CN110408910B - 高通量气相沉积设备及气相沉积方法 - Google Patents

高通量气相沉积设备及气相沉积方法 Download PDF

Info

Publication number
CN110408910B
CN110408910B CN201910759403.7A CN201910759403A CN110408910B CN 110408910 B CN110408910 B CN 110408910B CN 201910759403 A CN201910759403 A CN 201910759403A CN 110408910 B CN110408910 B CN 110408910B
Authority
CN
China
Prior art keywords
gas
chamber
reaction
isolation
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910759403.7A
Other languages
English (en)
Other versions
CN110408910A (zh
Inventor
李卫民
俞文杰
朱雷
王轶滢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201910759403.7A priority Critical patent/CN110408910B/zh
Publication of CN110408910A publication Critical patent/CN110408910A/zh
Priority to EP19941890.6A priority patent/EP4001457A4/en
Priority to KR1020227008811A priority patent/KR20220046670A/ko
Priority to US17/635,389 priority patent/US20220290298A1/en
Priority to JP2022510171A priority patent/JP7398549B2/ja
Priority to PCT/CN2019/119929 priority patent/WO2021031425A1/zh
Application granted granted Critical
Publication of CN110408910B publication Critical patent/CN110408910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种高通量气相沉积设备及气相沉积方法,高通量气相沉积设备包括:反应腔室;旋转工作台,位于反应腔室内;气体导入装置,位于所述反应腔室内,且位于旋转工作台的上方;气体导入装置将反应腔室分割为上部腔室及下部腔室;气体导入装置上设有若干个通孔;气体隔离结构,位于上部腔室内,且将上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;隔离气体导入通道,位于反应腔室的腔壁上,且与隔离气体腔室相连通;反应气体导入通道,位于反应腔室的腔壁上,且与反应气体腔室相连通。本发明的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好。

Description

高通量气相沉积设备及气相沉积方法
技术领域
本发明属于气相沉积技术领域,特别是涉及一种高通量气相沉积设备及气相沉积方法。
背景技术
高通量气相沉积(包括CVD或ALD)设备已经用于制备多元素薄膜材料,可以在短时间内实现大量的元素成分组合,进而可以对多元素材料体系做更全面的研究,并可以根据应用的需求选出最优成分组合,降低材料研发成本。
现有的高通量气相沉积设备一般采用绝缘气体实现多个微区隔离,以期同时在各个微区内通入不同气体进行反应沉积实验。然而,现有的高通量气相沉积设备需要设计和制造两套以上的气体供给系统,结构复杂,实际应用困难。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高通量气相沉积设备及气相沉积方法,用于解决现有技术中的高通量气相沉积设备存在的需要设计和制造两套以上的气体导入系统,从而使得结构复杂,实际应用困难的问题。
为实现上述目的及其他相关目的,本发明提供一种高通量气相沉积设备,所述高通量气相沉积设备包括:
反应腔室;
旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;
气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;
气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;
隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;
反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通。
可选地,所述反应气体腔室的底部的面积小于所述隔离气体腔室的底部的面积。
可选地,所述气体导入装置的中心与所述旋转工作台的中心上下对应。
可选地,所述气体隔离结构包括:
第一气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;
第二气体隔离板,一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;所述第二气体隔离板与所述第一气体隔离板具有间距;
第三气体隔离板,一端与所述第一气体隔离板远离所述反应腔室的内壁的一端相连接,另一端与所述第二气体隔离板远离所述反应腔室的内壁的一端相连接;
所述第一气体隔离板的高度、所述第二气体隔离板的高度及所述第三气体隔离板的高度均与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
可选地,所述气体隔离结构包括弧形气体隔离板,所述弧形气体隔离板的两端均与所述反应腔室的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
可选地,所述高通量气相沉积设备还包括:
隔离气体供给系统,与所述隔离气体导入通道相连接,用于向所述隔离气体腔室内供给隔离气体;
反应气体供给系统,与所述反应气体导入通道相连接,用于向所述反应气体腔室内供给反应气体。
可选地,所述高通量气相沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述旋转工作台与所述气体导入装置之间。
本发明还提供一种气相沉积方法,所述气相沉积方法包括如下步骤:
1)提供如上述任一方案中所述的高通量气相沉积设备;
2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
如上所述,本发明的高通量气相沉积设备及气相沉积方法具有以下有益效果:
本发明的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明的高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
附图说明
图1显示为本发明实施例一中提供的高通量气相沉积设备的俯视结构示意图。
图2显示为本发明实施例一中提供的高通量气相沉积设备的剖视结构示意图。
图3显示为本发明实施例二中提供的气相沉积方法的流程图。
元件标号说明
1 反应腔室
11 上部腔室
111 隔离气体腔室
112 反应气体腔室
12 下部腔室
2 旋转工作台
3 气体导入装置
31 通孔
4 气体隔离结构
41 第一气体隔离板
42 第二气体隔离板
43 第三气体隔离板
5 隔离气体导入通道
6 反应气体导入通道
7 实时测量装置
81 第一供给管路
82 第二供给管路
83 第三供给管路
84 第四供给管路
85 第五供给管路
86 第六供给管路
87 第七供给管路
88 第八供给管路
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图3。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例一
请参阅图1及图2,本发明还提供一种高通量气相沉积设备,所述高通量气相沉积设备包括:反应腔室1;旋转工作台2,所述旋转工作台2位于所述反应腔室1内,用于承载衬底(未示出),并带动所述衬底旋转;气体导入装置3,所述气体导入装置3位于所述反应腔室1内,且位于所述旋转工作台2的上方,并与所述旋转工作台2具有间距;所述气体导入装置3将所述反应腔室1分割为上部腔室11及下部腔室12;所述气体导入装置3上设有若干个通孔31,所述通孔31将所述上部腔室11与所述下部腔室12相连通;气体隔离结构4,所述气体隔离装置4位于所述上部腔室11内,且将所述上部腔室11分割为相互隔离的隔离气体腔室111及反应气体腔室112;所述气体导入装置3的中心位于所述反应气体腔室112的外侧;若干个所述通孔31分别将所述隔离气体腔室111及所述反应气体腔室112与所述下部腔室12相连通;隔离气体导入通道5,所述隔离气体导入通道5位于所述反应腔室1的腔壁上,且与所述隔离气体腔室111相连通;反应气体导入通道6,所述反应气体导入通道6位于所述反应腔室1的腔壁上,且与所述反应气体腔室112相连通。本发明所述的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明所述高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
作为示例,所述旋转工作台2与驱动装置(未示出)相连接,所述旋转工作台2在需要旋转时由所述驱动装置驱动以实现旋转。
在一示例中,若干个所述通孔31可以于所述气体导入装置3上均匀分布。
在另一示例中,对应于所述隔离气体腔室111与所述反应气体腔室112相邻接区域的所述通孔31的分布密度大于对应于所述隔离气体腔室111其他区域的所述通孔31的分布密度。对应于所述隔离气体腔室111与所述反应气体腔室112相邻接区域的所述通孔31的分布密度可以使得隔离气体形成隔离效果较好的气帘,防止反应气体在所述衬底的其他区域沉积。
作为示例,所述气体导入装置3的形状及尺寸与所述反应腔室1内部的形状及尺寸相同,使得所述气体导入装置3的侧边均与所述反应腔室1的内壁相接触,以确保所述上部腔室11与所述下部腔室12仅通过所述通孔31相连通。
作为示例,所述反应气体腔室112的底部的面积小于所述隔离气体腔室111的底部的面积。
作为示例,所述气体导入装置3的中心与所述旋转工作台2的中心上下对应。由于所述气体导入装置3的中心位于所述反应气体腔室112的外侧,又所述气体导入装置3的中心与所述旋转工作台2的中心上下对应,在进行薄膜沉积时,可以通过选择所述旋转工作台以在所述衬底的不同区域进行薄膜沉积。
在一示例中,请继续参阅图1,所述气体隔离结构4可以包括:第一气体隔离板41,所述第一气体隔离板41一端与所述反应腔室1的内壁相接触,另一端向所述上部腔室11内延伸;第二气体隔离板42,所述第二气体隔离板42一端与所述反应腔室1的内壁相接触,另一端向所述上部腔室11内延伸;所述第二气体隔离板42与所述第一气体隔离板41具有间距;第三气体隔离板43,所述第三气体隔离板43一端与所述第一气体隔离板41远离所述反应腔室1的内壁的一端相连接,另一端与所述第二气体隔离板42远离所述反应腔室1的内壁的一端相连接;所述第一气体隔离板41的高度、所述第二气体隔离板42的高度及所述第三气体隔离板43的高度均与所述气体导入装置3的上表面至所述反应腔室1的顶部的距离相同。
在又一示例中,所述气体隔离结构4包括弧形气体隔离板(未示出),所述弧形气体隔离板的两端均与所述反应腔室1的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置3的上表面至所述反应腔室1的顶部的距离相同。
作为示例,所述高通量气相沉积设备还可以包括:隔离气体供给系统(未标示出),所述隔离气体供给系统与所述隔离气体导入通道5相连接,所述隔离气体供给系统用于向所述隔离气体腔室111内供给隔离气体;反应气体供给系统(未标示出),所述反应气体供给系统与所述反应气体导入通道6相连接,所述反应气体供给系统用于向所述反应气体腔室112内供给反应气体。
作为示例,所述隔离气体供给系统可以包括隔离气体源(未示出)及第一供给管路81,所述第一供给管路81一端与所述隔离气体源相连接,另一端与所述隔离气体导入通道5相连接。所述隔离气体供给系统向所述隔离气体腔室111内提供的隔离气体可以包括但不仅限于氩(Ar)气。
作为示例,所述反应气体供给系统可以包括载气源(未示出)、前驱体源(未示出)、反应气体源、第二供给管路82、第三供给管路83、第四供给管路85、第六供给管路86、第七供给管路87及第八供给管路88;所述第三供给管路83及所述第四供给管路84均一端与所述载气源相连接,另一端与所述反应气体导入通道6相连接;所述第二供给管路一端与所述反应气体源相连接,另一端与所述第三供给管路83相连通;所述第六供给管路86一端与一所述前驱体源相连接,另一端与所述第四供给管路84相连通;所述第五供给管路85一端与所述载气源相连接,另一端与所述第六供给管路86相连通;所述第七供给管路87一端与另一所述载气源相连接,另一端与所述第四供给管路84相连通;所述第八供给管路88一端与所述载气源相连接,另一端与所述第七供给管路84相连通。所述反应气体供给系统用于在载气的协助下将所述反应气体及反应前驱体供给到所述反应气体腔室112内。
作为示例,所述高通量气相沉积设备还包括实时测量装置7,所述实时测量装置7用于对所述衬底的上表面沉积的薄膜进行包括但不仅限于元素成分、薄膜厚度、微观结构的表征等;所述实时测量装置7的测量端位于所述反应腔室1内,且位于所述旋转工作台2与所述气体导入装置3之间。具体的,所述实时测量装置9可以包括但不仅限于俄歇电子谱仪(AES)。
本实施例中所述的高通量气相沉积设备的工作原理为:使用所述旋转工作台2将所述衬底的第一沉积区域旋转至所述反应气体腔室112的正下方;使用所述反应气体供给系统向所述反应气体腔室112内提供所述反应气体及所述反应前驱体的同时,使用所述隔离气体供给系统向所述隔离气体腔室111内提供所述隔离气体;所述隔离气体经由所述通孔31进入所述下部腔室12内形成隔离气帘;所述反应气体及所述反应前驱体经由所述通孔31进入所述下部腔室12内;由于有所述隔离气体形成的气帘的阻挡,所述反应气体及所述反应前驱体仅能在所述衬底位于所述反应气体腔室112正下方的所述第一沉积区域进行薄膜沉积;所述第一沉积区域进行薄膜沉积完毕后,使用所述旋转工作台2将所述衬底的第二沉积区域旋转至所述反应气体腔室112的正下方,在所述第二沉积区域进行薄膜沉积…如此重复上述步骤,直至薄膜沉积工艺结束,即可在实现在所述衬底不同区域内进行薄膜沉积。
本发明所述高通量气相沉积设备只需要使用一套所述隔离气体供给系统及一套所述反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明所述的高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
实施例二
请结合图1至图2参阅图3,本发明提供一种气相沉积方法,所述气相沉积方法包括如下步骤:
1)提供如实施例一种所述的高通量气相沉积设备;
2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
在步骤1)中,请结合图1至图2参阅图3的S1步骤,提供如实施例一种所述的高通量气相沉积设备。所述高通量气相沉积设备的具体结构请参阅实施例一,此处不再累述。
在步骤2)中,请结合图1至图2参阅图3,经由所述隔离气体导入通道5向所述隔离气体腔室111内通入隔离气体,并经由所述反应气体导入通道6向所述反应气体腔室112内通入反应气体,以于所述衬底对应于所述反应气体腔室112的区域(譬如,实施例一中所述的第一沉积区域)进行薄膜沉积。
需要说明的是,向所述反应气体腔室112内通入所述反应气体的同时还可以同时向所述反应气体腔室112内通入反应前驱体。
具体的,通入至所述隔离气体腔室111内的所述隔离气体经由所述通孔31进入所述下部强势12形成气帘,所述反应气体及所述反应前驱体经由所述通孔31进入所述下部腔室12内;由于有所述隔离气体形成的气帘的阻挡,所述反应气体及所述反应前驱体仅能在所述衬底位于所述反应气体腔室112正下方的区域进行薄膜沉积。
在步骤3)中,请结合图1至图2参阅图3中的S3步骤,使用所述旋转工作台2带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域(譬如,实施例一中所述的第二沉积区域)旋转至所述反应气体腔室112的正下方,以于所述衬底对应于所述反应气体腔室112的区域进行薄膜沉积。
在步骤4)中,请结合图1至图2参阅图3中的S4步骤,重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
综上所述,本发明提供一种高通量气相沉积设备及气相沉积方法,所述高通量气相沉积设备包括:反应腔室;旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通。本发明的高通量气相沉积设备只需要使用一套隔离气体供给系统及一套反应气体隔离系统共两套气体供给系统,结构简单,容易实现,且隔离度好;本发明的高通量气相沉积设备集成能力强,可集成其他装置,譬如实时测量装置等,功能更加齐全。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种高通量气相沉积设备,其特征在于,所述高通量气相沉积设备包括:
反应腔室;
旋转工作台,位于所述反应腔室内,用于承载衬底,并带动所述衬底旋转;
气体导入装置,位于所述反应腔室内,且位于所述旋转工作台的上方,与所述旋转工作台具有间距;所述气体导入装置将所述反应腔室分割为上部腔室及下部腔室;所述气体导入装置上设有若干个通孔,所述通孔将所述上部腔室与所述下部腔室相连通;
气体隔离结构,位于所述上部腔室内,且将所述上部腔室分割为相互隔离的隔离气体腔室及反应气体腔室;所述气体导入装置的中心位于所述反应气体腔室的外侧;若干个所述通孔分别将所述隔离气体腔室及所述反应气体腔室与所述下部腔室相连通;
隔离气体导入通道,位于所述反应腔室的腔壁上,且与所述隔离气体腔室相连通;
反应气体导入通道,位于所述反应腔室的腔壁上,且与所述反应气体腔室相连通;
所述气体隔离结构包括第一气体隔离板、第二气体隔离板及第三气体隔离板,所述第一气体隔离板一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;所述第二气体隔离板一端与所述反应腔室的内壁相接触,另一端向所述上部腔室内延伸;所述第二气体隔离板与所述第一气体隔离板具有间距;所述第三气体隔离板一端与所述第一气体隔离板远离所述反应腔室的内壁的一端相连接,另一端与所述第二气体隔离板远离所述反应腔室的内壁的一端相连接。
2.根据权利要求1所述的高通量气相沉积设备,其特征在于,所述反应气体腔室的底部的面积小于所述隔离气体腔室的底部的面积。
3.根据权利要求1所述的高通量气相沉积设备,其特征在于,所述气体导入装置的中心与所述旋转工作台的中心上下对应。
4.根据权利要求1所述的高通量气相沉积设备,其特征在于,所述第一气体隔离板的高度、所述第二气体隔离板的高度及所述第三气体隔离板的高度均与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
5.根据权利要求1所述的高通量气相沉积设备,其特征在于,所述气体隔离结构包括弧形气体隔离板,所述弧形气体隔离板的两端均与所述反应腔室的内部相连接,所述弧形气体隔离板的高度与所述气体导入装置的上表面至所述反应腔室的顶部的距离相同。
6.根据权利要求1至5中任一项所述的高通量气相沉积设备,其特征在于,所述高通量气相沉积设备还包括:
隔离气体供给系统,与所述隔离气体导入通道相连接,用于向所述隔离气体腔室内供给隔离气体;
反应气体供给系统,与所述反应气体导入通道相连接,用于向所述反应气体腔室内供给反应气体。
7.根据权利要求1所述的高通量气相沉积设备,其特征在于,所述高通量气相沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述旋转工作台与所述气体导入装置之间。
8.一种气相沉积方法,其特征在于,所述气相沉积方法包括如下步骤:
1)提供如权利要求1至7中任一项所述的高通量气相沉积设备;
2)经由所述隔离气体导入通道向所述隔离气体腔室内通入隔离气体,并经由所述反应气体导入通道向所述反应气体腔室内通入反应气体,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
3)使用所述旋转工作台带动所述衬底旋转预设角度,使得所述衬底未进行薄膜沉积的区域旋转至所述反应气体腔室的正下方,以于所述衬底对应于所述反应气体腔室的区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
CN201910759403.7A 2019-08-16 2019-08-16 高通量气相沉积设备及气相沉积方法 Active CN110408910B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910759403.7A CN110408910B (zh) 2019-08-16 2019-08-16 高通量气相沉积设备及气相沉积方法
EP19941890.6A EP4001457A4 (en) 2019-08-16 2019-11-21 APPARATUS AND METHOD FOR HIGH FLOW RATE VAPOR SEPARATION
KR1020227008811A KR20220046670A (ko) 2019-08-16 2019-11-21 고 스루풋 기상증착 장치 및 기상증착 방법
US17/635,389 US20220290298A1 (en) 2019-08-16 2019-11-21 High-throughput vapor deposition apparatus and vapor deposition method
JP2022510171A JP7398549B2 (ja) 2019-08-16 2019-11-21 ハイスループット気相成長デバイス及び気相成長方法
PCT/CN2019/119929 WO2021031425A1 (zh) 2019-08-16 2019-11-21 高通量气相沉积设备及气相沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910759403.7A CN110408910B (zh) 2019-08-16 2019-08-16 高通量气相沉积设备及气相沉积方法

Publications (2)

Publication Number Publication Date
CN110408910A CN110408910A (zh) 2019-11-05
CN110408910B true CN110408910B (zh) 2020-08-28

Family

ID=68367572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910759403.7A Active CN110408910B (zh) 2019-08-16 2019-08-16 高通量气相沉积设备及气相沉积方法

Country Status (6)

Country Link
US (1) US20220290298A1 (zh)
EP (1) EP4001457A4 (zh)
JP (1) JP7398549B2 (zh)
KR (1) KR20220046670A (zh)
CN (1) CN110408910B (zh)
WO (1) WO2021031425A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408910B (zh) * 2019-08-16 2020-08-28 中国科学院上海微系统与信息技术研究所 高通量气相沉积设备及气相沉积方法
CN116770222B (zh) * 2022-03-09 2024-08-06 上海集成电路材料研究院有限公司 一种高通量薄膜沉积设备、刻蚀设备及其方法
WO2023169140A1 (zh) * 2022-03-09 2023-09-14 上海集成电路材料研究院有限公司 一种高通量薄膜沉积设备、刻蚀设备及其方法
KR200498277Y1 (ko) 2024-03-11 2024-08-23 안혜연 다기능 초간편 드라이버 골프티 어셈블리

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780936A (zh) * 2003-04-30 2006-05-31 艾克斯特朗股份公司 利用其之一被预处理的两处理气体来沉积半导体层的方法和设备
CN103014846A (zh) * 2013-01-14 2013-04-03 东莞市中镓半导体科技有限公司 一种材料气相外延用同心圆环喷头结构

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294942A (ja) * 1985-10-21 1987-05-01 Nec Corp 薄膜の製造方法
JPS6311672A (ja) * 1986-06-30 1988-01-19 Nec Corp 薄膜形成方法
JP4090347B2 (ja) * 2002-03-18 2008-05-28 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
WO2004042110A1 (ja) * 2002-11-08 2004-05-21 National Institute Of Advanced Industrial Science And Technology 基板上への成膜方法
DE102005055468A1 (de) 2005-11-22 2007-05-24 Aixtron Ag Verfahren zum Abscheiden von Schichten in einem CVD-Reaktor sowie Gaseinlassorgan für einen CVD-Reaktor
US7871828B2 (en) * 2007-02-06 2011-01-18 Applied Materials, Inc. In-situ dose monitoring using optical emission spectroscopy
JP4699545B2 (ja) 2009-07-06 2011-06-15 シャープ株式会社 気相成長装置及び気相成長方法
JP5445252B2 (ja) * 2010-03-16 2014-03-19 東京エレクトロン株式会社 成膜装置
CN101962751B (zh) * 2010-10-27 2012-02-22 普尼太阳能(杭州)有限公司 一种多步物理气相沉积设备
CN102127757A (zh) * 2011-01-14 2011-07-20 映瑞光电科技(上海)有限公司 Mocvd反应系统
US9175391B2 (en) * 2011-05-26 2015-11-03 Intermolecular, Inc. Apparatus and method for combinatorial gas distribution through a multi-zoned showerhead
US20120315396A1 (en) * 2011-06-13 2012-12-13 Intermolecular, Inc. Apparatus and method for combinatorial plasma distribution through a multi-zoned showerhead
TWI683382B (zh) * 2013-03-15 2020-01-21 應用材料股份有限公司 具有光學測量的旋轉氣體分配組件
US9087864B2 (en) * 2013-12-19 2015-07-21 Intermolecular, Inc. Multipurpose combinatorial vapor phase deposition chamber
JP2016148080A (ja) * 2015-02-12 2016-08-18 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
US10954597B2 (en) * 2015-03-17 2021-03-23 Asm Ip Holding B.V. Atomic layer deposition apparatus
CN106158569B (zh) * 2015-03-26 2018-08-07 理想晶延半导体设备(上海)有限公司 半导体处理设备
KR102462931B1 (ko) * 2015-10-30 2022-11-04 삼성전자주식회사 가스 공급 유닛 및 기판 처리 장치
JP6797939B2 (ja) * 2016-05-27 2020-12-09 エーエスエム イーペー ホールディング ベー.フェー. 半導体ウェハ処理のための装置
US10246775B2 (en) * 2016-08-03 2019-04-02 Tokyo Electron Limited Film forming apparatus, method of forming film, and storage medium
JP6836965B2 (ja) * 2017-06-23 2021-03-03 昭和電工株式会社 成膜装置
CN110408910B (zh) * 2019-08-16 2020-08-28 中国科学院上海微系统与信息技术研究所 高通量气相沉积设备及气相沉积方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780936A (zh) * 2003-04-30 2006-05-31 艾克斯特朗股份公司 利用其之一被预处理的两处理气体来沉积半导体层的方法和设备
CN103014846A (zh) * 2013-01-14 2013-04-03 东莞市中镓半导体科技有限公司 一种材料气相外延用同心圆环喷头结构

Also Published As

Publication number Publication date
EP4001457A1 (en) 2022-05-25
KR20220046670A (ko) 2022-04-14
WO2021031425A1 (zh) 2021-02-25
JP7398549B2 (ja) 2023-12-14
CN110408910A (zh) 2019-11-05
EP4001457A4 (en) 2023-08-16
US20220290298A1 (en) 2022-09-15
JP2022545076A (ja) 2022-10-25

Similar Documents

Publication Publication Date Title
CN110408910B (zh) 高通量气相沉积设备及气相沉积方法
TWI831756B (zh) 形成金屬薄膜的方法及儀器
TWI830918B (zh) 形成電子裝置結構之方法、用於施行其之系統及根據其所形成之結構
US9929015B2 (en) High efficiency apparatus and method for depositing a layer on a three dimensional structure
US9711330B2 (en) RF multi-feed structure to improve plasma uniformity
US20150111394A1 (en) Mechanisms for forming uniform film on semiconductor substrate
TWI769494B (zh) 用於高溫低壓環境中的延長的電容性耦合的電漿源
US5290358A (en) Apparatus for directional low pressure chemical vapor deposition (DLPCVD)
CN106133877B (zh) 具有多阴极的沉积系统及其制造方法
US7592254B2 (en) Methods for coating and filling high aspect ratio recessed features
US8927415B2 (en) Graphene barrier layers for interconnects and methods for forming the same
CN105206498B (zh) 用于在电容耦接等离子体源下方对工件进行均匀照射的孔图案
US20190352776A1 (en) Atomic Layer Self Aligned Substrate Processing And Integrated Toolset
CN104380435B (zh) 基板加工装置及基板加工方法
US20180002808A1 (en) Gas supply unit and thin film deposition apparatus including the same
CN110468390B (zh) 超大长径比微通道板通道内壁制备功能膜层的方法
CN103866288A (zh) 一种用于原子层薄膜沉积的反应装置及方法
CN109906498A (zh) 集成的直接电介质和金属沉积
US20150010705A1 (en) Methods for Forming Templated Materials
KR20140101049A (ko) 기판 처리 장치
TWI723282B (zh) 藉由矽化法之含金屬薄膜體積膨脹
US20180195172A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
WO2018164807A1 (en) Diffuser design for flowable cvd
CN203794984U (zh) 用于原子层薄膜沉积的反应装置
Gluch et al. TEM characterization of ALD layers in deep trenches using a dedicated FIB lamellae preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant