WO2021031111A1 - 表面浮雕光栅结构的制作方法 - Google Patents

表面浮雕光栅结构的制作方法 Download PDF

Info

Publication number
WO2021031111A1
WO2021031111A1 PCT/CN2019/101537 CN2019101537W WO2021031111A1 WO 2021031111 A1 WO2021031111 A1 WO 2021031111A1 CN 2019101537 W CN2019101537 W CN 2019101537W WO 2021031111 A1 WO2021031111 A1 WO 2021031111A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
substrate
mother board
area
etching
Prior art date
Application number
PCT/CN2019/101537
Other languages
English (en)
French (fr)
Inventor
王晶
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021031111A1 publication Critical patent/WO2021031111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Definitions

  • the invention relates to the field of grating production, in particular to a method for producing a surface relief grating structure.
  • Gratings are important components of various types of spectral analysis instruments, and are increasingly used in emerging fields such as metrology, imaging, information processing, inherited optics and optical communications.
  • AR augmented reality
  • AR is the enhancement of reality, the fusion of virtual images and real images.
  • most of the head-mounted AR devices on the market adopt the principle of optical projection, that is, realizing the fusion of real scenes and virtual scenes through lenses installed in front of the eyes.
  • the Hololens product launched by Microsoft is currently on the market with the best experience.
  • the incident area is coupled into the grating, and the light that has been collimated by the collimating lens is coupled into the waveguide to achieve total reflection.
  • the exit area realizes the pupil expansion in the y direction and couples the light out of the waveguide, which also increases with propagation.
  • the blazed grating shifts from the zero-order spectrum with no dispersion to the diffraction orders with other dispersions because the position of the maximum diffraction value is transferred.
  • the efficiency is very high, and it is widely used in the incident area; tilted gratings are also often used in the incident and exit areas. .
  • the cross-section of the groove grating required can be designed as an asymmetric trapezoid. Due to the wide application of oblique gratings and blazed gratings, general patents involve their processing, but groove gratings with asymmetrical trapezoidal cross-sections have few applications and there is little research.
  • Grooved gratings have a wide range of uses. According to the cross-sectional shape, they are classified into steric gratings, blazed gratings, and echelon gratings.
  • the traditional method is to write directly by laser and then develop, and finally get it by etching.
  • Laser direct writing is to use a variable intensity laser beam to expose the variable amount of the resist material coated on the surface of the substrate, and form the desired relief contour on the surface of the resist layer after development. Because of its one-time molding and no discretization approximation, the manufacturing accuracy and diffraction efficiency of the device are greatly improved compared to devices made by traditional semiconductor technology.
  • contour depth cannot be precisely controlled.
  • the contour depth of the processing is related to various factors such as exposure intensity, scanning speed, resist material, developing formula, ambient temperature and developing temperature. The influence of any one factor will cause contour depth errors. At present, it can only rely on the experience and Constant working conditions to control the depth error, low working efficiency and low controllability.
  • the purpose of the present invention is to provide a method for manufacturing a surface relief grating structure with high efficiency and high controllability.
  • a method for manufacturing a surface relief grating structure includes the following steps:
  • the production of grating mother board includes the following steps:
  • Motherboard coating providing a substrate substrate, and plating a metal film layer on the surface of the substrate substrate with an etching rate different from that of the substrate substrate to obtain a first grating mother substrate;
  • Glue on the mother board coating a photoresist layer on the surface of the metal film layer of the first grating mother board to obtain a second grating mother board;
  • Exposure and development Expose the corresponding position on the surface of the photoresist layer of the second grating mother board with an electron beam, and develop it with a developer solution to obtain a third grating mother board with the remaining photoresist layer with the target line width gap;
  • the third grating mother board is etched by ion beam, wherein the remaining photoresist layer, the metal film layer and the substrate substrate are etched in sequence, and the ion beam The included angle between the emission line and the surface of the developed substrate substrate is not right, so as to be etched into a target grating master with trapezoidal slits with only the substrate substrate;
  • Grating structure transfer embossing the structure of the target grating mother board onto the embossing layer of the grating structure to be processed to obtain the target grating structure.
  • the following processes are specifically included:
  • the substrate substrate is divided into a first area projected and overlapping with the projected area of the target grating structure and the target grating structure The second area where the projection of the recessed area overlaps;
  • a negative developer is used for development to remove the photoresist layer in the second area, and the remaining photoresist layer obtained is the photoresist layer in the first area.
  • the photoresist layer in the first area includes a grating part and an edge part .
  • the specific exposure process includes:
  • Grating exposure shield the edge part and expose the grating part with electron beam
  • Edge exposure shield the grating part after electron beam exposure, and use electron beam to expose the edge part.
  • the metal etching and substrate etching processes are sequentially performed.
  • the metal etching process includes:
  • the third grating master is etched by ion beam, wherein the photoresist layer in the first area and the metal film layer in the second area are etched in sequence to form a fourth grating master Until the photoresist layer in the first area and the metal film layer in the second area are all etched, the second area of the substrate base material is exposed, and the fifth Grating mother board;
  • the substrate etching process includes:
  • the corresponding power is controlled, and the fifth grating mother board is etched using inductively coupled reactive ion etching equipment, wherein The metal film layer in one area and the substrate substrate in the second area are simultaneously etched to form a sixth grating mother board, until the substrate substrate in the second area reaches the target etching depth to obtain the target grating motherboard.
  • the following process is also performed:
  • Cleaning the metal using an acidic solution to clean the unetched metal film layer in the first area to form a grating mother board with trapezoidal gaps.
  • the step of gluing the mother board further includes the following processes:
  • the target grating structure obtained by transferring the grating structure by nanoimprinting method includes an imprinting layer and a glass base layer, the imprinting layer is formed with a trapezoidal gap, and the glass base layer is exposed in the trapezoidal gap bottom.
  • the width of the bottom of the trapezoidal slit is 80-120 nm.
  • the mother board coating process is added, and the metal film layer with an etching rate different from that of the substrate base material is selected.
  • the power of the ion beam can be controlled to achieve precise control The effect of the etching depth of the substrate substrate; at the same time, the angle between the emission line of the ion beam and the end surface of the developed substrate substrate is not right angle, so that the etched groove surface forms an inclined groove surface to achieve the grating mother with trapezoidal gap board.
  • a group of grating masters can be embossed to form multiple groups of target grating structures, and the formation of grating structures reduces the exposure and development process, which can greatly improve the production efficiency of the target grating structure.
  • the ion beam etching efficiency of the present invention is high, is suitable for large-area processing and mass production use, is widely used, and has many equipment resources. Compared with the laser direct writing method, the pre-confirmed ion beam etching parameters are set, one-time molding, high efficiency and high controllability, the target grating structure can better meet the size requirements, and the operation is simpler.
  • Fig. 1 is a schematic flow chart of a method for manufacturing a surface relief grating structure according to the present invention
  • Fig. 2 is a schematic diagram of the manufacturing process of the grating mother board of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the first grating mother board of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the second grating mother board of the present invention.
  • FIG. 5 is a schematic diagram of a third grating master plate formed by exposure and development of the present invention.
  • FIG. 6 is a schematic diagram of the process of etching the mother board of the present invention.
  • Fig. 7 is a schematic diagram of the target grating mother plate formed by etching the mother plate of the present invention.
  • FIG. 8 is a front view of the structure of the target grating mother board of the present invention.
  • FIG. 9 is a schematic diagram of the principle of ion beam etching of the present invention.
  • FIG. 10 is a schematic diagram of the transfer of the grating structure of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the grating mother board and the grating structure of the present invention.
  • the present invention discloses a method for manufacturing a surface relief grating structure, which includes the following steps:
  • the production of grating mother board includes the following steps:
  • Mother board cleaning provide the substrate substrate, place the substrate substrate in the cleaning equipment, soak it in absolute ethanol and acetone to remove the residual organic matter, and then rinse and dry the substrate with a large amount of deionized water;
  • the substrate is generally silicon wafer or plastic wafer.
  • Motherboard coating plating the surface of the substrate substrate 101 with a metal film layer 102 with a different etching rate from that of the substrate substrate 101 to obtain a first grating mother substrate 11, as shown in FIG. 3;
  • a magnetron sputtering or vapor deposition machine is used to prepare the metal chromium layer on the substrate 101 for etching.
  • the etching rate of different materials is different.
  • the etching rate ratio of the substrate and the mask is called the selection ratio. The larger the selection ratio, the more favorable the substrate etching. Since the etching selection ratio of the substrate and the photoresist is too small, the transfer of the pattern on the substrate cannot be realized, so a metal chromium layer needs to be evaporated.
  • Coating a layer of negative photoresist on the metal chromium layer will form an insoluble substance after light exposure.
  • the glue concentration and spin coating rate remain unchanged, the thickness of a single spin coating will not change. Therefore, multiple spin coatings are required Reach a certain thickness;
  • h film thickness
  • c photoresist concentration
  • w spin coating rate
  • k constant.
  • the hot baking process is mainly to achieve the uniformity of the thickness during the glue coating process.
  • Exposure and development use electron beam lithography equipment to expose corresponding positions on the surface of the photoresist layer 103 of the second grating mother board 12, and develop it with a developer to obtain the remaining photoresist layer 103 with target line width gaps
  • the electron beam lithography equipment realizes precise control of the grating period and line width on the photoresist through electron beam exposure, and prepares the mask in cooperation with the development process.
  • the following process is specifically included: according to the shape of the target grating structure, the vertical direction of the substrate substrate 101 is used as the projection direction, and the substrate substrate 101 is divided into convex parts with the target grating structure. A first area 1011 projected to overlap with the projection area and a second area 1012 projected to overlap with the recessed area of the target grating structure;
  • the photoresist layer 103 in the first region 1011 includes a grating portion 10111 and an edge portion 10112.
  • the exposure process includes the following two steps:
  • the electron beam lithography equipment is used to expose the grating part 10111 of the grating structure of the target line width on the photoresist, and the edge part 10112 is shielded; because the electron beam has the characteristics of low efficiency and high precision, it can also be used in different situations.
  • the edge portion 10112 is gradually exposed.
  • the exposure accuracy can be higher.
  • a negative developer is used to develop to remove the photoresist layer 103 in the second region 1012, and the remaining photoresist layer 103 obtained is the photoresist layer 103 in the first region 1011.
  • the photoresist layer 103 is a negative photoresist, insoluble substances are formed after light exposure, and the unexposed parts will be dissolved and removed in the developing solution.
  • the third grating mother board 13 is etched by ion beam, wherein the remaining photoresist layer 103, the metal film layer and the substrate 101 are etched in sequence, and the emission line of the ion beam and the development are completed
  • the included angle on the surface of the substrate substrate 101 is not a right angle, so that the target grating mother board with trapezoidal slits with only the substrate substrate 101 remaining is etched;
  • the steps of etching the mother board specifically include the following etching processes:
  • the third grating mother board 13 is etched by an ion beam, wherein the photoresist layer 103 in the first region 1011 and the metal film layer 102 in the second region 1012 are etched in sequence to form a
  • the four-grating mother board 14 is etched until the photoresist layer 103 in the first region 1011 and the metal film layer 102 in the second region 1012 are all etched, and the second region 1012 of the substrate substrate 101 is exposed to obtain The fifth grating mother board 15;
  • Substrate etching controlling the corresponding power according to the etching rate of the substrate substrate 101 and the etching rate of the metal film layer 102, using an inductively coupled reactive ion etching equipment to etch the fifth grating master, where The metal film layer 102 in the first region 1011 and the substrate substrate 101 in the second region 1012 are simultaneously etched to form the sixth grating mother board 16, until the substrate substrate 101 in the second region 1012 reaches the target engraving Etch depth to get the target grating mother board 1.
  • the gas type and power of the inductively coupled reactive ion etching equipment can be precisely controlled. As long as the selection ratio between the substrate substrate 101 and the metal film layer 102 can be confirmed, the optimal control power can be calculated to achieve The etching depth of the target ultimately controls the etching depth and transfers the complete grating structure.
  • the process of realizing the non-right angle between the emission line of the ion beam and the surface of the developed substrate substrate 101 includes: The material 101 is fixed, and the ion beam is controlled to rotate at a predetermined angle so that the emission line of the ion beam is irradiated into the surface of the substrate substrate 101 obliquely.
  • the process of realizing the non-right angle between the emission line of the ion beam and the surface of the developed substrate 101 includes: fixing the ion beam and controlling The developed base substrate 101 is rotated by a predetermined angle so that the emission line of the ion beam is irradiated obliquely into the surface of the base substrate 101.
  • the emission line of the ion beam is irradiated obliquely into the surface of the substrate substrate 101.
  • the metal film layer 102 on the surface of the substrate substrate 101 is a rectangular film layer, and the substrate substrate is not blocked by the metal film layer 102.
  • the ion beam etching rate at the corresponding position 101 is the same and the deepest, forming the bottom of the etching gap; the emission line irradiated on the sidewall of the metal film 102, due to the gradual change in the thickness of the metal film 102 etched by the ion beam, After 102 etched, the surface of the substrate 101 is etched to form a first oblique angle of the slit side wall; part of the emission line irradiating the surface of the metal film 102 and penetrating the side wall of the metal film 102, due to ion beam etching
  • the thickness of the metal film layer 102 is gradual, and the etching efficiency is different from that of directly irradiating the side wall of the metal film layer 102.
  • the surface of the substrate substrate 101 after the metal film layer 102 is etched is etched to form a second oblique angle of the gap side wall.
  • the first oblique angle of the slit side wall, the second oblique angle of the slit side wall and the bottom of the slit form a complete asymmetric trapezoidal slit.
  • the width of the bottom of the trapezoidal gap can reach the accuracy requirement between 80-120nm, and the controllability is high.
  • the quality of the target grating structure completed by etching is better.
  • the grating structure transfer, embossing the grating mother board on the embossing layer 21 of the grating structure to be processed, to obtain the target grating structure 2.
  • the embossing process is shown in FIG. 10, and the obtained target grating structure 2 includes an embossing layer 21 and a glass base layer 22.
  • a trapezoid gap is formed on the embossing layer 21, and the glass base layer 22 is exposed at the bottom of the trapezoid gap.
  • the target grating mother board is 1
  • the target grating structure is 2
  • the first tilt angle c and the second are controlled by controlling the thickness of the metal chromium layer (the coating machine can accurately control the thickness of the coating) and the angle of rotation. Inclination angle d and gap depth h.
  • the width of the bottom of the slit a and the width of the slit opening b are controlled by the electron beam lithography equipment program, or the laser beam interference can also be used for exposure control a and b.
  • the mother board coating process is increased, and the metal film layer 102 with an etching rate different from that of the substrate substrate 101 is selected.
  • the power of the ion beam can be controlled to achieve The effect of precisely controlling the etching depth of the substrate substrate 101; at the same time, the angle between the emission line of the ion beam and one end surface of the developed substrate substrate 101 is not right, so that the etching groove surface forms an inclined groove surface to achieve a trapezoidal shape
  • the gapped grating mother board, a group of grating mother boards can be embossed to form multiple groups of target grating structures, and the formation of grating structures reduces the exposure and development process and can greatly improve the production efficiency of the target grating structure.
  • the ion beam etching efficiency of the present invention is high, is suitable for large-area processing and mass production use, is widely used, and has many equipment resources. Compared with the laser direct writing method, the pre-confirmed ion beam etching parameters are set, one-time molding, high efficiency and high controllability, the target grating structure can better meet the size requirements, and the operation is simpler.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种表面浮雕光栅结构(2)的制作方法, 包括光栅母板(1,11,12,13,14,15,16)制作以及光栅结构(2)转移过程,光栅母板(1,11,12,13,14,15,16)制作过程中,增加母板(1,11,12,13,14,15,16)镀膜过程,选择刻蚀速率与衬底基材(101)不同的金属膜层(102),在进行母板(1,11,12,13,14,15,16)刻蚀过程时,可以控制离子束的功率而达到精准控制衬底基材(101)刻蚀深度的效果;同时离子束的发射线与显影完成的衬底基材(101)一端面的夹角非直角,使得刻蚀槽面形成倾斜槽面,以达到带梯形夹缝的光栅母板(1,11,12,13,14,15,16)。离子束刻蚀效率高,适合用于大面积的加工和量产使用,应用很广泛。相对激光直写方法来说,设置好预先确认的离子束刻蚀参数,一次成型,效率高且可控度高,目标光栅结构(2)更能符合尺寸要求,且操作更加简单。

Description

表面浮雕光栅结构的制作方法 技术领域
本发明涉及光栅制作领域,尤其涉及一种表面浮雕光栅结构的制作方法。
背景技术
光栅是各类光谱分析仪器的重要元器件,在计量,成像,信息处理,继承光学和光通信等新兴领域被越来越多地采用。近年来,随着半导体工艺飞速发展,一种新型的光学应用产品也随之发展起来,这就是AR(增强现实)产品。AR是对现实的增强,是虚拟影像和现实影像的融合。目前市场上的头戴式AR设备多采用光学投射式原理,即通过安装在眼前的镜片实现真实场景和虚拟场景的融合。其中微软推出的Hololens这款产品是目前市场上,体验效果最佳的。它采用的是三层波导的表面浮雕光栅的方案,具体来说是通过三个区域(入射区,扩展区,出射区)的设计来实现的。入射区是耦入光栅,将被准直镜准直过后的光线耦合进波导实现全反射,光栅和波导的折射率越高越好;扩展区是偏折光栅的作用,改变光线的传输方向,实现光瞳在x方向的扩展,效率不需要很高,但随着传播其效率需要设计的越高;出射区实现光瞳在y方向的扩展并将光线耦出波导,也是随着传播递增。
其中闪耀光栅因为实现衍射最大值的位置从没有色散的零 级光谱转移到其他色散的衍射级上,效率很高,在入射区得到很大的应用;倾斜光栅也常常被应用在入射和出射区。扩展区的光栅由于其要求,需要的槽型光栅截面可以设计为不对称梯形。由于倾斜光栅和闪耀光栅的广泛应用,一般专利对其加工有涉及,但截面为不对称梯形的槽型光栅因为应用领域不多,研究较少。
槽型的光栅具有广泛的用途,按照截面形状分类为正玄光栅,闪耀光栅,阶梯光栅等。对于截面是梯形表面浮雕光栅,传统方法是先通过激光直写再显影,最后刻蚀得到的。激光直写就是利用强度可变的激光束对涂在基片表面的抗蚀材料变剂量的曝光,显影后在抗蚀层表面形成所要的浮雕轮廓。因其一次成型且无离散化近似,器件的制作精度和衍射效率比传统半导体工艺套刻制作的器件均有较大提高。
但是激光直写最大的问题是不能精确控制轮廓深度。加工的轮廓深度与曝光强度,扫描速度,抗蚀剂材料,显影配方,环境温度以及显影温度等多种因素有关,任何一个因素的影响都会引起轮廓深度误差,目前只能依赖操作人员的经验和恒定的工作条件来控制深度误差,工作效率低下,可控性低。
技术问题
本发明的目的在于提供一种效率高且可控度高的表面浮雕光栅结构的制作方法。
技术解决方案
本发明的技术方案如下:
一种表面浮雕光栅结构的制作方法,包括以下步骤:
S1、光栅母板制作,包括以下步骤:
母板镀膜:提供衬底基材,在所述衬底基材的表面镀上与所述衬底基材刻蚀速率不同的金属膜层,得到第一光栅母板;
母板涂胶:在所述第一光栅母板的所述金属膜层表面涂覆光刻胶层,得到第二光栅母板;
曝光显影:使用电子束对所述第二光栅母板的光刻胶层表面对应位置进行曝光,并通过显影液显影,得到剩余光刻胶层具有目标线宽夹缝的第三光栅母板;
母板刻蚀:采用离子束刻蚀所述第三光栅母板,其中,所述剩余光刻胶层、所述金属膜层以及所述衬底基材依次被刻蚀,所述离子束的发射线与所述显影完成的衬底基材表面的夹角非直角,以被刻蚀出只剩衬底基材且带梯形夹缝的目标光栅母板;
S2、光栅结构转移:将所述目标光栅母板的结构压印到待处理光栅结构的压印层上,得到目标光栅结构。
优选地,在所述曝光显影步骤中,具体包括以下过程:
根据目标光栅结构的形状,以衬底基材的垂直方向为投影方向,将所述衬底基材分为与所述目标光栅结构凸出区域投影重叠的第一区域以及与所述目标光栅结构凹陷区域投影重叠的第二区域;
使用电子束对处于所述第一区域内的光刻胶层表面进行曝光处理,使所述第一区域内的光刻胶层硬化;
再使用负性显影液显影以去除处于所述第二区域内的光刻胶层,得到的所述剩余光刻胶层为处于所述第一区域内的光刻胶层。
优选地,在所述使用电子束对处于所述第一区域内的光刻胶层表面进行曝光处理的过程中,所述处于所述第一区域内的光刻胶层包括光栅部分以及边缘部分,具体曝光过程包括:
光栅曝光:将边缘部分遮挡,使用电子束曝光光栅部分;
边缘曝光:将电子束曝光后的光栅部分遮挡,使用电子束曝光边缘部分。
优选地,在所述母板刻蚀的步骤中,依次进行金属刻蚀以及基材刻蚀过程。
优选地,金属刻蚀过程包括:
采用离子束刻蚀所述第三光栅母板,其中,所述处于所述第一区域内的光刻胶层以及处于所述第二区域内的金属膜层依次被刻蚀形成第四光栅母板,直至所述处于所述第一区域内的光刻胶层以及处于所述第二区域内的金属膜层均被刻蚀完成,所述衬底基材的第二区域露出,得到第五光栅母板;
优选地,基材刻蚀过程包括:
根据所述衬底基材的刻蚀速率与所述金属膜层的刻蚀速率控制相应功率,使用电感耦合反应离子刻蚀设备,刻蚀所述第五光栅母板,其中,处于所述第一区域内的金属膜层以及处于第二区域内的衬底基材同时被刻蚀形成第六光栅母板,直至所述第二 区域内的衬底基材达到目标刻蚀深度,得到目标光栅母板。
优选地,在所述基材刻蚀的过程中达到目标刻蚀深度后,还要进行以下过程:
清洗金属:使用酸性溶液清洗未刻蚀掉的处于所述第一区域内的金属膜层,以形成带梯形夹缝的光栅母板。
优选地,所述母板涂胶步骤中还包括以下过程:
将涂胶完成的衬底基材置于加热板加热,以去除多余溶剂,并用膜厚仪测量厚度,若厚度未达到指定要求,则继续重复母板涂胶过程,直至测量厚度达到目标厚度。
优选地,所述光栅结构转移采用纳米压印方法复制得到的所述目标光栅结构包括压印层以及玻璃基层,所述压印层上形成梯形夹缝,且所述玻璃基层显露于所述梯形夹缝底部。
优选地,所述梯形夹缝底部的宽度为80-120nm。
有益效果
本发明的有益效果在于:
本发明的光栅母板制作过程中,增加母板镀膜过程,选择刻蚀速率与衬底基材不同的金属膜层,在进行母板刻蚀过程时,可以控制离子束的功率而达到精准控制衬底基材刻蚀深度的效果;同时离子束的发射线与显影完成的衬底基材一端面的夹角非直角,使得刻蚀槽面形成倾斜槽面,以达到带梯形夹缝的光栅母板。一组光栅母板可压印形成多组目标光栅结构,同时光栅结构的形成减少了曝光与显影过程,可以大大提高目标光栅结构的生产效 率。本发明的离子束刻蚀效率高,适合用于大面积的加工和量产使用,应用很广泛,设备资源多。相对激光直写方法来说,设置好预先确认的离子束刻蚀参数,一次成型,效率高且可控度高,目标光栅结构更能符合尺寸要求,且操作更加简单。
附图说明
图1为本发明表面浮雕光栅结构的制作方法的流程示意图;
图2为本发明光栅母板制作的流程示意图;
图3为本发明第一光栅母板的结构示意图;
图4为本发明第二光栅母板的结构示意图;
图5为本发明曝光显影形成第三光栅母板的示意图;
图6为本发明母板刻蚀的流程示意图;
图7为本发明母板刻蚀形成目标光栅母板的示意图;
图8为本发明目标光栅母板的结构正视图;
图9为本发明离子束刻蚀原理示意图;
图10为本发明光栅结构转移的示意图;
图11为本发明的光栅母板与光栅结构的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参阅图1-2,本发明公开了一种表面浮雕光栅结构的制作方法,包括以下步骤:
S1、光栅母板制作,包括以下步骤:
S11、母板清洗:提供衬底基材,将衬底基材置于清洗设备 中,放入无水乙醇以及丙酮中浸泡,去除残留有机物,然后使用大量去离子水冲洗、烘干;衬底基材一般选用硅片或塑料片。
S12、母板镀膜:在衬底基材101的表面镀上与衬底基材101刻蚀速率不同的金属膜层102,得到第一光栅母板11,如图3所示;
具体地,采用磁控溅射或者蒸镀机在衬底基材101上金属铬层,为刻蚀作准备。不同材质的刻蚀速率不同,基片与掩模刻蚀速度比称为选择比,选择比越大越有利基材刻蚀。由于基材与光刻胶刻蚀选择比过小,不能实现图形在基片上的转移,因此需要蒸镀金属铬层。
S13、母板涂胶:在第一光栅母板11的金属膜层102表面涂覆光刻胶层103,得到第二光栅母板12,如图4所示;
在金属铬层上涂一层负性光刻胶,光照后形成不可溶的物质,当胶浓度和旋涂速率不变时,单次旋涂的厚度不变,因此,需通过多次旋涂达到特定厚度;
膜厚与光刻胶浓度和旋涂速率的经验公式:
Figure PCTCN2019101537-appb-000001
其中,h:膜厚;c:光刻胶浓度;w:旋涂速率;k:常数。
在光刻胶浓度一定的情况下,需要的膜厚越厚,则旋涂速率要求越快。
将涂胶完成的衬底基材101置于加热板加热,以去除多余溶剂,并用膜厚仪测量厚度,若厚度未达到指定要求,则继续重复 母板涂胶过程,直至测量厚度达到指定要求;热烘过程主要为了实现涂胶过程中厚度的均匀性。
S14、曝光显影:使用电子束光刻设备对所述第二光栅母板12的光刻胶层103表面对应位置进行曝光,并通过显影液显影,得到剩余光刻胶层103具有目标线宽夹缝的第三光栅母板13;
电子束光刻设备,通过电子束曝光在光刻胶上实现光栅周期和线宽的精确控制,配合显影工序制备掩模。
请进一步参阅图5,在曝光显影步骤中,具体包括以下过程:根据目标光栅结构的形状,以衬底基材101的垂直方向为投影方向,将衬底基材101分为与目标光栅结构凸出区域投影重叠的第一区域1011以及与目标光栅结构凹陷区域投影重叠的第二区域1012;
使用电子束对处于第一区域1011内的光刻胶层103表面进行曝光处理,使第一区域1011内的光刻胶层103硬化;
处于第一区域1011内的光刻胶层103包括光栅部分10111以及边缘部分10112,曝光过程包括以下两步:
首先采用电子束光刻设备将光刻胶上曝光出目标线宽的光栅结构的光栅部分10111,边缘部分10112遮挡;由于电子束具有效率低、精度高的特点,所以在不同情况下,还可以采用效率相对高、精度相对低的激光束干涉进行曝光;
然后将曝光的光栅部分10111遮挡后,把边缘部分10112进行逐步曝光。
通过两步曝光过程,可以使得曝光精准度更高。
再使用负性显影液显影以去除处于第二区域1012内的光刻胶层103,得到的剩余光刻胶层103为处于第一区域1011内的光刻胶层103。
由于光刻胶层103为负性光刻胶,光照后形成不可溶的物质,在显影液中,未曝光的部分就会被溶解去除。
S15、母板刻蚀:采用离子束刻蚀第三光栅母板13,其中,剩余光刻胶层103、金属膜层以及衬底基材101依次被刻蚀,离子束的发射线与显影完成的衬底基材101表面的夹角非直角,以被刻蚀出只剩衬底基材101且带梯形夹缝的目标光栅母板;
请进一步参阅图7-8,在母板刻蚀的步骤中,具体包括以下刻蚀过程:
S151、金属刻蚀:采用离子束刻蚀第三光栅母板13,其中,处于第一区域1011内的光刻胶层103以及处于第二区域1012内的金属膜层102依次被刻蚀形成第四光栅母板14,直至处于第一区域1011内的光刻胶层103以及处于第二区域1012内的金属膜层102均被刻蚀完成,衬底基材101的第二区域1012露出,得到第五光栅母板15;
S152、基材刻蚀:根据衬底基材101的刻蚀速率与金属膜层102的刻蚀速率控制相应功率,使用电感耦合反应离子刻蚀设备,刻蚀第五光栅母板,其中,处于第一区域1011内的金属膜层102以及处于第二区域1012内的衬底基材101同时被刻蚀形成第六 光栅母板16,直至第二区域1012内的衬底基材101达到目标刻蚀深度,得到目标光栅母板1。
电感耦合反应离子刻蚀设备的的气体类型以及功率多少都可以精准控制,只要能够确认衬底基材101与金属膜层102之间的选择比,即可计算得出最优控制功率,以达到目标的刻蚀深度,最终控制刻蚀深度和转移完整的光栅结构。
S153、清洗金属:使用酸性溶液清洗未刻蚀掉的处于第一区域1011内的金属膜层102,以形成带梯形夹缝的光栅母板。
在本发明的一实施例中,在母板刻蚀的步骤中,实现离子束的发射线与显影完成的衬底基材101表面的夹角非直角的过程包括:将显影完成的衬底基材101固定,控制离子束旋转预设角度,使离子束的发射线倾斜照射入衬底基材101的表面。
在本发明的另一实施例中,在母板刻蚀的步骤中,实现离子束的发射线与显影完成的衬底基材101表面的夹角非直角的过程包括:将离子束固定,控制显影完成的衬底基材101旋转预设角度,使离子束的发射线倾斜照射入衬底基材101的表面。
请进一步参阅图9,离子束的发射线倾斜照射入衬底基材101的表面,衬底基材101表面的金属膜层102为矩形膜层,未被金属膜层102遮挡的衬底基材101相应位置的离子束刻蚀速率相同且最深,形成刻蚀夹缝的底部;照射于金属膜层102侧壁的发射线,由于离子束刻蚀的金属膜层102厚度渐变,从而在金属膜层102刻蚀后的衬底基材101表面刻蚀形成第一倾斜角度的夹 缝侧壁;部分照射于金属膜层102表面并穿透金属膜层102侧壁的发射线,由于离子束刻蚀的金属膜层102厚度渐变,且与直接照射于金属膜层102侧壁的刻蚀效率不同,故而在金属膜层102刻蚀后的衬底基材101表面刻蚀形成第二倾斜角度的夹缝侧壁。第一倾斜角度的夹缝侧壁、第二倾斜角度的夹缝侧壁以及夹缝的底部形成完整的不对称梯形夹缝。
在本实施例中,通过对离子束的发射线倾斜角度以及金属膜层的刻蚀线宽的控制,可以实现梯形夹缝底部的宽度达到80-120nm之间的精度要求,可控性高,刻蚀完成的目标光栅结构质量更好。
S2、光栅结构转移,将光栅母板压印到待处理光栅结构的压印层21上,得到目标光栅结构2。压印过程如图10所示,得到的目标光栅结构2包括压印层21以及玻璃基层22,压印层21上形成梯形夹缝,且玻璃基层22显露于梯形夹缝底部。
请进一步参阅图11,目标光栅母板为1,目标光栅结构为2,通过控制金属铬层的厚度(镀膜机可以精确控制镀层厚度)和旋转的角度来控制校对第一倾斜角度c和第二倾斜角度d和夹缝深度h。夹缝底部宽度a和夹缝开口宽度b通过电子束光刻设备程序控制其大小,或者也可以采用激光束干涉进行曝光控制a和b。
本发明的光栅母板制作过程中,增加母板镀膜过程,选择刻蚀速率与衬底基材101不同的金属膜层102,在进行母板刻蚀过程时,可以控制离子束的功率而达到精准控制衬底基材101刻蚀 深度的效果;同时离子束的发射线与显影完成的衬底基材101一端面的夹角非直角,使得刻蚀槽面形成倾斜槽面,以达到带梯形夹缝的光栅母板,一组光栅母板可压印形成多组目标光栅结构,同时光栅结构的形成减少了曝光与显影过程,可以大大提高目标光栅结构的生产效率。本发明的离子束刻蚀效率高,适合用于大面积的加工和量产使用,应用很广泛,设备资源多。相对激光直写方法来说,设置好预先确认的离子束刻蚀参数,一次成型,效率高且可控度高,目标光栅结构更能符合尺寸要求,且操作更加简单。
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种表面浮雕光栅结构的制作方法,其特征在于,包括以下步骤:
    S1、光栅母板制作,包括以下步骤:
    母板镀膜:提供衬底基材,在所述衬底基材的表面镀上与所述衬底基材刻蚀速率不同的金属膜层,得到第一光栅母板;
    母板涂胶:在所述第一光栅母板的所述金属膜层表面涂覆光刻胶层,得到第二光栅母板;
    曝光显影:使用电子束对所述第二光栅母板的光刻胶层表面对应位置进行曝光,并通过显影液显影,得到剩余光刻胶层具有目标线宽夹缝的第三光栅母板;
    母板刻蚀:采用离子束刻蚀所述第三光栅母板,其中,所述剩余光刻胶层、所述金属膜层以及所述衬底基材依次被刻蚀,所述离子束的发射线与所述显影完成的衬底基材表面的夹角非直角,以被刻蚀出只剩衬底基材且带梯形夹缝的目标光栅母板;
    S2、光栅结构转移:将所述目标光栅母板的结构压印到待处理光栅结构的压印层上,得到目标光栅结构。
  2. 根据权利要求1所述的表面浮雕光栅结构的制作方法,其特征在于,在所述曝光显影步骤中,具体包括以下过程:
    根据目标光栅结构的形状,以衬底基材的垂直方向为投影方向,将所述衬底基材分为与所述目标光栅结构凸出区域投影重叠的第一区域以及与所述目标光栅结构凹陷区域投影重叠的第二 区域;
    使用电子束对处于所述第一区域内的光刻胶层表面进行曝光处理,使所述第一区域内的光刻胶层硬化;
    再使用负性显影液显影以去除处于所述第二区域内的光刻胶层,得到的所述剩余光刻胶层为处于所述第一区域内的光刻胶层。
  3. 根据权利要求2所述的表面浮雕光栅结构的制作方法,其特征在于,在所述使用电子束对处于所述第一区域内的光刻胶层表面进行曝光处理的过程中,所述处于所述第一区域内的光刻胶层包括光栅部分以及边缘部分,具体曝光过程包括:
    光栅曝光:将边缘部分遮挡,使用电子束曝光光栅部分;
    边缘曝光:将电子束曝光后的光栅部分遮挡,使用电子束曝光边缘部分。
  4. 根据权利要求1所述的表面浮雕光栅结构的制作方法,其特征在于,在所述母板刻蚀的步骤中,依次进行金属刻蚀以及基材刻蚀的过程。
  5. 根据权利要求4所述的表面浮雕光栅结构的制作方法,其特征在于,所述金属刻蚀包括以下过程:
    采用离子束刻蚀所述第三光栅母板,其中,所述处于所述第一区域内的光刻胶层以及处于所述第二区域内的金属膜层依次被刻蚀形成第四光栅母板,直至所述处于所述第一区域内的光刻胶层以及处于所述第二区域内的金属膜层均被刻蚀完成,所述衬 底基材的第二区域露出,得到第五光栅母板。
  6. 根据权利要求5所述的表面浮雕光栅结构的制作方法,其特征在于,所述基材刻蚀包括以下过程:
    根据所述衬底基材的刻蚀速率与所述金属膜层的刻蚀速率控制相应功率,使用电感耦合反应离子刻蚀设备,刻蚀所述第五光栅母板,其中,处于所述第一区域内的金属膜层以及处于第二区域内的衬底基材同时被刻蚀形成第六光栅母板,直至所述第二区域内的衬底基材达到目标刻蚀深度,得到目标光栅母板。
  7. 根据权利要求6所述的表面浮雕光栅结构的制作方法,其特征在于,在所述基材刻蚀的过程中达到目标刻蚀深度后,还要进行以下过程:
    清洗金属:使用酸性溶液清洗未刻蚀掉的处于所述第一区域内的金属膜层,以形成带梯形夹缝的光栅母板。
  8. 根据权利要求1所述的表面浮雕光栅结构的制作方法,其特征在于,所述母板涂胶步骤中还包括以下过程:
    将涂胶完成的衬底基材置于加热板加热,以去除多余溶剂,并用膜厚仪测量厚度,若厚度未达到指定要求,则继续重复母板涂胶过程,直至测量厚度达到目标厚度。
  9. 根据权利要求1所述的表面浮雕光栅结构的制作方法,其特征在于,所述将所述目标光栅母板的结构压印到待处理光栅结构的压印层上,得到的目标光栅结构包括压印层以及玻璃基层,所述压印层上形成梯形夹缝,且所述玻璃基层显露于所述梯形夹 缝底部。
  10. 根据权利要求1所述的表面浮雕光栅结构的制作方法,其特征在于,所述梯形夹缝底部的宽度为80-120nm。
PCT/CN2019/101537 2019-08-16 2019-08-20 表面浮雕光栅结构的制作方法 WO2021031111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910757521.4 2019-08-16
CN201910757521.4A CN110632689B (zh) 2019-08-16 2019-08-16 表面浮雕光栅结构的制作方法

Publications (1)

Publication Number Publication Date
WO2021031111A1 true WO2021031111A1 (zh) 2021-02-25

Family

ID=68970616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101537 WO2021031111A1 (zh) 2019-08-16 2019-08-20 表面浮雕光栅结构的制作方法

Country Status (2)

Country Link
CN (1) CN110632689B (zh)
WO (1) WO2021031111A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825377A (zh) * 2021-08-27 2021-12-21 云南北方光学科技有限公司 内凹面限制空间的电磁屏蔽金属网栅制备方法
CN117092881A (zh) * 2023-08-29 2023-11-21 上海铭锟半导体有限公司 一种纳米压印母版的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690297B (zh) * 2020-12-29 2024-05-03 华为技术有限公司 复合光栅及其制造方法、衍射光波导和电子设备
CN113253373B (zh) * 2021-04-02 2022-05-31 艾普偏光科技(厦门)有限公司 一种闪耀光栅技术可见光变色的眼镜镜片
CN113296182A (zh) * 2021-05-24 2021-08-24 宁波市知行光学科技有限公司 生成补偿器的方法
CN115420315A (zh) * 2022-08-30 2022-12-02 昂泰微精医疗科技(上海)有限公司 一种超微伺服电机编码器光栅盘的制作工艺
CN115494571B (zh) * 2022-11-15 2023-01-31 北京至格科技有限公司 表面浮雕光栅衍射光波导的母版制作方法、光波导和设备
WO2025105067A1 (ja) * 2023-11-17 2025-05-22 ナルックス株式会社 格子及び格子の製造方法
CN118495460B (zh) * 2024-04-03 2025-04-15 杭州邦齐州科技有限公司 一种花苞状纳米结构的制备方法及花苞状纳米结构模板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033503A (ja) * 1983-08-05 1985-02-20 Agency Of Ind Science & Technol ブレ−ズド格子の製造方法
JPS6033501A (ja) * 1983-08-05 1985-02-20 Agency Of Ind Science & Technol プレ−ズド格子の製造方法
US20050199582A1 (en) * 2004-03-09 2005-09-15 Alps Electric Co., Ltd. Method for forming fine grating
CN102360093A (zh) * 2011-10-19 2012-02-22 苏州大学 一种全息闪耀光栅制作方法
CN104142530A (zh) * 2013-05-06 2014-11-12 中国科学院物理研究所 一种金属纳米叉指光栅的制备方法
CN109656098A (zh) * 2018-12-04 2019-04-19 上海安翰医疗技术有限公司 纳米压印弹性模板的制作方法、纳米压印弹性模板及组件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353622A (en) * 1979-06-25 1982-10-12 Rca Corporation Recording blank and method for fabricating therefrom diffractive subtractive filter metal embossing master
JP4358583B2 (ja) * 2003-09-12 2009-11-04 株式会社ミツトヨ スケールの製造方法
DE102004020363A1 (de) * 2004-04-23 2005-11-17 Schott Ag Verfahren zur Herstellung eines Masters, Master und Verfahren zur Herstellung von optischen Elementen sowie optischen Element
CN101082769A (zh) * 2007-06-15 2007-12-05 中国科学院上海光学精密机械研究所 面浮雕微结构达曼光栅的复制方法
CN104375227B (zh) * 2014-12-05 2017-01-25 苏州大学 一种多次曝光拼接制作大面积全息光栅的方法
CN106324729B (zh) * 2016-09-23 2021-05-11 苏州六三二八光电科技有限公司 基于激光全息石墨烯金属复合表面拉曼增强基底加工方法
CN106680922B (zh) * 2017-03-08 2019-03-12 福建中科晶创光电科技有限公司 一种紫外胶光栅的制作方法
CN108802879B (zh) * 2017-04-27 2020-08-11 清华大学 松树状金属纳米光栅的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033503A (ja) * 1983-08-05 1985-02-20 Agency Of Ind Science & Technol ブレ−ズド格子の製造方法
JPS6033501A (ja) * 1983-08-05 1985-02-20 Agency Of Ind Science & Technol プレ−ズド格子の製造方法
US20050199582A1 (en) * 2004-03-09 2005-09-15 Alps Electric Co., Ltd. Method for forming fine grating
CN102360093A (zh) * 2011-10-19 2012-02-22 苏州大学 一种全息闪耀光栅制作方法
CN104142530A (zh) * 2013-05-06 2014-11-12 中国科学院物理研究所 一种金属纳米叉指光栅的制备方法
CN109656098A (zh) * 2018-12-04 2019-04-19 上海安翰医疗技术有限公司 纳米压印弹性模板的制作方法、纳米压印弹性模板及组件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825377A (zh) * 2021-08-27 2021-12-21 云南北方光学科技有限公司 内凹面限制空间的电磁屏蔽金属网栅制备方法
CN113825377B (zh) * 2021-08-27 2023-12-26 云南北方光学科技有限公司 内凹面限制空间的电磁屏蔽金属网栅制备方法
CN117092881A (zh) * 2023-08-29 2023-11-21 上海铭锟半导体有限公司 一种纳米压印母版的制备方法

Also Published As

Publication number Publication date
CN110632689B (zh) 2021-11-16
CN110632689A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021031111A1 (zh) 表面浮雕光栅结构的制作方法
CN102323634B (zh) 一种全息双闪耀光栅的制作方法
CN102360093A (zh) 一种全息闪耀光栅制作方法
JP2006258930A (ja) マイクロレンズの製造方法、及びマイクロレンズ用の型の製造方法
US12001055B2 (en) Grating, method for manufacturing grating, and optical waveguide
CN110673238B (zh) 微透镜阵列的制作方法
WO2022012245A1 (zh) 近眼显示设备和光学结构及其晶圆级别的制备方法
US20090267245A1 (en) Transmission Type Optical Element
JP2019512729A (ja) ワイヤグリッド偏光板製造方法
CN117590512A (zh) 光波导模板及其制备方法和应用
CN102323635A (zh) 一种全息双闪耀光栅的制作方法
CN110609344B (zh) 表面浮雕光栅结构的制作方法
CN203838359U (zh) 一种用于制作凹面闪耀光栅的基材结构及一种便于制作的凹面闪耀光栅
JPS59178729A (ja) フォトレジストプロセスにおける露光方法
JP2007264476A (ja) 周期構造パターン形成方法及び干渉露光装置
CN104880914B (zh) 利用同步辐射大面积快速制备颜色滤波器的方法及装置
CN103472683A (zh) 数字光刻微雕的制作装置及其雕刻制作方法
JP2001296649A (ja) 濃度分布マスクとその製造方法及び表面形状の形成方法
CN1058337C (zh) 表面起伏式绕射光学元件及其制作方法
KR100839774B1 (ko) 나노 패턴 형성 방법 및 이에 의하여 형성된 패턴을 갖는롤 기판
CN116360024A (zh) 一种多阶梯周期光栅结构及其制备方法
JP5503237B2 (ja) パタン形成基板
TW202505297A (zh) 曝光方法
KR100871059B1 (ko) 나노 패턴 형성 방법 및 이에 의하여 형성된 패턴을 갖는기판
JPH02199401A (ja) 回折格子の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942610

Country of ref document: EP

Kind code of ref document: A1