WO2021031425A1 - 高通量气相沉积设备及气相沉积方法 - Google Patents

高通量气相沉积设备及气相沉积方法 Download PDF

Info

Publication number
WO2021031425A1
WO2021031425A1 PCT/CN2019/119929 CN2019119929W WO2021031425A1 WO 2021031425 A1 WO2021031425 A1 WO 2021031425A1 CN 2019119929 W CN2019119929 W CN 2019119929W WO 2021031425 A1 WO2021031425 A1 WO 2021031425A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
reaction
isolation
vapor deposition
Prior art date
Application number
PCT/CN2019/119929
Other languages
English (en)
French (fr)
Inventor
李卫民
俞文杰
朱雷
王轶滢
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to EP19941890.6A priority Critical patent/EP4001457A4/en
Priority to JP2022510171A priority patent/JP7398549B2/ja
Priority to KR1020227008811A priority patent/KR20220046670A/ko
Priority to US17/635,389 priority patent/US20220290298A1/en
Publication of WO2021031425A1 publication Critical patent/WO2021031425A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the invention belongs to the technical field of vapor deposition, and particularly relates to a high-flux vapor deposition equipment and a vapor deposition method.
  • High-throughput vapor deposition (including CVD or ALD) equipment has been used to prepare multi-element thin film materials, which can achieve a large number of element composition combinations in a short time, and then can do more comprehensive research on multi-element material systems, and can be used according to the application Select the best combination of ingredients to reduce the cost of material development.
  • Existing high-throughput vapor deposition equipment generally uses insulating gas to isolate multiple micro-regions, in order to pass different gases into each micro-region at the same time for reactive deposition experiments.
  • the existing high-throughput vapor deposition equipment requires the design and manufacture of more than two gas supply systems, which have complex structures and difficult practical applications.
  • the purpose of the present invention is to provide a high-throughput vapor deposition equipment and vapor deposition method, used to solve the existing high-throughput vapor deposition equipment in the prior art need to design and manufacture two More than a set of gas introduction system, which makes the structure complicated and difficult to practical application.
  • the present invention provides a high-throughput vapor deposition equipment, which includes:
  • a rotating worktable located in the reaction chamber, for carrying a substrate and driving the substrate to rotate;
  • the gas introduction device is located in the reaction chamber and above the rotating table, and has a distance from the rotating table; the gas introduction device divides the reaction chamber into an upper chamber and a lower chamber
  • the gas introduction device is provided with a number of through holes, and the through holes communicate the upper chamber with the lower chamber;
  • a gas isolation structure located in the upper chamber and dividing the upper chamber into an isolated gas chamber and a reaction gas chamber; the center of the gas introduction device is located outside the reaction gas chamber; A plurality of the through holes respectively communicate the isolation gas chamber and the reaction gas chamber with the lower chamber;
  • the isolation gas introduction channel is located on the cavity wall of the reaction chamber and communicates with the isolation gas chamber;
  • the reaction gas introduction channel is located on the cavity wall of the reaction chamber and communicates with the reaction gas chamber.
  • the area of the bottom of the reaction gas chamber is smaller than the area of the bottom of the isolation gas chamber.
  • the center of the gas introduction device corresponds to the center of the rotary table up and down.
  • the gas isolation structure includes:
  • the first gas isolation plate has one end in contact with the inner wall of the reaction chamber, and the other end extends into the upper chamber;
  • a second gas isolation plate one end is in contact with the inner wall of the reaction chamber, and the other end extends into the upper chamber; the second gas isolation plate has a distance from the first gas isolation plate;
  • One end of the third gas isolation plate is connected to the end of the first gas isolation plate away from the inner wall of the reaction chamber, and the other end is connected to the end of the second gas isolation plate away from the inner wall of the reaction chamber ;
  • the height of the first gas isolation plate, the height of the second gas isolation plate, and the height of the third gas isolation plate are the same as the distance from the upper surface of the gas introduction device to the top of the reaction chamber .
  • the gas isolation structure includes an arc-shaped gas isolation plate, both ends of the arc-shaped gas isolation plate are connected to the inside of the reaction chamber, and the height of the arc-shaped gas isolation plate is the same as that of the reaction chamber. The distance from the upper surface of the gas introduction device to the top of the reaction chamber is the same.
  • the high-throughput vapor deposition equipment further includes:
  • An isolation gas supply system connected to the isolation gas introduction channel, for supplying isolation gas into the isolation gas chamber;
  • the reaction gas supply system is connected with the reaction gas introduction channel and is used for supplying reaction gas into the reaction gas chamber.
  • the high-throughput vapor deposition equipment also includes a real-time measurement device for characterizing the film deposited on the upper surface of the substrate including element composition, film thickness, and microstructure; the real-time measurement device The measuring end is located in the reaction chamber and between the rotating table and the gas introduction device.
  • the present invention also provides a vapor deposition method, which includes the following steps:
  • step 3) at least once to separately deposit thin films on multiple different regions of the substrate.
  • the high-throughput vapor deposition equipment and vapor deposition method of the present invention have the following beneficial effects:
  • the high-throughput vapor deposition equipment of the present invention only needs to use one set of isolation gas supply system and one set of reactive gas isolation system, a total of two sets of gas supply systems, simple structure, easy to implement, and good isolation; the high-throughput gas phase of the present invention
  • the deposition equipment has strong integration capabilities and can integrate other devices, such as real-time measurement devices, with more complete functions.
  • FIG. 1 shows a schematic top view of the high-throughput vapor deposition equipment provided in the first embodiment of the present invention.
  • FIG. 2 shows a schematic cross-sectional structure diagram of the high-throughput vapor deposition equipment provided in Embodiment 1 of the present invention.
  • FIG. 3 shows a flowchart of the vapor deposition method provided in the second embodiment of the present invention.
  • the present invention also provides a high-throughput vapor deposition equipment
  • the high-throughput vapor deposition equipment includes: a reaction chamber 1; a rotating table 2, the rotating table 2 is located in the The reaction chamber 1 is used to carry a substrate (not shown) and drive the substrate to rotate; a gas introduction device 3, the gas introduction device 3 is located in the reaction chamber 1 and is located in the rotation Above the worktable 2 and have a distance from the rotating worktable 2; the gas introduction device 3 divides the reaction chamber 1 into an upper chamber 11 and a lower chamber 12; the gas introduction device 3 is provided with There are a number of through holes 31 that connect the upper chamber 11 with the lower chamber 12; a gas isolation structure 4, the gas isolation device 4 is located in the upper chamber 11, and The upper chamber 11 is divided into an isolated gas chamber 111 and a reaction gas chamber 112; the center of the gas introduction device 3 is located outside the reaction gas chamber 112; a plurality of the through holes 31
  • the isolation gas chamber 111 and the reaction gas chamber 112 are respectively connected to the lower chamber
  • the high-throughput vapor deposition equipment of the present invention only needs to use a set of isolation gas supply system and a set of reaction gas isolation system, a total of two gas supply systems, simple structure, easy to implement, and good isolation;
  • the flux vapor deposition equipment has strong integration capabilities and can integrate other devices, such as real-time measurement devices, with more complete functions.
  • the rotary table 2 is connected to a driving device (not shown), and the rotary table 2 is driven by the driving device to realize rotation when it needs to be rotated.
  • a plurality of the through holes 31 may be evenly distributed on the gas introduction device 3.
  • the distribution density of the through holes 31 corresponding to the region adjacent to the isolation gas chamber 111 and the reaction gas chamber 112 is greater than that of all other regions corresponding to the isolation gas chamber 111.
  • the distribution density of the through holes 31 is described.
  • the distribution density of the through holes 31 corresponding to the region adjacent to the isolation gas chamber 111 and the reaction gas chamber 112 can make the isolation gas form a gas curtain with a better isolation effect and prevent the reaction gas from being trapped on the substrate. Deposition in other areas.
  • the shape and size of the gas introduction device 3 are the same as the shape and size of the reaction chamber 1, so that the sides of the gas introduction device 3 are in contact with the inner wall of the reaction chamber 1. To ensure that the upper chamber 11 and the lower chamber 12 are only communicated with each other through the through hole 31.
  • the area of the bottom of the reaction gas chamber 112 is smaller than the area of the bottom of the isolation gas chamber 111.
  • the center of the gas introduction device 3 corresponds to the center of the rotary table 2 up and down. Since the center of the gas introduction device 3 is located outside the reaction gas chamber 112, and the center of the gas introduction device 3 corresponds to the center of the rotary table 2 up and down, you can select The rotating table is used for film deposition on different areas of the substrate.
  • the gas isolation structure 4 may include: a first gas isolation plate 41, one end of the first gas isolation plate 41 is in contact with the inner wall of the reaction chamber 1, and the other end Extend into the upper chamber 11; a second gas isolation plate 42, one end of the second gas isolation plate 42 is in contact with the inner wall of the reaction chamber 1, and the other end extends into the upper chamber 11;
  • the second gas isolation plate 42 has a distance from the first gas isolation plate 41;
  • the third gas isolation plate 43, one end of the third gas isolation plate 43 and the first gas isolation plate 41 are far away from the reaction chamber One end of the inner wall of the chamber 1 is connected, and the other end is connected with the end of the second gas isolation plate 42 away from the inner wall of the reaction chamber 1;
  • the height of the first gas isolation plate 41 and the second gas The height of the isolation plate 42 and the height of the third gas isolation plate 43 are the same as the distance from the upper surface of the gas introduction device 3 to the top of the reaction chamber 1.
  • the gas isolation structure 4 includes an arc-shaped gas isolation plate (not shown), both ends of the arc-shaped gas isolation plate are connected to the inside of the reaction chamber 1, and the arc
  • the height of the shaped gas isolation plate is the same as the distance from the upper surface of the gas introduction device 3 to the top of the reaction chamber 1.
  • the high-throughput vapor deposition equipment may further include: an isolation gas supply system (not shown), the isolation gas supply system is connected to the isolation gas introduction channel 5, and the isolation gas supply system is used for Supply isolation gas into the isolation gas chamber 111; a reaction gas supply system (not shown), the reaction gas supply system is connected to the reaction gas introduction channel 6, the reaction gas supply system is used to The reaction gas is supplied in the reaction gas chamber 112.
  • the isolation gas supply system may include an isolation gas source (not shown) and a first supply pipe 81. One end of the first supply pipe 81 is connected to the isolation gas source, and the other end is connected to the isolation gas source.
  • the isolation gas introduction channel 5 is connected.
  • the isolation gas provided by the isolation gas supply system into the isolation gas chamber 111 may include but is not limited to argon (Ar) gas.
  • the reaction gas supply system may include a carrier gas source (not shown), a precursor source (not shown), a reaction gas source, a second supply line 82, a third supply line 83, and a fourth supply line.
  • the pipeline 85, the sixth supply pipeline 86, the seventh supply pipeline 87, and the eighth supply pipeline 88; both ends of the third supply pipeline 83 and the fourth supply pipeline 84 are connected to the carrier gas source
  • the other end of the second supply pipe is connected with the reaction gas source, and the other end is connected with the third supply pipe 83;
  • One end of the six supply pipe 86 is connected with the precursor source, and the other end is connected with the fourth supply pipe 84; one end of the fifth supply pipe 85 is connected with the carrier gas source, and the other end It is connected to the sixth supply pipe 86; one end of the seventh supply pipe 87 is connected to another carrier gas source, and the other end is connected to the fourth supply pipe 84;
  • One end of the supply pipe 88 is connected with the carrier gas source, and the other end is connected
  • the high-throughput vapor deposition equipment also includes a real-time measuring device 7, which is used to measure the film deposited on the upper surface of the substrate, including but not limited to element composition, film thickness, and microstructure.
  • the characterization of the real-time measurement device 7 is located in the reaction chamber 1 and between the rotating table 2 and the gas introduction device 3.
  • the real-time measurement device 9 may include, but is not limited to, an Auger electron spectrometer (AES).
  • AES Auger electron spectrometer
  • the working principle of the high-throughput vapor deposition equipment described in this embodiment is: use the rotary table 2 to rotate the first deposition area of the substrate to directly below the reaction gas chamber 112; While the reaction gas supply system provides the reaction gas and the reaction precursor into the reaction gas chamber 112, the isolation gas supply system is used to provide the isolation gas into the isolation gas chamber 111; The isolation gas enters the lower chamber 12 through the through hole 31 to form an isolation gas curtain; the reaction gas and the reaction precursor enter the lower chamber 12 through the through hole 31; The barrier of the gas curtain formed by the isolation gas, the reaction gas and the reaction precursor can only be deposited in the first deposition area of the substrate directly below the reaction gas chamber 112; After the film deposition in a deposition area is completed, use the rotary table 2 to rotate the second deposition area of the substrate to just below the reaction gas chamber 112, and perform film deposition in the second deposition area... Repeat the above steps in this way until the film deposition process is finished, and then the film deposition can be realized in different regions of the substrate.
  • the high-throughput vapor deposition equipment of the present invention only needs to use one set of the isolation gas supply system and one set of the reaction gas isolation system, a total of two gas supply systems, simple structure, easy to implement, and good isolation; the present invention
  • the high-throughput vapor deposition equipment has a strong integration capability, can integrate other devices, such as real-time measurement devices, and has more complete functions.
  • the present invention provides a vapor deposition method.
  • the vapor deposition method includes the following steps:
  • step 3) at least once to separately deposit thin films on multiple different regions of the substrate.
  • step 1) please refer to step S1 of FIG. 3 in conjunction with FIG. 1 to FIG. 2 to provide the high-throughput vapor deposition equipment as described in the first embodiment. Please refer to the first embodiment for the specific structure of the high-throughput vapor deposition equipment, which will not be repeated here.
  • step 2) please refer to FIG. 3 in conjunction with FIGS. 1 to 2, the isolation gas is introduced into the isolation gas chamber 111 through the isolation gas introduction channel 5, and the isolation gas is introduced into the isolation gas chamber 111 through the reaction gas introduction channel 6 Reaction gas is introduced into the reaction gas chamber 112 to perform thin film deposition on the area of the substrate corresponding to the reaction gas chamber 112 (for example, the first deposition area described in the first embodiment).
  • reaction gas is passed into the reaction gas chamber 112
  • reaction precursor may also be passed into the reaction gas chamber 112 at the same time.
  • the isolation gas introduced into the isolation gas chamber 111 enters the lower strong 12 through the through hole 31 to form a gas curtain, and the reaction gas and the reaction precursor pass through the through hole 31 Into the lower chamber 12; due to the barrier of the gas curtain formed by the isolation gas, the reaction gas and the reaction precursor can only be in the area where the substrate is located directly below the reaction gas chamber 112 Perform thin film deposition.
  • step 3 please refer to step S3 in FIG. 3 in conjunction with FIG. 1 to FIG. 2, and use the rotating table 2 to drive the substrate to rotate a predetermined angle, so that the substrate is not subjected to film deposition in the area (
  • the second deposition area described in the first embodiment is rotated to directly below the reaction gas chamber 112 to perform film deposition on the area of the substrate corresponding to the reaction gas chamber 112.
  • step 4 please refer to step S4 in FIG. 3 in conjunction with FIG. 1 to FIG. 2, and repeat step 3) at least once to perform thin film deposition on multiple different areas of the substrate.
  • the present invention provides a high-throughput vapor deposition equipment and a vapor deposition method.
  • the high-throughput vapor deposition equipment includes: a reaction chamber; a rotating table, located in the reaction chamber, for supporting a lining Bottom and drive the substrate to rotate; a gas introduction device located in the reaction chamber and above the rotating table, with a distance from the rotating table; the gas introducing device connects the reaction chamber
  • the chamber is divided into an upper chamber and a lower chamber;
  • the gas introduction device is provided with a plurality of through holes, and the through holes communicate the upper chamber with the lower chamber;
  • the gas isolation structure is located in the In the upper chamber, and divide the upper chamber into an isolated gas chamber and a reaction gas chamber;
  • the center of the gas introduction device is located outside the reaction gas chamber; a plurality of the through holes are respectively Connecting the isolation gas chamber and the reaction gas chamber with the lower chamber; an isolation gas introduction channel located on the cavity wall of the reaction chamber and communicating with the isolation gas chamber;
  • the reaction gas introduction channel is
  • the high-throughput vapor deposition equipment of the present invention only needs to use one set of isolation gas supply system and one set of reaction gas isolation system, a total of two sets of gas supply systems, simple structure, easy to implement, and good isolation;
  • the deposition equipment has strong integration capabilities and can integrate other devices, such as real-time measurement devices, with more complete functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种高通量气相沉积设备及气相沉积方法,旋转工作台(2)位于反应腔室(1)内;气体导入装置(3),位于所述反应腔室(1)内,且位于旋转工作台(2)的上方;气体导入装置(3)上设有若干个通孔(31);气体隔离结构(4)将上部腔室(11)分割为相互隔离的隔离气体腔室(111)及反应气体腔室(112);隔离气体导入通道(5)向隔离气体腔室(111)内通入隔离气体,并经由反应气体导入通道(6)向所述反应气体腔室(112)内通入反应气体,以于衬底对应于所述反应气体腔室(112)的区域进行薄膜沉积。高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好。

Description

高通量气相沉积设备及气相沉积方法 技术领域
本发明属于气相沉积技术领域,特别是涉及一种高通量气相沉积设备及气相沉积方法。
背景技术
高通量气相沉积(包括CVD或ALD)设备已经用于制备多元素薄膜材料,可以在短时间内实现大量的元素成分组合,进而可以对多元素材料体系做更全面的研究,并可以根据应用的需求选出最优成分组合,降低材料研发成本。
现有的高通量气相沉积设备一般采用绝缘气体实现多个微区隔离,以期同时在各个微区内通入不同气体进行反应沉积实验。然而,现有的高通量气相沉积设备需要设计和制造两套以上的气体供给系统,结构复杂,实际应用困难。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高通量气相沉积设备及气相沉积方法,用于解决现有技术中的高通量气相沉积设备存在的需要设计和制造两套以上的气体导入系统,从而使得结构复杂,实际应用困难的问题。
为实现上述目的及其他相关目的,本发明提供一种高通量气相沉积设备,所述高通量气相沉积设备包括:
反应腔室;
旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;
气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;
气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;
隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;
反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通。
可选地,所述反应气体腔室的底部的面积小于所述隔离气体腔室的底部的面积。
可选地,所述气体导入装置的中心与所述旋转工作台的中心上下对应。
可选地,所述气体隔离结构包括:
第一气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;
第二气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;所述第二气体隔离板与所述第一气体隔离板具有间距;
第三气体隔离板,一端与所述第一气体隔离板远离所述反应腔室的内壁的一端相连接,另一端与所述第二气体隔离板远离所述反应腔室的内壁的一端相连接;
所述第一气体隔离板的高度、所述第二气体隔离板的高度及所述第三气体隔离板的高度均与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
可选地,所述气体隔离结构包括弧形气体隔离板,所述弧形气体隔离板的两端均与所述反应腔室的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
可选地,所述高通量气相沉积设备还包括:
隔离气体供给系统,与所述隔离气体导入通道相连接,用于向所述隔离气体腔室内供给隔离气体;
反应气体供给系统,与所述反应气体导入通道相连接,用于向所述反应气体腔室内供给反应气体。
可选地,所述高通量气相沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述旋转工作台与所述气体导入装置之间。
本发明还提供一种气相沉积方法,所述气相沉积方法包括如下步骤:
1)提供如上述任一方案中所述的高通量气相沉积设备;
2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
如上所述,本发明的高通量气相沉积设备及气相沉积方法具有以下有益效果:
本发明的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系 统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明的高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
附图说明
图1显示为本发明实施例一中提供的高通量气相沉积设备的俯视结构示意图。
图2显示为本发明实施例一中提供的高通量气相沉积设备的剖视结构示意图。
图3显示为本发明实施例二中提供的气相沉积方法的流程图。
元件标号说明
1          反应腔室
11         上部腔室
111        隔离气体腔室
112        反应气体腔室
12         下部腔室
2          旋转工作台
3          气体导入装置
31         通孔
4          气体隔离结构
41         第一气体隔离板
42         第二气体隔离板
43         第三气体隔离板
5          隔离气体导入通道
6          反应气体导入通道
7          实时测量装置
81         第一供给管路
82         第二供给管路
83         第三供给管路
84         第四供给管路
85         第五供给管路
86         第六供给管路
87        第七供给管路
88        第八供给管路
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图3。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例一
请参阅图1及图2,本发明还提供一种高通量气相沉积设备,所述高通量气相沉积设备包括:反应腔室1;旋转工作台2,所述旋转工作台2位于所述反应腔室1内,用于承载衬底(未示出),并带动所述衬底旋转;气体导入装置3,所述气体导入装置3位于所述反应腔室1内,且位于所述旋转工作台2的上方,并与所述旋转工作台2具有间距;所述气体导入装置3将所述反应腔室1分割为上部腔室11及下部腔室12;所述气体导入装置3上设有若干个通孔31,所述通孔31将所述上部腔室11与所述下部腔室12相连通;气体隔离结构4,所述气体隔离装置4位于所述上部腔室11内,且将所述上部腔室11分割为相互隔离的隔离气体腔室111及反应气体腔室112;所述气体导入装置3的中心位于所述反应气体腔室112的外侧;若干个所述通孔31分别将所述隔离气体腔室111及所述反应气体腔室112与所述下部腔室12相连通;隔离气体导入通道5,所述隔离气体导入通道5位于所述反应腔室1的腔壁上,且与所述隔离气体腔室111相连通;反应气体导入通道6,所述反应气体导入通道6位于所述反应腔室1的腔壁上,且与所述反应气体腔室112相连通。本发明所述的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明所述高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
作为示例,所述旋转工作台2与驱动装置(未示出)相连接,所述旋转工作台2在需要旋转时由所述驱动装置驱动以实现旋转。
在一示例中,若干个所述通孔31可以于所述气体导入装置3上均匀分布。
在另一示例中,对应于所述隔离气体腔室111与所述反应气体腔室112相邻接区域的所述通孔31的分布密度大于对应于所述隔离气体腔室111其他区域的所述通孔31的分布密度。对应于所述隔离气体腔室111与所述反应气体腔室112相邻接区域的所述通孔31的分布密度可以使得隔离气体形成隔离效果较好的气帘,防止反应气体在所述衬底的其他区域沉积。
作为示例,所述气体导入装置3的形状及尺寸与所述反应腔室1内部的形状及尺寸相同,使得所述气体导入装置3的侧边均与所述反应腔室1的内壁相接触,以确保所述上部腔室11与所述下部腔室12仅通过所述通孔31相连通。
作为示例,所述反应气体腔室112的底部的面积小于所述隔离气体腔室111的底部的面积。
作为示例,所述气体导入装置3的中心与所述旋转工作台2的中心上下对应。由于所述气体导入装置3的中心位于所述反应气体腔室112的外侧,又所述气体导入装置3的中心与所述旋转工作台2的中心上下对应,在进行薄膜沉积时,可以通过选择所述旋转工作台以在所述衬底的不同区域进行薄膜沉积。
在一示例中,请继续参阅图1,所述气体隔离结构4可以包括:第一气体隔离板41,所述第一气体隔离板41一端与所述反应腔室1的内壁相接触,另一端向所述上部腔室11内延伸;第二气体隔离板42,所述第二气体隔离板42一端与所述反应腔室1的内壁相接触,另一端向所述上部腔室11内延伸;所述第二气体隔离板42与所述第一气体隔离板41具有间距;第三气体隔离板43,所述第三气体隔离板43一端与所述第一气体隔离板41远离所述反应腔室1的内壁的一端相连接,另一端与所述第二气体隔离板42远离所述反应腔室1的内壁的一端相连接;所述第一气体隔离板41的高度、所述第二气体隔离板42的高度及所述第三气体隔离板43的高度均与所述气体导入装置3的上表面至所述反应腔室1的顶部的距离相同。
在又一示例中,所述气体隔离结构4包括弧形气体隔离板(未示出),所述弧形气体隔离板的两端均与所述反应腔室1的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置3的上表面至所述反应腔室1的顶部的距离相同。
作为示例,所述高通量气相沉积设备还可以包括:隔离气体供给系统(未标示出),所述隔离气体供给系统与所述隔离气体导入通道5相连接,所述隔离气体供给系统用于向所述隔离气体腔室111内供给隔离气体;反应气体供给系统(未标示出),所述反应气体供给系统与所述反应气体导入通道6相连接,所述反应气体供给系统用于向所述反应气体腔室112内供给反应气体。
作为示例,所述隔离气体供给系统可以包括隔离气体源(未示出)及第一供给管路81,所述第一供给管路81一端与所述隔离气体源相连接,另一端与所述隔离气体导入通道5相连接。所述隔离气体供给系统向所述隔离气体腔室111内提供的隔离气体可以包括但不仅限于氩(Ar)气。
作为示例,所述反应气体供给系统可以包括载气源(未示出)、前驱体源(未示出)、反应气体源、第二供给管路82、第三供给管路83、第四供给管路85、第六供给管路86、第七供给管路87及第八供给管路88;所述第三供给管路83及所述第四供给管路84均一端与所述载气源相连接,另一端与所述反应气体导入通道6相连接;所述第二供给管路一端与所述反应气体源相连接,另一端与所述第三供给管路83相连通;所述第六供给管路86一端与一所述前驱体源相连接,另一端与所述第四供给管路84相连通;所述第五供给管路85一端与所述载气源相连接,另一端与所述第六供给管路86相连通;所述第七供给管路87一端与另一所述载气源相连接,另一端与所述第四供给管路84相连通;所述第八供给管路88一端与所述载气源相连接,另一端与所述第七供给管路84相连通。所述反应气体供给系统用于在载气的协助下将所述反应气体及反应前驱体供给到所述反应气体腔室112内。
作为示例,所述高通量气相沉积设备还包括实时测量装置7,所述实时测量装置7用于对所述衬底的上表面沉积的薄膜进行包括但不仅限于元素成分、薄膜厚度、微观结构的表征等;所述实时测量装置7的测量端位于所述反应腔室1内,且位于所述旋转工作台2与所述气体导入装置3之间。具体的,所述实时测量装置9可以包括但不仅限于俄歇电子谱仪(AES)。
本实施例中所述的高通量气相沉积设备的工作原理为:使用所述旋转工作台2将所述衬底的第一沉积区域旋转至所述反应气体腔室112的正下方;使用所述反应气体供给系统向所述反应气体腔室112内提供所述反应气体及所述反应前驱体的同时,使用所述隔离气体供给系统向所述隔离气体腔室111内提供所述隔离气体;所述隔离气体经由所述通孔31进入所述下部腔室12内形成隔离气帘;所述反应气体及所述反应前驱体经由所述通孔31进入所述下部腔室12内;由于有所述隔离气体形成的气帘的阻挡,所述反应气体及所述反应前驱体仅能在所述衬底位于所述反应气体腔室112正下方的所述第一沉积区域进行薄膜沉积;所述第一沉积区域进行薄膜沉积完毕后,使用所述旋转工作台2将所述衬底的第二沉积区域旋转至所述反应气体腔室112的正下方,在所述第二沉积区域进行薄膜沉积…如此重复上述步骤,直至薄膜沉积工艺结束,即可在实现在所述衬底不同区域内进行薄膜沉积。
本发明所述高通量气相沉积设备只需要使用一套所述隔离气体供给系统及一套所述反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明所述的高通 量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
实施例二
请结合图1至图2参阅图3,本发明提供一种气相沉积方法,所述气相沉积方法包括如下步骤:
1)提供如实施例一种所述的高通量气相沉积设备;
2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
在步骤1)中,请结合图1至图2参阅图3的S1步骤,提供如实施例一种所述的高通量气相沉积设备。所述高通量气相沉积设备的具体结构请参阅实施例一,此处不再累述。
在步骤2)中,请结合图1至图2参阅图3,经由所述隔离气体导入通道5向所述隔离气体腔室111内通入隔离气体,并经由所述反应气体导入通道6向所述反应气体腔室112内通入反应气体,以于所述衬底对应于所述反应气体腔室112的区域(譬如,实施例一中所述的第一沉积区域)进行薄膜沉积。
需要说明的是,向所述反应气体腔室112内通入所述反应气体的同时还可以同时向所述反应气体腔室112内通入反应前驱体。
具体的,通入至所述隔离气体腔室111内的所述隔离气体经由所述通孔31进入所述下部强势12形成气帘,所述反应气体及所述反应前驱体经由所述通孔31进入所述下部腔室12内;由于有所述隔离气体形成的气帘的阻挡,所述反应气体及所述反应前驱体仅能在所述衬底位于所述反应气体腔室112正下方的区域进行薄膜沉积。
在步骤3)中,请结合图1至图2参阅图3中的S3步骤,使用所述旋转工作台2带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域(譬如,实施例一中所述的第二沉积区域)旋转至所述反应气体腔室112的正下方,以于所述衬底对应于所述反应气体腔室112的区域进行薄膜沉积。
在步骤4)中,请结合图1至图2参阅图3中的S4步骤,重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
综上所述,本发明提供一种高通量气相沉积设备及气相沉积方法,所述高通量气相沉积设备包括:反应腔室;旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通。本发明的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明的高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

  1. 一种高通量气相沉积设备,其特征在于,所述高通量气相沉积设备包括:
    反应腔室;
    旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;
    气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;
    气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;
    隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;
    反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通。
  2. 根据权利要求1所述的高通量气相沉积设备,其特征在于,所述反应气体腔室的底部的面积小于所述隔离气体腔室的底部的面积。
  3. 根据权利要求1所述的高通量气相沉积设备,其特征在于,所述气体导入装置的中心与所述旋转工作台的中心上下对应。
  4. 根据权利要求1所述的高通量气相沉积设备,其特征在于,所述气体隔离结构包括:
    第一气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;
    第二气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;所述第二气体隔离板与所述第一气体隔离板具有间距;
    第三气体隔离板,一端与所述第一气体隔离板远离所述反应腔室的内壁的一端相连接,另一端与所述第二气体隔离板远离所述反应腔室的内壁的一端相连接;
    所述第一气体隔离板的高度、所述第二气体隔离板的高度及所述第三气体隔离板的高度均与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
  5. 根据权利要求1所述的高通量气相沉积设备,其特征在于,所述气体隔离结构包括弧形气体隔离板,所述弧形气体隔离板的两端均与所述反应腔室的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
  6. 根据权利要求1至5中任一项所述的高通量气相沉积设备,其特征在于,所述高通量气相沉积设备还包括:
    隔离气体供给系统,与所述隔离气体导入通道相连接,用于向所述隔离气体腔室内供给隔离气体;
    反应气体供给系统,与所述反应气体导入通道相连接,用于向所述反应气体腔室内供给反应气体。
  7. 根据权利要求1所述的高通量气相沉积设备,其特征在于,所述高通量气相沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述旋转工作台与所述气体导入装置之间。
  8. 一种气相沉积方法,其特征在于,所述气相沉积方法包括如下步骤:
    1)提供如权利要求1至9中任一项所述的高通量气相沉积设备;
    2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
    3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
    4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
PCT/CN2019/119929 2019-08-16 2019-11-21 高通量气相沉积设备及气相沉积方法 WO2021031425A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19941890.6A EP4001457A4 (en) 2019-08-16 2019-11-21 APPARATUS AND METHOD FOR HIGH FLOW RATE VAPOR SEPARATION
JP2022510171A JP7398549B2 (ja) 2019-08-16 2019-11-21 ハイスループット気相成長デバイス及び気相成長方法
KR1020227008811A KR20220046670A (ko) 2019-08-16 2019-11-21 고 스루풋 기상증착 장치 및 기상증착 방법
US17/635,389 US20220290298A1 (en) 2019-08-16 2019-11-21 High-throughput vapor deposition apparatus and vapor deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910759403.7A CN110408910B (zh) 2019-08-16 2019-08-16 高通量气相沉积设备及气相沉积方法
CN201910759403.7 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031425A1 true WO2021031425A1 (zh) 2021-02-25

Family

ID=68367572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119929 WO2021031425A1 (zh) 2019-08-16 2019-11-21 高通量气相沉积设备及气相沉积方法

Country Status (6)

Country Link
US (1) US20220290298A1 (zh)
EP (1) EP4001457A4 (zh)
JP (1) JP7398549B2 (zh)
KR (1) KR20220046670A (zh)
CN (1) CN110408910B (zh)
WO (1) WO2021031425A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408910B (zh) * 2019-08-16 2020-08-28 中国科学院上海微系统与信息技术研究所 高通量气相沉积设备及气相沉积方法
CN116770222B (zh) * 2022-03-09 2024-08-06 上海集成电路材料研究院有限公司 一种高通量薄膜沉积设备、刻蚀设备及其方法
WO2023169140A1 (zh) * 2022-03-09 2023-09-14 上海集成电路材料研究院有限公司 一种高通量薄膜沉积设备、刻蚀设备及其方法
KR200498277Y1 (ko) 2024-03-11 2024-08-23 안혜연 다기능 초간편 드라이버 골프티 어셈블리

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294942A (ja) * 1985-10-21 1987-05-01 Nec Corp 薄膜の製造方法
CN1726300A (zh) * 2002-11-08 2006-01-25 独立行政法人产业技术综合研究所 衬底上薄膜的制作方法
CN101962751A (zh) * 2010-10-27 2011-02-02 普尼太阳能(杭州)有限公司 一种多步物理气相沉积设备
CN102127757A (zh) * 2011-01-14 2011-07-20 映瑞光电科技(上海)有限公司 Mocvd反应系统
US20110226181A1 (en) * 2010-03-16 2011-09-22 Tokyo Electron Limited Film forming apparatus
CN106032572A (zh) * 2015-02-12 2016-10-19 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
CN106158569A (zh) * 2015-03-26 2016-11-23 理想晶延半导体设备(上海)有限公司 半导体处理设备
CN107686984A (zh) * 2016-08-03 2018-02-13 东京毅力科创株式会社 成膜装置、成膜方法以及存储介质
CN110408910A (zh) * 2019-08-16 2019-11-05 中国科学院上海微系统与信息技术研究所 高通量气相沉积设备及气相沉积方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311672A (ja) * 1986-06-30 1988-01-19 Nec Corp 薄膜形成方法
JP4090347B2 (ja) * 2002-03-18 2008-05-28 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
DE10320597A1 (de) * 2003-04-30 2004-12-02 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von Halbleiterschichten mit zwei Prozessgasen, von denen das eine vorkonditioniert ist
DE102005055468A1 (de) * 2005-11-22 2007-05-24 Aixtron Ag Verfahren zum Abscheiden von Schichten in einem CVD-Reaktor sowie Gaseinlassorgan für einen CVD-Reaktor
US7871828B2 (en) * 2007-02-06 2011-01-18 Applied Materials, Inc. In-situ dose monitoring using optical emission spectroscopy
JP4699545B2 (ja) * 2009-07-06 2011-06-15 シャープ株式会社 気相成長装置及び気相成長方法
US9175391B2 (en) * 2011-05-26 2015-11-03 Intermolecular, Inc. Apparatus and method for combinatorial gas distribution through a multi-zoned showerhead
US20120315396A1 (en) * 2011-06-13 2012-12-13 Intermolecular, Inc. Apparatus and method for combinatorial plasma distribution through a multi-zoned showerhead
CN103014846A (zh) * 2013-01-14 2013-04-03 东莞市中镓半导体科技有限公司 一种材料气相外延用同心圆环喷头结构
TWI683382B (zh) * 2013-03-15 2020-01-21 應用材料股份有限公司 具有光學測量的旋轉氣體分配組件
US9087864B2 (en) * 2013-12-19 2015-07-21 Intermolecular, Inc. Multipurpose combinatorial vapor phase deposition chamber
US10954597B2 (en) * 2015-03-17 2021-03-23 Asm Ip Holding B.V. Atomic layer deposition apparatus
KR102462931B1 (ko) * 2015-10-30 2022-11-04 삼성전자주식회사 가스 공급 유닛 및 기판 처리 장치
WO2017204622A1 (en) * 2016-05-27 2017-11-30 Asm Ip Holding B.V. Apparatus for semiconductor wafer processing
JP6836965B2 (ja) * 2017-06-23 2021-03-03 昭和電工株式会社 成膜装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294942A (ja) * 1985-10-21 1987-05-01 Nec Corp 薄膜の製造方法
CN1726300A (zh) * 2002-11-08 2006-01-25 独立行政法人产业技术综合研究所 衬底上薄膜的制作方法
US20110226181A1 (en) * 2010-03-16 2011-09-22 Tokyo Electron Limited Film forming apparatus
CN101962751A (zh) * 2010-10-27 2011-02-02 普尼太阳能(杭州)有限公司 一种多步物理气相沉积设备
CN102127757A (zh) * 2011-01-14 2011-07-20 映瑞光电科技(上海)有限公司 Mocvd反应系统
CN106032572A (zh) * 2015-02-12 2016-10-19 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
CN106158569A (zh) * 2015-03-26 2016-11-23 理想晶延半导体设备(上海)有限公司 半导体处理设备
CN107686984A (zh) * 2016-08-03 2018-02-13 东京毅力科创株式会社 成膜装置、成膜方法以及存储介质
CN110408910A (zh) * 2019-08-16 2019-11-05 中国科学院上海微系统与信息技术研究所 高通量气相沉积设备及气相沉积方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4001457A4 *

Also Published As

Publication number Publication date
CN110408910A (zh) 2019-11-05
CN110408910B (zh) 2020-08-28
EP4001457A4 (en) 2023-08-16
JP2022545076A (ja) 2022-10-25
JP7398549B2 (ja) 2023-12-14
EP4001457A1 (en) 2022-05-25
US20220290298A1 (en) 2022-09-15
KR20220046670A (ko) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021031425A1 (zh) 高通量气相沉积设备及气相沉积方法
TWI683026B (zh) 氣體供應歧管及使用其供應氣體至室之方法
KR101534362B1 (ko) 베이퍼 기반의 결합식 프로세싱
WO2005124845A1 (ja) 基板処理装置及び半導体装置の製造方法
US9855575B2 (en) Gas injector and cover plate assembly for semiconductor equipment
TWI392761B (zh) 具設在平面上之前室的氣體分佈器
CN109825816A (zh) 一种二硫化钼薄膜气敏材料及制备方法和应用
CN104342637A (zh) 一种原子层沉积设备
TW201137163A (en) Film deposition apparatus
CN105899710B (zh) 化学蒸镀装置及化学蒸镀方法
WO2023045052A1 (zh) 高通量薄膜沉积设备及薄膜沉积方法
SG195006A1 (en) Exhausting method, exhausting apparatus and substrate processing device
US20200115797A1 (en) Substrate processing apparatus having manifold
JPH01204434A (ja) 絶縁薄膜の製造方法
CN101838790B (zh) 一种蒸发设备
CN107345294A (zh) 一种等离子体设备的进气结构
CN210620934U (zh) 一种原子层沉积设备
TW202134459A (zh) 用於多種化學源之氣體分配裝置
TWM507432U (zh) 可提升蒸鍍材料使用率之線性蒸鍍裝置
US20190390342A1 (en) Thin film processing apparatus and thin film processing method
CN218666409U (zh) 一种适用于立式成膜设备的进气结构
WO2023103607A1 (zh) 沉积系统及方法
WO2023169140A1 (zh) 一种高通量薄膜沉积设备、刻蚀设备及其方法
CN220550228U (zh) 一种适用于化学气相沉积设备的气体流量调节装置
TWI851603B (zh) 基板處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019941890

Country of ref document: EP

Effective date: 20220218

ENP Entry into the national phase

Ref document number: 20227008811

Country of ref document: KR

Kind code of ref document: A