WO2021029404A1 - 振動測定装置 - Google Patents

振動測定装置 Download PDF

Info

Publication number
WO2021029404A1
WO2021029404A1 PCT/JP2020/030600 JP2020030600W WO2021029404A1 WO 2021029404 A1 WO2021029404 A1 WO 2021029404A1 JP 2020030600 W JP2020030600 W JP 2020030600W WO 2021029404 A1 WO2021029404 A1 WO 2021029404A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
signal
acceleration
tool
output signal
Prior art date
Application number
PCT/JP2020/030600
Other languages
English (en)
French (fr)
Inventor
憲吾 山本
貴行 山内
村上 浩二
松田 亮
雅史 荒木
陵雅 鹽津
Original Assignee
株式会社山本金属製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本金属製作所 filed Critical 株式会社山本金属製作所
Priority to JP2021539296A priority Critical patent/JPWO2021029404A1/ja
Priority to US17/609,298 priority patent/US20220203493A1/en
Publication of WO2021029404A1 publication Critical patent/WO2021029404A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/22Determining imbalance by oscillating or rotating the body to be tested and converting vibrations due to imbalance into electric variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the effective value and the high resolution waveform obtained by averaging the vibration acceleration detection data of the rotary tool used in the cutting apparatus or the like ((High-resolution signal waveform (“The averaging process by RMS calculation is not performed, and the frequency information is included). It relates to a vibration measuring device capable of detecting a “collected waveform at a high sampling rate”) in real time.
  • tool evaluation In machining equipment such as machining cutting equipment and friction stir welding equipment, evaluation of the state of the tool during processing (tool evaluation), for example, wear and fatigue, considering the product accuracy and manufacturing efficiency of the workpiece and the yield of the processed product. , Damage, chatter, etc. are required to be evaluated.
  • tool evaluation has been performed based on evaluation criteria that are generalized by device makers and tool makers for each device and tool, and evaluation criteria that are academically standardized.
  • real-time verification of the actual tool at the time of machining has not been possible.
  • Patent Document 1 various temperature measurement during machining of the rotary tool and various abnormality prediction techniques based on the measurement results and provided them to society.
  • Patent Document 2 various temperature measurement during machining of the rotary tool and various abnormality prediction techniques based on the measurement results and provided them to society.
  • vibration is a factor other than temperature as an important factor such as tool breakage.
  • no specific method for evaluating this in real time during processing has been provided, and the current situation is that each processing site is left to the five senses of skilled workers (in addition to visual inspection, tactile sensation, auditory sensation, etc.).
  • the machining conditions standardized for tools and equipment and the machining conditions based on the empirical rules of skilled workers have not been fully understood, and it cannot be said that high-speed and high-precision machining is always objectively realized.
  • the present inventors have developed a vibration measuring device using a tool holder that detects abnormal vibration of a rotating tool used in a rotary processing device in real time and wirelessly transmits and analyzes it to an external PC or the like. It has made it possible to detect signs, improve machining accuracy, and shorten the machining period (see Patent Document 3).
  • the vibration measuring device using this tool holder uses a pair of accelerometers mounted symmetrically on the horizontal plane with respect to the rotation axis, and averages by RMS (Root Means Square) calculation from the limit of the wireless transmission sampling rate. A method was adopted in which the effective value of the acceleration output after processing was evaluated as the average vibration acceleration during processing.
  • the method of performing the averaging process by the RMS calculation and outputting the effective value of the acceleration is a good output method in terms of the threshold control that avoids the limit of the wireless transmission sampling rate, but the frequency information is obtained in the RMS calculation. Since it is lost, there is insufficient information when analyzing a more detailed processing phenomenon.
  • the real-time vibration acceleration of the rotating tool was not evaluated in the first place, and it was finally possible to evaluate by the vibration measuring device using the tool holder provided by the present inventors. Therefore, the RMS was originally evaluated. At present, it is not even known whether or not there is a machining phenomenon that could not be analyzed by the effective value of acceleration averaged by calculation. Therefore, there is a possibility that there is a processing phenomenon that has not been analyzed and evaluated, and it is considered that the potential need for analysis of this processing phenomenon will increase or increase in the future.
  • An object of the present invention is to provide a vibration measuring device that wirelessly transmits a collected waveform (high resolution waveform) at a high sampling rate that includes frequency information without performing averaging processing within the limit of the wireless transmission sampling rate in the device. To do.
  • the present invention is a vibration measuring device for a rotating tool held by a tool holder that is connected to a spindle and rotates in cooperation with the spindle.
  • an amplifier circuit that matches the impedance of the acceleration information from the acceleration sensor and amplifies the voltage, and an output signal of the amplification circuit.
  • a low-pass filter that deletes a predetermined high frequency, a subtraction circuit and an amplifier circuit that output a parallel vibration signal in the XY direction and a vibration signal in the rotation direction from the output signal of the low-pass filter, and a parallel vibration signal and rotation in the XY direction.
  • Real-time reception of vibration signals transmitted from the wireless transmitter / receiver (including the wireless microcomputer (sensor side) 22 and wireless transmitter / receiver 23) on the acceleration sensor side that externally transmits the vibration signal in the direction and the wireless transmitter / receiver on the sensor side. It is equipped with an external wireless transmitter / receiver (including a wireless transmitter / receiver 24, a wireless microcomputer (PC side) 25, a personal computer 27, and a voice input / output device 26) for displaying and / or recording.
  • the vibration signal from the accelerometer is averaged by RMS calculation from the limit of the wireless transmission sampling rate of the device on the sensor side such as the tool holder, and the effective value of the acceleration is output and transmitted to the outside.
  • this vibration measuring device does not perform averaging processing by RMS calculation, and wirelessly transmits the collected waveform (high resolution waveform) at a high sampling rate while including the frequency information. This makes it possible to analyze processing phenomena that could not be analyzed by the effective value of acceleration averaged by RMS calculation in the past.
  • the external wireless transmitter / receiver directly displays and / or records the output signal of the high-resolution waveform received from the wireless transmitter / receiver on the sensor side in real time by performing the fast Fourier transform.
  • the high resolution waveform which is the collected waveform at a high sampling rate transmitted from the wireless transmitter / receiver on the sensor side, and the fast Fourier transform (FFT transform) are performed. Waveforms and can be displayed.
  • FFT transform fast Fourier transform
  • the external wireless transmission / reception device may display and / or record the output signal of the high-resolution waveform received from the wireless transmission / reception device on the sensor side as it is or by autocorrelation processing in real time.
  • the autocorrelation process is a process of calculating the correlation coefficient between the original signal data and the original signal data by shifting the time, and shows the relationship between the time shifted from the original signal data and the calculated correlation coefficient. ing. For example, when one blade is damaged in a blade having a plurality of blades, it is known that there is a large difference between the correlation coefficient of the cycle of the damaged blade and the correlation coefficient of the cycle of the normal blade.
  • this vibration detection device averages the vibration signals output in real time during machining from the acceleration sensor mounted on the rotary tool held by the tool holder that is connected to the spindle and rotates in cooperation with the spindle.
  • a filter means that extracts only the output signal of a specific frequency region from the output signals of the high resolution waveform collected at a high sampling rate while including the frequency information. The output signal averaging process extracted by the filter means and the averaging means for output may be provided.
  • the output information that cannot be detected by the RMS process can be detected. It is possible to analyze detailed processing phenomena. However, even in the high resolution waveform, an unnecessary output signal such as noise is included in a predetermined frequency region, which may hinder the analysis of the processing phenomenon.
  • This vibration detection device has a filter means that deletes the frequency domain containing unnecessary output signals at the high resolution waveform stage and extracts only the frequency domain required for analysis of processing phenomena, and has filtered data. Can be RMS-processed and output.
  • machining phenomenon to be detected such as the presence of a defect
  • this can be detected in real time during machining, which is requested by the user.
  • Various analyzes can be performed according to the above.
  • the frequency region determined to be necessary from the output signal obtained by fast Fourier transforming the output signal of the high resolution waveform is determined.
  • the unnecessary region is clarified once the fast Fourier transform is performed. It turned out that there was something. In this case, it is preferable to delete an unnecessary frequency region detected by the fast Fourier transform, and then perform an averaging process such as an RMS process.
  • the vibration signal from the acceleration sensor is not averaged within the limit of the wireless transmission sampling rate in the device on the sensor side, and the frequency information.
  • a high-resolution waveform signal as a collected waveform at a high sampling rate that includes the above and displaying the output signal on an external personal computer or the like that has received the output signal
  • advanced analysis of the processing state which was not possible in the past, can be performed in real time. be able to.
  • an external personal computer or the like can process and calculate the output signal of the high-resolution waveform by another method and display it, and it is possible to perform more advanced analysis in real time, which could not be analyzed or detected even with the high-resolution waveform.
  • the vibration measuring apparatus of the present invention when the detailed processing phenomenon cannot be analyzed only by detecting the high resolution waveform which is the raw collected waveform without performing the averaging process like the normal RMS process.
  • the frequency domain containing unnecessary output signals at the high-resolution waveform stage By deleting the frequency domain containing unnecessary output signals at the high-resolution waveform stage and extracting only the frequency domain required for analysis of the machining phenomenon, it is possible to detect only the machining phenomenon that you want to detect in real time.
  • Various analyzes can be performed according to the above.
  • FIG. 1 shows a photograph of a tool holder unit equipped with this vibration measuring device on the rotating spindle of the machining center, and (b) receives data from the tool holder unit of (a).
  • An exemplary photograph of the external terminal to be analyzed is shown.
  • the vertical sectional view of the tool holder unit is shown.
  • It is a schematic diagram which shows 6 kinds of arrangement positions of an acceleration sensor.
  • (A) shows a perspective view of the tool holder unit, and (b) shows the arrangement position of the acceleration sensor on the cross-sectional view along the vertical axis at the arrangement position of the acceleration sensor in (a).
  • (A) shows the relationship between the load generated when cutting the workpiece and the acceleration, and (b) shows the figure showing the acceleration seen from the tool.
  • a block diagram showing an example of vibration measurement in which a high-resolution waveform is output without RMS calculation (averaging processing) and transmitted externally in this vibration measuring device is shown. It is a graph which shows the utilization example 1 (Example 1) of the measurement result of the vibration of a tool by the output signal shown in FIG. It is the setup schematic diagram of Experimental Example 2, and the photograph figure which showed the relationship between the end mill cutting edge and the tool rotation coordinate system. The monitor result of the high resolution waveform of the vibration acceleration of Experimental Example 2 is shown. In Experimental Example 2, we focused on 1850 rpm, which is the number of revolutions during stable machining, and showed the results of FFT analysis of both physical quantities.
  • FIG. 3 is a photographic diagram showing a state in which an internal defect was observed at a position surrounded by a broken line under all conditions showing an X-ray transmission image under each condition in Experimental Example 3.
  • it is a graph which shows the time change of the vibration acceleration during joining at a tool rotation speed of 500 rpm. It is a figure which showed the relationship between the rotational speed and the amplitude of the vibration acceleration during joint feed in Experimental Example 3.
  • the high-resolution waveform when cutting with a throw-away end mill (two-blade) as a blade having a plurality of blades and the waveform obtained by performing autocorrelation processing are shown.
  • It is a schematic diagram of the throw away drill having two blades of an inner blade and an outer blade used in Example 5.
  • the detection result is the vibration acceleration calculated by the normal RMS in the throw-away drill of FIG.
  • the detection result of the vibration acceleration of the high resolution waveform which has not been RMS-processed in the same translational direction (Acc.X) and rotation direction (Acc.Y) as in FIG. 17 is shown.
  • the signal waveform obtained by FFT-transforming the high-resolution waveform signal for each time domain of FIG. 18 is shown.
  • a signal obtained by extracting only a frequency of 2000 Hz or less from the vibration signal of the high resolution waveform of FIG. 18 is shown.
  • the frequency data of FIG. 20 is RMS-processed.
  • FIG. 1A shows a photograph of a tool holder unit 1 provided with this vibration measuring device held by a rotating spindle 2 of a machining center.
  • the tool holder unit 1 grips the upper part of the tool holder by the rotating spindle 2 and grips the tool at the lower part.
  • the tool holder unit 1 holds the state in the vicinity of the tool during machining in real time. It is formed as a unit having a function that can be detected.
  • FIG. 1B is an exemplary photograph of an external terminal that receives and analyzes data from the toolholder unit 1 of FIG. 1A.
  • the receiver 31 receives the digital data from the tool holder unit 1 and transmits it to the personal computer 32.
  • the personal computer 32 that has received the data transmitted from the receiver 31 processes (or calculates) it with the internal dedicated software and displays it on the display.
  • FIG. 2 shows a vertical cross-sectional view of the tool holder unit 1.
  • the upper side of the paper surface is the rotation spindle 2 side
  • the lower side is the cutting tool side.
  • the tool holder unit 1 is inserted and gripped into the rotating spindle 1 in a nested manner above the brim portion 3a and rotates in cooperation with the rotating spindle 1.
  • the inside is hollow, and the chuck 5 for gripping the tool is fixed at the lower part.
  • a gap 3c for arranging parts is provided above the chuck 5, and the battery 4 is arranged in the gap 3c.
  • the battery 4 may be rechargeable.
  • Data from various sensors are A / D converted by the control board 9 arranged in the gap 3c, and transmitted from the wireless transmission device 7 on the outer peripheral side of the tool holder main body 3 connected via the through hole. ..
  • the data from various sensors may be A / D converted by the control board on the outer peripheral portion of the tool holder main body 3.
  • an acceleration sensor is used for vibration detection of cutting tools and the like, which is the subject of the present invention.
  • An example of arrangement of this acceleration sensor will be described.
  • FIG. 2 an example is shown in which the vibration at the cutting point is provided at the lowermost position of the gap 3c in order to more accurately capture the vibration.
  • a configuration in which a large-volume battery is housed on the rotating spindle 2 (upper side of the paper surface in FIG. 2) side of the acceleration sensor 6 will be given as an example.
  • an example of the arrangement position of the acceleration sensor 6 will be described.
  • FIG. 3 is a schematic diagram showing six types of arrangement position examples of the acceleration sensor 6.
  • An example of arranging the acceleration sensor 6 near the rear end of the tool 11 of FIG. 2 described above is shown in FIG. 3 (b).
  • the acceleration sensor 6 is attached to the tip (lower end) of the cavity of the tool 11 in FIG. 3 (a), and the rear end (upper end) of the tool 11 in FIG. 3 (c).
  • FIG. 3D a cantilever beam 11a for amplifying the vibration amplitude is formed at the rear end (upper end) of the tool 11, and the acceleration sensor 6 is attached to the tip end (upper end) thereof.
  • FIG. 3D a cantilever beam 11a for amplifying the vibration amplitude is formed at the rear end (upper end) of the tool 11, and the acceleration sensor 6 is attached to the tip end (upper end) thereof.
  • FIG. 3 (f) shows an example in which a cantilever beam 3e for amplifying the vibration amplitude or a component similar thereto is formed in the gap 3c in the tool holder main body 3 and the acceleration sensor 6 is attached to the tip thereof. ing.
  • FIG. 4 shows a perspective view of the tool holder unit 1 in (a), and FIG. 4 (b) shows a cross-sectional view (position of reference number 6) along the axis perpendicular to the arrangement position of the acceleration sensor 6 in (a). ) Shows the arrangement relationship of the acceleration sensor 6.
  • the X direction is one of the arbitrary lateral directions perpendicular to the tool holder unit main body 3 as shown by the arrow xx
  • the Y direction is the arrow xx as shown by the arrow yy. It is the direction rotated by 90 ° around the axis.
  • the acceleration sensor 6 shown here is a piezoelectric acceleration sensor, and two pairs are arranged at positions facing each other with respect to the rotation axis ⁇ as a pair, and two pairs are arranged at right angles for the X direction and the Y direction, respectively.
  • At least two pairs (four) of acceleration sensors 6 are arranged on the same plane horizontal (perpendicular) to the rotation axis.
  • the pair of acceleration sensors 6a are arranged so as to face the center O of the axis line in the X direction (arrow xx direction) and to have sensitivities opposite to the Y direction at positions at the same distance.
  • the other pair of accelerometers 6b2 and 6b2 also face each other in the Y direction (arrow yy direction> from the center O and have opposite sensitivities to the X direction at positions at the same distance. It is arranged in.
  • the individual sensors of the two pairs of acceleration sensors 6a and 6b are marked as Y1, Y2, X1, X2, respectively, in Fig. 4 (b).
  • the acceleration Ax in the X direction, the acceleration Ay in the Y direction, the acceleration Am'in the tangential direction, and the angular acceleration Am in the tangential direction at the position can be calculated as follows.
  • FIG. 5 shows the relationship between the load generated when the workpiece (work) 12 is cut and the acceleration in (a), and (b) shows the acceleration seen from the cutter (tool) 11.
  • FIG. 5A the tip 13 cuts and grinds the workpiece 12 by advancing it to the left of the paper surface while rotating it in the rotation direction W of the cutter 11.
  • a load acts on the rear side of the cutter 11 (that is, the front side of the tangent line) as shown in FIG. 5 (a), and the component force in the tangential direction is applied.
  • Fm the component force in the normal direction
  • Fr the dynamic friction force acts as MFm in the direction opposite to the component force Fm according to the component force Fr.
  • acceleration acts on the cutter 11 and eventually the tool holder unit 1 (chuck 5). Therefore, when the acceleration sensors 6a and 6b as described above are provided in FIG. 4 (b) and the accelerations in the X and Y directions are measured, how much acceleration is acting in the X, Y and rotation directions can be seen. Understand. As a result, vibration measurement is also possible.
  • FIG. 6 shows a block diagram showing a state in which vibration is measured by the vibration measuring device and high-resolution waveform data is output.
  • the vibration information of the analog signal is output from the acceleration sensors 6a (y1), 6a (y2), 6b (x1), and 6a (x2) in the tool holder body 3, and the amplifier circuit, the low-pass filter, and the vibration information are output, respectively.
  • a parallel vibration signal or a rotational vibration signal is output by a subtraction (or addition) circuit (see reference numerals 15, 16 and 17).
  • the analog signals of the acceleration sensors 6a (y1) and 6a (y2) are matched in impedance by the amplifier circuit of the circuit 17, the voltage is amplified, the gain is adjusted according to the circuit in the subsequent stage, and the amplifier circuit is used.
  • the output signal of is output by cutting the high frequency with a low-pass filter in order to avoid the influence of the resonance frequency of the acceleration sensors 6a (y1) and 6a (y2).
  • the transmission signal from the low-pass filter is also amplified by an operational amplifier or the like.
  • the subtraction circuit (differential amplifier circuit) outputs a voltage that is a predetermined multiple of the voltage difference from the acceleration sensors 6a (y1) and 6a (y2), that is, outputs a parallel vibration (y translation) signal in the Y direction.
  • the analog signals of the acceleration sensors 6b (x1) and 6a (x2) are output as parallel vibration (x translation) signals in the X direction through the amplifier circuit, the low-pass filter, and the subtraction circuit.
  • the analog signals of the acceleration sensors 6a (x1) and 6a (x2) are output through the amplifier circuit and the low-pass filter as in the circuit 15, and then the acceleration sensors 6a (x1) and 6a (x2) are output by the addition circuit.
  • the voltage of the sum of each predetermined multiple of the voltage from is output, that is, it is output as a vibration (x rotation) signal in the rotation direction.
  • the x translation signal, x rotation signal, and y translation signal output from the circuits 15 to 17 are not averaged by RMS calculation or the like, and remain at a high sampling rate through a bypass filter (not shown) and an A / D converter (not shown). Outputs the digital signal of.
  • the output digital signal is converted into transmission data by the wireless microcomputer 22 (sensor side) in the tool holder main body 3 and transmitted externally by the wireless transmitter / receiver 23.
  • the input terminal of the wireless microcomputer 22 has two channels, left ch22a and right ch22b, and circuits 15, 16 and 17 are connected to left ch22a, right ch22b and right ch22b via a changeover switch 28, respectively, and a vibration signal at a high sampling rate. (High resolution waveform signal) x translation signal, x rotation signal, y translation signal are received.
  • the vibration information (x translation signal, x rotation signal, y translation signal as vibration data) received by the wireless microcomputer 22 is wirelessly transmitted to the outside by the wireless transmitter / receiver 23.
  • the input terminal of the wireless microcomputer 22 has 2 channels, and two of the circuits 15, 16 and 17 are connected to the left and right channels 22a and 22b via the changeover switch 28, but the input terminal is 3 channels.
  • Circuits 15, 16 and 17 are connected to 3 channels without going through a changeover switch, and the moneyless microcomputer 22 receives x translation signal, x rotation signal and y translation signal which are vibration signals of high resolution waveform at high sampling rate. It is also possible.
  • the wirelessly transmitted vibration information (x translation signal, x rotation signal, y translation signal) is received by the external wireless receiver 24 and is dedicated software via the serial USB converter of the wireless microcomputer 25 (PC side). Is processed by the personal computer 27 on which the above is installed and displayed on the display. Further, the wireless microcomputer 25 transmits the x translation signal, the x rotation signal, and the y translation signal, which are vibration data of the high resolution waveform, to the audio input / output device (bedphone or speaker) 26 and reproduces the device 26. Then, the voice input / output device 26 transmits the voice data to the personal computer 27 and records the voice data in the personal computer 27.
  • Flow of vibration measurement signal (example of waveform data transmission start / stop command from external personal computer to accelerometer side)
  • the wireless microcomputer 25 on the personal computer 27 side in FIG. 6 receives a combination of two high-resolution waveforms of the x translation signal, the x rotation signal, and the y translation signal because the wireless microcomputer 22 on the sensor side has 2 channels.
  • the personal computer 27 generates a changeover command signal of the changeover switch 28 for switching this to another combination, and the command signal is transmitted to the wireless microcomputer 22 on the sensor side via the wireless microcomputer 25 on the personal computer side and the wireless transmitters / receivers 24 and 25. Can be transmitted wirelessly to.
  • the wireless microcomputer 22 on the sensor side that has received the command signal outputs a digital voltage, drives a changeover switch 28 that is driven by the digital voltage, and switches between the left ch 22a and the right ch 22b that are connected to the circuits 15, 16, and 17.
  • Example 1 (Search for optimum machining conditions)
  • this vibration measuring device it is possible to detect abnormal vibration of the tool 11 during machining, and it is also possible to detect the occurrence of unstable cutting (so-called "chatter") during cutting, which is a serious sign of tool breakage. ..
  • this vibration measuring device it is possible to detect an area where "chatter” does not occur even if the depth of cut or the number of rotations increases, instead of simply reducing the amount of cut or the rotation speed. It is possible.
  • FIG. 7 is a graph showing a utilization example 1 of the measurement result of the vibration of the tool 11 by this vibration measuring device.
  • the vertical axis represents the depth of cut (mm) into the workpiece 12 and the horizontal axis represents the rotation speed (rpm) of the tool 11, and the unstable cutting region (white region A) and the stable cutting region (gray region B). ) And are shown.
  • the unstable cutting region (white region A) and the stable cutting region (gray region B) change depending on the conditions such as the tool 11 and the workpiece 12, and although there are academic examples, they are actually It was not something specifically shown in the individual tools 11 to be measured for vibration.
  • the depth of cut is increased as shown by the arrow (2), and when the presence or absence of "chatter" is verified with this vibration measuring device, "chatter" occurs even under processing conditions that result in higher cuts. It is possible to search for a limit point that does not occur. In the example of FIG. 7, it will be verified by search that the depth of cut is about 3 mm (the white circle above) is the limit point where "chatter" does not occur.
  • FIG. 8 shows a schematic diagram of the experimental setup and the relationship between the end mill cutting edge and the tool rotation coordinate system.
  • the spindle taper of the vertical machining center is BT40, and the end mill is gripped on the spindle by this holder system.
  • the end mill used was a carbide end mill with a diameter of 10 mm, a number of blades of 2, a blade length of 20 mm, and a twist angle of 30 °. At this time, the cutting edge of the end mill was gripped so that the Xm axis of the tool rotation coordinate system was parallel.
  • S50C was used as the work material, and it was fixed on a piezoelectric cutting dynamometer (9255B manufactured by kistler) installed on the table of the machining center.
  • the X, Y, and Z sensitivity directions of the cutting resistance are shown as Fx, Fy, and Fz in the outline of the upper view in Fig. 9.
  • Downcut was performed with one side of the work material as one pass, and the cutting length at the center of the tool in the experiment was set to 200 mm in the X direction.
  • the cutting conditions were fixed at 0.06 mm / tooth for one blade feed, and the machining was performed while increasing the rotation speed from 1500 rpm to 3000 rpm by 50 rpm for every 5 mm of movement distance at the center of the tool.
  • the experiment was conducted dry without using coolant.
  • the vibration acceleration during processing is measured by placing an acceleration sensor with sensitivity in one axis in the holder at a distance of 5 mm in the radial direction (86 mm from the gauge line) on the Xm axis of the rotating coordinate system.
  • the accelerations ax1 and ax2 of each sensor have a + sensitivity in the direction of the arrow shown in the figure, and the Xm direction is (ax1-ax2) / 2, which can be calculated by the differential calculation of the vibration acceleration.
  • the Rm direction which indicates the direction of rotation, can be calculated by the addition operation of (ay1 + ay2) / 2.
  • the natural frequency of the sensor used here is 20 kHz.
  • an amplifier, A / D converter, microcontroller and wireless transmitter were installed. A / D conversion is performed after analog arithmetic processing is performed by a microcontroller and information is compressed, and the result is transmitted at a wireless transmission sampling rate of 44.1 kHz, and the measurement result can be displayed and recorded in real time by a PC connected to the receiver. I made it.
  • l is the amount of tool protrusion
  • d is the tool diameter
  • E is the Young's modulus
  • is the density.
  • the core thickness of the tool is ⁇ 6.5 mm
  • the protrusion amount is 33 mm
  • the Young's modulus of cemented carbide is 550 GPa
  • the density is 14250 kg / m3.
  • Example 3-Friction stir welding example >> Experiment / examination method
  • the tool shape was a taper shape with a shoulder diameter of 14 mm, a probe of M 4 M 5 with a pitch of 0.8 mm and a left-hand thread groove, and a probe length of 4.5 mm.
  • the tool material was heat-treated SKD61 HRC53, and the material to be joined was A6061 with a thickness of 5 mm. The joining distance was 80 mm. Vibration acceleration is detected by arranging an acceleration sensor inside the tool holder.
  • Fig. 12 shows an X-ray transmission image under each condition. Internal defects were observed at the positions surrounded by broken lines under all conditions. However, while at a rotation speed of 500 rpm, defects were observed over the entire joint, at 1000 and 1500 rpm, defects were relatively small at the initial part of the joint, and at 1000 and 1500 rpm, defects were similar in size. Generated. The main cause was insufficient heat input at a rotation speed of 500 rpm, and at 1000 and 1500 rpm, the amount of pushing in the shoulder was large, resulting in excessive burr discharge and the material was not filled in the groove created by the tool. Inferred.
  • FIG. 13 shows the time change of the vibration acceleration during joining at the tool rotation speed of 500 rpm.
  • the probe contacts the material to be bonded at a, the shoulder contacts at b, the holder is held in the range of cd, and the bonding is fed in the range of de.
  • FIG. 14 shows the relationship between the rotational speed and the amplitude of the vibration acceleration during joint feeding.
  • the amplitude was the largest at the rotation speed of 500 rpm, the amplitude was smaller at 1000 and 1500 rpm than at 500 rpm, and the amplitude was about the same at 1000 and 1500 rpm. .. Since these magnitude relations were similar to the magnitude relations of the magnitudes of internal defects obtained from the observation results of X-ray transmission images, there is a correlation between the magnitudes of internal defects and the magnitude of vibration acceleration amplitude. Was suggested.
  • FIG. 15 shows a high-resolution waveform when cutting with a throw-away end mill (two-blade) as a blade having a plurality of blades and a waveform obtained by performing autocorrelation processing.
  • the vibration signal of the high resolution waveform of the parallel evolution speed (x translation) in the normal throwaway end mill (2-flute) is displayed in the upper left row (a) of FIG. 15, and the upper row of the middle row shows the vibration signal of the throw away end mill.
  • a photographic diagram of one blade and the other blade is shown, and the signal after autocorrelation processing of the vibration signal of the high resolution waveform of (a) is displayed in the upper right row (c).
  • the vibration signal of the high resolution waveform of the parallel evolution speed (x translation) in the normal throw-away end mill (two blades) with one blade damaged is displayed in the lower left row (b), and the upper middle row shows the vibration signal.
  • a photographic diagram of one blade (upper side) and the damaged other blade (lower side) of the throwaway end mill is shown, and the lower right row (d) is after autocorrelation processing of the vibration signal of the high resolution waveform of (b). Signal is displayed.
  • the autocorrelation process here is performed on a throw-away end mill that rotates at a rotation speed of 2000 [rpm] and a period of 30 [ms] (see the arrow “1 cycle” in (a)) shown in (a) and (b).
  • the correlation coefficient with the original signal data is calculated by shifting, the time shifted from the original signal data is shown on the horizontal axis, and the calculated correlation coefficient is shown on the vertical axis.
  • Example 5-Example of detecting defects inside the material during drilling As the tool shape, as shown in FIG. 16, a throw-away drill having two blades, an inner blade and an outer blade, specifically, 880-D3200L40-03 manufactured by Sandvik was used. The material to be joined is S50C with a thickness of 40 mm, and a simulated defect with a depth of 10 mm and a width of 15 mm is provided. In addition, vibration acceleration is detected by arranging an acceleration sensor inside the tool holder.
  • the vibration acceleration of As described above, four accelerometers with sensitivity in the uniaxial direction are placed in the holder at equal intervals on the X-axis and Y-axis of the rotating coordinate system so as to have sensitivity in the rotational direction, and the bending direction of the tool is calculated. Measure the vibration acceleration of. Furthermore, the vibration acceleration of R, which indicates the direction of rotation, can also be calculated by calculation.
  • FIG. 17 shows the result of detecting the vibration acceleration during cutting at a transmission frequency of 50 Hz for wireless transmission by performing a normal RMS (Root Mean Square) calculation with an integration time of 0.1 s.
  • RMS Root Mean Square
  • FIG. 18 shows the detection results of the vibration acceleration of the high resolution waveform at a high sampling rate without RMS processing in the same translational direction (Acc.X) and rotation direction (Acc.Y) as in FIG.
  • the drill in the time domain a, the drill is idling, in the time domain b and the time domain e, the drill is cutting in a place where there is no simulated defect, and in the time domain c and the time domain d, the drill is in a simulated defect. It is in a state of being cut with. It can be seen that even in the high-resolution waveform signal which is the acceleration raw waveform, there is almost no difference between the portion having the simulated defect and the portion having no simulated defect.
  • FIG. 19 shows a signal waveform obtained by performing an FFT conversion process on the high-resolution waveform signal for each of the time domains a to e in FIG.
  • peaks are detected at frequencies of 2000 Hz or less only in the signal waveforms of the time domain c and the time domain d where cutting is performed at the location where there is a simulated defect, while as shown by the * mark. It can be seen that peaks are detected at frequencies near 5000 Hz in all the time domains b, c, d, and e during cutting regardless of the presence or absence of simulated defects. That is, it is considered that the vibration signal near 5000 Hz is noise, and the influence of the simulated defect is detected by the vibration signal of 2000 Hz or less.
  • FIG. 20 shows the frequency data of 2000 Hz or higher subjected to RMS processing with an integration time of 0.1 s. In FIG. 21, it can be seen that the acceleration signal at the location where the simulated defect is further detected is clearly detected.
  • FFT processing can be used as a filter function to remove noise, and when RMS processing is performed on an acceleration raw waveform from which noise has been removed, the presence or absence of simulated defects that cannot be detected by conventional RMS-processed data can be detected. It was verified that it could be done.
  • Tool holder unit 1 Tool holder unit 2 rotary spindle 3 Tool holder body 3 a brim 3 c void 4 batteries 5 chuck 6 Accelerometer 7 Wireless transmission device (antenna) 9 Control board 11 Tool (cutter) 11a cantilever 12 Work piece (work) 13 Tip (cutting edge) 15, 16, 17 circuits 22 Wireless microcomputer (sensor side) 23,24 Wireless transmitter / receiver 25 Wireless microcomputer (PC side) 26 Voice input / output device 27 PC 28 Changeover switch 31 receiver 32 personal computer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

主軸と連結され協働して軸回転するツールホルダに把持された回転工具の振動測定装置を提供するために、 回転工具の回転軸に対する水平面上に回転軸に対称に装着された一対の加速度センサと、該加速度センサからの加速度情報のインピーダンスを整合し、電圧増幅する増幅回路と、該増幅回路の出力信号から所定の高周波数を削除するローパスフィルタと、該ローパスフィルタの出力信号からそれぞれXY方向の並行振動信号及び回転方向の振動信号を出力する減算回路及び加算回路と、を備え、該減算回路及び加算回路からの周波数情報を含むハイレゾ波形の出力信号をA/D変換して送信データとして処理してそのまま外部送信する、振動測定装置。

Description

振動測定装置
 本発明は、切削加工装置等に用いる回転工具の振動加速度検出データの平均化処理した実効値とハイレゾ波形((High-resolution signal waveform(「RMS演算による平均化処理を行わず、周波数情報を含んだままの高サンプリングレートでの収集波形」)とをリアルタイムで検出することができる振動測定装置に関するものである。
 マシンニング切削加工装置や摩擦攪拌接合装置等の加工装置において、被加工物の製品精度や製造効率、加工製品の歩留まりを考慮すると加工時の工具の状態の評価(ツール評価)、例えば摩耗や疲労、破損、びびり等の評価をすることが要求される。従来、ツール評価は、装置メーカや工具メーカがその装置や工具ごとに一般化する評価基準や学術的に標準化された評価基準に基づいて行っていた。これに対して加工時における実際の工具についてのリアルタイム検証はできていなかった。
 これに対して出願人は回転工具の加工中の温度測定、さらにこの測定結果に基づく異常予知技術について種々開発し、社会提供してきた(特許文献1、 特許文献2)。一方、工具の破損等の重要な要因として温度以外に振動があることも知られている。しかしながら、これを加工中にリアルタイム評価する具体的な方法が提供されておらず、各加工現場で熟練工の五感(目視に加え、触感や聴感等〉にゆだねられている現状があった。したがって、工具や装置に対して標準化された加工条件や熟練工の経験則に基づく加工条件が十分把握されてはおらず、必ずしも高速、高精度な加工が客観的に実現されているとは言えなかった。
 これに対して、本発明者らは回転加工装置で用いる回転工具の異常振動をリアルタイムで検出し外部PC等に無線送信・分析するツールホルダを用いた振動測定装置を開発し、工具破損等の予兆検出や加工精度の向上、加工期間の短期化を実行することを可能とした(特許文献3参照)。このツールホルダによる振動測定装置では、回転軸に対して水平面上に回転軸対称に装着された一対の加速度センサを用いており、無線送信サンプリングレートの限界からRMS(Root Means Square)演算による平均化処理を行って出力した加速度の実効値を加工中の平均的な振動加速度として評価する方式を採用していた。
 しかしながら、RMS演算による平均化処理を行って加速度の実効値を出力する手法は、無線送信サンプリングレートの限界を回避する閾値制御という点からは良好な出力手法であるが、RMS演算では周波数情報が失われるため、より詳細な加工現象を解析する場合には、不足情報が存在する。一方、従来は、上述するようにそもそも回転工具におけるリアルタイムの振動加速度の評価がされず、本発明者らが提供してきたツールホルダを用いた振動測定装置によってようやく評価できる状況になったため、そもそもRMS演算により平均化した加速度の実効値では分析できなかった加工現象が存在するか否かすらわかっていない現状であった。したがって、分析・評価できていない加工現象が存在している可能性があり、今後、この加工現象の分析を要求する潜在的ニーズは大きい又は大きくなってくるものと考えられる。
国際公開公報WO2015-022967 国際公開公報WO2016-111336 特開2018-54611号公報
 以上のような事情に鑑みて本発明は創作されたものであり、切削加工装置や摩擦攪拌接合装置等の回転加工装置で用いる回転工具の振動加速度について、加速度センサからの振動信号についてセンサ側の装置における無線送信サンプリングレートの限界内での平均化処理を行わず、周波数情報を含んだままの高サンプリングレートでの収集波形(ハイレゾ波形)を無線送信する振動測定装置を提供することを目的とする。
 具体的に本発明は、主軸と連結され協働して軸回転するツールホルダに把持された回転工具の振動測定装置であって、
 回転工具の回転軸に対する水平面上に回転軸に対称に装着された一対の加速度センサと、該加速度センサからの加速度情報のインピーダンスを整合し、電圧増幅する増幅回路と、該増幅回路の出力信号から所定の高周波数を削除するローパスフィルタと、該ローパスフィルタの出力信号からそれぞれXY方向の並行振動信号及び回転方向の振動信号を出力する減算回路及び加算回路と、前記XY方向の並行振動信号及び回転方向の振動信号を外部送信する加速度センサ側の無線送受信装置(無線マイコン(センサ側)22、無線送受信機23を含む)と、該センサ側の無線送受信機から送信された振動信号を受信しリアルタイムに表示及び/又は記録する外部の無線送受信装置(無線送受信機24、無線マイコン(PC側)25、パソコン27、音声入出力デバイス26を含む)と、を備え、
 加速度センサ側の無線送受信装置は、前記減算回路及び加算回路からの周波数情報を含むハイレゾ波形の出力信号をA/D変換して送信データとして処理してそのまま外部送信する。
 従来、上述するように加速度センサからの振動信号についてツールホルダ等のセンサ側の装置の無線送信サンプリングレートの限界からRMS演算による平均化処理を行って加速度の実効値を出力して外部送信する方式を採用していたが、本振動測定装置では、RMS演算による平均化処理を行わず、周波数情報を含んだままの高サンプリングレートでの収集波形(ハイレゾ波形)を無線送信することとしている。これにより従来、RMS演算により平均化した加速度の実効値では分析できなかった加工現象を分析することができる。
 また、前記外部の無線送受信装置は、前記センサ側の無線送受信機からの受信したハイレゾ波形の出力信号をそのまま及び高速フーリエ変換してリアルタイムに表示及び/又は記録する、ことが好ましい。
 本振動測定装置の外部の無線送受信装置(特に外部パソコン27)では、センサ側の無線送受信装置から送信された高サンプリングレートでの収集波形であるハイレゾ波形とこれを高速フーリエ変換(FFT変換)した波形とを表示することができる。これによりハイレゾ波形のみでは検出できなかいが、ハイレゾ波形の出力信号に含まれている周波数情報からFFT変換することで特徴的なピーク等を検出することができ、高度な種々の分析が可能となる。例えば、ハイレゾ波形の表示では検出できない回転主軸の曲げ固有振動数の影響に基づく所謂「びびり」などがリアルタイムに検出することができる。
また、前記外部の無線送受信装置は、前記センサ側の無線送受信装置からの受信したハイレゾ波形の出力信号をそのまま及び自己相関処理してリアルタイムに表示及び/又は記録しても良い。
 上述の例ではハイレゾ波形の振動信号だけでは何ら差が検出されない場合でも、FFT変換した信号データでは差が検出され、異常検出できる例が提案された。本振動測定装置では、自己相関処理する例が提案される。自己相関処理とは、元の信号データと時間をずらして元の信号データとの相関係数を計算する処理であり、元の信号データからずらした時間と計算した相関係数との関係を示している。例えば、複数の刃を有する刃物において一の刃が損傷している場合、損傷した刃の周期の相関係数と通常の刃の周期の相関係数とが大きく差が出ることがわかっている。
 また、本振動検出装置は、主軸と連結され協働して軸回転するツールホルダに把持された回転工具に装着された加速度センサから加工中にリアルタイムに出力された振動信号に対して平均化処理を行わず、周波数情報を含んだままの高サンプリングレートで収集したハイレゾ波形の出力信号のうち特定の周波数領域の出力信号のみ抽出するフィルタ手段と、
 前記フィルタ手段により抽出された出力信号平均化処理して出力する平均化手段と、を備える場合がある。
 上述したように通常のRMS処理のごとき平均化処理を行わず、周波数情報を含んだままの高サンプリングレートでの収集波形であるハイレゾ波形を検出するとRMS処理すると検知できない出力情報も検知できるためより詳細な加工現象の解析をすることができる。しかしながら、そのハイレゾ波形においても所定の周波数領域でノイズ等の不要な出力信号が含まれ、加工現象の分析の妨げになる場合がある。本振動検出装置では、ハイレゾ波形の段階で不要な出力信号を含んでいる周波数領域を削除し、加工現象の分析に必要となる周波数領域のみ抽出するフィルタ手段を有しており、フィルタリングされたデータをRMS処理して出力することができる。所定の加工条件下において、例えば欠陥の存在のように検知したい加工現象が特定周波数領域に影響を与えているような場合には、これを加工中にリアルタイムに検知することができ、ユーザの要求に応じた種々の分析をすることができる。
 さらに、前記フィルタ手段で抽出する特定の周波数領域は、前記ハイレゾ波形の出力信号を高速フーリエ変換した出力信号から必要と判定される周波数領域が決定される、ことが好ましい。
 上記振動検出手段例では、加工現象の詳細な分析のためにフィルタ手段で削除するハイレゾ波形の中の不要な周波数領域を見つける手法として、一旦、高速フーリエ変換してみると不要領域が明確化することがあることがわかった。この場合には高速フーリエ変換で検出された不要な周波数領域を削除し、その後、RMS処理等の平均化処理することが好ましい。
 以上,本発明の振動測定装置によれば、回転工具等の振動加速度について、加速度センサからの振動信号についてセンサ側の装置における無線送信サンプリングレートの限界内での平均化処理を行わず、周波数情報を含んだままの高サンプリングレートでの収集波形としてのハイレゾ波形信号を無線送信し、その出力信号を受信した外部パソコン等で表示することで従来できなかった加工状態の高度な分析をリアルタイムに行うことができる。さらに外部パソコン等ではハイレゾ波形の出力信号を他の方法の処理・計算をして表示させることができ、ハイレゾ波形でさえ分析・検出できなかったより高度な分析をリアルタイムにすることもできる。
 さらに、本発明の振動測定装置によれば、通常のRMS処理のごとき平均化処理を行わず、生の収集波形であるハイレゾ波形そのままを検出するだけでは詳細な加工現象の分析できない場合には、ハイレゾ波形の段階で不要な出力信号を含んでいる周波数領域を削除し、加工現象の分析に必要となる周波数領域のみ抽出することで検知したい加工現象のみリアルタイムに検知することもでき、ユーザの要求に応じた種々の分析をすることができる。
(a)には、マシニングセンタの回転主軸に本振動測定装置を備えたツールホルダユニットが把持された状態の写真図が示され、(b)には(a)のツールホルダユニットからのデータを受信し、分析する外部端末の例示写真が示されている。 ツールホルダユニットの縦断面図を示している。 加速度センサの6種類の配置位置を示す模式図である。 (a)にツールホルダユニットの斜視図、(b)に(a)の加速度センサの配設位置において軸垂直に沿った断面図上での加速度センサの配置位置を示している。 (a)に被加工物を切削していく際に発生する負荷と加速度との関係を示しており、(b)は工具から見た加速度を示す図を示している。 本振動測定装置においてRMS演算(平均化処理)せずにハイレゾ波形を出力し、外部送信する振動測定する例を表すブロック図が示されている。 図6に示す出力信号により工具の振動の測定結果の活用例1(実施例1)を示すグラフ図である。 実験例2のセットアップ概略図,エンドミル刃先と工具回転座標系の関係を示した写真図である。 実験例2の振動加速度のハイレゾ波形のモニタ結果を示している。 実験例2において安定加工時の回転数である1850 rpmに着目し,両物理量のFFT解析を行った結果を示している。 実験例2において不安定加工時の回転数である1900 rpmに着目し,両物理量のFFT解析を行った結果を示している。 実験例3において、各条件でのX 線透過像を示すすべての条件において破線で囲まれた位置で内部欠陥が観察された様子を示す写真図である。 実験例3において、ツール回転速度 500 rpm における接合中の 振動加速度 の時間変化を示すグラフ図である。 実験例3において、回転速度と接合送り中の振動加速度の振幅の関係を示した図である。 複数枚の刃を有する刃物としてスローアウェイエンドミル(2枚刃)で切削したときのハイレゾ波形と自己相関処理を実行した波形を示している。 実施例5に使用する内刃及び外刃の2枚刃を有するスローアウェイドリルの略示図である。 図16のスローアウェイドリルにおける通常のRMS演算した振動加速度を検出結果である。 図17と同じ並進方向(Acc.X)、回転方向(Acc.Y)についてRMS処理していないハイレゾ波形の振動加速度の検出結果を示している。 図18の時間領域ごとにハイレゾ波形信号をFFT変換処理した信号波形を示している。 図18のハイレゾ波形の振動信号から2000Hz以下の周波数のみ抽出した信号を示している。 図20の周波数データに対してRMS処理したものを示している。
《装置構成例》
 図1(a)は、マシニングセンタの回転主軸2に本振動測定装置を備えたツールホルダユニット1が把持された状態の写真図を示している。このツールホルダユニット1は、通常のツールホルダと同様にその上部を回転主軸2に把持され、下部で工具を把持するものであり、通常のツールホルダと異なり、加工中の工具近傍の状態をリアルタイムに検出できる機能を有するユニットとして形成されている。
 具体的には、加工中の工具の振動等を測定し、そのデータをデジタル化して外部に送信し、外部端末で受信し、分析する。
 図1(b)は、図1(a)のツールホルダユニット1からのデータを受信し、分析する外部端末の例示写真である。レシーバ31はツールホルダユニット1からのデジタルデータを受信し、パソコン32に送信する。レシーバ31から送信されたデータを受信したパソコン32は内部の専用ソフトウェアで処理(又は演算)してディスプレイ上に表示している。
 《ツールホルダユニットの構成及び加速度センサの搭載位置》
 図2はツールホルダユニット1の縦断面図を示している。図2では紙面上方を回転主軸2側とし、下方が切削工具側とする。ツールホルダユニット1は、ツバ部3aより上方で回転主軸1に入れ子状に挿入・把持されて回転主軸1と協働回転する。また、内部は空洞であり下部で工具を把持するチャック5が固定されている。チャック5の上方には部品配置用の空隙3cが設けられ、この空隙3cに電池4が配設されている。この電池4は充電式でもよい。各種センサからのデータは空隙3cに配設された制御基板9でA/D変換されて、貫通孔を介して接続しているツールホルダ本体3の外周部側の無線送信デバイス7から送信される。
 なお、各種センサからのデータはツールホルダ本体3の外周部の制御基板でA/D変換されても良い。
 各種センサについて、工具内配設の熱電対による温度計測例がすでに開発されてきたが、本発明の主題とする切削工具等の振動検出には加速度センサを用いる。この加速度センサの配設例について説明する。図2の例では切削点の振動をより的確に捉えるために空隙3cの最下端の位置に設けた例を示している。なお、ここで大容積の電池については加速度センサ6よりも回転主軸2(図2の紙面上側)側に収容する構成を一例として挙げておく。以下、加速度センサ6の配置位置例について説明する。
 図3は加速度センサ6の6種類の配置位置例を示す模式図である。上述した図2の工具11の後端近傍に加速度センサ6を配置する例は図3(b)に示している。その他、工具振動を測る手法に近い例として図3(a)では工具11の空洞部の先端(下端)に加速度センサ6を装着しており、図3(c)では工具11の後端(上端)に加速度センサ6を装着している。また、図3(d)は工具11の後端(上端)に、振動振幅を増幅せるための片持ち梁11aを形成し、その先端(上端)に加速度センサ6を装着している。また、図3(e)では、工具のチャック5の先端(上端)に装着している。図3(f)では、ツールホルダ本体3内の空隙3cに振動振幅を増幅するための片持ち梁3e又はこれに類似する部品を形成し、その先端に加速度センサ6を装着する例が示されている。
 《加速度検出の方向》
 図4は(a)にツールホルダユニット1の斜視図が示されており、(b)に(a)の加速度センサ6の配設位置における軸垂直に沿った断面図上(参照番号6の位置)での加速度センサ6の配置関係を示している。図4においてX方向とはそれぞれ矢印xxに示すようにツールホルダユニット本体3に対して軸方向に垂直な任意の横方向の一つであり、Y方向とはそれぞれ矢印yyに示すように矢印xxから軸周りに90°回転した方向である。ここに示す加速度センサ6は圧電式加速度センサであり、回転軸Оを中心に対向する位置に2個で一対となって、それぞれX方向用、Y方向用に直交に二対配設される。
 具体的には、図4(b)に示すように、加速度センサ6は、回転軸に水平(垂直)な同一平面上に少なくとも二対(4つ)配設されている。一対の加速度センサ6aは軸線中心OにX方向(矢印xx方向)で対向して同距離の位置にそれぞれY方向に対して逆向きの感度を有するように配設されている。また、他の一対の加速度センサ6 b 2、6 b 2も同様に中心OからY方向(矢印yy方向〉で対向して同距離の位置にそれぞれX方向に対して逆向きの感度を有するように配設されている。
 ここで二対の加速度センサ6 a、6 bの個々のセンサはそれぞれY1、Y2、X1、X2と図4 (b)では標記している。それぞれのセンサ6a (Y1)、6a(Y2)、6b(X1)、6b(X2)におけるY方向、X方向の加速度Ay1、Ay 2、Ax1、Ax 2 (矢印参照)から、加速度センサ6の配置位置でのチャック5のX方向の加速度Ax、Y方向の加速度Ay、接線方向の加速度Am'、接線方向の角加速度Amは、以下のように算出できる。
Ax = (Ax1-Ax2) /2
Ay = (Ay1-Ay2) / 2
Am' = (Ax1+Ax2) / 2
Am [rev./s2] = Am' [m/s2] / (直径[mm] × 1 0 -3×π) [m]
Am [rad/s2] =Am' [m/s2]/ (直径[mm] × 1 0-3/2) [m]
 従って、加速度センサ6を回転軸Оに対称に配置すると、水平方向(x、y)と回転方向の両方の加速度を検出できることがわかる。
《加工と加速度の関係》
 また、図5には(a)に被加工物(ワーク)12を切削していく際に発生する負荷と加速度との関係を示しており、(b)はカッター(工具)11から見た加速度を示す図を示している。図5 (a)に示すようにカッター11の回転方向Wに回転させながら紙面左方に進行させることでチップ13が被加工物12を切削研削している。このときチップ13aと被加工物12との接触点(切削点)では、図5 (a)に示すようにカッター11の後方(つまり接線の前方)に荷重が作用し、その接線方向の分力がFm、法線方向の分力がFrで示されている。さらに、分力Frに応じて動摩擦力が分力Fmと反対方向にMFmとして作用している。
 このような力がチップ13に作用すると、カッター11、ひいてはツールホルダユニッ卜1(チャック5)に加速度が作用する。したがって、図4 (b)で上述したような加速度センサ6a、6bを設け、そのX、Y方向の加速度を測定すると、X方向、Y方向、回転方向にどれだけの加速度が作用しているかがわかる。その結果、振動測定も可能となる。
《振動計測信号の流れ(RMS演算・出力する例とRMS演算しないハイレゾ波形データを出力する例)》
図6には、本振動測定装置において振動測定し、ハイレゾ波形データを出力する様子を表すブロック図が示されている。まず、図6の例ではツールホルダ本体3では加速度センサ6a(y1)、6a(y2)、6b(x1)、6a(x2)からアナログ信号の振動情報が出力され、それぞれ増幅回路・ローパスフィルタ・減算(又は加算)回路(符号15,16,17参照)により並行振動信号や回転振動信号を出力する。
 具体的には、加速度センサ6a(y1)、6a(y2)のアナログ信号を回路17の増幅回路でインピーダンスを整合し、電圧増幅し、後段の回路に応じたゲイン調整が行われ、増幅回路からの出力信号を加速度センサ6a(y1)、6a(y2)の共振周波数の影響を避けるためにローパスフィルタにより高周波数をカットして信号出力する。また、ローパスフィルタからの送信信号もオペアンプ等で増幅される。その後、減算回路(差動増幅回路)で加速度センサ6a(y1),6a(y2)からの電圧差の所定倍数の電圧を出力、すなわちY方向の並行振動(y並進)信号を出力する。また、同様に回路15でも加速度センサ6b(x1)、6a(x2)のアナログ信号を増幅回路、ローパスフィルタ、減算回路を経て、X方向の並行振動(x並進)信号として出力する。
 さらに、回路16では回路15と同様に加速度センサ6a(x1)、6a (x2)のアナログ信号を増幅回路、ローパスフィルタを経て出力した後、加算回路により加速度センサ6a(x1)、6a(x2)からの電圧それぞれの所定倍数の和の電圧を出力、すなわち回転方向の振動(x回転)信号として出力する。
 回路15~17からの出力されたx並進信号、x回転信号、y並進信号は、RMS演算等による平均化処理を行わず、図示しないバイパスフィルタ、A/D変換器を経て高サンプリングレートのままのデジタル信号を出力する。
 出力されたデジタル信号は、ツールホルダ本体3内の無線マイコン22(センサ側)で送信データに変換して無線送受信機23で外部送信される。無線マイコン22の入力端子は左ch22a、右ch22bの2チャンネルあり、回路15、16、17がそれぞれ左ch22a、右ch22b、右ch22bに切替スイッチ28を介して接続され、高サンプリングレートでの振動信号(ハイレゾ波形の信号)であるx並進信号、x回転信号、y並進信号を受信する。無線マイコン22が受信した振動情報(振動データとしてのx並進信号、x回転信号、y並進信号)は無線送受信機23により外部に無線送信される。なお、この例では無線マイコン22の入力端子が2チャンネルであり、回路15、16、17のうち2つを切替スイッチ28を介して左右ch22a、22bに接続するが、入力端子が3チャンネルの場合、切替スイッチを介さず、回路15、16、17を3チャンネルに接続され、無銭マイコン22が高サンプリングレートでのハイレゾ波形の振動信号であるx並進信号、x回転信号、y並進信号を受信することも考えられる。
 無線送信された振動情報(x並進信号、x回転信号、y並進信号)は、外部の無線受信機24で受信されて、無線マイコン25(PC側)のシリアルUSB変換器等を介して専用ソフトウェアをインストールしたパソコン27で処理されてそのディスプレイ上に表示される。また、無線マイコン25はハイレゾ波形の振動データであるx並進信号、x回転信号、y並進信号を音声入出力デバイス(ベッドフォンやスピーカ)26に送信して該デバイス26で再生する。そして、音声入出力デバイス26は音声データをパソコン27に送信し、パソコン27で記録される。
《振動計測信号の流れ(外部パソコンから加速度センサ側への波形データの送信開始・停止命令の例)》
 また、図6のパソコン27側の無線マイコン25は、センサ側の無線マイコン22が2chであるためx並進信号、x回転信号、y並進信号のうち2つのハイレゾ波形の組み合わせを受信している。パソコン27では、これを他の組み合わせに切り替えるための切替スイッチ28の切り替え命令信号を生成し、その命令信号をパソコン側の無線マイコン25、無線送受信機24、25を介してセンサ側の無線マイコン22に無線送信することができる。命令信号を受信したセンサ側の無線マイコン22は、デジタル電圧を出力し、デジタル電圧で駆動する切替スイッチ28を駆動し、回路15、16、17と接続する左ch22aと右ch22bとを切り替える。
《実施例1(最適加工条件の検索)》
 本振動測定装置により加工中の工具11の異常振動を検出することができ、工具破断の深刻な予兆である切削加工時の不安定切削(所謂「びびり」)の発生についても検出することができる。従来は、この「びびり」の発生を目視や異音、装置の異常信号等で認識したときに、被加工物12への切込量や回転速度を小さくすることで対応していた。これに対して本振動測定装置を活用すれば、単に切込量や回転速度を小さくするのではなく、切込量や回転数が大きくなっても「びびり」が生じない領域を検知することも可能である。
 図7は、本振動測定装置により工具11の振動の測定結果の活用例1を示すグラフ図である。図7では、縦軸は被加工物12への切込量(mm)、横軸を工具11の回転速度(rpm)として、不安定切削領域(白色領域A)と安定切削領域(グレー領域B)とが示されている。この不安定切削領域(白色領域A)と安定切削領域(グレー領域B)とは、工具11や被加工物12等の条件ごとに変化するものであり、学究的な例は存在するが実際の振動測定対象の個々の工具11において具体的に示されるようなものではなかった。
 しかしながら、例えば、図7の黒丸印に示すように「びびり」が実際に検出されたときの回転速度が2500rpm、切込量が1mmであった場合は、安定切削領域Bでの工具11回転であることがわかる(実際に「びびり」が検出されているので)。この状態から矢印(1)に示すように、回転数をあげながら本振動測定装置で「びびり」発生の有無を検証すると、より高回転な加工条件でも「びびり」が発生しない条件を探索することができる。図7の例では、2700rpm前後で一度、「びびり」が消失し、再度「びびり」が発生した後、また5000rpm近傍で「びびり」が消失することが探索により検証されることが理解できるであろう。
 また、その時点から、矢印(2)に示すように切込量を大きくしていき、本振動測定装置で「びびり」発生の有無を検証すると、より高い切り込みとなる加工条件でも「びびり」が発生しない限界点を探索することができる。図7の例では、切込量が3mm程度(上方の白丸印)が「びびり」が発生しない限界点であることが探索により検証されるであろう。このように本振動測定装置で加工中の複数点の振動異常を探索的に測定することで、従来、検証できなかったシビアな条件での安定切削領域Aを検出することができ、工具11の破断を回避しながら迅速な加工を容易に達成し得る。
《実施例2切削加工例》
セッティング及び切削条件
 実験のセットアップ概略図,エンドミル刃先と工具回転座標系の関係を図8に示す。立型マシニングセンタの主軸テーパはBT40,その主軸に本ホルダシステムにてエンドミルを把持した。使用したエンドミルは超硬エンドミルφ10 mm,刃数2,刃長20 mm,ねじれ角30°のものを用いた。この時,エンドミルの切刃と工具回転座標系のXm軸が平行になるように把持した。被削材はS50Cを使用し,マシニングセンタのテーブルに設置した圧電式の切削動力計(kistler社製 9255B)上に固定した。切削抵抗のX,Y,Z感度方向は図9中の上視図概要にFx,Fy,Fzとして示す.被削材の1辺を1パスとしてダウンカットを行い、実験における工具中心の切削長はX方向に200mmとした。切削条件は1刃送り量を0.06mm/tooth固定とし,回転数を1500rpmから3000rpmまで,工具中心の移動距離約5 mm毎に50 rpmずつ上昇させながら加工を行った。切込量は径方向0.4 mm,軸方向10 mm,工具突出し量はL/D=3.3とした.クーラントは使用せず,ドライにて実験を行った。
 振動加速度のハイレゾ波形のモニタ手法
 加工中の振動加速度は,ホルダ内に1軸方向に感度をもつ加速度センサを回転中心から径方向5mmの距離(ゲージラインから86mm)で回転座標系Xm軸上に回転方向に感度を有するように等間隔に4つ配置した。各センサの加速度ax1,ax2は図中に示す矢印の方向に+の感度を有し,Xm方向は(ax1-ax2)/2で振動加速度の差分演算により算出できる。また,回転方向を示すRm方向は,(ay1+ay2)/2の加算演算により算出できる。したがって工具の並進方向および回転方向の計2方向の振動加速度のモニタが可能である。ここで用いたセンサの固有振動数は20kHzである。その他,増幅器,A/D変換器,マイクロコントローラおよび無線送信機を配置した。マイクロコントローラでアナログ演算処理して情報を圧縮したあとにA/D変換し,その結果を無線送信サンプリングレート44.1kHzで送信し,受信機に接続されたPCにより計測結果をリアルタイムに表示・記録可能にした。
 実験結果および考察
 1刃当たりの送り量は0.06mm/tooth一定として,1パス(送り方向の加工距離200mm)加工中にエンドミルの回転数を1500~3000rpmまで50rpm毎に上昇(送り方向の加工距離約5mm毎)させた場合の,切削抵抗波形,本振動測定装置による振動加速度のハイレゾ波形のモニタ結果を図9(a)(b)に示す。両物理量共に再生びびり線図に従うようにして,安定・不安定の回転数が存在している様子がモニタできることがわかる。ここで,安定加工時の回転数である1850rpmに着目し,両物理量の高速フーリエ変換解析(以下、「FFT解析」とも称する)を行った結果を図10(a)(b)に示す図10(a)の切削抵抗波形のFFT解析の結果から,61.6Hz付近にピークが見られた。これは,回転数1850 rpmで2枚刃の工具で加工した時の切削周期と等しく,安定した加工状態といえる。一方,図10(b)の振動加速度のハイレゾ波形のFFT解析の結果からは,Xm方向ではBT40マシニングセンタ主軸の曲げ固有振動数と考えられる1)462 Hz付近にピークが見られた図10(a)からもわかるように,1850 rpmでは462 Hzの振動は発生しておらず,安定した加工状態である。主軸の曲げ固有振動数付近の周波数がピークに現れたのは,エンドミル1刃が加工した時の負荷により工具が加振され,その自由振動によるものと考えられる。また,4~6 kHz付近の振動もわずかに現れている。ここで,ホルダ端面を固定端とした一端固定で他端自由のはりと見立て,断面形状を丸,1次モードの振動と考慮した際の曲げの固有振動数は次式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ただし,lは工具突出し量,dは工具直径,Eは縦弾性係数,ρは密度である。工具の芯厚φ6.5 mm,突出し量は33 mm,超硬合金の縦弾性係数は550 GPa,密度は14250 kg/m3とし,(1)式にそれぞれ代入して計算すると,f1は5187 Hz となる.図4(b)のXm方向のFFTの結果で現れた4~6 kHzとも一致し,この周波数帯の振動は工具の曲げ固有振動数に起因するものと考えられる。
 さらにRm方向では6 kHz付近にピークが見られたが,これは他の回転数においても確認されるピークであり,主軸空転時にも発生していることから,主軸のサーボ系を含む回転方向の動的特性もしく工具ホルダ系のねじり固有振動の影響と考えられる。次に,不安定加工時の回転数である1900rpmに着目し,両物理量のFFT解析を行った結果を図11(a)(b)に示す図11(a)の切削抵抗波形のFFTの結果から,切削周期である63.3 Hzと,主軸の曲げ方向のびびり振動が発生したことで428 Hzのピークが見られた。一方,図11(b)の振動加速度のハイレゾ波形のFFT解析の結果からは,Xm方向において460 Hzのピークが見られた図11(a)の切削抵抗波形のFFTで見られた428 Hzと若干の差はあるものの,同様の主軸の曲げ方向のびびり振動による周波数であると考えられる。また,安定加工時である図11(b)でも462 Hz付近にピークが見られているが,安定・不安定でのピーク値に大きな差が発生しており,びびり振動時の振幅のモニタも可能であることがわかる。Rm方向では,工具1回転周期の31.6 Hzにピークが現れた切削周期は63.3Hzであるが,主軸の曲げ方向のびびり振動が発生したことで,エンドミル2枚刃の切込量が不釣り合いになり,片方に顕著に負荷がかかる切削が行われていたと考えられる。すなわち,提案するモニタ手法により,エンドミル加工における工具の曲げ・ねじりの周波数・振幅情報を詳細にモニタ可能であり,安定・不安定加工時の加工現象のより高度な解明が可能であることが示された。
《実施例3-摩擦攪拌接合例》
実験 ・検討方法
 ツール形状は,ショルダ直径は14mm,プローブは M 4 M 5でピッチ 0.8 mm の左ねじ状の溝加工を施したテーパ形状,プローブ長は4.5mmとした。 ツール材質は熱処理を施したSKD61 HRC53 被接合材は厚み 5mmのA6061とした。接合距離は 80 mm とした。振動加速度はツールホルダ内部に加速度センサを配置することで検出している。上述したようにホルダ内に1軸方向に感度を持つ加速度センサを回転座標系 Xm軸とYm軸上に回転方向に感度を有するように等間隔に4つ配置し,演算によってツールの曲げ方向の振動加速度を計測する。また,回転方向を示すRmの振動加速度も演算により算出可能である。さらに積分時間を0.1 s としてRMS (Root MeanSquare) 演算し,ワイヤレス送信の送信回数 50Hzで接合中の振動加速度を検出する方法とした。加工機は立形マシニングセンタを使用した。 接合条件はツール回転速度 500 ,1000, 1500 rpm, ツール挿入速度30 mm/min,保持時間5sec,接合速度300 mm/min,ツール押込み深さ4.8 mm,前進角0度とした。
実験・検討結果および考察
 図12に各条件での X 線透過像を示すすべての条件において破線で囲まれた位置で内部欠陥が観察された。ただし,回転速度500 rpmでは継手の全域で欠陥が観察されたのに対して, 1000および1500 rpmでは接合初期部分で 比較的小さく,また1000と1500 rpmとで同程度 の大きさだった欠陥が生成された。原因は,回転速度500 rpmでは入熱不足を主とし,1000および1500 rpm ではショルダの押込み量が大きいことでバリの排出が過多となりツールが通過してできた溝に材料が充填されなかったためと推察される。
 図13にツール回転速度 500 rpm における 接合中の 振動加速度の時間変化を示す。図13中のaでプローブが被接合材に接触し,bでショルダが接触し、c dの範囲で保持し、d eの範囲で接合送りを行っている。
 図14に回転速度と接合送り中の振動加速度の振幅の関係を示す。特に Rm 方向の振動加速度の振幅において,回転速度 500rpmのときに振幅が最も大きく, 1000および1500rpmでは500 rpmの際と比較すると振幅は小さく, また1000と1500 rpmとで振幅は同程度であった。これらの大小関係はX線透過像の観察結果から得られた内部欠陥の大きさの大小関係と同様であったことから,内部欠陥の大きさと振動加速度の振幅の大きさには相関があることが示唆された。
《実施例4-(ハイレゾ波形と自己相関処理(自己相関係数)後の波形の比較例》
 図15には複数枚の刃を有する刃物としてスローアウェイエンドミル(2枚刃)で切削したときのハイレゾ波形と自己相関処理を実行した波形を示している。図15の左行上段(a)には通常のスローアウェイエンドミル(2枚刃)における並進化速度(x並進)のハイレゾ波形の振動信号が表示されており、中行上段にはそのスローアウェイエンドミルの一方の刃と他方の刃の写真図が示され、右行上段(c)には(a)のハイレゾ波形の振動信号の自己相関処理後の信号が表示されている。また、左行下段(b)には一方の刃が破損した通常のスローアウェイエンドミル(2枚刃)における並進化速度(x並進)のハイレゾ波形の振動信号が表示されており、中行上段にはそのスローアウェイエンドミルの一方の刃(上側)と破損した他方の刃(下側)の写真図が示され、右行下段(d)には(b)のハイレゾ波形の振動信号の自己相関処理後の信号が表示されている。
 ここでの自己相関処理は、(a)(b)に示す回転速度2000[rpm],周期30[ms]((a)の矢印「1周期」参照)で回転するスローアウェイエンドミルについて、時間をずらして元の信号データとの相関係数を計算したものであり、元の信号データからずらした時間を横軸にし、計算した相関係数を縦軸を示している。
 図15(a)(b)に示すように、スローアウェイエンドミルの刃が破損しても自己相関処理していないハイレゾ波形そのものには顕著な差異が見られないことがわかる。一方、(c)(d)の自己相関処理後の信号においては、通常のスローアウェイエンドミルでは刃1枚ごとの波形((i)の波形と(ii)の波形)に変化はないが、一方の刃が破損している状態では刃1枚ごと(=半周期ごと)に波形のピークが大きく異なっていることがわかる((i)の波形のピークに対して(ii)の波形のピークの自己相関係数が大きい)。したがって、一定の周期の複数の刃が回転する刃物において自己相関係数を見れば破損等の異常の有無が明確になり、異常判断の1つの指標となることがわかる。
《実施例5-ドリル加工時における材料内部の欠陥検知例》
 ツール形状は,図16に略示するように内刃及び外刃の2枚刃を有するスローアウェイドリル、具体的には,サンドビック製の880-D3200L40-03を使用した。被接合材料は厚み40mmのS50Cを使用し、深さ長さ10mm、横幅15mmの模擬欠陥を設けている。また、振動加速度はツールホルダ内部に加速度センサを配置することで検出している。上述してきたようにホルダ内に1軸方向に感度を持つ加速度センサを回転座標系 X軸とY軸上に回転方向に感度を有するように等間隔に4つ配置し,演算によってツールの曲げ方向の振動加速度を計測する。さらに,回転方向を示すRの振動加速度も演算により算出可能である。切削条件はV=60 m/min, f=0.2 mmとした。なお、クーラントは水溶性切削油を使用して実験を行った。なお、加工機は立形マシニングセンタを使用した。
 図17には、積分時間を0.1sとした通常のRMS(Root MeanSquare) 演算し、ワイヤレス送信の送信回数50Hzで切削中の振動加速度を検出した結果を示している。図17では並進方向(Acc.X)、回転方向(Acc.Y)の振動加速度について模擬欠陥のある箇所、模擬欠陥のない箇所で差がほとんど見られないことがわかる。これはデータが積分時間0.1sでRMS処理されているため、欠陥検知ができないことを意味している。
 次に図18には図17と同じ並進方向(Acc.X)、回転方向(Acc.Y)についてRMS処理していない高サンプリングレートでのハイレゾ波形の振動加速度の検出結果を示している。図中、時間領域aではドリルが空転状態、時間領域b及び時間領域eではドリルが模擬欠陥がない箇所で切削加工している状態、時間領域c及び時間領域dではドリルが模擬欠陥のある箇所で切削加工している状態である。この加速度生波形であるハイレゾ波形信号においても模擬欠陥のある箇所、模擬欠陥のない箇所で差がほとんど見られないことがわかる。
次に図19には図18の時間領域a~eごとにハイレゾ波形信号をFFT変換処理した信号波形を示している。星印に示すように模擬欠陥のある箇所での切削を行っている時間領域c及び時間領域dの信号波形にのみ2000Hz以下の周波数でピークが検出されており、その一方、※印に示すように模擬欠陥の有無を問わず切削を行っている全ての時間領域b、c、d、eで5000Hz近傍の周波数でピークが検出されていることがわかる。すなわち、5000Hz近傍の振動信号はノイズであり、模擬欠陥による影響は2000Hz以下の振動信号で検出されていると考えられる。
 したがって、図18の加速度生波形であるハイレゾ波形の振動信号から模擬欠陥の有無が影響する2000Hz以下の周波数のみ抽出し、2000Hz以上の周波数をノイズとして削除することとした。その波形が図20に示されている(並進方向(Acc.X)のみ表示)。図20では模擬欠陥がある箇所での切削加工を行っている時間領域では他の時間領域と明確に異なる加速度信号が検出されていることがわかる。また、この2000Hz以上の周波数データに対して積分時間0.1sでRMS処理したものが図21に示されている。図21ではさらに模擬欠陥がある箇所での加速度信号が明確に検出されていることがわかる。したがって、FFT処理をノイズを削除するフィルタ機能として用いることができ、ノイズが削除された加速度生波形に対してRMS処理すると従来のRMS処理されたデータでは検出されない模擬欠陥の有無を検出することができることが検証された。
1  ツールホルダユニット
2  回転主軸
3  ツールホルダ本体
3 a ツバ部
3 c 空隙
4  電池
5  チャック
6  加速度センサ
7  無線送信デバイス(アンテナ)
9  制御基板
11  工具(カッター)
11a 片持ち梁
12  被加工物(ワーク)
13  チップ(切れ刃)
15、16,17  回路
22  無線マイコン(センサ側)
23,24  無線送受信機
25  無線マイコン(PC側)
26  音声入出力デバイス
27  パソコン
28  切替スイッチ
31  レシーバ
32  パソコン

Claims (5)

  1.  主軸と連結され協働して軸回転するツールホルダに把持された回転工具の振動測定装置であって、
     回転工具の回転軸に対する水平面上に回転軸に対称に装着された一対の加速度センサと、該加速度センサからの加速度情報のインピーダンスを整合し、電圧増幅する増幅回路と、該増幅回路の出力信号から所定の高周波数を削除するローパスフィルタと、該ローパスフィルタの出力信号からそれぞれXY方向の並行振動信号及び回転方向の振動信号を出力する減算回路及び加算回路と、前記XY方向の並行振動信号及び回転方向の振動信号を外部送信する加速度センサ側の無線送受信装置と、該センサ側の無線送受信機から送信された振動信号を受信しリアルタイムに表示及び/又は記録する外部の無線送受信装置と、を備え、
     前記センサ側の無線送受信装置は、前記減算回路及び加算回路からの周波数情報を含むハイレゾ波形の出力信号をA/D変換して送信データとして処理してそのまま外部送信する、振動測定装置。
  2.  前記外部の無線送受信装置は、前記センサ側の無線送受信装置からの受信したハイレゾ波形の出力信号をそのまま及び高速フーリエ変換してリアルタイムに表示及び/又は記録する、請求項1に記載の振動測定装置。
  3.  前記外部の無線送受信装置は、前記センサ側の無線送受信装置からの受信したハイレゾ波形の出力信号をそのまま及び自己相関処理してリアルタイムに表示及び/又は記録する、請求項1に記載の振動測定装置。
  4.  主軸と連結され協働して軸回転するツールホルダに把持された回転工具に装着された加速度センサから加工中にリアルタイムに出力された振動信号に対して平均化処理を行わず、周波数情報を含んだままの高サンプリングレートで収集したハイレゾ波形の出力信号のうち特定の周波数領域の出力信号のみ抽出するフィルタ手段と、
     前記フィルタ手段により抽出された出力信号平均化処理して出力する平均化手段と、を備える振動検出装置。
  5.  前記フィルタ手段で抽出する特定の周波数領域は、前記ハイレゾ波形の出力信号を高速フーリエ変換した出力信号から必要と判定される周波数領域が決定される、請求項1に記載の振動検出装置。
PCT/JP2020/030600 2019-08-09 2020-08-11 振動測定装置 WO2021029404A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539296A JPWO2021029404A1 (ja) 2019-08-09 2020-08-11
US17/609,298 US20220203493A1 (en) 2019-08-09 2020-08-11 Vibration measurement device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019148042 2019-08-09
JP2019-148042 2019-08-09
JP2020-020852 2020-02-10
JP2020020852 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021029404A1 true WO2021029404A1 (ja) 2021-02-18

Family

ID=74569547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030600 WO2021029404A1 (ja) 2019-08-09 2020-08-11 振動測定装置

Country Status (3)

Country Link
US (1) US20220203493A1 (ja)
JP (1) JPWO2021029404A1 (ja)
WO (1) WO2021029404A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215641B1 (ja) * 2021-10-18 2023-01-31 住友電気工業株式会社 解析装置、解析方法、加工システム、およびプログラム
DE102021128314A1 (de) 2021-10-29 2023-05-04 Blum-Novotest Gmbh Rundlaufüberwachungsmodule und Rundlaufüberwachungsverfahren für ein im Betrieb zu rotierendes Werkzeug
WO2024038750A1 (ja) * 2022-08-15 2024-02-22 ソニーセミコンダクタソリューションズ株式会社 振動監視装置及び加工システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952562B (zh) * 2023-09-21 2023-12-15 中国船舶集团有限公司第七〇七研究所 一种基于时频分析法的掘进机截割部振动状态识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885047A (ja) * 1994-09-13 1996-04-02 Sumitomo Metal Ind Ltd 切削工具の刃先摩耗検出方法
CN202411967U (zh) * 2011-12-13 2012-09-05 常州翰力信息科技有限公司 旋转刀具在线监测系统
CN106625024A (zh) * 2016-12-28 2017-05-10 山东大学 一种随动集成式切削振动智能监测系统
JP2018054611A (ja) * 2016-09-27 2018-04-05 株式会社山本金属製作所 振動測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070088454A1 (en) * 2004-10-25 2007-04-19 Ford Motor Company System and method for troubleshooting a machine
US20090129882A1 (en) * 2007-11-15 2009-05-21 D4D Technologies, Llc Methods, Systems, and Devices for Monitoring Tools in a Dental Milling Machine
WO2017151447A1 (en) * 2016-03-02 2017-09-08 The Regents Of The University Of California Magnetic add-on system with vibration and acoustic sensing capabilities for tool condition monitoring
US10753823B2 (en) * 2017-10-10 2020-08-25 Ford Motor Company Dynamic characterization system for measuring a dynamic response

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885047A (ja) * 1994-09-13 1996-04-02 Sumitomo Metal Ind Ltd 切削工具の刃先摩耗検出方法
CN202411967U (zh) * 2011-12-13 2012-09-05 常州翰力信息科技有限公司 旋转刀具在线监测系统
JP2018054611A (ja) * 2016-09-27 2018-04-05 株式会社山本金属製作所 振動測定装置
CN106625024A (zh) * 2016-12-28 2017-05-10 山东大学 一种随动集成式切削振动智能监测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215641B1 (ja) * 2021-10-18 2023-01-31 住友電気工業株式会社 解析装置、解析方法、加工システム、およびプログラム
WO2023067643A1 (ja) * 2021-10-18 2023-04-27 住友電気工業株式会社 解析装置、解析方法、加工システム、およびプログラム
DE102021128314A1 (de) 2021-10-29 2023-05-04 Blum-Novotest Gmbh Rundlaufüberwachungsmodule und Rundlaufüberwachungsverfahren für ein im Betrieb zu rotierendes Werkzeug
WO2023072995A1 (de) 2021-10-29 2023-05-04 Blum-Novotest Gmbh Rundlaufüberwachungsmodule und rundlaufüberwachungsverfahren für ein im betrieb zu rotierendes werkzeug
WO2024038750A1 (ja) * 2022-08-15 2024-02-22 ソニーセミコンダクタソリューションズ株式会社 振動監視装置及び加工システム

Also Published As

Publication number Publication date
US20220203493A1 (en) 2022-06-30
JPWO2021029404A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2021029404A1 (ja) 振動測定装置
JP6900613B2 (ja) 振動測定装置
US9186765B2 (en) Monitoring method and monitoring apparatus for machine tool, and machine tool
JP5512691B2 (ja) 振動解析方法、振動解析装置、振動解析のためのサンプルデータベース、及びその使用
JP5301380B2 (ja) 回転刃具の寿命予測方法
CN102825506A (zh) 振动辨别方法以及振动辨别装置
US7536924B2 (en) Flexure-based dynamometer for determining cutting force
JP2020104237A (ja) リアルタイム振動測定ユニット
Dimla Sr The impact of cutting conditions on cutting forces and vibration signals in turning with plane face geometry inserts
CN107414600A (zh) 基于多传感器信号的内螺纹低频激振冷挤压机床的加工过程监测方法
JP4024223B2 (ja) 機械システムの診断方法及び機械システム診断装置
JP5229460B2 (ja) 切削工具
JP7312009B2 (ja) 異常予兆検知システム
Suprock et al. A low cost wireless tool tip vibration sensor for milling
JP5356816B2 (ja) 工具状態監視システム
JP5831216B2 (ja) 工具損傷検出方法及び装置
JP7131578B2 (ja) 情報処理装置、情報処理方法およびプログラム
KR20220071540A (ko) 공작기계의 공구 상태 판정 장치
TW201334911A (zh) 工具機斷刀自動偵測方法及其裝置
JPH10109204A (ja) 切削工具
Stavropoulos et al. On the design of a monitoring system for desktop micro-milling machines
JP2002059342A (ja) 切削工具の摩耗検出方法および摩耗検出装置
JP2006231438A (ja) 被研削物温度解析測定方法及び装置
Nakandhrakumar et al. Tool flank wear monitoring using torsional–axial vibrations in drilling
Dogan et al. Investigation of chatter detection with sensor-integrated tool holders based on strain measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852723

Country of ref document: EP

Kind code of ref document: A1