WO2021027523A1 - 一种高填充热塑性树脂复合材料及其制备方法 - Google Patents

一种高填充热塑性树脂复合材料及其制备方法 Download PDF

Info

Publication number
WO2021027523A1
WO2021027523A1 PCT/CN2020/103918 CN2020103918W WO2021027523A1 WO 2021027523 A1 WO2021027523 A1 WO 2021027523A1 CN 2020103918 W CN2020103918 W CN 2020103918W WO 2021027523 A1 WO2021027523 A1 WO 2021027523A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
group
composite material
resin composite
filler
Prior art date
Application number
PCT/CN2020/103918
Other languages
English (en)
French (fr)
Inventor
王爱东
叶南飚
黄险波
杨霄云
肖鹏
陆湛泉
简思强
杨友强
姜向新
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2021027523A1 publication Critical patent/WO2021027523A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the invention relates to the technical field of novel polymer composite materials, in particular to a highly filled thermoplastic resin composite material and a preparation method thereof.
  • the connecting body is mainly used for waterway protection and flood prevention, not only for mechanical properties, but also for hydrolysis resistance and freezing resistance.
  • the well-known method is 201610607013.4 discloses a polypropylene composite material, which adds fluorine-containing polymer to increase surface performance, prevents water penetration, and increases hydrolysis resistance;
  • 201210574617.5 discloses a polypropylene composite Material, the addition of heat stabilizer can inhibit the degradation during processing, and can prevent the extraction of hot water from the antioxidant system, thereby effectively improving the aging resistance of the kettle material.
  • the well-known method is to modify the thermoplastic resin (such as epoxy resin grafted polypropylene), add cold-resistant agent (dioctyl adipate or dioctyl sebacate), and add organic acyl resin.
  • Methods such as hydrazine nucleating agents.
  • the purpose of the present invention is to overcome the above technical defects and provide a highly filled thermoplastic resin composite material with excellent hydrolysis resistance and frost resistance.
  • Another object of the present invention is to provide a method for preparing a highly filled thermoplastic resin composite material, which can effectively improve the production qualification rate.
  • thermoplastic resin composite material in parts by weight, comprising the following components:
  • the polyfunctional polymer containing two or more active groups among ether groups, imine groups, ester groups, amino groups, and siloxy groups is selected from the group consisting of acrylate-polyurethane-siloxane polymers, acrylic At least one of ester-siloxane polymers and amino-terminated hyperbranched polyamides;
  • the polyfunctional polymer containing two or more active groups among ether groups, imide groups, ester groups, amino groups, and siloxy groups is selected from acrylate-polyurethane-siloxane At least one of a polymer and an acrylate-siloxane polymer.
  • the preparation method of acrylate-polyurethane-siloxane polymer can be 60-80 parts of aliphatic acrylate polyurethane oligomer, 5-15 parts of acrylic monomers, and 0.1-5 parts of vinyl silicone oil in free radical initiation
  • the polymerization reaction is carried out at 162-170°C in the presence of the agent, and the reaction process is controlled by the reaction time, the reaction temperature, and the addition amount of the initiator.
  • the preparation method of the acrylate-siloxane polymer is as above, and the polymerization reaction can be carried out using acrylate oligomers, acrylic monomers, and vinyl silicone oils as basic raw materials.
  • the preparation method of the amino-terminated hyperbranched polyamide can be: in an ice bath, the methanol solution of the acrylate compound monomer is added dropwise to the polyaminoamine monomer (ammonia, ethylenediamine, hexamethylenediamine, diethylene Triamine) in methanol solution to obtain a mixed solution; under the protection of inert gas, at room temperature, react for 30-55h, and perform vacuum distillation at 55-65°C to obtain a crude product; the resulting crude product is at 110- After reacting for 2-7h at 160°C, the amino-terminated hyperbranched polyamide product is obtained.
  • the polyaminoamine monomer ammonia, ethylenediamine, hexamethylenediamine, diethylene Triamine
  • the compatibilizer is selected from maleic anhydride Grafted polyolefin; the maleic anhydride grafted polyolefin is selected from at least one of maleic anhydride grafted polypropylene and maleic anhydride grafted polyethylene.
  • the invention adds a compatibilizer to improve the compatibility of the reinforcing fiber and the filler with the thermoplastic resin matrix, and also improves the processing performance.
  • the reinforcing fibers are selected from glass fibers; the retention length of the glass fibers in the highly filled thermoplastic resin composite material is 0.2-0.6 mm.
  • the filler is selected from inorganic mineral fillers; the inorganic mineral filler is selected from at least one of calcium carbonate, barium sulfate, calcium sulfate, talc powder, quartz powder, and wollastonite.
  • the thermoplastic resin is selected from at least one of polypropylene and polyethylene.
  • the highly filled thermoplastic resin composite material In order to improve the toughness of the highly filled thermoplastic resin composite material, it also includes 0-24 parts by weight of a toughening agent; the toughening agent is selected from polyethylene and ⁇ -olefin containing 2-10 carbon atoms Maleic anhydride graft of copolymer or copolymer of polyethylene and ⁇ -olefin containing 2-10 carbon atoms; in parts by weight, it also includes 0.2-8 parts by weight of weathering agents, antioxidants, and processing aids At least one of the agents.
  • the toughening agent is selected from polyethylene and ⁇ -olefin containing 2-10 carbon atoms Maleic anhydride graft of copolymer or copolymer of polyethylene and ⁇ -olefin containing 2-10 carbon atoms; in parts by weight, it also includes 0.2-8 parts by weight of weathering agents, antioxidants, and processing aids At least one of the agents.
  • the present invention creates a three-stage side feeding method for preparing a highly filled thermoplastic resin composite material, which includes the following steps:
  • Step 1 Weigh each raw material by weight
  • Step 2 Put the thermoplastic resin, the compatibilizer, and the polyfunctional polymer containing two or more active groups of ether group, imide group, ester group, amino group and siloxy group in the mixer Stir and mix for 3-8 minutes to obtain a mixture. Add the mixture measured from the main feed port of a twin-screw extruder with a 12-zone barrel with a length-to-diameter ratio of 48:1, which accounts for 40%-60 of the total filler weight. % Filler is metered and added from the main feed port of the twin-screw extruder;
  • Step 3 Add the remaining filler from the side feeding port of the twin-screw extruder in the 4-6 zone, and add the reinforcing fiber from the feeding port of the twin-screw extruder in the 8-9 zone, and then extrude
  • the material is made to obtain a highly filled thermoplastic resin composite material.
  • the present invention is a highly filled thermoplastic resin composite material. If it is produced by a common single-side feeding and side-feeding production method, it is easy to cause uneven mixing of various components, and it is easy to break during the production process, and uneven mixing leads to poor performance.
  • the above preparation process is a three-stage side feeding method, which can better mix the components, increase the retention length of the glass fiber in the product, and reduce the interruption of the production process, and improve the production qualification rate and production efficiency. .
  • the highly filled thermoplastic resin composite material of the present invention has a filling ratio of about 40-90% (preferably a filling ratio of 60-90%), and contains ether groups, imide groups, ester groups, amino groups, and siloxy groups by adding
  • the polyfunctional polymer with two or more active groups in the present invention makes the highly filled thermoplastic resin composite material of the present invention have excellent hydrolysis resistance and frost resistance; further, the preparation method of the present invention can Effectively improve the production qualification rate.
  • polyfunctional polymers containing two or more active groups among ether groups, imide groups, ester groups, amino groups, and siloxy groups.
  • Polypropylene Brand N-Z30S, Maoming Branch of China Petroleum & Chemical Corporation;
  • Polyethylene high-density polyethylene, density 0.95g/cm 3 ;
  • Barium sulfate filler
  • Glass fiber reinforcing fiber
  • Toughening agent copolymer of ethylene and octene, such as Dow Chemical ENGAGE 8150;
  • Substance A acrylate-polyurethane-siloxane oligomer, self-made (the formula is 65 parts aliphatic acrylate polyurethane oligomer, 11 parts acrylic monomers, 1.8 parts vinyl silicone oil);
  • Substance B Amino-terminated hyperbranched polyamide, self-made (the formula is 14 parts by weight of ethylenediamine and 50 parts of methyl acrylate);
  • Antioxidant a 1:1 mixture of hindered phenolic primary antioxidant and phosphite secondary antioxidant, primary antioxidant: BASF Irganox 1010, secondary antioxidant: BASF Irganox 168;
  • Weathering agent 1:1 mixture of hindered amine light stabilizer and ultraviolet absorber, hindered amine: BASF CHIMASSORB 944, ultraviolet absorber: Lianlong UV-531;
  • the preparation method of the highly-filled thermoplastic resin composite materials of Examples 1-14 and Comparative Examples Weigh each raw material in parts by weight; combine polypropylene, compatibilizer, toughening agent, polyfunctional polymer, weathering agent, and antioxidant Stir and mix in the mixer for 3-8 minutes to obtain the mixture. Add the mixture measured from the main feed port of a twin-screw extruder with a 12-zone screw barrel with a length-to-diameter ratio of 48:1, which accounts for the weight ratio of the total filler.
  • 40%-60% of the filler is metered and added from the main feed port of the twin-screw extruder; the remaining filler is added from the side feed port of the twin-screw extruder in the 4-6 zone, and the reinforcing fiber is added from the double-screw extruder.
  • the screw extruder is located at the side feeding port of the 8-9 zone, and then the material is extruded to obtain a highly filled polypropylene composite material.
  • the preparation method of the highly filled thermoplastic resin composite material of Example 15 Weigh the raw materials in parts by weight; mix polypropylene, fillers, compatibilizers, toughening agents, polyfunctional polymers, weathering agents, and antioxidants. Stir and mix in the machine for 3-8 minutes to obtain the mixture, and add the mixture measured from the main feed port of the twin-screw extruder with a 12-zone screw barrel with a length-to-diameter ratio of 48:1; Add it at the side feeding port of zone 8-9, and then extrude the material to obtain a highly filled polypropylene composite material.
  • Product qualification rate the ratio of qualified product weight to total input raw material weight.
  • Table 1 Example: the distribution ratio of each group (parts by weight) and the results of each performance test
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7 Polypropylene 60 60 60 60 60 60 60 60 Polyethylene - - - - - - - Calcium carbonate 20 45 90 180 270 - 90 Barium sulfate - - - - - 45 - glass fiber 20 45 90 180 270 45 90 Toughener 4 4 4 4 4 4 4 Compatibilizer 2 4.5 9 18 27 4.5 3.6
  • Substance A 0.2 0.45 0.9 1.8 2.7 0.45 0.36
  • Substance B - - - - - - - - - - - - - -
  • Example 10 Example 11
  • Example 12 Example 13
  • Substance A 0.72 1.8 2.16 1.65 1.65 0.45 - 1.8
  • Substance B - - - - - - - - - 0.2 -
  • Antioxidant 1 1 1 1 1 1 1 1 1 1 1
  • Weathering agent 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  • Table 2 The distribution ratio (weight parts) of each group of the comparative example and the performance test results
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Polypropylene 60 60 60 60 Calcium carbonate 45 180 45 45 glass fiber 45 180 45 45 45 Toughener 4 twenty four 4 4 Compatibilizer 4.5 18 0.9 4.5 Substance A - - 1.20 0.09 Antioxidant 1 1 1 1 1 Weathering agent 1 1 1 1 1 Total retention rate of hydrolysis resistance,% 81 68 80 85 Total retention rate of frost resistance,% 65 59 78 81 Rate of qualified products,% 82 77 87 84
  • the preferred amount of polyfunctional polymer has better hydrolysis resistance and freezing resistance.
  • the amount of polyfunctional polymer exceeds 0.010 times the total amount of reinforcing fibers and fillers , The hydrolysis resistance and freezing resistance do not increase anymore, so the dosage of the multifunctional polymer is within the range of 0.004-0.010 times of the reinforcing fiber and filler.
  • Example 4 and Example 15 it can be seen from Example 4 and Example 15 that the high-filled polypropylene composite material prepared by the three-stage side feeding method of the present invention not only has a higher product qualification rate, but also has better hydrolysis resistance and freeze resistance than ordinary The method is good.
  • Example 1 It can be seen from Example 1 and Example 14 that the acrylate-polyurethane-siloxane oligomer has better hydrolysis resistance and frost resistance than amino-terminated hyperbranched polyamides and high-filled polypropylene composites. .

Abstract

一种高填充热塑性树脂复合材料,按重量份计,包括以下组分:热塑性树脂60份;增强纤维和填充剂40-540份;增强纤维和填充剂用量0.002-0.012倍的含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或多种活性基团的多官能团聚合物。该高填充热塑性树脂复合材料,具有优秀的耐水解性能、耐冻性能的优点。一种高填充热塑性树脂复合材料的制备方法,能够提升高填充热塑性树脂复合材料的生产合格率。

Description

一种高填充热塑性树脂复合材料及其制备方法 技术领域
本发明涉及新型高分子复合材料技术领域,特别是涉及一种高填充热塑性树脂复合材料及其制备方法。
背景技术
以往的航道防护工程实例表明,航道防护建筑物中护滩或者护底的破坏是引起防护建筑物损坏和滩漕不稳的主要原因之一。目前对岸滩和防护建筑物的基础砂体免受冲刷的守护措施,大多是利用护滩或者护底排体自身的重量来维持岸滩或护底的稳定。这种完全被动式的守护,在较高水流条件下,由于水流的脉动性等原因,造成排体边缘或者护体之间局部淘刷最终形成严重破坏的情况较为常见。
中国专利CN 103122619 B、CN 103122620 B、CN 103122621 B、CN 103122623 B、CN 103122624 B、CN 103122625 B、CN 103103961 B等提供一种构件自身在散抛状态下可实现各自勾连的防护勾连体,其能够有效改善水底水流结构、在守护区形成较好的消能防冲效果,具有较好的稳定性、耐久性和经济性并且方便工程施工。
因此,开发出一种适用于上述勾连体的高分子复合材料具有巨大的经济价值。但是,高密度、高强度的高填充聚丙烯复合材料因为填充物太高,加入相容剂可以解决聚丙烯和填充剂、增强纤维之间的相容性,从而提高生产合格率、力学性能、提高密度。中国专利201310683859.2公开了一种多功能塑料助剂的制备方法,使用其制备方法制备得到的多功能助剂能够提高相容性能、加工性能、流动性能等,但是没有记载其具能够提高耐水解性能和耐冻性能。
但是,勾连体主要用于航道防护、防洪,不仅对于力学性能有需求,还对于耐水解性能、耐冻性能具有较高需求。一般对于耐水解性能的提升,公知做法为201610607013.4公开了一种聚丙烯复合材料,其加入含氟聚合物来增加表面性能,防止水渗透,以增加耐水解性能;201210574617.5公开了一种聚丙烯复合材料,其中加入热稳定剂能够抑制加工过程中产生的降解,并能防止热水对抗氧体系的萃取,从而有效地提高了水壶材料的耐老化性能。对于耐冻性能的提升,公知的做法为对热塑性树脂进行改性(如环氧树脂接枝聚丙烯)、加入耐寒剂(己二酸二辛酯或癸二酸二辛酯)、加入有机酰肼类成核剂等方法。但是,以上做法分别只能解决其中之一的问题,耐水解性能、耐冻性能很难在加入一种添加剂下同时得到提升。
发明内容
本发明的目的在于,克服以上技术缺陷,提供一种高填充热塑性树脂复合材料,具有优秀的耐水解性能、耐冻性能的优点。
本发明的另一目的在于,提供一种高填充热塑性树脂复合材料的制备方法,有效提高生产合格率。
本发明是通过以下技术方案实现的:
一种高填充热塑性树脂复合材料,按重量份计,包括以下组分:
热塑性树脂        60份;
增强纤维和填充剂  40-540份;
增强纤维和填充剂用量0.002-0.012倍的含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物。
优选的,按重量份计,包括以下组分:
热塑性树脂        60份;
增强纤维和填充剂  90-540份;
增强纤维和填充剂用量0.004-0.010倍的含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物。
所述的含有醚基、亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物选自丙烯酸酯-聚氨酯-硅氧烷的聚合物、丙烯酸酯-硅氧烷的聚合物、端氨基超支化聚酰胺中的至少一种;
这些化合物一般是作为相容剂、流动助剂、分散剂或润滑剂加入的,主要体现的是加工性能、提高力学性能。本发明在实验中发现,当进行高填充时,加入少量的上述助剂能够增加高填充热塑性树脂复合材料的耐冻性能和耐水解性能,提升了本发明的高填充热塑性树脂复合材料制成的勾连体应用在水况复杂的河道中的稳定性,延长使用寿命。
优选的,含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物选自选自丙烯酸酯-聚氨酯-硅氧烷的聚合物、丙烯酸酯-硅氧烷的聚合物中的至少一种。
丙烯酸酯-聚氨酯-硅氧烷的聚合物的制备方法可以是将60-80份脂肪族丙烯酸酯聚氨酯低聚物、5-15份丙烯酸类单体、0.1-5份乙烯基硅油在自由基引发剂存在下162-170℃进行聚合反应,通过反应时间、反应温度、引发剂的加入量控制反应进程。丙烯酸酯-硅氧烷的聚合物的制备方法如上,可以使用丙烯酸酯低聚物、丙烯酸类单体、乙烯基硅油为基础原料进行聚合反应。
端氨基超支化聚酰胺的制备方法可以是:在冰浴下,将丙烯酸酯类化合物单体的甲醇溶液滴加到多氨基胺单体(氨、乙二胺、己二胺、二亚乙基三胺)的甲醇溶液中,得混合溶液;在惰性气体保护下,在室温下,反应30-55h,并在55-65℃下进行减压蒸馏,得粗产品;所得粗产品,在110-160℃下,反应2-7h,得端氨基超支化聚酰胺产品。
为了提升增强纤维和填充剂与热塑性树脂基体的相容性,按重量份计,还包括增强纤维和填充剂用量0.02-0.2倍的相容剂;所述的相容剂选自马来酸酐接枝聚烯烃;所述的马来酸酐接枝聚烯烃选自马来酸酐接枝聚丙烯、马来酸酐接枝聚乙烯中的至少一种。
本发明加入相容剂,提升增强纤维和填充剂与热塑性树脂基体的相容性,也提高了加工性能。
所述的增强纤维选自玻璃纤维;所述的玻璃纤维在高填充热塑性树脂复合材料中的保留长度为0.2-0.6mm。
所述的填充剂选自无机矿物填料;所述的无机矿物填料选自碳酸钙、硫酸钡、硫酸钙、滑石粉、石英粉、硅灰石中的至少一种。
所述的热塑性树脂选自聚丙烯、聚乙烯中的至少一种。
为了提升高填充热塑性树脂复合材料的韧性,按重量份计,还包括0-24份的增韧剂;所述的增韧剂选自聚乙烯与含有2-10个碳原子的α-烯烃的共聚物或聚乙烯与含有2-10个碳原子的α-烯烃的共聚物的马来酸酐接枝物;按重量份计,还包括0.2-8重量份的耐候剂、抗氧剂、加工助剂中的至少一种。
本发明创造了三段式侧喂法的高填充热塑性树脂复合材料的制备方法,包括以下步骤:
第1步:按重量份称取各原材料;
第2步:将热塑性树脂、相容剂、含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物于混合机中搅拌混合3-8分钟获得混合物,将混合物计量的从长径比为48:1具有12区螺筒的双螺杆挤出机的主加料口加入,其中占总填充剂重量比的40%-60%的填充剂计量的从双螺杆挤出机的主加料口加入;
第3步:将剩下的填充剂从双螺杆挤出机位于第4-6区侧加料口加入,将增强纤维从双螺杆挤出机位于第8-9区侧加料口加入,然后挤出造料得到高填充热塑性树脂复合材料。
本发明是高填充热塑性树脂复合材料,如果用普通单侧喂口侧喂的生产方法生产容易导致各组分混合不均匀,并且在生产过程中容易断条,并且混合不均一导致性能差。上述制备工艺为三段式侧喂法,能够更好的使各组分更好的混合、提高玻璃纤维在产品中的保留长度,并且减少生产过程中断条等现象,提高生产合格率、生产效率。
本发明具有如下有益效果:
本发明的高填充热塑性树脂复合材料,具有40-90%左右的填充比(优选60-90%的填充比),通过添加含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物,使本发明的高填充热塑性树脂复合材料具有优秀的耐水解性能、耐冻性能的优点;进一步的,本发明的制备方法,能有效提高生产合格率。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明所用部分原料如下,但本发明不受如下原料限制:
以下含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物简称为多官能团聚合物。
聚丙烯:牌号N-Z30S,中国石油化工股份有限公司茂名分公司;
聚乙烯:高密度聚乙烯,密度0.95g/cm 3
硫酸钡:填充剂;
碳酸钙:填充剂;
玻璃纤维:增强纤维;
增韧剂:乙烯与辛烯的共聚物,如美国陶氏化学ENGAGE 8150;
相容剂:马来酸酐接枝聚丙烯,如Polyram公司的BONDYRAM 1001CN;
物质A:丙烯酸酯-聚氨酯-硅氧烷的低聚物,自制(配方为65份脂肪族丙烯酸酯聚氨酯低聚物、11份丙烯酸类单体、1.8份乙烯基硅油);
物质B:端氨基超支化聚酰胺,自制(配方为乙二胺14重量份、丙烯酸甲酯50份);
抗氧剂:受阻酚类主抗氧剂与亚磷酸酯类辅抗氧剂1:1混合物,主抗氧剂:巴斯夫Irganox 1010,辅抗氧剂:巴斯夫Irganox 168;
耐候剂:受阻胺类光稳定剂与紫外线吸收剂的1:1混合物,受阻胺类:巴斯夫CHIMASSORB 944,紫外线吸收剂:利安隆UV-531;
实施例1-14和对比例的高填充热塑性树脂合材料的制备方法:按重量份称取各原材料;将聚丙烯、相容剂、增韧剂、多官能团聚合物、耐候剂、抗氧剂于混合机中搅拌混合3-8分钟获得混合物,将混合物计量的从长径比为48:1具有12区螺筒的双螺杆挤出机的主加料口加入,其中占总填充剂重量比的40%-60%的填充剂计量的从双螺杆挤出机的主加料口加入;将剩下的填充剂从双螺杆挤出机位于第4-6区侧加料口加入,将增强纤维从双螺杆挤出机位于第8-9区侧加料口加入,然后挤出造料得到高填充聚丙烯复合材料。
实施例15的高填充热塑性树脂复合材料的制备方法:按重量份称取各原材料;将聚丙烯、填充剂、相容剂、增韧剂、多官能团聚合物、耐候剂、抗氧剂于混合机中搅拌混合3-8分钟获得混合物,将混合物计量的从长径比为48:1具有12区螺筒的双螺杆挤出机的主加料口加入;将增强纤维从双螺杆挤出机位于第8-9区侧加料口加入,然后挤出造料得到高填充聚丙烯复合材料。
各性能测试方法:
(1)耐水解性能测试:将实施例和对比例的高填充热塑性树脂复合材料制成的标准样条95℃的热水中浸泡2500小时,取出后测试拉伸强度、弯曲强度及悬臂梁缺口冲击强度的保持率,拉伸强度保持率=耐水解测试后的拉伸强度÷耐水解测试前的拉伸强度×100%,弯曲强度保持率=耐水解测试后的弯曲强度÷耐水解测试前的弯曲强度×100%,悬臂梁缺口冲击强度保持率=耐水解测试后的悬臂梁缺口冲击强度÷耐水解测试前的悬臂梁缺口冲击强度×100%,最终计算总保持率=(拉伸强度保持率+弯曲强度保持率+悬臂梁缺口冲击强度保持率)÷3。
(2)耐冻性能:将实施例和对比例的高填充热塑性树脂复合材料制成的标准样条-10℃的冷冻箱中冷冻24小时,并且测试-10℃下悬臂梁无缺口冲击强度及悬臂梁缺口冲击强度的保持率,悬臂梁无缺口冲击强度保持率=冷冻后的悬臂梁无缺口冲击强度÷冷冻前的悬臂梁无缺口冲击强度×100%,悬臂梁缺口冲击强度保持率=冷冻后的悬臂梁缺口冲击强度÷冷冻前的悬臂梁缺口冲击强度×100%,最终计算总保持率=(悬臂梁无缺口冲击强度保持率+悬臂梁缺口冲击强度保持率)÷2。
(3)产品合格率:合格产品重量占总投入原料重量比。
表1:实施例:各组分配比(重量份)及各性能测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
聚丙烯 60 60 60 60 60 60 60
聚乙烯 - - - - - - -
碳酸钙 20 45 90 180 270 - 90
硫酸钡 - - - - - 45 -
玻璃纤维 20 45 90 180 270 45 90
增韧剂 4 4 4 4 4 4 4
相容剂 2 4.5 9 18 27 4.5 3.6
物质A 0.2 0.45 0.9 1.8 2.7 0.45 0.36
物质B - - - - - - -
抗氧剂 1 1 1 1 1 1 1
耐候剂 1 1 1 1 1 1 1
耐水解性能总保持率,% 92 92 92 94 92 92 90
耐冻性能总保持率,% 93 93 94 94 92 93 92
产品合格率,% 98.6 99.1 99.1 98.8 98.6 99.1 98.0
续表1
  实施例8 实施例9 实施例10 实施例11 实施例12 实施例13 实施例14 实施例15
聚丙烯 60 60 60 60 60 60 60 60
聚乙烯 - - - - - 3 - -
碳酸钙 90 90 90 90 240 45 20 180
硫酸钡 - - - - - - - -
玻璃纤维 90 90 90 240 90 45 20 180
增韧剂 4 4 4 4 4 4 4 4
相容剂 5.4 32.4 36 16.5 16.5 4.5 2 18
物质A 0.72 1.8 2.16 1.65 1.65 0.45 - 1.8
物质B - - - - - - 0.2 -
抗氧剂 1 1 1 1 1 1 1 1
耐候剂 1 1 1 1 1 1 1 1
耐水解性能总保持率,% 91 92 91 92 90 91 89 90
耐冻性能总保持率,% 93 91 92 93 93 93 90 91
产品合格率,% 99.2 99.1 98.8 98.6 98.7 99.4 97.5 95.5
表2:对比例各组分配比(重量份)及各性能测试结果
  对比例1 对比例2 对比例3 对比例4
聚丙烯 60 60 60 60
碳酸钙 45 180 45 45
玻璃纤维 45 180 45 45
增韧剂 4 24 4 4
相容剂 4.5 18 0.9 4.5
物质A - - 1.20 0.09
抗氧剂 1 1 1 1
耐候剂 1 1 1 1
耐水解性能总保持率,% 81 68 80 85
耐冻性能总保持率,% 65 59 78 81
产品合格率,% 82 77 87 84
从实施例3/7-10可以看出,优选的多官能团聚合物用量范围下,耐水解性能、耐冻性能较好,当多官能团聚合物用量超过增强纤维和填充剂总用量的0.010倍后,耐水解性能、耐冻性能不再上升,因此多官能团聚合物用量为增强纤维和填充剂0.004-0.010倍的范围内较好。
从实施例4和实施例15可以看出,通过本发明的3段侧喂法制备得到的高填充聚丙烯复合材料,其不仅产品合格率高,而且耐水解性能和耐冻性能都比一般的方法好。
从实施例1和实施例14可以看出,丙烯酸酯-聚氨酯-硅氧烷的低聚物相比端氨基超支化聚酰胺,高填充聚丙烯复合材料的耐水解性能和耐冻性能都较好。

Claims (10)

  1. 一种高填充热塑性树脂复合材料,其特征在于,按重量份计,包括以下组分:
    热塑性树脂               60份;
    增强纤维和填充剂         40-540份;
    增强纤维和填充剂用量0.002-0.012倍的含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物。
  2. 根据权利要求1所述的高填充热塑性树脂复合材料,其特征在于,按重量份计,包括以下组分:
    热塑性树脂               60份;
    增强纤维和填充剂         90-540份;
    增强纤维和填充剂用量0.004-0.010倍的含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物。
  3. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,所述的含有醚基、亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物选自丙烯酸酯-聚氨酯-硅氧烷的聚合物、丙烯酸酯-硅氧烷的聚合物、端氨基超支化聚酰胺中的至少一种。
  4. 根据权利要求3所述的高填充热塑性树脂复合材料,其特征在于,含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物选自丙烯酸酯-聚氨酯-硅氧烷的聚合物、丙烯酸酯-硅氧烷的聚合物中的至少一种。
  5. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,按重量份计,还包括增强纤维和填充剂用量0.02-0.2倍的相容剂;所述的相容剂选自马来酸酐接枝聚烯烃;所述的马来酸酐接枝聚烯烃选自马来酸酐接枝聚丙烯、马来酸酐接枝聚乙烯中的至少一种。
  6. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,所述的增强纤维选自玻璃纤维;所述的玻璃纤维在高填充热塑性树脂复合材料中的保留长度为0.2-0.6mm。
  7. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,所述的填充剂选自无机矿物填料;所述的无机矿物填料选自碳酸钙、硫酸钡、硫酸钙、滑石粉、石英粉、硅灰石中的至少一种。
  8. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,所述的热塑性树脂选自聚丙烯、聚乙烯中的至少一种。
  9. 根据权利要求1或2所述的高填充热塑性树脂复合材料,其特征在于,按重量份计,还包括0-24份的增韧剂;所述的增韧剂选自聚乙烯与含有2-10个碳原子的α-烯烃的共聚物或聚乙烯与含有2-10个碳原子的α-烯烃的共聚物的马来酸酐接枝物;按重量份计,还包括0.2-8重量份的耐候剂、抗氧剂、加工助剂中的至少一种。
  10. 根据权利要求5所述的高填充热塑性树脂复合材料的制备方法,其特征在于,包括以下步骤:
    第1步:按重量份称取各原材料;
    第2步:将热塑性树脂、相容剂、含有醚基、二酰亚胺基、酯基、氨基、硅氧基中的两种或两种以上活性基团的多官能团聚合物于混合机中搅拌混合3-8分钟获得混合物,将混合物 计量的从长径比为48:1具有12区螺筒的双螺杆挤出机的主加料口加入,其中占总填充剂重量比的40%-60%的填充剂计量的从双螺杆挤出机的主加料口加入;
    第3步:将剩下的填充剂从双螺杆挤出机位于第4-6区侧加料口加入,将增强纤维从双螺杆挤出机位于第8-9区侧加料口加入,然后挤出造料得到高填充热塑性树脂复合材料。
PCT/CN2020/103918 2019-08-13 2020-07-24 一种高填充热塑性树脂复合材料及其制备方法 WO2021027523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910743078.5 2019-08-13
CN201910743078.5A CN110591223B (zh) 2019-08-13 2019-08-13 一种高填充热塑性树脂复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021027523A1 true WO2021027523A1 (zh) 2021-02-18

Family

ID=68854201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103918 WO2021027523A1 (zh) 2019-08-13 2020-07-24 一种高填充热塑性树脂复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110591223B (zh)
WO (1) WO2021027523A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462150A (zh) * 2021-06-28 2021-10-01 中广核瑞胜发(厦门)新材料有限公司 一种阻燃尼龙复合材料及其制备方法
CN113913012A (zh) * 2021-11-18 2022-01-11 金晶 一种改性热塑性组合物及其用途
CN114230929A (zh) * 2022-01-18 2022-03-25 烟台恒大聚合体有限公司 用于制作塑料子弹头的复合材料及其制备方法
CN114591587A (zh) * 2022-02-25 2022-06-07 成都金发科技新材料有限公司 一种聚苯乙烯复合材料以及制备方法
CN115197550A (zh) * 2022-07-20 2022-10-18 上海金山锦湖日丽塑料有限公司 一种耐水解的聚酯树脂组合物及其制备方法
WO2023001201A1 (zh) * 2021-07-22 2023-01-26 广东金发科技有限公司 一种高表面亲水性聚丙烯复合材料及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591223B (zh) * 2019-08-13 2022-01-21 金发科技股份有限公司 一种高填充热塑性树脂复合材料及其制备方法
CN111363237A (zh) * 2020-03-02 2020-07-03 上海大学 耐水解聚丙烯复合材料
CN115895209A (zh) * 2022-11-24 2023-04-04 广州华新科智造技术有限公司 一种碳酸钙母粒及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050985A (zh) * 2010-12-30 2011-05-11 浙江工业大学 一种提高超高分子量聚乙烯树脂加工流变性的方法
CN102276920A (zh) * 2011-08-11 2011-12-14 古道尔工程塑胶(深圳)有限公司 聚丙烯复合材料
CN103030876A (zh) * 2012-12-24 2013-04-10 江苏金发科技新材料有限公司 低光泽耐划伤玻纤增强pp复合材料及其制备方法
CN104059198A (zh) * 2013-12-16 2014-09-24 广州源泰合成材料有限公司 一种多功能塑料助剂的制备方法
WO2015005239A1 (ja) * 2013-07-08 2015-01-15 株式会社プライムポリマー プロピレン系樹脂組成物
CN105385137A (zh) * 2015-12-02 2016-03-09 威海晨源分子新材料有限公司 一种超支化聚酰胺胺在塑料加工中的应用
EP3181637A1 (en) * 2011-09-21 2017-06-21 Borealis AG Moulding composition
CN109988364A (zh) * 2019-04-29 2019-07-09 上海金发科技发展有限公司 一种易喷涂聚丙烯组合物及其制备方法
CN110591223A (zh) * 2019-08-13 2019-12-20 金发科技股份有限公司 一种高填充热塑性树脂复合材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050985A (zh) * 2010-12-30 2011-05-11 浙江工业大学 一种提高超高分子量聚乙烯树脂加工流变性的方法
CN102276920A (zh) * 2011-08-11 2011-12-14 古道尔工程塑胶(深圳)有限公司 聚丙烯复合材料
EP3181637A1 (en) * 2011-09-21 2017-06-21 Borealis AG Moulding composition
CN103030876A (zh) * 2012-12-24 2013-04-10 江苏金发科技新材料有限公司 低光泽耐划伤玻纤增强pp复合材料及其制备方法
WO2015005239A1 (ja) * 2013-07-08 2015-01-15 株式会社プライムポリマー プロピレン系樹脂組成物
CN104059198A (zh) * 2013-12-16 2014-09-24 广州源泰合成材料有限公司 一种多功能塑料助剂的制备方法
CN105385137A (zh) * 2015-12-02 2016-03-09 威海晨源分子新材料有限公司 一种超支化聚酰胺胺在塑料加工中的应用
CN109988364A (zh) * 2019-04-29 2019-07-09 上海金发科技发展有限公司 一种易喷涂聚丙烯组合物及其制备方法
CN110591223A (zh) * 2019-08-13 2019-12-20 金发科技股份有限公司 一种高填充热塑性树脂复合材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462150A (zh) * 2021-06-28 2021-10-01 中广核瑞胜发(厦门)新材料有限公司 一种阻燃尼龙复合材料及其制备方法
WO2023001201A1 (zh) * 2021-07-22 2023-01-26 广东金发科技有限公司 一种高表面亲水性聚丙烯复合材料及其制备方法和应用
CN113913012A (zh) * 2021-11-18 2022-01-11 金晶 一种改性热塑性组合物及其用途
CN114230929A (zh) * 2022-01-18 2022-03-25 烟台恒大聚合体有限公司 用于制作塑料子弹头的复合材料及其制备方法
CN114591587A (zh) * 2022-02-25 2022-06-07 成都金发科技新材料有限公司 一种聚苯乙烯复合材料以及制备方法
CN114591587B (zh) * 2022-02-25 2023-09-05 成都金发科技新材料有限公司 一种聚苯乙烯复合材料以及制备方法
CN115197550A (zh) * 2022-07-20 2022-10-18 上海金山锦湖日丽塑料有限公司 一种耐水解的聚酯树脂组合物及其制备方法
CN115197550B (zh) * 2022-07-20 2024-04-02 上海金山锦湖日丽塑料有限公司 一种耐水解的聚酯树脂组合物及其制备方法

Also Published As

Publication number Publication date
CN110591223A (zh) 2019-12-20
CN110591223B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2021027523A1 (zh) 一种高填充热塑性树脂复合材料及其制备方法
US5843577A (en) Thermoplastic elastomers having improved surface properties
US7872075B2 (en) Peroxide-cured thermoplastic vulcanizates and process for making the same
EP1833909B1 (en) Novel propylene polymer compositions
US5955524A (en) Polypropylene resin composition
WO2001081462A1 (fr) Composition elastomere thermoplastique
JP2014193969A (ja) 熱可塑性エラストマー組成物
US6184292B1 (en) Soft gel polymers for high temperature use
JP3622017B2 (ja) 表面保護フィルム・シート
CN107880395B (zh) 一种聚丙烯增韧改性用组合物及其改性聚丙烯
JPS63305148A (ja) ガラス繊維強化ポリアミド組成物
JP2001280555A (ja) 自動車冷却系用複層ホース
JP2011256247A (ja) プロピレン樹脂組成物
EP0612800B1 (en) Propylene polymer compositions
JP3255266B2 (ja) ガスケット
JP6019895B2 (ja) プロピレン系樹脂組成物及びその成形体
KR100467814B1 (ko) 폴리프로필렌계 수지 조성물
JP4758588B2 (ja) 架橋オレフィン系ゴム組成物
JP4034473B2 (ja) 押出ラミネート用ポリオレフィン系樹脂材料
JPS5839855B2 (ja) 三元熱可塑性成形コンパウンド
JP2019044111A (ja) 動的架橋型熱可塑性エラストマー組成物及びその成形体
JP7288305B2 (ja) 難燃性エチレン系共重合体組成物および鉄道用製品
KR20100105065A (ko) 베타결정구조를 갖는 파이프용 폴리프로필렌계 수지 조성물
KR101388194B1 (ko) 냉장고 가스켓용 조성물
JP2004315619A (ja) ブロー成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852778

Country of ref document: EP

Kind code of ref document: A1