WO2018107532A1 - 双面oled显示器件及其制作方法 - Google Patents

双面oled显示器件及其制作方法 Download PDF

Info

Publication number
WO2018107532A1
WO2018107532A1 PCT/CN2016/113026 CN2016113026W WO2018107532A1 WO 2018107532 A1 WO2018107532 A1 WO 2018107532A1 CN 2016113026 W CN2016113026 W CN 2016113026W WO 2018107532 A1 WO2018107532 A1 WO 2018107532A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
cathode
anode
transparent
covering
Prior art date
Application number
PCT/CN2016/113026
Other languages
English (en)
French (fr)
Inventor
徐超
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/508,107 priority Critical patent/US20180240997A1/en
Publication of WO2018107532A1 publication Critical patent/WO2018107532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a double-sided OLED display device and a method of fabricating the same.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • OLE display device has the characteristics of self-illumination, high brightness, fast response, wide viewing angle, low power consumption and flexible display. It is known as “dream display” and has been favored by major display manufacturers. It has become a display technology. The main force of the third generation of display devices in the field.
  • the OLED display device generally includes a substrate, an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode which are sequentially stacked, and the light-emitting principle is driven by a certain voltage, and electrons and holes are injected from the cathode and the anode to the electron transport layer, respectively. And the hole transport layer, and then migrate to the light-emitting layer, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • OLED display devices compared to LCD devices is the ability to fabricate large, ultra-thin, flexible, transparent, and double-sided displays.
  • the object of the present invention is to provide a double-sided OLED display device, which can solve the problems that the existing double-sided OLED display device has a relatively thick structure, a complicated process, and a high manufacturing cost.
  • Another object of the present invention is to provide a method for fabricating a double-sided OLED display device.
  • the double-sided OLED display device manufactured by the method has a light and thin structure, a simple process, and a relatively low manufacturing cost.
  • the present invention first provides a double-sided OLED display device including an array a column substrate, a transparent anode covering the array substrate, a reflective anode covering a portion of the transparent anode, a hole transport layer covering the reflective anode and the transparent anode, a light-emitting layer covering the hole transport layer, and a cover An electron transport layer of the light emitting layer, a transparent cathode covering the electron transport layer, a reflective cathode covering a portion of the transparent cathode, and an encapsulation layer covering the transparent cathode and the reflective cathode;
  • the reflective anode and the reflective cathode collectively cover the entire light-emitting layer, and the reflective anode and the reflective cathode partially overlap at least in a direction perpendicular to the array substrate.
  • the reflective anode and the reflective cathode respectively cover both sides of the light-emitting layer, and the reflective anode and the reflective cathode have no overlap in a vertical direction perpendicular to the array substrate.
  • the reflective anode covers 1/2 to 3/4 of the light-emitting layer and has a thickness of 20 nm to 100 nm; and the reflective cathode covers 1/4 to 1/2 of the light-emitting layer and has a thickness of 20 nm to 100 nm.
  • the transparent anode adopts a material having high transmittance, high electrical conductivity and high work function;
  • the reflective anode adopts a material having high reflectivity, high electrical conductivity, and high work function;
  • the transparent cathode adopts high wear A material having low permeability, high electrical conductivity, and low work function;
  • the reflective cathode is made of a material having high reflectivity, high electrical conductivity, and low work function.
  • the transparent anode is made of indium tin oxide, indium zinc oxide, aluminum-doped zinc oxide, or indium zinc tin oxide;
  • the reflective anode is made of silver, gold, or platinum;
  • the transparent cathode is made of lanthanum hexaboride or a combination of magnesium and silver; the reflective cathode is made of aluminum or magnesium.
  • the invention also provides a method for manufacturing a double-sided OLED display device, comprising the following steps:
  • Step S1 providing an array substrate, and preparing a transparent anode covering the array substrate;
  • Step S2 providing a first mask, and preparing a reflective anode covering a part of the transparent anode through the first mask;
  • Step S3 preparing a hole transport layer covering the reflective anode and the transparent anode, a light-emitting layer covering the hole transport layer, and an electron transport layer covering the light-emitting layer;
  • Step S4 preparing a transparent cathode covering the electron transport layer
  • Step S5 providing a second mask, and preparing a reflective cathode covering a part of the transparent cathode through the second mask;
  • the reflective anode and the reflective cathode collectively cover the entire light-emitting layer, and the reflective anode and the reflective cathode partially overlap at least in a direction perpendicular to the array substrate;
  • Step S6 encapsulating the transparent cathode and the reflective cathode to prepare an encapsulation layer covering the transparent cathode and the reflective cathode.
  • the transparent anode employs a material having high transmittance, high electrical conductivity, and high work function; the reflective anode is made of a material having high reflectivity, high electrical conductivity, and high work function.
  • the transparent anode is made of indium tin oxide, indium zinc oxide, aluminum-doped zinc oxide, or indium zinc tin oxide;
  • the reflective anode is made of silver, gold, or platinum.
  • the transparent cathode employs a material having high transmittance, high electrical conductivity, and low work function; the reflective cathode is made of a material having high reflectivity, high electrical conductivity, and low work function.
  • the transparent cathode is made of lanthanum hexaboride or a combination of magnesium and silver; the reflective cathode is made of aluminum or magnesium.
  • the invention also provides a method for manufacturing a double-sided OLED display device, comprising the following steps:
  • Step S1 providing an array substrate, and preparing a transparent anode covering the array substrate;
  • Step S2 providing a first mask, and preparing a reflective anode covering a portion of the transparent anode through the first mask;
  • Step S3 sequentially preparing a hole transport layer covering the reflective anode and the transparent anode, a light emitting layer covering the hole transport layer, and an electron transport layer covering the light emitting layer;
  • Step S4 preparing a transparent cathode covering the electron transport layer
  • Step S5 providing a second mask, and preparing a reflective cathode covering a part of the transparent cathode through the second mask;
  • the reflective anode and the reflective cathode collectively cover the entire light-emitting layer, and the reflective anode and the reflective cathode partially overlap at least in a direction perpendicular to the array substrate;
  • Step S6 performing encapsulation on the transparent cathode and the reflective cathode to prepare an encapsulation layer covering the transparent cathode and the reflective cathode;
  • the transparent anode adopts a material having high transmittance, high electrical conductivity and high work function
  • the reflective anode adopts a material having high reflectivity, high electrical conductivity, and high work function
  • the transparent cathode adopts a material having high transmittance, high electrical conductivity and low work function
  • the reflective cathode adopts a material having high reflectivity, high electrical conductivity, and low work function
  • the present invention provides a double-sided OLED display device by providing a transparent anode and a reflective anode covering a portion of a transparent anode, and a transparent cathode and a reflective cathode covering a portion of the transparent cathode, the reflective anode and the reflective cathode
  • the light-emitting layer is entirely covered, and the reflective anode and the reflective cathode partially overlap at least in a direction perpendicular to the array substrate, so that the light emitted by the light-emitting layer can be emitted from the transparent anode side.
  • the double-sided display is realized by emitting from the side of the transparent cathode, which can solve the problem that the existing double-sided OLED display device has a relatively thick structure, a complicated process, and a high manufacturing cost.
  • the invention provides a method for fabricating a double-sided OLED display device, wherein a reflective anode covering a portion of a transparent anode is prepared through a first mask, and a reflective cathode covering a portion of a transparent cathode is prepared through the second mask.
  • the light emitted from the light-emitting layer can be emitted from the transparent anode side or from the transparent cathode side, thereby realizing double-sided display, and the double-sided OLED display device manufactured by the method is light in structure and process. Simple, relatively low production costs.
  • FIG. 1 is a schematic cross-sectional structural view of a double-sided OLED display device of the present invention
  • FIG. 2 is a flow chart of a method of fabricating a double-sided OLED display device of the present invention
  • step S2 of a method for fabricating a double-sided OLED display device of the present invention
  • step S3 is a schematic diagram of step S3 of the method for fabricating the double-sided OLED display device of the present invention.
  • step S4 of a method for fabricating a double-sided OLED display device of the present invention
  • FIG. 6 is a schematic diagram of step S5 of the method for fabricating the double-sided OLED display device of the present invention.
  • the present invention firstly provides a double-sided OLED display device comprising an array substrate 1, a transparent anode 21 covering the array substrate 1, a reflective anode 22 covering a portion of the transparent anode 21, and a reflective anode covering the reflective anode.
  • a reflective cathode 62 covering a portion of the transparent cathode 61 and an encapsulation layer 7 covering the transparent cathode 61 and the reflective cathode 62.
  • the reflective anode 22 and the reflective cathode 62 collectively cover the light-emitting layer 4 to avoid light leakage; and the reflective anode 22 and the reflective cathode 62 partially overlap at least in a direction perpendicular to the array substrate 1. To achieve double-sided display.
  • the reflective anode 22 and the reflective cathode 62 are respectively disposed to cover both sides of the light-emitting layer 4, and the reflective anode 22 and the reflective cathode 62 are perpendicular. There is no overlap in the vertical direction of the array substrate 1; preferably, the reflective anode 22 covers 1/2 to 3/4 of the light-emitting layer 4 and has a thickness of 20 nm to 100 nm; the reflective cathode 62 covers the The light-emitting layer 4 has a thickness of 1/4 to 1/2 and a thickness of 20 nm to 100 nm.
  • the array substrate 1 is provided with scan lines, data lines, and a plurality of pixel driving unit circuits (including switching thin film transistors, driving thin film transistors, storage capacitors, and the like) arranged in an array, which are The technology is no different, and the narrative is not discussed here.
  • the transparent anode 21 is made of a material having high transmittance, high electrical conductivity, and high work function, such as Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and aluminum doping oxidation. Aluminium Doped Zinc Oxide (AZO), or Indium Zinc Tin Oxide (IZTO), etc.; the reflective anode 22 is made of a material having high reflectivity, high electrical conductivity, and a high work function, such as Silver (Ag), gold (Au), or platinum (Pt).
  • the transparent cathode 61 is made of a material having high transmittance, high electrical conductivity, and a low work function, such as lanthanum hexaboride (LaB 6 ), or a combination of magnesium and silver (Mg/Ag), etc.;
  • the cathode 62 is made of a material having high reflectance, high electrical conductivity, and a low work function, such as aluminum (Al), or magnesium (Mg).
  • the encapsulation layer 7 is encapsulated in a glass package or a thin film.
  • the double-sided OLED display device operates by driving electrons from the transparent cathode 61 and the reflective cathode 62 through the electron transport layer 5 to the light-emitting layer 4, and the holes pass through the holes from the transparent anode 21 and the reflective anode 22, under a certain voltage.
  • the transport layer 3 migrates to the light-emitting layer 4, electrons and holes meet in the light-emitting layer 4, forming exciton-excited light-emitting molecules in the light-emitting layer 4, and the light-emitting layer 4 emits visible light; and the reflective anode 22 reflects light emitted from the light-emitting layer 4 to
  • the transparent cathode 61 is emitted from one side, and the reflective cathode 62 reflects the light emitted from the light-emitting layer 4 to the transparent anode 21 side, thereby realizing double-sided display.
  • the double-sided OLED display device of the present invention has a light and thin structure, a simple process, and a relatively low manufacturing cost.
  • the present invention further provides a method for fabricating a double-sided OLED display device, including the following steps:
  • step S1 the array substrate 1 is provided, and the transparent anode 21 covering the array substrate 1 is prepared by a process such as sputtering, evaporation, spin coating, or printing.
  • the array substrate 1 is provided with scan lines, data lines, and a plurality of pixel driving unit circuits (including switching thin film transistors, driving thin film transistors, storage capacitors, and the like) arranged in an array, which are The technology is no different, and the narrative is not discussed here.
  • the transparent anode 21 is made of a material having high transmittance, high electrical conductivity, and a high work function, such as ITO, IZO, AZO, IZTO, and the like.
  • Step S2 as shown in FIG. 3, a first mask (not shown) is provided, and vapor deposition is performed through the first mask to prepare a reflective anode 22 covering a portion of the transparent anode 21.
  • the reflective anode 22 is made of a material having high reflectivity, high electrical conductivity, and a high work function, such as Ag, Au, or Pt.
  • Step S3 as shown in FIG. 4, a hole transport layer 3 covering the reflective anode 22 and the transparent anode 21 is sequentially prepared by a process such as sputtering, evaporation, spin coating, or printing, and the hole is covered.
  • Step S4 as shown in FIG. 5, a transparent cathode 61 covering the electron transport layer 5 is prepared by a process such as sputtering, evaporation, spin coating, or printing.
  • the transparent cathode 61 is made of a material having high transmittance, high electrical conductivity, and a low work function, such as LaB 6 , or Mg/Ag, or the like.
  • Step S5 as shown in FIG. 6, a second mask (not shown) is provided, and vapor deposition is performed through the second mask to prepare a reflective cathode 62 covering a portion of the transparent cathode 61.
  • the reflective anode 22 and the reflective cathode 62 together cover the luminescent layer 4 to avoid light leakage; and the reflective anode 22 and the reflective cathode 62 are perpendicular to the array substrate 1 At most partial overlap for double-sided display. Further, in order to achieve the best double-sided display effect and improve the light extraction rate, the reflective anode 22 and the reflective cathode 62 are respectively disposed to cover both sides of the light-emitting layer 4, and the reflective anode 22 and the reflective cathode 62 are perpendicular.
  • the reflective anode 22 covers 1/2 to 3/4 of the light-emitting layer 4 and has a thickness of 20 nm to 100 nm; the reflective cathode 62 covers the The light-emitting layer 4 has a thickness of 1/4 to 1/2 and a thickness of 20 nm to 100 nm.
  • the reflective cathode 62 is made of a material having high reflectance, high electrical conductivity, and a low work function, such as Al, or Mg, or the like.
  • Step S6 referring to FIG. 1, the transparent cathode 61 and the reflective cathode 62 are packaged to form an encapsulation layer 7 covering the transparent cathode 61 and the reflective cathode 62.
  • the encapsulation layer 7 is packaged in a glass package or a thin film.
  • the method for fabricating the above OLED display device produces a reflective anode 22 covering a portion of the transparent anode 21 through a first mask, and a reflective cathode 62 covering a portion of the transparent cathode 61 through the second mask, enabling the reflective anode 22 to be
  • the light emitted from the light-emitting layer 4 is reflected to the side of the transparent cathode 61, and the reflective cathode 62 reflects the light emitted from the light-emitting layer 4 to the side of the transparent anode 21, thereby realizing double-sided display.
  • the double-sided OLED display device produced by the method has the advantages of light structure, simple process and relatively low manufacturing cost.
  • the double-sided OLED display device of the present invention has a transparent anode and a reflective anode covering a portion of the transparent anode, and a transparent cathode and a reflective cathode covering a portion of the transparent cathode, the reflective anode and the reflective cathode collectively
  • the luminescent layer is completely covered, and the reflective anode and the reflective cathode partially overlap at least in a direction perpendicular to the array substrate, so that the light emitted by the luminescent layer can be emitted from the transparent anode side or from the transparent cathode.
  • the side shot thereby realizing double-sided display, can solve the problem that the existing double-sided OLED display device has a relatively thick structure, a complicated process, and a high manufacturing cost.
  • the invention provides a double-sided OLED display device In the manufacturing method, a reflective anode covering a part of the transparent anode is prepared through the first mask, and a reflective cathode covering a part of the transparent cathode is prepared through the second mask, so that the light emitted by the light emitting layer can be from the side of the transparent anode The injection can also be emitted from the side of the transparent cathode to realize double-sided display.
  • the double-sided OLED display device produced by the method has the advantages of light structure, simple process and relatively low production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种双面OLED显示器件及其制作方法。本发明的双面OLED显示器件,通过设置透明阳极(21)和覆盖部分透明阳极(21)的反射阳极(22)、以及透明阴极(61)和覆盖部分透明阴极(61)的反射阴极(62),所述反射阳极(22)与反射阴极(62)共同将所述发光层(4)全部遮盖,且所述反射阳极(22)与反射阴极(62)在垂直于所述阵列基板(1)的垂直方向上至多有部分重叠,使得发光层(4)发出的光既能够从透明阳极(21)一侧射出,也能够从透明阴极(61)一侧射出,从而实现双面显示,能够解决现有的双面OLED显示器件结构比较厚重、工艺复杂、制作成本较高的问题。

Description

双面OLED显示器件及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种双面OLED显示器件及其制作方法。
背景技术
在显示技术领域,液晶显示(Liquid Crystal Display,LCD)器件与有机发光二极管(Organic Light-Emitting Diode,OLED)显示器件等平板显示器件已经逐步取代CRT显示器。
OLE显示器件具有自发光、亮度高、响应速度快、宽视角、低功耗及可弯曲实现柔性显示等特性,被誉为“梦幻显示器”,得到了各大显示器厂家的青睐,已成为显示技术领域中第三代显示器件的主力军。
OLED显示器件通常包括依次层叠的基板、阳极、空穴传输层、发光层、电子传输层、及阴极,其发光原理在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,再迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
OLED显示器件与LCD器件相比,最大的优势就是可制备大尺寸、超薄、柔性、透明及双面显示的器件。
随着电子产品的形式渐趋多样化,双面显示功能成为新一代显示器件的主要特色,特别是一些公用场所的显示器件。然而目前的双面OLED显示器件大多只是将两个独立的单面OLED显示器件进行背靠背组装,以实现双面显示,结构相对比较厚重,工艺相对复杂,制作成本较高,不符合消费者期望的轻薄与高性价比的要求。
发明内容
本发明的目的在于提供一种双面OLED显示器件,能够解决现有的双面OLED显示器件结构比较厚重、工艺复杂、制作成本较高的问题。
本发明的另一目的在于提供一种双面OLED显示器件的制作方法,通过该方法制作的双面OLED显示器件结构轻薄、工艺简单、制作成本相对较低。
为实现上述目的,本发明首先提供一种双面OLED显示器件,包括阵 列基板、覆盖所述阵列基板的透明阳极、覆盖部分所述透明阳极的反射阳极、覆盖所述反射阳极与所述透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、覆盖所述发光层的电子传输层、覆盖所述电子传输层的透明阴极、覆盖部分所述透明阴极的反射阴极、及覆盖所述透明阴极与反射阴极的封装层;
所述反射阳极与反射阴极共同将所述发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠。
所述反射阳极、反射阴极分别遮盖所述发光层的两侧,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上无重叠。
所述反射阳极遮盖所述发光层的1/2~3/4,厚度为20nm~100nm;所述反射阴极遮盖所述发光层的1/4~1/2,厚度为20nm~100nm。
所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料;所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
所述透明阳极采用的材料为氧化铟锡、氧化铟锌、铝掺杂氧化锌、或铟锌锡氧化物;所述反射阳极采用的材料为银、金、或铂;
所述透明阴极采用的材料为六硼化镧、或镁与银的堆栈组合;所述反射阴极采用的材料为铝、或镁。
本发明还提供一种双面OLED显示器件的制作方法,包括如下步骤:
步骤S1、提供阵列基板,制备出覆盖所述阵列基板的透明阳极;
步骤S2、提供第一掩膜板,透过所述第一掩膜制备出覆盖部分透明阳极的反射阳极;
步骤S3、制备出覆盖所述反射阳极与透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、及覆盖所述发光层的电子传输层;
步骤S4、制备出覆盖所述电子传输层的透明阴极;
步骤S5、提供第二掩膜板,透过所述第二掩膜板制备出覆盖部分透明阴极的反射阴极;
所述反射阳极与反射阴极共同将发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠;
步骤S6、在所述透明阴极与反射阴极上进行封装,制备出覆盖所述透明阴极与反射阴极的封装层。
所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料。
所述透明阳极采用的材料为氧化铟锡、氧化铟锌、铝掺杂氧化锌、或铟锌锡氧化物;所述反射阳极采用的材料为银、金、或铂。
所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
所述透明阴极采用的材料为六硼化镧、或镁与银的堆栈组合;所述反射阴极采用的材料为铝、或镁。
本发明还提供一种双面OLED显示器件的制作方法,包括如下步骤:
步骤S1、提供阵列基板,制备出覆盖所述阵列基板的透明阳极;
步骤S2、提供第一掩膜板,透过所述第一掩膜板制备出覆盖部分透明阳极的反射阳极;
步骤S3、依次制备出覆盖所述反射阳极与透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、及覆盖所述发光层的电子传输层;
步骤S4、制备出覆盖所述电子传输层的透明阴极;
步骤S5、提供第二掩膜板,透过所述第二掩膜板制备出覆盖部分透明阴极的反射阴极;
所述反射阳极与反射阴极共同将发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠;
步骤S6、在所述透明阴极与反射阴极上进行封装,制备出覆盖所述透明阴极与反射阴极的封装层;
其中,所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料;
其中,所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
本发明的有益效果:本发明提供的一种双面OLED显示器件,通过设置透明阳极和覆盖部分透明阳极的反射阳极、以及透明阴极和覆盖部分透明阴极的反射阴极,所述反射阳极与反射阴极共同将所述发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠,使得发光层发出的光既能够从透明阳极一侧射出,也能够从透明阴极一侧射出,从而实现双面显示,能够解决现有的双面OLED显示器件结构比较厚重、工艺复杂、制作成本较高的问题。本发明提供的一种双面OLED显示器件的制作方法,透过第一掩膜板制备出覆盖部分透明阳极的反射阳极,透过第二掩膜板制备出覆盖部分透明阴极的反射阴极,使得发光层发出的光既能够从透明阳极一侧射出,也能够从透明阴极一侧射出,从而实现双面显示,由该方法制作的双面OLED显示器件结构轻薄、工艺 简单、制作成本相对较低。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的双面OLED显示器件的剖面结构示意图;
图2为本发明的双面OLED显示器件的制作方法的流程图;
图3为本发明的双面OLED显示器件的制作方法的步骤S2的示意图;
图4为本发明的双面OLED显示器件的制作方法的步骤S3的示意图;
图5为本发明的双面OLED显示器件的制作方法的步骤S4的示意图;
图6为本发明的双面OLED显示器件的制作方法的步骤S5的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种双面OLED显示器件,包括阵列基板1、覆盖所述阵列基板1的透明阳极21、覆盖部分所述透明阳极21的反射阳极22、覆盖所述反射阳极22与所述透明阳极21的空穴传输层3、覆盖所述空穴传输层3的发光层4、覆盖所述发光层4的电子传输层5、覆盖所述电子传输层5的透明阴极61、覆盖部分所述透明阴极61的反射阴极62、及覆盖所述透明阴极61与反射阴极62的封装层7。
所述反射阳极22与反射阴极62共同将所述发光层4全部遮盖,以避免漏光;且所述反射阳极22与反射阴极62在垂直于所述阵列基板1的垂直方向上至多有部分重叠,以实现双面显示。
进一步地,为了达到最好的双面显示效果及提高出光率,设置所述反射阳极22、反射阴极62分别遮盖所述发光层4的两侧,且所述反射阳极22与反射阴极62在垂直于所述阵列基板1的垂直方向上无重叠;优选的,所述反射阳极22遮盖所述发光层4的1/2~3/4,厚度为20nm~100nm;所述反射阴极62遮盖所述发光层4的1/4~1/2,厚度为20nm~100nm。
具体地,所述阵列基板1内设置有扫描线、数据线、以及呈阵列式排布的多个像素驱动单元电路(包括开关薄膜晶体管、驱动薄膜晶体管、存储电容等元件),这与现有技术无异,此处不展开叙述。
所述透明阳极21采用具有高穿透率、高导电率和较高功函数的材料,如氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)、铝掺杂氧化锌(Aluminium Doped Zinc Oxide,AZO)、或铟锌锡氧化物(Indium Zinc Tin Oxide,IZTO)等;所述反射阳极22采用具有高反射率、高导电率、和较高功函数的材料,如银(Ag)、金(Au)、或铂(Pt)等。
所述透明阴极61采用具有高穿透率、高导电率和较低功函数的材料,如六硼化镧(LaB6)、或镁与银的堆栈组合(Mg/Ag)等;所述反射阴极62采用具有高反射率、高导电率、和较低功函数的材料,如铝(Al)、或镁(Mg)等。
所述封装层7采用玻璃封装或薄膜封装。
该双面OLED显示器件的工作过程为:在一定电压驱动下,电子从透明阴极61和反射阴极62经电子传输层5迁移到发光层4,空穴从透明阳极21和反射阳极22经过空穴传输层3迁移到发光层4,电子和空穴在发光层4中相遇,形成激子激发发光层4内的发光分子,发光层4发出可见光;反射阳极22将发光层4发出的光反射至透明阴极61一侧射出,反射阴极62将发光层4发出的光反射至透明阳极21一侧射出,从而实现双面显示。
相比于现有技术将两个独立的单面OLED显示器件进行背靠背组装来实现双面显示,本发明双面OLED显示器件结构轻薄、工艺简单、制作成本相对较低。
请同时参阅图2至图6,结合图1,本发明还提供一种双面OLED显示器件的制作方法,包括如下步骤:
步骤S1、提供阵列基板1,采用溅射、蒸镀、旋涂、或打印等工艺制备出覆盖所述阵列基板1的透明阳极21。
具体地,所述阵列基板1内设置有扫描线、数据线、以及呈阵列式排布的多个像素驱动单元电路(包括开关薄膜晶体管、驱动薄膜晶体管、存储电容等元件),这与现有技术无异,此处不展开叙述。
所述透明阳极21采用具有高穿透率、高导电率和较高功函数的材料,如ITO、IZO、AZO、IZTO等。
步骤S2、如图3所示,提供第一掩膜板(Mask)(未图示),透过所述第一掩膜板进行蒸镀,制备出覆盖部分透明阳极21的反射阳极22。
具体地,所述反射阳极22采用具有高反射率、高导电率、和较高功函数的材料,如Ag、Au、或Pt。
步骤S3、如图4所示,采用溅射、蒸镀、旋涂、或打印等工艺依次制备出覆盖所述反射阳极22与透明阳极21的空穴传输层3、覆盖所述空穴传 输层3的发光层4、及覆盖所述发光层4的电子传输层5。
步骤S4、如图5所示,采用溅射、蒸镀、旋涂、或打印等工艺制备出覆盖所述电子传输层5的透明阴极61。
具体地,所述透明阴极61采用具有高穿透率、高导电率和较低功函数的材料,如LaB6、或Mg/Ag等。
步骤S5、如图6所示,提供第二掩膜板(未图示),透过所述第二掩膜板进行蒸镀,制备出覆盖部分透明阴极61的反射阴极62。
值得注意的是:所述反射阳极22与反射阴极62共同将所述发光层4全部遮盖,以避免漏光;且所述反射阳极22与反射阴极62在垂直于所述阵列基板1的垂直方向上至多有部分重叠,以实现双面显示。进一步地,为了达到最好的双面显示效果及提高出光率,设置所述反射阳极22、反射阴极62分别遮盖所述发光层4的两侧,且所述反射阳极22与反射阴极62在垂直于所述阵列基板1的垂直方向上无重叠;优选的,所述反射阳极22遮盖所述发光层4的1/2~3/4,厚度为20nm~100nm;所述反射阴极62遮盖所述发光层4的1/4~1/2,厚度为20nm~100nm。
具体地,所述反射阴极62采用具有高反射率、高导电率、和较低功函数的材料,如Al、或Mg等。
步骤S6、请参阅图1,在所述透明阴极61与反射阴极62上进行封装,制备出覆盖所述透明阴极61与反射阴极62的封装层7。
具体地,所述封装层7采用玻璃封装或薄膜封装。
至此完成双面OLED显示器件的制作。
上述OLED显示器件的制作方法透过第一掩膜板制备出覆盖部分透明阳极21的反射阳极22,透过第二掩膜板制备出覆盖部分透明阴极61的反射阴极62,能够使得反射阳极22将发光层4发出的光反射至透明阴极61一侧射出,反射阴极62将发光层4发出的光反射至透明阳极21一侧射出,从而实现双面显示。由该方法制作的双面OLED显示器件结构轻薄、工艺简单、制作成本相对较低。
综上所述,本发明的双面OLED显示器件,通过设置透明阳极和覆盖部分透明阳极的反射阳极、以及透明阴极和覆盖部分透明阴极的反射阴极,所述反射阳极与反射阴极共同将所述发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠,使得发光层发出的光既能够从透明阳极一侧射出,也能够从透明阴极一侧射出,从而实现双面显示,能够解决现有的双面OLED显示器件结构比较厚重、工艺复杂、制作成本较高的问题。本发明提供的一种双面OLED显示器件的 制作方法,透过第一掩膜板制备出覆盖部分透明阳极的反射阳极,透过第二掩膜板制备出覆盖部分透明阴极的反射阴极,使得发光层发出的光既能够从透明阳极一侧射出,也能够从透明阴极一侧射出,从而实现双面显示,由该方法制作的双面OLED显示器件结构轻薄、工艺简单、制作成本相对较低。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (13)

  1. 一种双面OLED显示器件,包括阵列基板、覆盖所述阵列基板的透明阳极、覆盖部分所述透明阳极的反射阳极、覆盖所述反射阳极与所述透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、覆盖所述发光层的电子传输层、覆盖所述电子传输层的透明阴极、覆盖部分所述透明阴极的反射阴极、及覆盖所述透明阴极与反射阴极的封装层;
    所述反射阳极与反射阴极共同将所述发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠。
  2. 如权利要求1所述的双面OLED显示器件,其中,所述反射阳极、反射阴极分别遮盖所述发光层的两侧,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上无重叠。
  3. 如权利要求2所述的双面OLED显示器件,其中,所述反射阳极遮盖所述发光层的1/2~3/4,厚度为20nm~100nm;所述反射阴极遮盖所述发光层的1/4~1/2,厚度为20nm~100nm。
  4. 如权利要求1所述的双面OLED显示器件,其中,所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料;所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
  5. 如权利要求4所述的双面OLED显示器件,其中,所述透明阳极采用的材料为氧化铟锡、氧化铟锌、铝掺杂氧化锌、或铟锌锡氧化物;所述反射阳极采用的材料为银、金、或铂;所述透明阴极采用的材料为六硼化镧、或镁与银的堆栈组合;所述反射阴极采用的材料为铝、或镁。
  6. 一种双面OLED显示器件的制作方法,包括如下步骤:
    步骤S1、提供阵列基板,制备出覆盖所述阵列基板的透明阳极;
    步骤S2、提供第一掩膜板,透过所述第一掩膜板制备出覆盖部分透明阳极的反射阳极;
    步骤S3、依次制备出覆盖所述反射阳极与透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、及覆盖所述发光层的电子传输层;
    步骤S4、制备出覆盖所述电子传输层的透明阴极;
    步骤S5、提供第二掩膜板,透过所述第二掩膜板制备出覆盖部分透明阴极的反射阴极;
    所述反射阳极与反射阴极共同将发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠;
    步骤S6、在所述透明阴极与反射阴极上进行封装,制备出覆盖所述透明阴极与反射阴极的封装层。
  7. 如权利要求6所述的双面OLED显示器件的制作方法,其中,所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料。
  8. 如权利要求7所述的双面OLED显示器件的制作方法,其中,所述透明阳极采用的材料为氧化铟锡、氧化铟锌、铝掺杂氧化锌、或铟锌锡氧化物;所述反射阳极采用的材料为银、金、或铂。
  9. 如权利要求6所述的双面OLED显示器件的制作方法,其中,所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
  10. 如权利要求9所述的双面OLED显示器件的制作方法,其中,所述透明阴极采用的材料为六硼化镧、或镁与银的堆栈组合;所述反射阴极采用的材料为铝、或镁。
  11. 一种双面OLED显示器件的制作方法,包括如下步骤:
    步骤S1、提供阵列基板,制备出覆盖所述阵列基板的透明阳极;
    步骤S2、提供第一掩膜板,透过所述第一掩膜板制备出覆盖部分透明阳极的反射阳极;
    步骤S3、依次制备出覆盖所述反射阳极与透明阳极的空穴传输层、覆盖所述空穴传输层的发光层、及覆盖所述发光层的电子传输层;
    步骤S4、制备出覆盖所述电子传输层的透明阴极;
    步骤S5、提供第二掩膜板,透过所述第二掩膜板制备出覆盖部分透明阴极的反射阴极;
    所述反射阳极与反射阴极共同将发光层全部遮盖,且所述反射阳极与反射阴极在垂直于所述阵列基板的垂直方向上至多有部分重叠;
    步骤S6、在所述透明阴极与反射阴极上进行封装,制备出覆盖所述透明阴极与反射阴极的封装层;
    其中,所述透明阳极采用具有高穿透率、高导电率和功函数高的材料;所述反射阳极采用具有高反射率、高导电率、和功函数高的材料;
    其中,所述透明阴极采用具有高穿透率、高导电率和功函数低的材料;所述反射阴极采用具有高反射率、高导电率、和功函数低的材料。
  12. 如权利要求11所述的双面OLED显示器件的制作方法,其中,所 述透明阳极采用的材料为氧化铟锡、氧化铟锌、铝掺杂氧化锌、或铟锌锡氧化物;所述反射阳极采用的材料为银、金、或铂。
  13. 如权利要求11所述的双面OLED显示器件的制作方法,其中,所述透明阴极采用的材料为六硼化镧、或镁与银的堆栈组合;所述反射阴极采用的材料为铝、或镁。
PCT/CN2016/113026 2016-12-15 2016-12-29 双面oled显示器件及其制作方法 WO2018107532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/508,107 US20180240997A1 (en) 2016-12-15 2016-12-29 Double side oled display element and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611163394.8A CN106601773A (zh) 2016-12-15 2016-12-15 双面oled显示器件及其制作方法
CN201611163394.8 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018107532A1 true WO2018107532A1 (zh) 2018-06-21

Family

ID=58801763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113026 WO2018107532A1 (zh) 2016-12-15 2016-12-29 双面oled显示器件及其制作方法

Country Status (3)

Country Link
US (1) US20180240997A1 (zh)
CN (1) CN106601773A (zh)
WO (1) WO2018107532A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273512A (zh) * 2018-10-17 2019-01-25 武汉华星光电半导体显示技术有限公司 双面显示装置及其制作方法
CN109755288A (zh) * 2019-03-11 2019-05-14 中国计量大学 一种带有反射隔离层的soi基底oled微显示器件
CN110824696B (zh) * 2019-11-26 2022-05-20 京东方科技集团股份有限公司 双面显示装置及其控制方法
CN111192912B (zh) * 2020-02-26 2023-12-01 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111312924A (zh) * 2020-02-26 2020-06-19 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN111370366A (zh) * 2020-03-27 2020-07-03 福建华佳彩有限公司 一种双面显示面板及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093877A (zh) * 2006-06-19 2007-12-26 精工爱普生株式会社 发光装置、图像形成装置、显示装置及电子设备
CN102201518A (zh) * 2010-03-22 2011-09-28 Lg伊诺特有限公司 发光器件、电极结构、发光器件封装以及照明系统
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013293A1 (en) * 2005-07-12 2007-01-18 Eastman Kodak Company OLED device having spacers
JP2010153365A (ja) * 2008-11-19 2010-07-08 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器及び照明装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093877A (zh) * 2006-06-19 2007-12-26 精工爱普生株式会社 发光装置、图像形成装置、显示装置及电子设备
CN102201518A (zh) * 2010-03-22 2011-09-28 Lg伊诺特有限公司 发光器件、电极结构、发光器件封装以及照明系统
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板

Also Published As

Publication number Publication date
US20180240997A1 (en) 2018-08-23
CN106601773A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018107532A1 (zh) 双面oled显示器件及其制作方法
WO2018113018A1 (zh) Oled显示面板及其制作方法
US10854695B2 (en) OLED display panel with black pixel defining layer and flat layer
WO2018113019A1 (zh) Oled显示面板及其制作方法
WO2018045658A1 (zh) Amoled显示装置
US9859349B2 (en) Organic electroluminescent display substrate and manufacturing method thereof, and display device
US9231221B2 (en) Organic light emitting diode display including bent flexible substrate and method of forming the same
US10333098B2 (en) Transparent OLED display panel and manufacturing method thereof
TWI227094B (en) Organic light-emitting display device and fabricating thereof
WO2018227754A1 (zh) 透明oled显示面板及其制作方法
WO2016095335A1 (zh) Oled显示装置及其制造方法
CN105789260B (zh) 一种透明显示面板及其制备方法
CN110265441B (zh) 一种显示面板及其显示装置
CN104779268B (zh) Oled显示器件
US20120223349A1 (en) Front side emitting type organic light-emitting display device and method of manufacturing the same
US20130140982A1 (en) Organic light emitting display device and manufacturing method thereof
WO2015096356A1 (zh) 一种双面显示面板
WO2020015443A1 (zh) 透明显示面板及显示装置
US20210408427A1 (en) Display panel and display device thereof
KR20130068714A (ko) 발광효율이 향상된 유기발광 표시장치 및 그 제조방법
WO2016090747A1 (zh) Oled显示装置及其制造方法
WO2020077698A1 (zh) 一种有机发光二极管器件的封装结构及其制作方法
CN211265480U (zh) 一种双面有机发光二极管显示结构
US11335881B2 (en) Display panel
US20160372712A1 (en) Electroluminescent device and display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15508107

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924153

Country of ref document: EP

Kind code of ref document: A1