the same as that of the first cathode layer 111 and the second cathode layer 112 in the first display panel shown in FIG. 3 are equal and will not be repeated here.
  • the optical coupling layer 120 includes a first optical coupling layer 121 and a second optical coupling layer 122.
  • the first optical coupling layer 121 is only provided on the curved surface display area A2 and is located on the first cathode layer 111.
  • the first optical coupling layer 121 is on the curved surface
  • the thicknesses of the display areas A2 are equal.
  • the second optical coupling layer 122 is disposed on the flat display area A1 and the curved display area A2, and covers the second cathode layer 112 and the first optical coupling layer 121, and the second optical coupling layer 122 is located between the flat display area A1 and the curved display area A2. All are equal in thickness.
  • the microcavity effect of the microcavity structure in the curved display area A2 is weakened, thereby improving the curved display area.
  • the brightness of A2 under a large viewing angle can improve the problem that the brightness of the curved display area A2 is lower than that of the flat display area A1.
  • the thickness of the first optical coupling layer 121 is between 10 and 60 nanometers, and the thickness of the second optical coupling layer 122 is between 50 and 200 nanometers.
  • the thicknesses of the first optical coupling layer 121 and the second optical coupling layer 122 may be equal to the thicknesses of the first optical coupling layer 121 and the second optical coupling layer 122 in the second display panel shown in FIG. 3 , I won't repeat them here.
  • first cathode layer 111 the second cathode layer 112
  • the first cathode layer 111 , the second cathode layer 112 , the first optical coupling layer 121 and the second optical coupling layer 122 in the third type of display panel shown will not be repeated here.
  • the embodiment of the present application also provides a method for manufacturing a display panel, which will be described in detail below with reference to FIG. 8 and FIG.
  • the schematic flow chart of the first manufacturing method of the display panel provided in the embodiment of the present application, the manufacturing method includes:
  • Step S10 providing a base substrate 101, on which a driving circuit layer 102 and an anode layer 130 located on the driving circuit layer are formed, and a first mask plate 21 is used to deposit on the anode layer 130 Light emitting layer 140 .
  • FIG. 10 is a schematic structural diagram of the mask plate provided by the embodiment of the present application.
  • the first mask plate 21 includes a light-transmitting area 211, and the light-transmitting area 211 corresponds to the structure shown in FIG.
  • the luminescent layer 140 is distributed in the flat display area A1 and the curved display area A2 , and the thicknesses of the flat display area A1 and the curved display area A2 are equal.
  • Step S20 using the first mask 21 to deposit the first cathode layer 111 on the light emitting layer 140 .
  • step S20 the first cathode layer 111 is deposited on the light-emitting layer 140 using the first mask plate 21, the first cathode layer 111 is arranged in the flat display area A1 and the curved display area A2, and the flat display area A1 and the curved display area A2 The thicknesses of the curved display areas A2 are equal.
  • Step S30 using the second mask 22 to deposit the second cathode layer 112 on the first cathode layer 111.
  • the second mask 22 includes a second light-transmitting area 221 , and the second light-transmitting area 221 corresponds to the plane display area A1 in FIG. 9 .
  • the second cathode layer 112 is deposited through the second mask 22, so that the second cathode layer 112 is only formed in the flat display area A1, so that the thickness of the cathode layer 110 in the curved display area A2 is smaller than that in the flat display area The thickness of the cathode layer 110 in A1.
  • Step S40 using the third mask 23 to deposit the first light coupling layer 121 on the first cathode layer 111 .
  • the third mask 23 includes a third light-transmitting area 231 , and the third light-transmitting area 231 corresponds to the curved display area A2 in FIG. 9 .
  • the first optical coupling layer 121 is deposited on the first cathode layer 111 by using the third mask 23, so that the first optical coupling layer 121 is only formed in the curved display area A2.
  • Step S50 using the second mask 22 to deposit the second light coupling layer 122 on the second cathode layer 112 and the first light coupling layer 121 .
  • step S40 the second optical coupling layer 122 is deposited on the second cathode layer 112 and the first optical coupling layer 121 by using the second mask plate 22, so that the flat display area A1 and the curved display area A2 Both are formed with a second light coupling layer, so that the thickness of the light coupling layer 120 in the curved display area A2 is greater than the thickness of the light coupling layer 120 in the flat display area A1.
  • the respective materials and film thicknesses of the first cathode layer 111, the second cathode layer 112, the first optical coupling layer 121 and the second optical coupling layer 122 can be as shown in FIG. 9
  • the material and thickness of the first cathode layer 111 , the second cathode layer 112 , the first optical coupling layer 121 and the second optical coupling layer 122 in the third type of display panel are the same, and will not be repeated here.
  • the thickness of the cathode layer 110 in the curved display area A2 is reduced, and the thickness of the optical coupling layer 120 in the curved display area A2 is increased, so as to weaken the microcavity effect of the microcavity structure in the curved display area A2 , so as to increase the brightness of the curved display area A2 at a large viewing angle, thereby improving the problem that the brightness of the curved display area A2 is lower than that of the flat display area A1.
  • the embodiment of the present application also provides a method for manufacturing a display panel, which will be described in detail below with reference to FIG. 11 and FIG.
  • the schematic flow chart of the second manufacturing method of the display panel provided in the embodiment of the present application, the manufacturing method includes:
  • Step S10 providing a base substrate 101, on which a driving circuit layer 102 and an anode layer 130 located on the driving circuit layer are formed, and a first mask plate 21 is used to deposit on the anode layer 130 Light emitting layer 140 .
  • the first mask 21 includes a light-transmitting area 211 , and the light-transmitting area 211 corresponds to the flat display area A1 and the curved display area A2 of the display panel in FIG. 12 .
  • the luminescent layer 140 is distributed in the flat display area A1 and the curved display area A2 , and the thicknesses of the flat display area A1 and the curved display area A2 are equal.
  • Step S20 using the first mask 21 to deposit the first cathode layer 111 on the light emitting layer 140 .
  • step S20 the first cathode layer 111 is deposited on the light-emitting layer 140 using the first mask plate 21, the first cathode layer 111 is arranged in the flat display area A1 and the curved display area A2, and the flat display area A1 and the curved display area A2 The thicknesses of the curved display areas A2 are equal.
  • Step S30 using the second mask 22 to deposit the second cathode layer 112 on the first cathode layer 111 .
  • the second mask 22 includes a second light-transmitting area 221 , and the second light-transmitting area 221 corresponds to the plane display area A1 in FIG. 12 .
  • the second cathode layer 112 is deposited through the second mask 22, so that the second cathode layer 112 is only formed in the flat display area A1, so that the thickness of the cathode in the curved display area A2 is smaller than that in the flat display area A1 The thickness of the cathode.
  • Step S40 depositing an optical coupling layer 120 on the first cathode layer 111 and the second cathode layer 112 by using the first mask 21 .
  • the first mask plate 21 is used to deposit the optical coupling layer 120 on the first cathode layer 111 and the second cathode layer 112, so that both the flat display area A1 and the curved display area A2 are formed with an optical coupling layer 120, and the thickness of the optical coupling layer 120 in the flat display area A1 and the curved display area A2 is equal.
  • the respective materials and film thicknesses of the first cathode layer 111, the second cathode layer 112, and the optical coupling layer 120 may be the same as those of the first display panel shown in FIG.
  • the material and thickness of the first cathode layer 111 , the second cathode layer 112 and the optical coupling layer 120 are the same, and will not be repeated here.
  • the thickness of the cathode layer 110 in the curved display area A2 is reduced, and the thickness of the optical coupling layer 120 in the curved display area A2 is increased, so as to weaken the microcavity effect of the microcavity structure in the curved display area A2 , improving the luminous efficiency of the light emitting layer 140 in the curved display area A2, so that the luminous efficiency of the light emitting layer 140 in the curved display area A2 is greater than that in the flat display area A1, thereby improving the viewing angle of the curved display area A2 under large viewing angles Brightness, so that the problem that the brightness of the curved display area A2 is lower than that of the flat display area A1 can be improved.
  • An embodiment of the present application further provides a display device, where the display device includes a display panel, and the display panel may be the display panel provided in the foregoing embodiments.
  • the display panel in the display device provided in the embodiment of the present application can achieve the same technical effect as that of the display panel in the above-mentioned embodiments, which will not be repeated here.
  • Embodiments of the present application provide a display panel, a manufacturing method thereof, and a display device.
  • the display panel includes a flat display area and a curved display area located on at least one side of the flat display area.
  • the display panel includes a light emitting layer and a cathode layer.
  • the cathode layer covers the light-emitting layer
  • the optical coupling layer is disposed on the cathode layer
  • at least one of the cathode layer and the optical coupling layer has the same thickness in the curved display area as in the plane
  • the thickness of the display area is different, and the luminous efficiency of the light-emitting layer in the curved display area is greater than that in the flat display area, so as to improve the brightness of the curved display area, thereby improving the brightness ratio of the display panel in the curved display area.
  • the brightness of the flat display area is low.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板及显示装置,该显示面板包括平面显示区和曲面显示区,显示面板包括发光层、阴极层和光耦合层,阴极层和光耦合层中的至少一个在曲面显示区的厚度与在平面显示区的厚度不同,使得发光层在曲面显示区的发光效率大于平面显示区,提升曲面显示区的亮度,改善显示面板在曲面显示区的亮度偏低的问题。

Description

显示面板及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
有机发光二极管(organic light-emitting diode,OLED)器件是指在电场作用下使有机材料发光的器件,采用OLED器件的OLED显示面板具有视角宽、相应时间短、对比度高、可实现超薄以及柔性显示的特点。OLED显示面板按照光源射出位置的不同,可以分为底发射OLED显示面板和顶发射OLED显示面板,相较于底发射OLED显示面板,由于顶发射OLED显示面板具有较大的开口率和较高的显示色纯度等特点,使得顶发射OLED显示面板具有较好的发展前景。
技术问题
由于顶发射OLED显示面板利用了光学微腔作用来提高垂直方向的发光效率,以至于在其他可视角度下,顶发射OLED显示面板的亮度会明显降低,同时会产生色偏。目前,曲面OLED显示面板包括平面显示区和位于平面显示区侧边的曲面显示区,由于曲面OLED显示面板属于朗伯发光体,其发光强度与面光源法线夹角的余弦成正比,正视曲面OLED显示面板时,曲面显示区与面光源法线的夹角比平面显示区更大,导致曲面显示区的亮度比平面显示区的亮度更低。
综上所述,现有曲面OLED显示面板存在曲面显示区的亮度比平面显示区的亮度偏低的问题。故,有必要提供一种显示面板及显示装置来改善这一缺陷。
技术解决方案
本申请实施例提供一种显示面板及显示装置,用于解决现有曲面OLED显示面板存在的曲面显示区的亮度比平面显示区的亮度偏低的问题。
本申请实施例提供一种显示面板,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括:
发光层;
阴极层,覆盖所述发光层;以及
光耦合层,设置于所述阴极层上;其中:
所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率。
根据本申请一实施例,所述阴极层在所述曲面显示区的厚度小于或等于所述阴极层在所述平面显示区的厚度。
根据本申请一实施例,所述阴极层在所述平面显示区的厚度与所述阴极层在所述曲面显示区的厚度之差大于或等于2纳米且小于或等于10纳米。
根据本申请一实施例,所述阴极层对应所述曲面显示区的部分设置有凹槽。
根据本申请一实施例,所述阴极层包括:
第一阴极层,所述第一阴极层设置于所述平面显示区和所述曲面显示区;
第二阴极层,所述第二阴极层位于所述第一阴极层与所述光耦合层之间,并且设置于所述平面显示区;其中:
所述第一阴极层的厚度大于或等于8纳米且小于或等于20纳米,所述第二阴极层的厚度大于或等于2纳米且小于或等于10纳米。
根据本申请一实施例,所述第一阴极层的材料与所述第二阴极层的材料相同。
根据本申请一实施例,所述第一阴极层的材料与所述第二阴极层的材料不同,所述第一阴极层的折射率小于或等于所述第二阴极层的折射率;或者,所述第一阴极层的折射率大于或等于所述第二阴极层的折射率。
根据本申请一实施例,所述第一阴极层的材料包括镱、钙、镁和银中的至少一种,所述第二阴极层的材料包括镱、钙、镁和银中的至少一种。
根据本申请一实施例,所述光耦合层在所述曲面显示区的厚度大于或等于所述光耦合层在所述平面显示区的厚度。
根据本申请一实施例,所述光耦合层在所述曲面显示区的厚度与所述光耦合层在所述平面显示区的厚度之差大于或等于10纳米。
根据本申请一实施例,所述光耦合层对应所述曲面显示区的部分在背离所 述阴极层的一侧设置有凸起。
根据本申请一实施例,所述光耦合层包括:
第一光耦合层,所述第一光耦合层设置于所述曲面显示区;
第二光耦合层,所述第二光耦合层设置于所述曲面显示区和所述平面显示区;其中:
所述第一光耦合层设置于所述第二光耦合层与所述阴极层之间;或者,所述第一光耦合层设置于所述第二光耦合层背离所述阴极层的一侧。
根据本申请一实施例,所述第一光耦合层的厚度大于或等于10纳米且小于或等于60纳米,所述第二光耦合层的厚度大于或等于50纳米且小于或等于200纳米。
根据本申请一实施例,所述第一光耦合层的材料与所述第二光耦合层的材料相同。
根据本申请一实施例,所述第一光耦合层的材料与所述第二光耦合层的材料不同,所述第一光耦合层的折射率大于或等于所属第二光耦合层的折射率;或者,所述第一光耦合层的折射率小于或等于所述第二光耦合层的折射率。
根据本申请一实施例,所述第一光耦合层的材料和所述第二光耦合层的材料均为有机小分子空穴传输材料。
本申请实施例还提供一种显示装置,包括显示面板,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括:
发光层;
阴极层,覆盖所述发光层;以及
光耦合层,设置于所述阴极层上;其中:
所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率。
根据本申请一实施例,所述阴极层在所述曲面显示区的厚度小于或等于所述阴极层在所述平面显示区的厚度。
根据本申请一实施例,所述阴极层在所述平面显示区的厚度与所述阴极层在所述曲面显示区的厚度之差大于或等于2纳米且小于或等于10纳米。
根据本申请一实施例,所述阴极层对应所述曲面显示区的部分设置有凹槽。
有益效果
本揭示实施例的有益效果:本申请实施例提供一种显示面板及显示装置,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括发光层、阴极层和光耦合层,阴极层覆盖发光层,所述光耦合层设置于所述阴极层上,所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率,以此提升曲面显示区的亮度,从而改善显示面板在曲面显示区的亮度比平面显示区的亮度偏低的问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种显示面板的结构示意图;
图2为本申请实施例提供的曲面显示区在不同阴极层厚度以及不同观测角度下的仿真亮度曲线图;
图3为本申请实施例提供的第二种显示面板的结构示意图;
图4为本申请实施例提供的第三种显示面板的结构示意图;
图5为本申请实施例提供的曲面显示区在不同光耦合层厚度以及不同观测角度下的仿真亮度曲线图;
图6为本申请实施例提供的第四种显示面板的结构示意图;
图7为本申请实施例提供的第五种显示面板的结构示意图;
图8为本申请实施例提供的第一种显示面板的制作方法的流程图;
图9为本申请实施例提供的第一种显示面板的制作方法的流程示意图;
图10为本申请实施例提供的掩膜板的结构示意图;
图11为本申请实施例提供的第二种显示面板的制作方法的流程图;
图12为本申请实施例提供的第二种显示面板的制作方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本申请实施例提供一种显示面板,所述显示面板包括平面显示区A1和位于所述平面显示区至少一侧的曲面显示区A2,所述显示面板包括发光层140、阴极层110和光耦合层120,所述阴极层110覆盖所述发光层140,所述光耦合层120设置于所述阴极层110上,所述阴极层110和所述光耦合层120中的至少一个在所述曲面显示区A2的厚度与在所述平面显示区A1的厚度不同,所述发光层140在所述曲面显示区A2的发光效率大于在所述平面显示区A1的发光效率,如此可以提高曲面显示区A2的亮度,减少曲面显示区A2与平面显示区A1在大视角下亮度的差异,从而改善显示面板在曲面显示区A2的亮度比平面显示区A1的亮度偏低的问题。
在一实施例中,如图1所示,图1为本申请实施例提供的第一种显示面板的结构示意图,所述显示面板包括显示区和围绕所述显示区的非显示区(图中未示出),所述显示区包括平面显示区A1和位于所述平面显示区A1左右两侧的曲面显示区A2,曲面显示区A2在所述显示面板厚度方向的截面呈弯曲形态。在实际应用中,所述曲面显示区A2不仅限设置于所述平面显示区A1的左右两侧,也可以设置于所述平面显示区A1的上、下、左、右中的任意一侧或者相对两侧,或者设置于平面显示区A1的四周(即所谓的瀑布屏)。
具体的,所述显示面板为顶发射OLED显示面板,所述显示面板还包括衬底基板101、驱动电路层102、阳极层130和发光层140,所述驱动电路层102设置于所述衬底基板101上,所述阳极层130设置于所述驱动电路层102上,并位于所述阴极层110背离所述光耦合层120的一侧,所述发光层140 设置于所述阳极层130与所述阴极层110之间。所述阳极层130为全反射电极结构,所述阴极层110为半透明电极结构,所述阳极层130与所述发光层140以及所述阴极层110构成光学微腔结构。
在一实施例中,所述阳极层130为氧化铟锡、银、氧化铟锡材料由下至上依次层叠所形成的叠层结构,其中位于底层的氧化铟锡的厚度为50纳米,位于中间的银的厚度为150纳米,位于顶层的氧化铟锡的厚度为50纳米。
在实际应用中,氧化铟锡也可以替换为其他透明导电材料,例如氧化铟锌、氧化锌或者氧化镓锌等,银也可以替换为其他导电且不透明的金属材料,例如铜、铝或者钼等,仅需要使阳极层130由透明导电电极和金属电极依次层叠形成的叠层结构即可。位于底层的氧化铟锡的厚度还可以为10纳米、30纳米、70纳米或者100纳米等,仅需要介于10至100纳米之间即可。位于中间的银的厚度还可以为100纳米、130纳米、170纳米或者200纳米等,仅需要介于100至200纳米之间即可。位于顶层的氧化铟锡的厚度还可以为10纳米、30纳米、70纳米或者100纳米等,仅需要介于10至100纳米之间即可。
进一步的,所述阴极层110在所述曲面显示区A2的厚度小于或等于所述阴极层110在所述平面显示区A1的厚度。
在一实施例中,如图1所示,所述阴极层110在所述曲面显示区A2的厚度小于所述阴极层110在所述平面显示区A1的厚度,如此可以减弱曲面显示区A2中微腔结构的微腔效应,使得曲面显示区A2的微腔效应弱于平面显示区A1的微腔效应,以此提高所述发光层140在曲面显示区A2的发光效率,使得发光层140在曲面显示区A2的发光效率大于在平面显示区A1的发光效率,从而有利于提升曲面显示区A2在大视角下的亮度。同时,阴极层110的透射率与阴极层110的厚度成反比,如此还可以使得所述阴极层110在曲面显示区A2的透射率大于阴极层110在平面显示区A1的透射率,以此进一步提升显示面板在曲面显示区A2的亮度,从而改善显示面板在曲面显示区A2的亮度比平面显示区A1的亮度偏低的问题。
结合图2和表1,图2为本申请实施例提供的曲面显示区在不同阴极层厚度以及不同观测角度下的仿真亮度曲线图,表1为曲面显示区在不同阴极层厚度下的仿真亮度值表,观测角度为观测视角与面板法线的夹角。本实验中光耦 合层120在曲面显示区A2的厚度为固定值150纳米,本实验分为三组对照组,分别为:第一组L1,阴极层110在曲面显示区A2的厚度为13纳米;第二组L2,阴极层110在曲面显示区A2的厚度为10纳米;第三组L3,阴极层110在曲面显示区A2的厚度为8纳米。
请参阅图2,观测角度由30°至70°变化的过程中,随着观测角度的逐渐增大,三组对照实验的亮度均逐渐减小,并且第一组L1的亮度始终小于第二组L2的亮度,第二组L2的亮度始终小于第三组L3的亮度。请参阅表1,当观测角度为50°时,第一组L1的亮度为3300cd/m 2,第二组L2的亮度为4180cd/m 2,第三组L3的亮度为4750cd/m 2。由此可知,阴极层110在曲面显示区A2的厚度越小,曲面显示区A2亮度越大。
曲面显示区的阴极层厚度/nm 亮度(观测角度50°)/cd/m 2
13 3300
10 4180
8 4750
表1.曲面显示区在不同阴极层厚度下的仿真亮度值表
进一步的,所述阴极层110在所述平面显示区A1的厚度与所述阴极层110在所述曲面显示区A2的厚度之差大于或等于2纳米且小于或等于10纳米。
在一实施例中,所述阴极层110在所述平面显示区A1的厚度与所述阴极层110在所述曲面显示区A2的厚度之差为6纳米。在实际应用中,所述阴极层110在所述平面显示区A1的厚度与所述阴极层110在所述曲面显示区A2的厚度之差不仅限于上述的6纳米,也可以为2纳米、5纳米、7纳米或者10纳米等,仅需要介于2纳米至10纳米之间即可。
在一实施例中,所述阴极层110对应所述曲面显示区A2的部分设置有凹槽113。如图1所示,所述阴极层110一体成型,所述阴极层110在位于平面显示区A1两侧的两个所述曲面显示区A2的部分设置有凹槽113,凹槽113的开口面积与曲面显示区A2的面积相等,如此使得阴极层110在曲面显示区A2的厚度小于在平面显示区A1的厚度。
具体的,所述凹槽113在所述显示面板的厚度方向上的深度可以为6纳米。 在实际应用中,所述凹槽113在所述显示面板的厚度方向上的深度不仅限于6纳米,还可以为2纳米、5纳米、7纳米或者10纳米等,仅需要介于2纳米至10纳米之间即可。
在一实施例中,如图3所示,图3为本申请实施例提供的第二种显示面板的结构示意图,所述阴极层110包括第一阴极层111和第二阴极层112,所述第一阴极层111设置于所述平面显示区A1和所述曲面显示区A2,所述第二阴极层112位于所述第一阴极层111与所述光耦合层120之间,并且设置于所述平面显示区A1,所述第一阴极层111和所述第二阴极层112分别采用两道蒸镀工艺制备而成。
在一实施例中,所述第一阴极层111在所述平面显示区A1和所述曲面显示区A2的厚度均相等,所述第二阴极层112在所述平面显示区A1内的厚度均相等,其中所述第一阴极层111的厚度为14纳米,所述第二阴极层112的厚度为6纳米。如此,可以避免由于第一阴极层111的厚度过薄导致第一阴极层111的电阻过大,影响阴极层110的导电效果。同时,还可以避免由于第二阴极层112的厚度过大导致阴极层110的透过率降低,影响平面显示区A1的显示效果。
在实际应用中,所述第一阴极层111的厚度不仅限于上述的14纳米,也可以为8纳米、10纳米、12纳米、16纳米、18纳米或者20纳米等,仅需要介于8至20纳米之间即可。所述第二阴极层112的厚度也不仅限于上述的6纳米,也可以为2纳米、4纳米、8纳米或者10纳米等,仅需要介于2至10纳米之间即可。
进一步的,所述第一阴极层111的材料包括镱、钙、镁和银中的至少一种,所述第二阴极层112的材料包括镱、钙、镁和银中的至少一种。
在一实施例中,所述第一阴极层111的材料为摩尔比为10:1的银镁合金,通过将性质活泼的低功函数的金属镁和化学性能稳定的高功函数的金属银一起蒸镀形成第一阴极层,不仅可以在发光层140上形成稳定坚固的合金电极,还可以提高OLED器件的量子效率和稳定性。所述第二阴极层112与所述第一阴极层111的材料相同,也为摩尔比为10:1的银镁合金。在实际应用中,所述第一阴极层111和所述第二阴极层112的材料不仅限于上述的银镁合金, 所述第一阴极层111的材料可以包括镱、钙、镁和银中的至少一种,所述第二阴极层112的材料也可以包括镱、钙、镁和银中的至少一种,所述第一阴极层111与所述第二阴极层112的材料可以相同,也可以不同。
在一实施例中,所述第一阴极层111与所述第二阴极层112的材料不同,并且所述第一阴极层111的折射率小于所述第二阴极层112的折射率,例如第一阴极层111可以采用银镁合金,第二阴极层112可以采用银或者其他折射率较大的金属材料,如此可以避免发光层140发出的光线在从第一阴极层111传播至第二阴极层112中发生全反射,从而保证显示面板在平面显示区A1的亮度以及显示效果。在实际应用中,所述第一阴极层111的折射率也可以大于或等于所述第二阴极层112的折射率。
进一步的,所述光耦合层120在所述曲面显示区A2的厚度大于或等于所述光耦合层120在所述平面显示区A1的厚度。
在一实施例中,如图1和图3所示,所述光耦合层120在所述曲面显示区A2的厚度与所述光耦合层120在所述平面显示区A1的厚度相等。
在一实施例中,如图4所示,图4为本申请实施例提供的第三种显示面板的结构示意图,与图1所示的第一种显示面板和图3所示第二种显示面板的结构不同的是,图4所示的第三种显示面板中,所述阴极层110在平面显示区A1和曲面显示区A2的厚度均相等,所述光耦合层120在所述曲面显示区A2的厚度大于所述光耦合层120在所述平面显示区A1的厚度。
结合图5和表2,图5为本申请实施例提供的曲面显示区在不同光耦合层厚度以及不同观测角度下的仿真亮度曲线图,表2为曲面显示区在不同光耦合层厚度下的仿真亮度值表。本实验中,阴极层110在曲面显示区A2的厚度为固定值13纳米,本实验分为四组对照组,分别为:第四组L4,光耦合层120在所述曲面显示区A2的厚度为80纳米;第五组L5,光耦合层120在曲面显示区A2的厚度为100纳米;第六组,光耦合层120在曲面显示区A2的厚度为120纳米;第七组,光耦合层120在曲面显示区A2的厚度为150纳米。
请参阅图5,观测角度由30°至70°变化的过程中,随着观测角度的逐渐增大,四组对照实验的亮度均逐渐减小,当观测视角大于37.5°且小于50°时,光耦合层120的厚度越大,曲面显示区A2的亮度也越大。请参阅表2,当观测 角度为50°时,第四组L4的亮度为2200cd/m 2,第五组L5的亮度为2200cd/m 2,第六组L6的亮度为2500cd/m 2,第七组L7的亮度为3300cd/m 2。由此可知,在大视角的情况下,光耦合层120在曲面显示区A2的厚度越大,曲面显示区A2的亮度也就越大。
曲面显示区的光耦合层的厚度/nm 亮度(观测角度50°)/cd/m 2
80 2200
100 2200
120 2500
150 3300
表2.曲面显示区在不同光耦合层厚度下的仿真亮度值表
进一步的,所述光耦合层120在所述曲面显示区A2的厚度与所述光耦合层120在所述平面显示区A1的厚度之差大于或等于10纳米。
在一实施例中,所述光耦合层120在所述曲面显示区A2的厚度与所述光耦合层120在所述平面显示区A1的厚度之差为20纳米。根据图4和表2可知,若光耦合层120在曲面显示区A2的厚度与光耦合层120在平面显示区A1的厚度之差小于10纳米时,显示面板在曲面显示区A2和平面显示区A1的亮度相等或者差异不大,通过限定所述光耦合层120在所述曲面显示区A2的厚度与所述光耦合层120在所述平面显示区A1的厚度之差为20纳米,可以有效提升显示面板在曲面显示区A2的亮度,从而减小显示面板在曲面显示区A2与平面显示区A1的亮度差异。
在实际应用中所述光耦合层在所述曲面显示区A2的厚度与所述光耦合层120在所述平面显示区A1的厚度之差不仅限于上述的20纳米,也可以为11纳米、15纳米、30纳米等,仅需要大于10纳米即可。
在一实施例中,所述光耦合层120对应所述曲面显示区A的部分在背离所述阴极层110的一侧设置有凸起123。如图4所示,所述光耦合层120一体成型,所述光耦合层120在位于所述平面显示区A1两侧的两个曲面显示区A2的部分背离阴极层110的一侧上均设置有凸起123,凸起123属于光耦合层120的一部分,如此可以使得光耦合层120在曲面显示区A2的厚度大于在 平面显示区A1的厚度。
具体的,在所述显示面板的厚度方向上,所述凸起123的厚度为20纳米。在实际应用中,所述凸起在显示面板的厚度方向上的厚度不仅限于20纳米,也可以为11纳米、15纳米、30纳米等,仅需要大于10纳米即可。
进一步的,所述光耦合层120包括第一光耦合层121和第二光耦合层122,所述第一光耦合层121设置于所述曲面显示区A2,所述第二光耦合层122设置于所述曲面显示区A2和所述平面显示区A1,所述第一光耦合层121设置于所述第二光耦合层122与所述阴极层110之间;或者,所述第一光耦合层121设置于所述第二光耦合层122背离所述阴极层110的一侧。
在一实施例中,如图6所示,图6为本申请实施例提供的第四种显示面板的结构示意图,所述光耦合层120包括第一光耦合层121和第二光耦合层122,所述第一光耦合层121设置于所述曲面显示区A2,所述第二光耦合层122设置于所述平面显示区A1和所述曲面显示区A2,所述第一光耦合层121设置于所述第二光耦合层122与所述阴极层110之间。在实际应用中,所述第一光耦合层121的位置不仅限设置于所述第二光耦合层122与所述阴极层110之间,也可以设置于所述第二光耦合层122背离所述阴极层110的一侧,如此同样可以使得光耦合层120在曲面显示区A2的厚度大于所述光耦合层120在平面显示区A1的厚度。
进一步的,所述第一光耦合层121的厚度大于或等于10纳米且小于或等于60纳米,所述第二光耦合层122的厚度大于或等于50纳米且小于或等于200纳米。
在一实施例中,所述第一光耦合层121的厚度为20纳米,所述第二光耦合层122的厚度为100纳米,所述第二光耦合层122与所述第一光耦合层121的厚度之差为20纳米,根据表2可知,显示面板在曲面显示区A2的亮度大于在平面显示区A1的亮度。在实际应用中,所述第一光耦合层121的厚度不仅限于上述的20纳米,也可以为10纳米、40纳米或者60纳米等,仅需要介于10纳米至60纳米之间即可。所述第二光耦合层122的厚度不仅限于上述的100纳米,也可以为50纳米、80纳米、120纳米、150纳米、180纳米或者200纳米等,仅需要介于50纳米至100纳米之间即可。
进一步的,所述第一光耦合层121的材料和所述第二光耦合层122的材料均为有机小分子空穴传输材料。
在一实施例中,所述第一光耦合层121和所述第二光耦合层122的材料相同,均为NPB。在实际应用中,所述第一光耦合层121和所述第二光耦合层122的材料还可以为2TNATA等有机小分子空穴传输材料。
在一实施例中,所述第一光耦合层121的材料与所述第二光耦合层122的材料不同,并且所述第一光耦合层121的折射率大于所述第二光耦合层122的折射率,使得第一光耦合层121和第二光耦合层122构成折射率渐变的叠构,如此可以减小光线在曲面显示区A2的内反射损耗,增大曲面显示区A2内OLED器件出射光的出射角,从而进一步提升曲面显示区A2大视角下的亮度。在实际应用中,第一光耦合层121的折射率也可以小于或等于所述第二光耦合层122的折射率,此处不做限制。
在一实施例中,所述阴极层110在所述曲面显示区A2的厚度小于所述阴极层110在所述平面显示区A1的厚度,所述光耦合层120在所述曲面显示区A2的厚度大于所述光耦合层120在所述平面显示区A1的厚度。
具体的,如图7所示,图7为本申请实施例提供的第五种显示面板的结构示意图,阴极层110包括第一阴极层111和第二阴极层112,第一阴极层111设置于平面显示区A1和曲面显示区A2,并且位于发光层140上,所述第一阴极层111在所述平面显示区A1和所述曲面显示区A2的厚度相等。第二阴极层112仅设置于曲面显示区A2,并且位于第一阴极层111上,所述第二阴极层112在所述曲面显示区A2的厚度相等。
进一步的,所述第一阴极层111的厚度介于8至20纳米之间,所述第二阴极层112的厚度介于2至10纳米之间。所述第一阴极层111和所述第二阴极层112膜层的厚度可以与图3所示的第一种显示面板中的所述第一阴极层111和所述第二阴极层112的厚度相等,此处不再赘述。
光耦合层120包括第一光耦合层121和第二光耦合层122,第一光耦合层121仅设置于曲面显示区A2,并且位于第一阴极层111上,第一光耦合层121在曲面显示区A2的厚度相等。第二光耦合层122设置于平面显示区A1和曲面显示区A2,并且覆盖第二阴极层112和第一光耦合层121,第二光耦合层 122在平面显示区A1和曲面显示区A2的厚度均相等。如此,通过减薄曲面显示区A2中阴极层110的厚度,并增加曲面显示区A2中光耦合层120的厚度,减弱曲面显示区A2中微腔结构的微腔效应,以此提升曲面显示区A2在大视角下的亮度,从而可以改善曲面显示区A2相较于平面显示区A1亮度偏低的问题。
进一步的,所述第一光耦合层121的厚度介于10至60纳米之间,所述第二光耦合层122的厚度介于50至200纳米之间。所述第一光耦合层121和第二光耦合层122的厚度可以与图3所示的第二种显示面板中的所述第一光耦合层121和第二光耦合层122的厚度相等,此处不再赘述。
需要说明的是,图3以及图6所示的显示面板中的第一阴极层111、第二阴极层112、第一光耦合层121以及第二光耦合层122的材料同样适用于图7所示的第三种显示面板中的第一阴极层111、第二阴极层112、第一光耦合层121以及第二光耦合层122,此处不再赘述。
本申请实施例还提供一种显示面板的制作方法,下面结合图8和图9进行详细说明,其中图8为本申请实施例提供的第一种显示面板的制作方法的流程图,图9为本申请实施例提供的第一种显示面板的制作方法的流程示意图,所述制作方法包括:
步骤S10:提供衬底基板101,所述衬底基板101上形成有驱动电路层102和位于所述驱动电路层上的阳极层130,采用第一掩膜板21在所述阳极层130上沉积发光层140。
具体的,如图10所示,图10为本申请实施例提供的掩膜板的结构示意图,所述第一掩膜板21包括透光区211,所述透光区211对应图9中显示面板的平面显示区A1和曲面显示区A2。步骤S10中,发光层140分布于平面显示区A1和曲面显示区A2,且在平面显示区A1和曲面显示区A2的厚度相等。
步骤S20:采用第一掩膜板21在所述发光层140上沉积第一阴极层111。
具体的,步骤S20中,采用第一掩膜板21在发光层140上沉积第一阴极层111,第一阴极层111设置于平面显示区A1和曲面显示区A2,且在平面显示区A1和曲面显示区A2的厚度相等。
步骤S30:采用第二掩膜板22在所述第一阴极层111上沉积第二阴极层 112。
具体的,如图10所示,所述第二掩膜板22包括第二透光区221,所述第二透光区221与图9中平面显示区A1对应。所述步骤S30中,通过第二掩膜板22沉积第二阴极层112,使得第二阴极层112仅形成于平面显示区A1,从而使得曲面显示区A2中阴极层110的厚度小于平面显示区A1中阴极层110的厚度。
步骤S40:采用第三掩膜板23在所述第一阴极层111上沉积第一光耦合层121。
具体的,如图10所示,所述第三掩膜板23包括第三透光区231,所述第三透光区231与图9中曲面显示区A2对应。所述步骤S40中,采用第三掩膜板23在所述第一阴极层111上沉积第一光耦合层121,使得第一光耦合层121仅形成于曲面显示区A2。
步骤S50:采用第二掩膜板22在所述第二阴极层112和所述第一光耦合层121上沉积第二光耦合层122。
具体的,步骤S40中,采用第二掩膜板22在所述第二阴极层112和所述第一光耦合层121上沉积第二光耦合层122,使得平面显示区A1和曲面显示区A2均形成有第二光耦合层,从而使得曲面显示区A2的光耦合层120的厚度大于平面显示区A1的光耦合层120的厚度。
本申请实施例提供的制作方法中,所述第一阴极层111、第二阴极层112、第一光耦合层121以及第二光耦合层122各自的材料以及膜层厚度可以与图9所示的第三种显示面板中的所述第一阴极层111、第二阴极层112、第一光耦合层121和第二光耦合层122材料和厚度相同,此处不再赘述。
通过本申请实施例提供的制作方法,减薄曲面显示区A2中阴极层110的厚度,并增加曲面显示区A2中光耦合层120的厚度,减弱曲面显示区A2中微腔结构的微腔效应,以此提升曲面显示区A2在大视角下的亮度,从而可以改善曲面显示区A2相较于平面显示区A1亮度偏低的问题。
本申请实施例还提供一种显示面板的制作方法,下面结合图11和图12进行详细说明,其中图11为本申请实施例提供的第二种显示面板的制作方法的流程图,图12为本申请实施例提供的第二种显示面板的制作方法的流程示 意图,所述制作方法包括:
步骤S10:提供衬底基板101,所述衬底基板101上形成有驱动电路层102和位于所述驱动电路层上的阳极层130,采用第一掩膜板21在所述阳极层130上沉积发光层140。
具体的,如图10所示,所述第一掩膜板21包括透光区211,所述透光区211对应图12中显示面板的平面显示区A1和曲面显示区A2。步骤S10中,发光层140分布于平面显示区A1和曲面显示区A2,且在平面显示区A1和曲面显示区A2的厚度相等。
步骤S20:采用第一掩膜板21在所述发光层140上沉积第一阴极层111。
具体的,步骤S20中,采用第一掩膜板21在发光层140上沉积第一阴极层111,第一阴极层111设置于平面显示区A1和曲面显示区A2,且在平面显示区A1和曲面显示区A2的厚度相等。
步骤S30:采用第二掩膜板22在所述第一阴极层111上沉积第二阴极层112。
具体的,如图10所示,所述第二掩膜板22包括第二透光区221,所述第二透光区221与图12中平面显示区A1对应。所述步骤S30中,通过第二掩膜板22沉积第二阴极层112,使得第二阴极层112仅形成于平面显示区A1,从而使得曲面显示区A2中阴极的厚度小于平面显示区A1中阴极的厚度。
步骤S40:采用第一掩膜板21在所述第一阴极层111和第二阴极层112上沉积光耦合层120。
具体的。所述步骤S40中,采用第一掩膜板21在所述第一阴极层111和第二阴极层112上沉积光耦合层120,使得平面显示区A1和曲面显示区A2均形成有光耦合层120,且光耦合层120在平面显示区A1和曲面显示区A2的厚度相等。
本申请实施例提供的制作方法中,所述第一阴极层111、第二阴极层112以及光耦合层120各自的材料以及膜层厚度可以与图1所示的第一种显示面板中的所述第一阴极层111、第二阴极层112以及光耦合层120材料和厚度相同,此处不再赘述。
通过本申请实施例提供的制作方法,减薄曲面显示区A2中阴极层110的 厚度,并增加曲面显示区A2中光耦合层120的厚度,减弱曲面显示区A2中微腔结构的微腔效应,提高所述发光层140在曲面显示区A2的发光效率,使得发光层140在曲面显示区A2的发光效率大于在平面显示区A1的发光效率,以此提升曲面显示区A2在大视角下的亮度,从而可以改善曲面显示区A2相较于平面显示区A1亮度偏低的问题。
本申请实施例还提供一种显示装置,所述显示装置包括显示面板,所述显示面板可以为上述实施例提供的显示面板。本申请实施例提供的显示装置中的显示面板能够实现与上述实施例中显示面板相同的技术效果,此处不再赘述。
本申请实施例提供一种显示面板及其制作方法、显示装置,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括发光层、阴极层和光耦合层,阴极层覆盖发光层,所述光耦合层设置于所述阴极层上,所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率,以此提升曲面显示区的亮度,从而改善显示面板在曲面显示区的亮度比平面显示区的亮度偏低的问题。
综上所述,虽然本申请以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为基准。

Claims (20)

  1. 一种显示面板,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括:
    发光层;
    阴极层,覆盖所述发光层;以及
    光耦合层,设置于所述阴极层上;其中:
    所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率。
  2. 如权利要求1所述的显示面板,其中,所述阴极层在所述曲面显示区的厚度小于或等于所述阴极层在所述平面显示区的厚度。
  3. 如权利要求2所述的显示面板,其中,所述阴极层在所述平面显示区的厚度与所述阴极层在所述曲面显示区的厚度之差大于或等于2纳米且小于或等于10纳米。
  4. 如权利要求2所述的显示面板,其中,所述阴极层对应所述曲面显示区的部分设置有凹槽。
  5. 如权利要求2所述的显示面板,其中,所述阴极层包括:
    第一阴极层,所述第一阴极层设置于所述平面显示区和所述曲面显示区;
    第二阴极层,所述第二阴极层位于所述第一阴极层与所述光耦合层之间,并且设置于所述平面显示区;其中:
    所述第一阴极层的厚度大于或等于8纳米且小于或等于20纳米,所述第二阴极层的厚度大于或等于2纳米且小于或等于10纳米。
  6. 如权利要求5所述的显示面板,其中,所述第一阴极层的材料与所述第二阴极层的材料相同。
  7. 如权利要求5所述的显示面板,其中,所述第一阴极层的材料与所述第二阴极层的材料不同,所述第一阴极层的折射率小于或等于所述第二阴极层的折射率;或者,所述第一阴极层的折射率大于或等于所述第二阴极层的折射率。
  8. 如权利要求6或7所述的显示面板,其中,所述第一阴极层的材料包括镱、钙、镁和银中的至少一种,所述第二阴极层的材料包括镱、钙、镁和银中 的至少一种。
  9. 如权利要求1所述的显示面板,其中,所述光耦合层在所述曲面显示区的厚度大于或等于所述光耦合层在所述平面显示区的厚度。
  10. 如权利要求9所述的显示面板,其中,所述光耦合层在所述曲面显示区的厚度与所述光耦合层在所述平面显示区的厚度之差大于或等于10纳米。
  11. 如权利要求9所述的显示面板,其中,所述光耦合层对应所述曲面显示区的部分在背离所述阴极层的一侧设置有凸起。
  12. 如权利要求9所述的显示面板,其中,所述光耦合层包括:
    第一光耦合层,所述第一光耦合层设置于所述曲面显示区;
    第二光耦合层,所述第二光耦合层设置于所述曲面显示区和所述平面显示区;其中:
    所述第一光耦合层设置于所述第二光耦合层与所述阴极层之间;或者,所述第一光耦合层设置于所述第二光耦合层背离所述阴极层的一侧。
  13. 如权利要求12所述的显示面板,其中,所述第一光耦合层的厚度大于或等于10纳米且小于或等于60纳米,所述第二光耦合层的厚度大于或等于50纳米且小于或等于200纳米。
  14. 如权利要求12所述的显示面板,其中,所述第一光耦合层的材料与所述第二光耦合层的材料相同。
  15. 如权利要求12所述的显示面板,其中,所述第一光耦合层的材料与所述第二光耦合层的材料不同,所述第一光耦合层的折射率大于或等于所属第二光耦合层的折射率;或者,所述第一光耦合层的折射率小于或等于所述第二光耦合层的折射率。
  16. 如权利要求14或15所述的显示面板,其中,所述第一光耦合层的材料和所述第二光耦合层的材料均为有机小分子空穴传输材料。
  17. 一种显示装置,包括显示面板,所述显示面板包括平面显示区和位于所述平面显示区至少一侧的曲面显示区,所述显示面板包括:
    发光层;
    阴极层,覆盖所述发光层;以及
    光耦合层,设置于所述阴极层上;其中:
    所述阴极层和所述光耦合层中的至少一个在所述曲面显示区的厚度与在所述平面显示区的厚度不同,所述发光层在所述曲面显示区的发光效率大于在所述平面显示区的发光效率。
  18. 如权利要求17所述的显示装置,其中,所述阴极层在所述曲面显示区的厚度小于或等于所述阴极层在所述平面显示区的厚度。
  19. 如权利要求18所述的显示装置,其中,所述阴极层在所述平面显示区的厚度与所述阴极层在所述曲面显示区的厚度之差大于或等于2纳米且小于或等于10纳米。
  20. 如权利要求18所述的显示装置,其中,所述阴极层对应所述曲面显示区的部分设置有凹槽。
PCT/CN2021/117259 2021-05-25 2021-09-08 显示面板及显示装置 WO2022247056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/600,387 US20240049563A1 (en) 2021-05-25 2021-09-08 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110571823.X 2021-05-25
CN202110571823.XA CN113270465B (zh) 2021-05-25 2021-05-25 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022247056A1 true WO2022247056A1 (zh) 2022-12-01

Family

ID=77232780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117259 WO2022247056A1 (zh) 2021-05-25 2021-09-08 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240049563A1 (zh)
CN (1) CN113270465B (zh)
WO (1) WO2022247056A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270465B (zh) * 2021-05-25 2023-05-12 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550610A (zh) * 2018-05-18 2018-09-18 京东方科技集团股份有限公司 显示面板、其指纹识别方法、其程序解锁方法及显示装置
US20190081255A1 (en) * 2017-09-12 2019-03-14 Samsung Display Co., Ltd. Display device
CN110352494A (zh) * 2019-05-27 2019-10-18 京东方科技集团股份有限公司 显示面板和显示装置
CN113270465A (zh) * 2021-05-25 2021-08-17 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482038B (zh) * 2017-08-02 2020-11-03 京东方科技集团股份有限公司 Oled显示面板及其制作方法、oled显示装置
CN108053762B (zh) * 2017-12-06 2020-12-01 京东方科技集团股份有限公司 一种柔性显示面板、其制备方法及显示装置
CN210073852U (zh) * 2019-05-15 2020-02-14 昆山国显光电有限公司 显示面板和显示装置
US11659726B2 (en) * 2019-05-24 2023-05-23 Chengdu Boe Optoelectronics Technology Co., Ltd. Organic electroluminescence display panel, color shift reducing method and manufacturing method thereof and display device
CN110444679B (zh) * 2019-06-27 2021-12-07 昆山国显光电有限公司 一种显示面板和显示装置
CN110323264B (zh) * 2019-07-17 2021-08-27 昆山国显光电有限公司 一种显示面板和显示装置
CN110610973A (zh) * 2019-09-20 2019-12-24 昆山国显光电有限公司 一种显示面板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081255A1 (en) * 2017-09-12 2019-03-14 Samsung Display Co., Ltd. Display device
CN108550610A (zh) * 2018-05-18 2018-09-18 京东方科技集团股份有限公司 显示面板、其指纹识别方法、其程序解锁方法及显示装置
CN110352494A (zh) * 2019-05-27 2019-10-18 京东方科技集团股份有限公司 显示面板和显示装置
CN113270465A (zh) * 2021-05-25 2021-08-17 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20240049563A1 (en) 2024-02-08
CN113270465B (zh) 2023-05-12
CN113270465A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
JP4951130B2 (ja) 有機発光素子及びその製造方法
WO2018113018A1 (zh) Oled显示面板及其制作方法
US20210367186A1 (en) Oled display panel and manufacturing method
JP4769068B2 (ja) 有機発光素子及びその製造方法
CN109256491B (zh) 显示面板、显示模组及电子装置
CN105789260B (zh) 一种透明显示面板及其制备方法
US20210336226A1 (en) Display panel and display device
US10461279B2 (en) Top-OLEDs with multilayer output coupling unit and flat panel display devices using the same
WO2020248348A1 (zh) 一种显示面板及其显示装置
US20030102801A1 (en) Lighting device with a reflecting layer and liquid crystal display device
WO2022247056A1 (zh) 显示面板及显示装置
CN105826356B (zh) 一种高开口率的显示面板及其制作方法
WO2021031517A1 (zh) 一种显示面板及其显示装置
US20230032598A1 (en) Display panel, display apparatus, and manufacturing method for display panel
Amano et al. 49.4 L: Late‐News Paper: Highly Transmissive One Side Emission OLED Panel for Novel Lighting Applications
CN106783924B (zh) 一种oled显示面板及其制作方法
CN109638037B (zh) 一种全彩化显示模块及其制作方法
US20160312964A1 (en) Surface Emitting Unit
US20200168833A1 (en) Organic light-emitting device and electrode thereof
CN113764489B (zh) 阵列基板、阵列基板的制作方法以及显示装置
US11430969B2 (en) Electroluminescent component having metal layer disposed between two of optical coupling layers and display device having the same
WO2022237197A1 (zh) 阵列基板及显示面板
US10923673B2 (en) Organic light emitting panel, manufacturing method thereof, and organic light emitting device
KR101948751B1 (ko) 발광다이오드
WO2021017312A1 (zh) 一种显示面板及其显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17600387

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942623

Country of ref document: EP

Kind code of ref document: A1