WO2021031457A1 - 一种检测电路、电器及控制方法 - Google Patents

一种检测电路、电器及控制方法 Download PDF

Info

Publication number
WO2021031457A1
WO2021031457A1 PCT/CN2019/123405 CN2019123405W WO2021031457A1 WO 2021031457 A1 WO2021031457 A1 WO 2021031457A1 CN 2019123405 W CN2019123405 W CN 2019123405W WO 2021031457 A1 WO2021031457 A1 WO 2021031457A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
detected
branch
signal
type
Prior art date
Application number
PCT/CN2019/123405
Other languages
English (en)
French (fr)
Inventor
尹坤任
廖晖
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP19942462.3A priority Critical patent/EP3998484B1/en
Priority to JP2022504695A priority patent/JP7338942B2/ja
Publication of WO2021031457A1 publication Critical patent/WO2021031457A1/zh
Priority to US17/674,217 priority patent/US20220170966A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • This application relates to the field of electrical appliances, in particular to a detection circuit, electrical appliances, and control methods.
  • a certain type of electrical appliance (such as an induction cooker) in the related art can heat the pot or charge the power receiving device.
  • the user needs to manually judge the load type, and then choose to start the corresponding button to make the electrical appliance work in the corresponding working mode. Otherwise, it will cause unexpected risks and may even damage the electrical appliance.
  • the embodiments of the present application provide a detection circuit, an electrical appliance, and a control method, which at least partially solve the above-mentioned technical problems.
  • An embodiment of the present application provides a detection circuit, which includes at least: a first capacitive component, a second capacitive component, a load to be detected, and a detection component, wherein:
  • the first capacitive component and the load to be detected are connected in series to form a first branch; the first branch is connected in parallel with a second branch including the second capacitive component;
  • the detection component is configured to detect the first AC signal of the first branch and the second AC signal of the second branch, and determine the first direction of the first AC signal and the second AC signal Determining the type of the load to be detected based on the first direction and the second direction.
  • the detection component is configured to detect whether the angle between the first direction and the second direction is within a first preset range; after detecting the first direction When the angle between the first direction and the second direction is within the first preset range, it is determined that the type of the load to be detected is a power transmission load; when the first direction and the second direction are detected When the included angle between the two directions is not within the first preset range, it is determined that the type of the load to be detected is a heating load.
  • the first capacitive component includes a first capacitor
  • the first capacitive component includes a first capacitor and at least one of the following: a first inductor and a first resistor; the first capacitor is connected in series with at least one of the first inductor and the first resistor;
  • the second capacitive component includes a second capacitor
  • the first capacitive component includes a second capacitor and at least one of the following: a second inductor and a second resistor; the second capacitor is connected in series with at least one of the second inductor and the second resistor.
  • the detection circuit further includes a third branch including an inductive component; wherein one end of the third branch is connected to an AC power source; the third branch is connected to the first One branch and the second branch are connected in series; the third AC signal of the third branch includes the first AC signal and the second AC signal; the inductive component is configured to output AC to the AC power supply The signal is filtered or compensated.
  • the detection component is configured to detect the first moment of the voltage zero crossing point and the second moment of the current zero crossing point of the third AC signal, based on the first moment and the current zero crossing point. The second moment determines the type of the load to be detected.
  • the detection component is configured to detect whether the difference between the first time and the second time is within a second preset range; When the difference between the second moment is within the second preset range, it is determined that the type of the load to be detected is a transmission load; when the difference between the first moment and the second moment is detected, the difference is not present. In the case that it is within the second preset range, it is determined that the type of the load to be detected is a heating load.
  • the inductive component includes a third inductor
  • the inductive component includes a third inductor and at least one of the following: a third capacitor and a third resistor; the third inductor is connected in series with at least one of the third capacitor and the third resistor.
  • An embodiment of the present application further provides an electrical appliance that includes the detection circuit described in any of the above solutions, and the electrical appliance further includes a control component configured to determine the to-be-detected component based on the detection component in the detection circuit The type of load controls the electrical appliance to enter the corresponding working mode.
  • the load to be detected includes a pot or a power receiving device
  • the control component is configured to heat the pot placed on the coil disk through the coil disk of the electrical appliance when the type of the load to be detected determined by the detection component is a heating load; In the case where the type of the load to be detected determined by the detection component is a power transmission load, the power receiving device placed on the coil disk is transmitted through the coil disk of the electrical appliance.
  • the embodiment of the application also provides a control method, which is applied to the electrical appliance in any of the above solutions; the method includes:
  • the first branch includes a first capacitive component and a load to be detected in series; the first branch is connected in parallel with a second branch including the second capacitive component;
  • the electrical appliance is controlled to enter a corresponding working mode.
  • the determining the type of the load to be detected based on the first direction and the second direction includes:
  • the type of the load to be detected is a power transmission load;
  • the included angle between the one direction and the second direction is not within the first preset range, it is determined that the type of the load to be detected is a heating load.
  • the method further includes:
  • the type of the load to be detected is determined based on the first moment and the second moment.
  • the determining the type of the load to be detected based on the first moment and the second moment includes:
  • the type of the load to be detected is a transmission load; If the difference between the second moments is not within the second preset range, it is determined that the type of the load to be detected is a heating load.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the embodiments of the present application are implemented.
  • An embodiment of the present application also provides a detection device, including: a processor and a memory for storing a computer program that can run on the processor, where the processor is used to run the computer program to execute the embodiment of the present application The steps of the method.
  • the embodiments of the present application provide a detection circuit, an electrical appliance, and a control method.
  • the detection circuit at least includes: a first capacitive component, a second capacitive component, a load to be detected, and a detection component, wherein: the first capacitive component The first branch is connected in series with the load to be detected; the first branch is connected in parallel with the second branch including the second capacitive component; the detection component is used to detect the power of the first branch
  • the first AC signal and the second AC signal of the second branch determine the first direction of the first AC signal and the second direction of the second AC signal, based on the first direction and the first direction Two directions determine the type of the load to be detected.
  • the technical solutions of the embodiments of the present application on the one hand, by detecting the directions of the AC signals of the first branch and the second branch, automatic determination of the type of load to be detected is realized based on the detected direction.
  • the above detection circuit is applied to electrical appliances to realize the intelligent identification of the type of load to be detected, so that the electrical appliances can automatically work in the corresponding working mode, making the electrical appliances more intelligent, meeting user needs, and improving the performance of the electrical appliances. Security and enhance user experience.
  • FIG. 1 is a schematic structural diagram of a detection circuit provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another detection circuit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of an electrical appliance structure including a detection circuit provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a control method provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of another control method provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a circuit topology structure including the detection circuit provided by an embodiment of the present application.
  • Induction cookers are also called induction cookers. They are divided into two types: power frequency (low frequency) and high frequency.
  • Its working principle is to use electromagnetic induction to convert electrical energy into heat to heat the food in the pot. Take the high-frequency induction cooker as an example.
  • Its specific working principle is as follows: First, use a rectifier circuit to convert 50/60Hz AC power into DC power, and then use a control circuit to convert DC power into a high-frequency signal with a frequency of 20 ⁇ 35KHz, and then make the high-speed change The current flowing through the coil produces a high-speed changing magnetic field.
  • Electric energy transmission is the intermediate link between power generation and power consumption in the power system.
  • wireless transmission can be divided into four categories according to different principles: electromagnetic induction principle, resonance wireless transmission, and magnetic coupling resonance Class and microwave wireless power transmission, by using one of the above four types, energy coupling can be realized between the power supply and the power receiving device without physical connection, that is, energy can be transmitted between objects.
  • the wireless power transmission method is adopted, as long as the power receiving equipment is placed in a designated location.
  • This power receiving equipment and wireless power transmission equipment (for example, induction cooker) have the same wireless charging standard, for example, the Power Matters Alliance (PMA) standard , Qi standard or Alliance for Wireless Power (A4WP, Alliance for Wireless Power) standards, etc.
  • PMA Power Matters Alliance
  • A4WP Alliance for Wireless Power
  • Electromagnetic heating technology and wireless power transmission technology both use energy coupling. Based on this related technology, electrical appliances with electromagnetic heating function and wireless power transmission function have appeared.
  • electrical appliances cannot intelligently identify the type of load placed, but require the user to select and set the type of load, but the user selects the wrong type of load, which may cause the electrical appliance to not work properly or even damage the electrical appliance. Therefore, the embodiments of the present application are expected to provide a detection solution that can intelligently identify the type of load placed on the electrical appliance, so that the electrical appliance works in a corresponding working mode based on the identified load type.
  • FIG. 1 is a schematic structural diagram of a detection circuit provided by an embodiment of the application; as shown in Figure 1, the detection circuit 10 at least includes: a first capacitive component 101, a second capacitive component 102, a load to be detected 103, and The detection component 104, wherein:
  • the first capacitive component 101 and the load to be detected 103 are connected in series to form a first branch; the first branch is connected in parallel with the second branch including the second capacitive component 102;
  • the detection component 104 is configured to detect the first AC signal of the first branch and the second AC signal of the second branch, and determine the first direction of the first AC signal and the second AC signal The second direction of the signal determines the type of the load to be detected based on the first direction and the second direction.
  • the capacitive component refers to a component having a capacitance parameter, that is, a component conforming to the voltage hysteresis current characteristic.
  • the first capacitive component can have various forms, as long as the first capacitive component is made capacitive and meets the requirements of the detection circuit.
  • An optional implementation manner is that the first capacitive component 101 may include a first capacitor.
  • Another optional implementation manner is that the first capacitive component 101 may include a first capacitor and at least one of the following: a first inductor and a first resistor; the first capacitor and the first inductor and the first resistor At least one of in series.
  • the second capacitive component 102 can also have various forms.
  • the second capacitive component 102 can include a second capacitor; another alternative is that the second capacitive component
  • the sexual component 102 may include a second capacitor and at least one of the following: a second inductor and a second resistor; the second capacitor is connected in series with at least one of the second inductor and the second resistor. It should be understood that the "first" and “second” here are only used to distinguish the subsequent description and have no limiting effect.
  • the first direction of the first AC signal in this embodiment refers to The current direction of the first AC signal on the first branch; the second direction of the second AC signal refers to the current direction of the second AC signal on the second branch.
  • the types of loads to be detected can include transmission loads and heating loads.
  • transmission loads can be understood as power receiving equipment, that is, equipment that obtains electrical energy through wireless power transmission technology; heating loads are obtained through the principle of electromagnetic induction Equipment for converting electrical energy into thermal energy.
  • the flashlight device corresponding to the power transmission load may be a terminal device with a wireless charging function, such as a mobile phone.
  • the heating load may be a pot that can be used for electromagnetic heating, etc.
  • the to-be-detected The load is a power transmission load; when it is detected that the angle between the current direction of the first AC signal on the first branch and the current direction of the second AC signal on the second branch is not close to 90°, it is determined that the waiting The detection load type is heating load.
  • the detection component 104 when the detection circuit 10 is used to determine the type of load to be detected, the detection component 104 is configured to detect the difference between the first direction and the second direction. Whether the included angle is within a first preset range; in the case where it is detected that the included angle between the first direction and the second direction is within the first preset range, determine the load The type is a transmission load; when it is detected that the included angle between the first direction and the second direction is not within a first preset range, it is determined that the type of the load to be detected is a heating load.
  • the first preset range can be set according to needs, which can be limited in this embodiment.
  • the first preset range is (80°, 100°), which means a range greater than 80° and less than 100°.
  • the angle between the first direction of the current signal on the first branch and the second direction of the current signal on the second branch is (80°, 100°), for example, the first direction and the second direction
  • the angle between the directions is 85°, then the load to be detected can be determined as a transmission load; between the first direction of the current signal on the first branch and the second direction of the current signal on the second branch
  • the included angle is not between (80°, 100°), for example, the included angle between the first direction and the second direction is 75°, then the load to be detected can be determined as a heating load.
  • an embodiment of the present application also provides a schematic structural diagram of another detection circuit 10.
  • the detection circuit 10 may also include: The third branch of the component 105; wherein, one end of the third branch is connected to an AC power supply; the third branch is connected in series with the first branch and the second branch respectively; the third branch of the third branch
  • the three AC signals include the first AC signal and the second AC signal; the inductive component 105 is configured to filter or compensate the AC signal output by the AC power source. It can be understood that one end of the third branch is connected to an AC power source; the other end of the third branch is connected to one end of the first branch and the second branch respectively.
  • the inductive component 105 refers to a component with an inductance parameter, that is, a component whose load current lags behind the load voltage by a phase difference.
  • the inductive component 105 may have various forms, as long as the characteristics of the inductive component are satisfied. Based on this, in an alternative embodiment, the inductive component 105 may include a third inductor. In another optional embodiment, the inductive component 105 may include a third inductor and at least one of the following: a third capacitor and a third resistor; the third inductor and at least one of the third capacitor and the third resistor One series.
  • the third branch is located on the AC power supply side and has the same nodes as the first branch and the second branch.
  • Kirchhoff's law Kirchhoff laws
  • the outflow The current signal is equal to the incoming current signal, that is, the current of the third AC signal in the third branch is equal to the sum of the current of the first AC signal in the first branch and the current of the second AC signal in the second branch.
  • the inductive component 105 is used to filter or compensate the AC signal output by the AC power source.
  • the type of AC power supply in this embodiment is not limited, as long as it can provide AC signals to the detection circuit 10, and there is no limitation here.
  • the AC output of the inverter bridge circuit can be used.
  • the signal is used as an AC power source; it should be understood that this AC signal includes physical quantities such as AC voltage and AC current, and most of the AC signals output by the inverter bridge circuit are square waves and contain more high-order harmonics.
  • the inductive component 105 blocks high frequencies and passes low frequencies, filters out higher harmonics contained in the AC signal, and only contains the fundamental wave (sine wave), for example, a voltage with a sinusoidal waveform and a current with a sinusoidal waveform.
  • fundamental wave for example, a voltage with a sinusoidal waveform and a current with a sinusoidal waveform.
  • the load 103 to be detected is a power transmission Load
  • the equivalent impedance of the first branch in parallel with the second branch is not resistive, that is, when the voltage signal and the current signal on the third branch have different phases, it is determined that the load 103 to be detected is a heating load.
  • the detection component 104 is configured to detect the first moment of the voltage zero crossing point and the second moment of the current zero crossing point of the third AC signal, and determine the The type of load to be detected.
  • the detection component 104 is configured to detect whether the difference between the first moment and the second moment is within a second preset range; when the first moment and the second moment are detected When the time difference is within the second preset range, it is determined that the type of the load to be detected 103 is a transmission load; when it is detected that the difference between the first time and the second time is not in the second In the case of the preset range, it is determined that the type of the load 103 to be detected is a heating load.
  • the second preset range can be set according to needs, which is not limited in this embodiment.
  • the second preset range is (-0.2, +0.2), which means a range greater than -0.2 and less than 0.2.
  • the first moment of the voltage zero-crossing point of the third AC signal on the third branch and the second moment of the current zero-crossing point of the third AC signal are detected at (-0.2, +0.2), for example, the first moment and The difference at the second moment is 0.01, then the load 103 to be detected can be determined as a transmission load; at the first moment when the voltage zero crossing point of the third AC signal on the third branch is detected and the current zero crossing point of the third AC signal
  • the second time is not (-0.2, +0.2), for example, the difference between the first time and the second time is 0.5, then the load 103 to be detected can be determined as a heating load.
  • an embodiment of the present application further provides an electrical appliance 20 that includes any of the detection circuits 10 described above.
  • the electrical appliance 20 further includes a control component 30 configured to determine based on the detection component 104 in the detection circuit 10.
  • the type of the load 103 to be detected controls the electrical appliance to enter the corresponding working mode.
  • the working mode of the electrical appliance 20 includes at least a power transmission working mode and a heating working mode.
  • the electrical appliance 20 may include at least a power transmission circuit and a heating circuit.
  • the power transmission working mode can indicate that the wire reel in the electrical appliance 20 is switched and connected to the power transmission circuit to transmit power to the load 103 to be detected through the power transmission circuit;
  • the heating working mode can indicate the electrical appliance The wire reel in 20 is switched to be connected to the heating circuit to heat the load 103 to be detected through the heating circuit.
  • the control component 30 controls the electrical appliance 20 to enter the heating operation mode; when the detection circuit 10 detects that the type of the load 103 to be detected is a transmission load, The control component 30 controls the electric appliance 20 to enter the power transmission mode. Therefore, it is avoided that an error in the manual selection of the working mode is caused, and the electrical appliance 20 or the load 103 to be detected is damaged.
  • the control component 30 is configured to determine that the type of the load 103 to be detected by the detection component 104 is a heating load. In the case of heating the pot placed on the coil disk by the coil disk of the electrical appliance 20; when the type of the load 103 to be detected determined by the detection component 104 is a power transmission load, The coil disk of the electrical appliance 20 transmits power to the power receiving device placed on the coil disk.
  • the electrical appliance 20 can be any electrical appliance equipped with the detection circuit 10 and the control component 30 described above.
  • the electrical appliance 20 can be an induction cooker, and the load 103 to be detected can include electromagnetic heating A pot or a mixing cup capable of wireless charging.
  • the induction cooker automatically recognizes the type of the cookware through its own detection circuit 10 and the control component 30 and controls it to enter the heating mode to heat the cookware .
  • the stirring cup when the stirring cup is placed on the induction cooker, the induction cooker automatically recognizes and controls the type of the stirring cup through the detection circuit 10 and the control component 30 contained in the induction cooker to enter the power transmission mode to charge the battery of the stirring cup.
  • the above detection circuit is applied to the electrical appliance to realize the intelligent identification of the type of load to be detected, so that the electrical appliance can automatically work in the corresponding working mode, making the electrical appliance more intelligent and satisfying users Demand, improve the safety of electrical appliances and enhance user experience.
  • FIG. 4 shows a schematic flow chart of a control method provided by an embodiment of the present application.
  • the method is applied to any of the above-mentioned electrical appliances 20, and the method includes:
  • S401 Obtain the first AC signal of the first branch and the second AC signal of the second branch in the detection circuit, and determine the first direction of the first AC signal and the second direction of the second AC signal;
  • the first branch includes a first capacitive component and a load to be detected in series; the first branch is connected in parallel with a second branch including the second capacitive component;
  • S402 Determine the type of the load to be detected based on the first direction and the second direction;
  • step S402 the method further includes:
  • S4021 Detect whether the included angle between the first direction and the second direction is within a first preset range
  • FIG. 5 shows a schematic flowchart of another control method provided by an embodiment of the present application, and the method further includes:
  • S501 Obtain the third AC signal of the third branch in the detection circuit, and determine the first moment of the voltage zero crossing point and the second moment of the current zero crossing point of the third AC signal;
  • S502 Determine the type of the load to be detected based on the first moment and the second moment.
  • step S502 it includes:
  • S5021 Detect whether the difference between the first time and the second time is within a second preset range
  • S5022 When it is detected that the difference between the first time and the second time is within the second preset range, determine that the type of the load to be detected is a transmission load; When the difference between the time and the second time is not within the second preset range, it is determined that the type of the load to be detected is a heating load.
  • FIG. 6 is a schematic diagram of a circuit topology structure including the detection circuit provided by an embodiment of the present application, as shown in FIG. 6.
  • this circuit topology it includes an AC power supply, a first branch, a second branch, a third branch, and a transmission line tray.
  • the first branch includes a first capacitive component and a transmission line tray;
  • the second branch The circuit includes a second capacitive component;
  • the third branch includes an inductive component; wherein, the first capacitive component includes a first capacitor (such as capacitor C1 in Figure 6); the second capacitive component includes a second capacitor (such as Capacitor C2 in FIG. 6); the inductive component includes a third inductor (inductance L1 in FIG.
  • the first capacitor in the first branch is connected in series with the load to be detected; and in parallel with the second branch;
  • the third branch is connected in series with the first branch and the second branch respectively; different types of loads to be detected can be placed on the transmission line tray, for example, a transmission load can be placed; or, a heating load can be placed.
  • the first method use the first AC signal on the first branch and the second AC signal on the second branch to make a judgment. Obtain the relationship between the first AC signal and the second AC signal, and determine the type of load to be detected based on the relationship between the two.
  • a preset range for example, whether the angle between the first direction and the second direction is close to 90°
  • the angle between the first direction and the second direction is not within the first preset range, it is determined that the load to be detected is a heating load.
  • the second method is to use the time of the voltage zero crossing point of the third AC signal on the third branch and the time of the current zero crossing point of the third AC signal for judgment.
  • the above two judgment methods can exist at the same time, or one of them can be selected and determined according to the user's initial setting. When both of the two judgment methods exist, they can be used as a check for each other. If the results of the two judgments are inconsistent, it is judged that the detection circuit is faulty or the detection tool is faulty, and the electrical appliance containing this detection circuit stops working. Thereby, the safety of electrical appliances including this detection circuit is further improved.
  • the current value of the first AC signal of the first branch and the second branch can also be judged.
  • the sum of the squares of the current value of the second AC signal and the square of the current value of the third AC signal of the third branch is within the third preset range; that is, the first AC of the first branch is calculated
  • the current value of the signal and the sum of the square of the current value of the second AC signal of the second branch, and the difference between the square of the current value of the third AC signal of the third branch determine whether the difference is in the third preset If the difference is within the third preset range, it is determined that the type of the load to be detected is a transmission load; if the difference is not within the third preset range, the type of the load to be detected is determined
  • the type of detection load is heating load.
  • the third preset range can also be set according to actual needs, which is not specifically limited in this embodiment.
  • the third preset range is set to (-0.5, 0.5)
  • the sum of the square of the current value of the first AC signal in the first branch and the current value of the second AC signal in the second branch is
  • the difference between the squares of the current values of the third AC signals of the three branches is (-0.5, 0.5)
  • the difference between the squares of the current values of the third AC signals of the three branches is (-0.5, 0.5)
  • the difference between the square of the current value of the first AC signal and the current value of the second AC signal of the second branch and the square of the current value of the third AC signal of the third branch is not (-0.5, In the case of 0.5), for example, if the difference is 0.7, it is determined that the load to be detected is a heating load.
  • the detection circuit determines the type of load to be detected, so that the electrical appliance automatically enters the corresponding working mode according to different load types, which can prevent users Turning on the wrong button may cause the appliance to not work properly or even risk damage.
  • An embodiment of the present application also provides a detection device, including: a processor and a memory for storing a computer program that can run on the processor, where the processor is used to run the computer program to execute the embodiment of the present application The steps of the method.
  • the detection device may include the detection component 104 in the foregoing embodiment.
  • the memory may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be a read only memory (ROM, Read Only Memory), a programmable read only memory (PROM, Programmable Read-Only Memory), an erasable programmable read only memory (EPROM, Erasable Programmable Read- Only Memory, Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be magnetic disk storage or tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhanced -Type synchronous dynamic random access memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • direct memory bus random access memory DRRAM, Direct Rambus Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memories described in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the methods disclosed in the above embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the foregoing processor may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • DSP Digital Signal Processor
  • the processor may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as execution and completion by a hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in a memory.
  • the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the detection device may be implemented by one or more Application Specific Integrated Circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), and Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device, Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components Implementation, used to perform the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components Implementation, used to perform the aforementioned method.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the embodiments of the present application are implemented.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a mobile storage device, ROM, RAM, magnetic disk, or optical disk.
  • the aforementioned integrated unit of the present invention is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: removable storage devices, ROM, RAM, magnetic disks, or optical disks and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

本申请实施例公开了一种检测电路、电器及控制方法,所述检测电路至少包括:第一容性组件、第二容性组件、待检测负载和检测组件,其中:所述第一容性组件和所述待检测负载串联组成第一支路;所述第一支路与包含所述第二容性组件的第二支路并联;所述检测组件,用于检测所述第一支路的第一交流信号和所述第二支路的第二交流信号,确定所述第一交流信号的第一方向以及所述第二交流信号的第二方向,基于所述第一方向和所述第二方向确定所述待检测负载的类型。

Description

一种检测电路、电器及控制方法
相关申请的交叉引用
本申请基于申请号为201910766202.X、申请日为2019年8月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及电器领域,尤其涉及一种检测电路、电器及控制方法。
背景技术
相关技术中的某类电器(例如电磁炉)能够对锅具进行加热或对受电设备进行充电。在使用此类电器时,需要用户人为的对负载类型进行判断,进而选择启动相应的按键,以使电器工作在相应的工作模式,否则,会导致不可预期的风险,甚至有可能损坏电器。
发明内容
本申请实施例提供一种检测电路、电器及控制方法,至少部分解决上述提出的技术问题。
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例提供一种检测电路,所述检测电路至少包括:第一容性组件、第二容性组件、待检测负载和检测组件,其中:
所述第一容性组件和所述待检测负载串联组成第一支路;所述第一支路与包含所述第二容性组件的第二支路并联;
所述检测组件,配置为检测所述第一支路的第一交流信号和所述第二 支路的第二交流信号,确定所述第一交流信号的第一方向以及所述第二交流信号的第二方向,基于所述第一方向和所述第二方向确定所述待检测负载的类型。
在本申请的一些可选实施例中,所述检测组件,配置为检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
在本申请的一些可选实施例中,所述第一容性组件包括第一电容;
或,所述第一容性组件包括第一电容和以下至少之一:第一电感、第一电阻;所述第一电容与第一电感、第一电阻中的至少之一串联;
所述第二容性组件包括第二电容;
或,所述第一容性组件包括第二电容和以下至少之一:第二电感、第二电阻;所述第二电容与第二电感、第二电阻中的至少之一串联。
在本申请的一些可选实施例中,所述检测电路还包括包含感性组件的第三支路;其中,所述第三支路的一端与交流电源连接;所述第三支路分别与第一支路、第二支路串联;所述第三支路的第三交流信号包括所述第一交流信号和所述第二交流信号;所述感性组件配置为对所述交流电源输出的交流信号进行滤波或补偿处理。
在本申请的一些可选实施例中,所述检测组件,配置为检测所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻,基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
在本申请的一些可选实施例中,所述检测组件,配置为检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;在检测到所述第一时刻 和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一时刻和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载的类型为加热负载。
在本申请的一些可选实施例中,所述感性组件包括第三电感;
或,所述感性组件包括第三电感和以下至少之一:第三电容、第三电阻;所述第三电感与第三电容、第三电阻中的至少之一串联。
本申请实施例还提供一种电器,所述电器包括上述任一方案中所述的检测电路,所述电器还包括控制组件,配置为基于所述检测电路中的检测组件确定的所述待检测负载的类型,控制所述电器进入相应的工作模式。
在本申请的一些可选实施例中,所述待检测负载包括锅具或受电设备;
所述控制组件,配置为在所述检测组件确定的所述待检测负载的类型为加热负载的情况下,通过所述电器的线圈盘对放置在所述线圈盘上的锅具进行加热;在所述检测组件确定的所述待检测负载的类型为输电负载的情况下,通过所述电器的线圈盘对放置在所述线圈盘上的受电设备进行输电。
本申请实施例还提供一种控制方法,应用于上述任一方案中的所述的电器;所述方法包括:
获得检测电路中第一支路的第一交流信号和第二支路的第二交流信号,确定所述第一交流信号的第一方向及所述第二交流信号的第二方向;其中,所述第一支路包括串联的第一容性组件和待检测负载;所述第一支路与包含所述第二容性组件的第二支路并联;
基于所述第一方向和所述第二方向,确定所述待检测负载的类型;
基于所述待检测负载的类型,控制所述电器进入相应的工作模式。
在本申请的一些可选实施例中,所述基于所述第一方向和所述第二方向,确定所述待检测负载的类型,包括:
检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;
在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
在本申请的一些可选实施例中,所述方法还包括:
获得所述检测电路中的第三支路的第三交流信号,确定所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻;
基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
在本申请的一些可选实施例中,所述基于所述第一时刻和所述第二时刻确定所述待检测负载的类型,包括:
检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;
在检测到所述第一时刻和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一时刻和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载的类型为加热负载。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例所述方法的步骤。
本申请实施例还提供一种检测装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本申请实施例所述方法的步骤。
本申请实施例提供一种检测电路、电器及控制方法,所述检测电路至少包括:第一容性组件、第二容性组件、待检测负载和检测组件,其中:所述第一容性组件和所述待检测负载串联组成第一支路;所述第一支路与 包含所述第二容性组件的第二支路并联;所述检测组件,用于检测所述第一支路的第一交流信号和所述第二支路的第二交流信号,确定所述第一交流信号的第一方向以及所述第二交流信号的第二方向,基于所述第一方向和所述第二方向确定所述待检测负载的类型。采用本申请实施例的技术方案,一方面,通过检测第一支路和第二支路的交流信号的方向,基于检测到的方向实现了自动判定待检测负载的类型。另一方面,将上述检测电路应用于电器中,实现了待检测负载的类型的智能识别,从而可使电器自动的工作在相应的工作模式,使得电器更加智能化,满足用户需求,提高电器的安全性和提升用户的体验。
附图说明
图1为本申请实施例提供的一种检测电路的结构示意图;
图2为本申请实施例提供的另一种检测电路的结构示意图;
图3为包含本申请实施例提供的检测电路的一种电器结构示意图;
图4为本申请实施例提供的一种控制方法流程示意图;
图5为本申请实施例提供的另一种控制方法流程示意图;
图6为包含本申请实施例提供的检测电路的一种电路拓扑结构示意图。
具体实施方式
下面详细描述本申请实施例,所述实施例的示例性在附图中示出,其中自始至终相同或者类似的标号表示相同或者类型元件或具有相同或类型功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了便于理解本申请实施例,以下以电磁炉为例先对相关技术中的电磁加热技术和无线输电技术进行简单的介绍。
电磁炉又称为电磁灶,分为工频(低频)和高频两种,其工作原理是 采用电磁感应原理将电能转换为热能以加热锅具内的食物。以高频电磁炉为例,其具体的工作原理如下:首先利用整流电路将50/60Hz的交流电转换成直流电,然后利用控制电路将直流电转换成频率为20~35KHz高频信号,进而使高速变化的电流流过线圈产生高速变化的磁场,由此,磁场内的磁力线通过金属锅具底部时,在金属体内产生无数小涡流,使锅具本身自行高速发热,进而加热锅具内事物,达到用户使用的结果。
电能的输送是电力系统中发电和用电的中间环节,无线输电作为一种特殊的输电方式,其根据原理不同可分为四大类:电磁感应原理类、谐振式无线输电类、磁耦合共振类及微波无线输电类,通过采用上述四种类型之一可实现电源与受电设备之间不需要物理连接而进行能量耦合,即在物体之间能够传输能量。采用无线输电方式,只要将受电设备放置在指定位置即可,此受电设备与无线输电设备(比如,电磁炉)具备相同的无线充电标准,比如,电源事物联盟(PMA,Power Matters Alliance)标准、Qi标准或无线充电联盟(A4WP,Alliance for Wireless Power)标准等。
电磁加热技术和无线输电技术均采用能量耦合的方式,基于此相关技术中出现了具有电磁加热功能和无线输电功能的电器。但是,目前,电器还不能智能识别放置的负载类型,而是需要用户选择设置负载的类型,但是用户选择负载类型错误,可能会导致电器不能正常工作,甚至损坏电器。因此,本申请实施例期望提供一种检测方案,能够对放置在电器上的负载类型进行智能识别,使得电器基于识别的负载类型工作在相应的工作模式。
下面结合附图来详细描述本申请实施例提出的检测电路、电器及控制方法。
图1为本申请实施例提供的一种检测电路的结构示意图;如图1所示,所述检测电路10至少包括:第一容性组件101、第二容性组件102、待检测负载103和检测组件104,其中:
所述第一容性组件101和所述待检测负载103串联组成第一支路;所述第一支路与包含所述第二容性组件102的第二支路并联;
所述检测组件104,配置为检测所述第一支路的第一交流信号和所述第二支路的第二交流信号,确定所述第一交流信号的第一方向以及所述第二交流信号的第二方向,基于所述第一方向和所述第二方向确定所述待检测负载的类型。
本实施例中,容性组件(包括第一容性组件101和第二容性组件102)指的是具有电容参数的组件,即符合电压滞后电流特性的组件。
本实施例中,第一容性组件可具有多种形式,只要使得第一容性组件呈容性、且满足检测电路的需求即可。一种可选的实施方式是,第一容性组件101可包括第一电容。另一种可选的实施方式是,所述第一容性组件101可包括第一电容和以下至少之一:第一电感、第一电阻;所述第一电容与第一电感、第一电阻中的至少之一串联。相似的,第二容性组件102也可具有多种形式,一种可选的实施方式是,第二容性组件102可包括第二电容;另一种可选的实施方式是,第二容性组件102可包括第二电容和以下至少之一:第二电感、第二电阻;所述第二电容与第二电感、第二电阻中的至少之一串联。应该理解,此处的“第一”、“第二”仅是为了区分后续的描述,没有限制作用。
应该理解,由于第一支路与第二支路并联,则第一支路与第二支路两端的电压值理论上相等,因此,本实施例中的第一交流信号的第一方向是指第一支路上第一交流信号的电流方向;第二交流信号的第二方向是指第二支路上的第二交流信号的电流方向。
在实际应用中,待检测负载的类型可包括输电负载和加热负载两种类型,其中,输电负载可以理解为受电设备,即通过无线输电技术获得电能的设备;加热负载为通过电磁感应原理获得电能转换的热能的设备。示例 性的,输电负载对应的手电设备可以是具有无线充电功能的终端设备,例如手机等。加热负载可以是能够用于电磁加热的锅具等等。
示例性的,在检测到第一支路上的第一交流信号的电流方向与第二支路上的第二交流信号的电流方向之间的夹角接近90°的情况下,可确定所述待检测负载为输电负载;在检测到第一支路上的第一交流信号的电流方向与第二支路上的第二交流信号的电流方向之间的夹角不接近90°的情况下,确定所述待检测负载类型为加热负载。
因此,在本申请的一些可选实施例中,在利用上述检测电路10判断待检测负载的类型时,所述检测组件104,配置为检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
其中,第一预设范围可根据需要进行设定,本实施例中对此可做限定。
例如,第一预设范围为(80°,100°),表示大于80°小于100°的范围。在检测到第一支路上的电流信号的第一方向与第二支路上的电流信号的第二方向之间的夹角在(80°,100°)的情况下,例如第一方向和第二方向之间的夹角为85°,则待检测负载就可判定为输电负载;在检测到第一支路上的电流信号的第一方向与第二支路上的电流信号的第二方向之间的夹角不在(80°,100°)之间,例如第一方向和第二方向之间的夹角为75°,则待检测负载就可判定为加热负载。
基于与上述相似的申请构思,对于待检测负载类型的判断,如图2所示,本申请实施例还提供了另一种检测电路10的结构示意图,所述检测电路10还可包括:包含感性组件105的第三支路;其中,所述第三支路的一端与交流电源连接;所述第三支路分别与第一支路、第二支路串联;所述 第三支路的第三交流信号包括所述第一交流信号和所述第二交流信号;所述感性组件105配置为对所述交流电源输出的交流信号进行滤波或补偿处理。可以理解,所述第三支路的一端接入交流电源;所述第三支路的另一端分别于所述第一支路和所述第二支路的一端连接。
本实施例中,感性组件105指的是具有电感参数的组件,即负载电流滞后负载电压一个相位差特性的组件。
本实施例中,感性组件105的可具有多种形式,只要满足感性组件的特性即可。基于此,在一种可选的实施方式中,感性组件105可包括第三电感。在另一种可选的实施方式中,感性组件105可包括第三电感和以下至少之一:第三电容、第三电阻;所述第三电感与第三电容、第三电阻中的至少之一串联。
需要说明的是,第三支路位于交流电源侧,且分别与第一支路及第二支路具有相同的节点,根据基尔霍夫定律(Kirchhoff laws),在一个电路节点中,流出的电流信号等于流入的电流信号,即第三支路中的第三交流信号的电流等于第一支路的第一交流信号的电流与第二支路中的第二交流信号的电流之和。
本申请实施例利用感性组件105对交流电源输出的交流信号进行滤波或补偿处理。本实施例中的交流电源的类型不限,只要能够为检测电路10提供交流信号即可,在此可不做限制,在实际应用中,示例性的,可采用逆变桥式电路的输出的交流信号作为交流电源;应该理解,此交流信号包括交流电压和交流电流等物理量,并且在经过逆变桥式电路输出的交流信号大多是方波,含有较多的高次谐波,因此,需要利用感性组件105阻高频通低频,将交流信号中含有的高次谐波过滤掉,仅含有基波(正弦波),比如,具有正弦波形的电压以及具有正弦波形的电流。
在本实施例中,当第一支路与第二支路并联之后的等效阻抗呈阻性时, 也即第三支路上的电压信号与电流信号同相位时,判定待检测负载103为输电负载;当第一支路与第二支路并联之后的等效阻抗不呈阻性时,也就是,第三支路上的电压信号与电流信号不同相位时,判定待检测负载103为加热负载。
基于此,所述检测组件104,配置为检测所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻,基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
在一些实施方式中,所述检测组件104,配置为检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;在检测到所述第一时刻和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载103的类型为输电负载;在检测到所述第一时刻和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载103的类型为加热负载。
其中,第二预设范围可根据需要进行设定,本实施例中对此可不做限定。
例如,第二预设范围为(-0.2,+0.2),表示大于-0.2小于0.2的范围。在检测到第三支路上的第三交流信号的电压过零点的第一时刻与第三交流信号的电流过零点的第二时刻在(-0.2,+0.2)的情况下,例如第一时刻与第二时刻的差为0.01,则待检测负载103就可判定为输电负载;在检测到第三支路上的第三交流信号的电压过零点的第一时刻与第三交流信号的电流过零点的第二时刻不在(-0.2,+0.2)的情况下,例如第一时刻与第二时刻的差为0.5,则待检测负载103就可判定为加热负载。
采用本申请实施例的技术方案,一方面,通过检测第一支路和第二支路的交流信号的方向,基于检测到的方向实现了自动判定待检测负载的类型。
如图3所示,本申请实施例还提供一种包含上述任一检测电路10的电 器20,所述电器20还包括控制组件30,配置为基于所述检测电路10中的检测组件104确定的所述待检测负载103的类型,控制所述电器进入相应的工作模式。
本实施例中,电器20的工作模式至少包括输电工作模式和加热工作模式。实际应用中,电器20中可至少包括输电电路和加热电路,输电工作模式可表示电器20中的线盘切换连接至输电电路、以通过输电电路对待检测负载103传输电能;加热工作模式可表示电器20中的线盘切换连接至加热电路、以通过加热电路对待检测负载103进行加热。可以理解,在检测电路10检测到待检测负载103类型为加热负载的情况下,控制组件30控制电器20进入加热工作模式;在检测电路10检测到待检测负载103类型为输电负载的情况下,控制组件30控制电器20进入输电工作模式。从而避免人工选择工作模式发生错误,导致电器20或待检测负载103发生损坏。
在实际应用中,在所述待检测负载103包括锅具或受电设备的情况下,所述控制组件30,配置为在所述检测组件104确定的所述待检测负载103的类型为加热负载的情况下,通过所述电器20的线圈盘对放置在所述线圈盘上的锅具进行加热;在所述检测组件104确定的所述待检测负载103的类型为输电负载的情况下,通过所述电器20的线圈盘对放置在所述线圈盘上的受电设备进行输电。
应该理解,所述电器20可为具备上述检测电路10和控制组件30的任何电器,根据本申请的一个具体实施例,所述电器20可为电磁炉,所述待检测负载103可包括能够电磁加热的锅具或能够进行无线充电的搅拌杯。例如,在锅具放置在电磁炉的线圈盘上的情况下,电磁炉通过自身包含的检测电路10与控制组件30,对锅具的类型进行自动识别并控制进入加热工作模式,以对锅具进行加热。又例如,在搅拌杯放置在电磁炉上的情况下,电磁炉通过自身包含的检测电路10与控制组件30,对搅拌杯的类型进行自 动识别控制进入输电工作模式,以对搅拌杯的电池进行充电。
采用本申请实施例的技术方案,将上述检测电路应用于电器中,实现了待检测负载的类型的智能识别,从而可使电器自动的工作在相应的工作模式,使得电器更加智能化,满足用户需求,提高电器的安全性和提升用户的体验。
基于与上述相似的申请构思,如图4所示,其示出本申请实施例提供的一种控制方法流程示意图,所述方法应用于上述任一电器20中,所述方法包括:
S401:获得检测电路中第一支路的第一交流信号和第二支路的第二交流信号,确定所述第一交流信号的第一方向及所述第二交流信号的第二方向;其中,所述第一支路包括串联的第一容性组件和待检测负载;所述第一支路与包含所述第二容性组件的第二支路并联;
S402:基于所述第一方向和所述第二方向,确定所述待检测负载的类型;
S403:基于所述待检测负载的类型,控制所述电器进入相应的工作模式。
可选的,对于步骤S402,所述方法还包括:
S4021:检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;
S4022:在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
基于前述方法实施例,如图5所示,其示出本申请实施例提供的另一种控制方法流程示意图,所述方法还包括:
S501:获得所述检测电路中的第三支路的第三交流信号,确定所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻;
S502:基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
这里,对于步骤S502,包括:
S5021:检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;
S5022:在检测到所述第一时刻和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一时刻和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载的类型为加热负载。
本申请方法实施例的详细阐述具体可参照前述检测电路和电器实施例的阐述,这里不再赘述。
为了更加清楚的了解本申请实施例的构思,下面以一个具体的示例进行说明。
图6为包含本申请实施例提供的检测电路的一种电路拓扑结构示意图,如图6所示。在此电路拓扑结构中,包括交流电源、第一支路、第二支路、第三支路及输电线盘,其中,第一支路包括第一容性组件和输电线盘;第二支路包括第二容性组件;第三支路包括感性组件;其中,第一容性组件包括一个第一电容(如图6中的电容C1);第二容性组件包括一个第二电容(如图6中的电容C2);感性组件包括一个第三电感(如图6中的电感L1);并且,第一支路中的第一电容与待检测负载串联;并与第二支路并联;第三支路分别与第一支路、第二支路串联;输电线盘上可放置不同类型的待检测负载,比如,可放置输电负载;或者,可放置加热负载。
在此电路拓扑结构下,判断待检测负载的类型可采用以下两种方式:
第一种方式:利用第一支路上的第一交流信号与第二支路上的第二交 流信号进行判断。获取第一交流信号与第二交流信号之间关系,基于二者之间的关系判断待检测负载的类型。
可选的,检测第一支路上的第一交流信号的第一方向及第二支路上的第二交流信号的第二方向,判断第一方向与第二方向之间的夹角是否在第一预设范围内(例如第一方向与第二方向之间的夹角是否接近90°);若第一方向与第二方向之间的夹角在第一预设范围内,则判定待检测负载为输电负载;若第一方向与第二方向之间的夹角不在第一预设范围内,则判定待检测负载为加热负载。
第二种方式:利用第三支路上的第三交流信号的电压过零点的时刻与第三交流信号的电流过零点的时刻进行判断。
可选的,检测第三支路上的第三交流信号的电压过零点第一时刻与第三交流信号的电流过零点第二时刻;判断第一时刻与第二时刻之差是否在第二预设范围内;若第一时刻与第二时刻之差在第二预设范围内,则判定待检测负载为输电负载;若第一时刻与第二时刻之差不在第二预设范围内,则判定待检测负载为加热负载。
应该理解,上述两种判断方式可同时存在,也可选择其一,根据用户的初始设定确定。当两种判断方式均存在时,可相互作为一种校验,若二者判断的结果不一致时,则判定检测电路有故障或者检测工具有问题,进而使包含此种检测电路的电器停止工作,从而进一步的提高包含此种检测电路的电器的安全性。
需要说明的是,本申请采用上述两种判断方式作为实施例以说明申请构思,应该理解,对于上述电路拓扑结构,还可判断第一支路的第一交流信号的电流值与第二支路的第二交流信号的电流值的平方之和,与第三支路的第三交流信号的电流值的平方之差是否在第三预设范围内;也即计算第一支路的第一交流信号的电流值与第二支路的第二交流信号的电流值的 平方和,与第三支路的第三交流信号的电流值的平方的差值,判断此差值是否在第三预设范围内,在此差值在第三预设范围内的情况下,则确定所述待检测负载的类型为输电负载;在此差值不在第三预设范围内的情况下,确定所述待检测负载的类型为加热负载。其中,所述第三预设范围也可根据实际需要进行设定,本实施例中对此不做具体限定。
例如,第三预设范围设定为(-0.5,0.5),则在第一支路的第一交流信号的电流值与第二支路的第二交流信号的电流值的平方和,与第三支路的第三交流信号的电流值的平方之间的差值在(-0.5,0.5)的情况下,例如该差值为0.3,则确定待检测负载为输电负载;在第一支路的第一交流信号的电流值与第二支路的第二交流信号的电流值的平方和,与第三支路的第三交流信号的电流值的平方之间的差值不在(-0.5,0.5)的情况下,例如该差值为0.7,则确定待检测负载为加热负载。
综上所述,根据本申请实施例提供的检测电路、电器及控制方法,通过检测电路判断待检测负载的类型,以使电器依据不同的负载类型自动的进入相应的工作模式,能够避免因用户开启错误的按键导致电器不能正常工作,甚至损坏的风险。
本申请实施例还提供一种检测装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本申请实施例所述方法的步骤。示例性的,所述检测装置可包括前述实施例中的检测组件104。
可以理解,存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM, Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬 件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,检测装置可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例所述方法的步骤。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种检测电路,所述检测电路至少包括:第一容性组件、第二容性组件、待检测负载和检测组件,其中:
    所述第一容性组件和所述待检测负载串联组成第一支路;所述第一支路与包含所述第二容性组件的第二支路并联;
    所述检测组件,配置为检测所述第一支路的第一交流信号和所述第二支路的第二交流信号,确定所述第一交流信号的第一方向以及所述第二交流信号的第二方向,基于所述第一方向和所述第二方向确定所述待检测负载的类型。
  2. 根据权利要求1所述的检测电路,其中,所述检测组件,配置为检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
  3. 根据权利要求1或2所述的检测电路,其中,所述第一容性组件包括第一电容;
    或,所述第一容性组件包括第一电容和以下至少之一:第一电感、第一电阻;所述第一电容与第一电感、第一电阻中的至少之一串联;
    所述第二容性组件包括第二电容;
    或,所述第一容性组件包括第二电容和以下至少之一:第二电感、第二电阻;所述第二电容与第二电感、第二电阻中的至少之一串联。
  4. 根据权利要求1或2所述的检测电路,其中,所述检测电路还包括包含感性组件的第三支路;其中,所述第三支路的一端与交流电源连接;所述第三支路分别与第一支路、第二支路串联;所述第三支路的第三交流 信号包括所述第一交流信号和所述第二交流信号;所述感性组件配置为对所述交流电源输出的交流信号进行滤波或补偿处理。
  5. 根据权利要求4所述的检测电路,其中,所述检测组件,配置为检测所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻,基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
  6. 根据权利要求5所述的检测电路,其中,所述检测组件,配置为检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;在检测到所述第一时刻和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一时刻和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载的类型为加热负载。
  7. 根据权利要求4所述的检测电路,其中,所述感性组件包括第三电感;
    或,所述感性组件包括第三电感和以下至少之一:第三电容、第三电阻;所述第三电感与第三电容、第三电阻中的至少之一串联。
  8. 一种电器,所述电器包括权利要求1至7任一项所述的检测电路,所述电器还包括控制组件,配置为基于所述检测电路中的检测组件确定的所述待检测负载的类型,控制所述电器进入相应的工作模式。
  9. 根据权利要求8所述的电器,其中,所述待检测负载包括锅具或受电设备;
    所述控制组件,配置为在所述检测组件确定的所述待检测负载的类型为加热负载的情况下,通过所述电器的线圈盘对放置在所述线圈盘上的锅具进行加热;在所述检测组件确定的所述待检测负载的类型为输电负载的情况下,通过所述电器的线圈盘对放置在所述线圈盘上的受电设备进行输电。
  10. 一种控制方法,应用于权利要求8或9所述的电器;所述方法包括:
    获得检测电路中第一支路的第一交流信号和第二支路的第二交流信号,确定所述第一交流信号的第一方向及所述第二交流信号的第二方向;其中,所述第一支路包括串联的第一容性组件和待检测负载;所述第一支路与包含所述第二容性组件的第二支路并联;
    基于所述第一方向和所述第二方向,确定所述待检测负载的类型;
    基于所述待检测负载的类型,控制所述电器进入相应的工作模式。
  11. 根据权利要求10所述的方法,其中,所述基于所述第一方向和所述第二方向,确定所述待检测负载的类型,包括:
    检测所述第一方向和所述第二方向之间的夹角是否在第一预设范围内;
    在检测到所述第一方向和所述第二方向之间的夹角在所述第一预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一方向和所述第二方向之间的夹角不在第一预设范围内的情况下,确定所述待检测负载的类型为加热负载。
  12. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    获得所述检测电路中的第三支路的第三交流信号,确定所述第三交流信号的电压过零点的第一时刻与电流过零点的第二时刻;
    基于所述第一时刻和所述第二时刻确定所述待检测负载的类型。
  13. 根据权利要求12所述的方法,其中,所述基于所述第一时刻和所述第二时刻确定所述待检测负载的类型,包括:
    检测所述第一时刻和所述第二时刻之差是否在第二预设范围内;
    在检测到所述第一时刻和所述第二时刻之差在所述第二预设范围内的情况下,确定所述待检测负载的类型为输电负载;在检测到所述第一时刻 和所述第二时刻之差不在所述第二预设范围内的情况下,确定所述待检测负载的类型为加热负载。
  14. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求10至13任一项所述方法的步骤。
  15. 一种检测装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求10至13任一项所述方法的步骤。
PCT/CN2019/123405 2019-08-19 2019-12-05 一种检测电路、电器及控制方法 WO2021031457A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19942462.3A EP3998484B1 (en) 2019-08-19 2019-12-05 Detection circuit, electrical appliance and control method
JP2022504695A JP7338942B2 (ja) 2019-08-19 2019-12-05 検出回路、電気器具及び制御方法
US17/674,217 US20220170966A1 (en) 2019-08-19 2022-02-17 Detection Circuit, Appliance and Control Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910766202.X 2019-08-19
CN201910766202.XA CN112394244B (zh) 2019-08-19 2019-08-19 一种检测电路、电器及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/674,217 Continuation US20220170966A1 (en) 2019-08-19 2022-02-17 Detection Circuit, Appliance and Control Method

Publications (1)

Publication Number Publication Date
WO2021031457A1 true WO2021031457A1 (zh) 2021-02-25

Family

ID=74603606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123405 WO2021031457A1 (zh) 2019-08-19 2019-12-05 一种检测电路、电器及控制方法

Country Status (5)

Country Link
US (1) US20220170966A1 (zh)
EP (1) EP3998484B1 (zh)
JP (1) JP7338942B2 (zh)
CN (1) CN112394244B (zh)
WO (1) WO2021031457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595169A (zh) * 2021-06-18 2021-11-02 浙江高泰昊能科技有限公司 Bms防打火方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262647A (zh) * 2011-12-20 2013-08-21 松下电器产业株式会社 非接触供电装置及非接触电力传送系统
CN103513128A (zh) * 2012-06-27 2014-01-15 财团法人工业技术研究院 电器负载检测方法与系统
CN104485759A (zh) * 2014-12-29 2015-04-01 哈尔滨工业大学 基于nfc的多头灶电磁炉无线供电系统及其工作模式控制方法
CN104764954A (zh) * 2015-03-24 2015-07-08 天津师范大学 一种网络化智能负载识别装置及识别方法
CN207117238U (zh) * 2017-08-03 2018-03-16 九阳股份有限公司 一种多功能无线供电平台
CN107979884A (zh) * 2016-10-21 2018-05-01 佛山市顺德区美的电热电器制造有限公司 电磁炉、电磁炉控制方法及装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247177B2 (zh) * 1972-07-04 1977-11-30
JP2745247B2 (ja) * 1991-02-26 1998-04-28 シャープ株式会社 電磁誘導加熱調理器
JP3546279B2 (ja) 1996-04-23 2004-07-21 株式会社ダイフク 移動体使用の搬送設備
AT407997B (de) 1999-08-10 2001-07-25 Chemiefaser Lenzing Ag Gefärbte cellulosische formkörper
JP2002299028A (ja) 2001-03-30 2002-10-11 Toshiba Corp 誘導加熱調理器
JP2005093089A (ja) * 2003-09-12 2005-04-07 Hitachi Hometec Ltd 誘導加熱調理器
KR100529925B1 (ko) 2003-10-27 2005-11-22 엘지전자 주식회사 유도가열 전기밥솥 및 그 동작방법
JP2006114320A (ja) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp 誘導加熱装置及び誘導加熱調理器
JP4444076B2 (ja) * 2004-11-15 2010-03-31 株式会社東芝 誘導加熱調理器
US7989986B2 (en) 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
JP3969497B2 (ja) * 2006-09-15 2007-09-05 三菱電機株式会社 誘導加熱装置及び誘導加熱調理器
JP4525710B2 (ja) * 2007-06-29 2010-08-18 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
KR20100094596A (ko) 2007-12-21 2010-08-26 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도 전력 전송
JP2009163915A (ja) 2007-12-28 2009-07-23 Fuji Electric Systems Co Ltd 誘導加熱装置
JP4859862B2 (ja) 2008-03-18 2012-01-25 三菱電機株式会社 誘導加熱調理器
JP2011181325A (ja) 2010-03-01 2011-09-15 Toshiba Corp 誘導加熱調理器
JP5473837B2 (ja) * 2010-09-03 2014-04-16 三菱電機株式会社 誘導加熱調理器およびその制御方法
JP5474213B2 (ja) 2010-11-16 2014-04-16 三菱電機株式会社 誘導加熱調理器およびその制御方法
WO2014064932A1 (ja) * 2012-10-24 2014-05-01 パナソニック株式会社 誘導加熱装置
WO2014068647A1 (ja) * 2012-10-30 2014-05-08 三菱電機株式会社 誘導加熱調理器
CN104634398B (zh) * 2014-12-19 2019-01-08 重庆川仪自动化股份有限公司 一种励磁电路加高压系统及方法
CN107852784B (zh) * 2015-07-31 2020-11-10 三菱电机株式会社 感应加热烹调器及其控制方法
CN108141927B (zh) 2015-10-16 2020-11-13 三菱电机株式会社 感应加热烹调装置、复合烹调装置及感应加热烹调系统
WO2018003092A1 (ja) 2016-06-30 2018-01-04 三菱電機株式会社 非接触電力伝送装置、非接触電力伝送システム、及び誘導加熱調理器
CN106685102A (zh) * 2016-12-19 2017-05-17 美的集团股份有限公司 家用电器及其的无线输电与电磁加热切换装置、方法
JP7186344B2 (ja) * 2017-06-09 2022-12-09 パナソニックIpマネジメント株式会社 誘導加熱装置
CN109466350A (zh) * 2018-12-24 2019-03-15 西安工业大学 一种lcl复合型无线充电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262647A (zh) * 2011-12-20 2013-08-21 松下电器产业株式会社 非接触供电装置及非接触电力传送系统
CN103513128A (zh) * 2012-06-27 2014-01-15 财团法人工业技术研究院 电器负载检测方法与系统
CN104485759A (zh) * 2014-12-29 2015-04-01 哈尔滨工业大学 基于nfc的多头灶电磁炉无线供电系统及其工作模式控制方法
CN104764954A (zh) * 2015-03-24 2015-07-08 天津师范大学 一种网络化智能负载识别装置及识别方法
CN107979884A (zh) * 2016-10-21 2018-05-01 佛山市顺德区美的电热电器制造有限公司 电磁炉、电磁炉控制方法及装置
CN207117238U (zh) * 2017-08-03 2018-03-16 九阳股份有限公司 一种多功能无线供电平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595169A (zh) * 2021-06-18 2021-11-02 浙江高泰昊能科技有限公司 Bms防打火方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
EP3998484B1 (en) 2024-04-03
JP2022542125A (ja) 2022-09-29
CN112394244B (zh) 2021-09-14
JP7338942B2 (ja) 2023-09-05
EP3998484A4 (en) 2022-07-27
EP3998484A1 (en) 2022-05-18
US20220170966A1 (en) 2022-06-02
CN112394244A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN110771005B (zh) 用于无线电力充电的系统
CN104009555B (zh) 谐振型非接触供电装置、电能发射端和非接触供电方法
CN103427501B (zh) 一种电压型无线供电系统负载识别方法及系统
Boys et al. Single-phase unity power-factor inductive power transfer system
CN205726493U (zh) 一种适应不同材质锅具加热的电磁加热控制系统
CN111106676A (zh) Lcc-s型mc-wpt系统的磁耦合机构参数多目标优化方法
Carretero et al. Phase‐shift modulation in double half‐bridge inverter with common resonant capacitor for induction heating appliances
Gomes et al. Multiphase resonant inverter with coupled coils for AC–AC induction heating application
Wu et al. A robust parity-time-symmetric WPT system with extended constant-power range for cordless kitchen appliances
Xiao et al. Matching capacitance and transfer efficiency of four wireless power transfer systems via magnetic coupling resonance
Huang et al. Quantitative design and implementation of an induction cooker for a copper pan
WO2021031457A1 (zh) 一种检测电路、电器及控制方法
Takami et al. A new ZVS phase shift-controlled class D full-bridge high-frequency resonant inverter for induction heating
CN108539874A (zh) 无线充电自适应阻抗匹配系统与方法
Gomes et al. Three-Phase integrated PFC AC-AC resonant inverter with weak coupled coils for induction heating application
Park et al. Power curve-fitting control method with temperature compensation for all-metal induction heating systems
WO2021031453A1 (zh) 一种电磁灶台和电磁灶台的控制方法
Acero et al. An analysis of electromagnetic forces on cooking vessels used in domestic induction heating appliances oriented to identify the properties of materials
Chacón-Troya et al. Development and implementation of a smart induction stove
KR20200114433A (ko) 복수의 서브 워킹 코일들을 포함하는 가열 장치
KR20210072437A (ko) 조리기기
CN205353191U (zh) 电压采样电路及电器设备
CN203086768U (zh) 商用电磁炉集成芯片
Acero et al. Efficiency improvement of domestic induction appliances using variable inductor-load distance
JP7400096B2 (ja) 加熱回路及び調理器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504695

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019942462

Country of ref document: EP

Effective date: 20220211

NENP Non-entry into the national phase

Ref country code: DE