WO2021027360A1 - 滤波连接装置及滤波方法 - Google Patents

滤波连接装置及滤波方法 Download PDF

Info

Publication number
WO2021027360A1
WO2021027360A1 PCT/CN2020/092664 CN2020092664W WO2021027360A1 WO 2021027360 A1 WO2021027360 A1 WO 2021027360A1 CN 2020092664 W CN2020092664 W CN 2020092664W WO 2021027360 A1 WO2021027360 A1 WO 2021027360A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
connector
board
connection device
connection
Prior art date
Application number
PCT/CN2020/092664
Other languages
English (en)
French (fr)
Inventor
陈太贤
夏全飞
周军林
赵福高
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021563675A priority Critical patent/JP2022530233A/ja
Priority to EP20852580.8A priority patent/EP3930116B1/en
Publication of WO2021027360A1 publication Critical patent/WO2021027360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • H01R31/065Intermediate parts for linking two coupling parts, e.g. adapter with built-in electric apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6658Structural association with built-in electrical component with built-in electronic circuit on printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6625Structural association with built-in electrical component with built-in single component with capacitive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6633Structural association with built-in electrical component with built-in single component with inductive component, e.g. transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • H01R13/7193Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters with ferrite filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0057Constructional details comprising magnetic material

Definitions

  • This application relates to the field of filtering technology, and in particular to a filtering connection device and filtering method.
  • the current conventional solution to electromagnetic compatibility problems is mainly to add filters, magnetic rings or filter components. Take the popular electric vehicle field in recent years as an example.
  • OBC on-board charger
  • MCU motor control unit
  • the filtering component usually includes a filter and two connectors. Two connectors are responsible for signal input and output. One connector is responsible for connecting the filter to the OBC or MCU motherboard, the other connector is responsible for connecting the filter to external cables, and the filter is responsible for signal filtering processing, so that the entire The filtering component has signal filtering capability.
  • This application provides a filter connection device and a filter method.
  • the present invention uses a miniaturized filter board and integrates the filter board and a connector connected to an external signal, which greatly reduces the occupied space and is beneficial to the on-board OBC or MCU. Miniaturization, and the filter connection device and method of the present invention can also be used for power supplies or other occasions with electromagnetic compatibility problems.
  • At least one embodiment of the present application provides a filter connection device, the filter connection device comprising: a first connector, a first filter board, and a second connector;
  • the first connector is connected to the second connector, the first connector has a cable connection interface and a first connection terminal electrically connected to the first filter plate, and the second connector has a main board A connecting terminal and a second connecting terminal electrically connected to the first filter board, and the first filter board is used for filtering signals transmitted between the first connector and the second connector.
  • the first connector is connected to the second connector, a cavity is formed between the first connector and the second connector, and the first filter plate is located in the cavity and passes through the first connector.
  • the second connector and the cable are respectively connected to the main board of the device, and then the first filter board is used for filtering. Since the first connector, the first filter board and the second connector form an integral structure, and at the same time, a filter board with a small footprint is selected, which occupies a small space. Therefore, the filter connection device occupies a small space.
  • a cavity is formed between the first connector and the second connector, and the first filter plate is located in the cavity.
  • the filter board is located in the cavity formed between the first connector and the second connector, and does not occupy external space. Therefore, the filter connection device occupies a small space.
  • the first filter board has multiple filter circuits, and each filter circuit in the multiple filter circuits is used to filter a signal.
  • the received multiple signals can be processed separately, instead of using the traditional method of uniformly processing multiple signals, making the signal filtering more targeted and The effect is better.
  • the filter circuit is configured to filter the signal input from the first connector and filter the signal input from the second connector.
  • the filter circuit can filter the signal input to the filter board from the first connector, and can also filter the signal input to the filter board from the second connector, so as to realize the bidirectional filtering function of the filter connection device.
  • the first filter board is at least one layer of printed circuit board, and each layer of the at least one layer of printed circuit board is provided with part of the circuit in the multi-channel filter circuit. Filter circuit.
  • the first filter board is implemented by using at least one layer of printed circuit board.
  • the multiple filter circuits can be arranged in layers, which can reduce the volume of the entire filter board, which is more in line with the needs of miniaturized design.
  • each filter circuit includes at least one filter element
  • the multi-path filter circuit includes at least one type of filter circuit, and the filter components in the two filter circuits of different types are at least partially different, and the filter circuits of different types are used to filter different types of signals.
  • the filter circuit may include one or more types, and different types of filter circuits may be used to process different types of signals, so that the filter board can meet the needs of signal filtering processing.
  • the filter components include at least one of the following: common mode inductors, magnetic beads, and capacitors, the number of each of the filter components included in the filter circuit is one or more, and the filter circuit
  • the connection mode of the filter components in includes at least one of series connection and parallel connection.
  • the filter circuit is made of magnetic beads, common mode inductors, capacitors and other components, that is, the filter board in this application is filtered by power electronic technology instead of electromagnetic technology, and power electronic technology
  • the volume of the filter plate used for filtering is much smaller than the filter used for filtering by electromagnetic technology, so that a miniaturized design can be realized.
  • the number of each filter component can be one or more, and the connection mode can be series and parallel, so that the circuit design can be designed according to the signal needs to meet the needs of signal filtering processing.
  • the filter connection device further includes: at least one second filter plate, any one of the second filter plates has the same installation size as the first filter plate, and any one of the second filter plates and the The specifications of the filter components in at least one of the filter circuits of the first filter board are different.
  • the filter connection device can be configured with multiple filter boards.
  • the installation dimensions of the multiple filter boards are the same, but the components used in the circuit have different specifications.
  • the filter board can be replaced to detect signals of different sizes. Carry out targeted treatment.
  • the filter plate is replaced, since the structure and size of the filter plate remain unchanged, there is no need to change the structure of the first connector and the second connector, and the replacement is more convenient.
  • the first filter board has a plurality of pairs of jacks, and the plurality of pairs of jacks are respectively connected to the multi-path filter circuit, and each pair of the plurality of pairs of jacks is connected with one The filter circuit;
  • Each pair of jacks includes a first jack and a second jack, the second connector is electrically connected to the first jack from one side of the first filter plate, and the first connector It is electrically connected to the second jack from the other side of the first filter plate.
  • the first connector and the second connector are connected by providing a jack on the filter board, so that the first connector and the second connector are connected to the filter circuit, which facilitates connection and disassembly on the one hand, and
  • the cable-free design of the filter connection device can be realized, and there is no need to reserve space for cables, which is conducive to miniaturization.
  • the second connector includes: an adapter and a mounting cover
  • the mounting cover is connected to the first connector, one end of the adaptor is used as the second connecting terminal to be electrically connected to the first filter plate, and the other end of the adaptor is connected from the The mounting cover protrudes as the main board connection terminal.
  • the second connector of the filter connection device includes two parts, which on the one hand facilitates disassembly and assembly, and on the other hand ensures the electrical connection with the filter board and the main board.
  • the adapter includes a plurality of L-shaped pins and insulating material blocks arranged at intervals in parallel, and both ends of the L-shaped pins are the second connection terminal and the main board connection terminal, respectively. All the L-shaped pins pass through the insulating material block.
  • the L-shaped pin can be used to directly plug the filter connection device into the main board of the device for easy installation.
  • the L-shaped pin can enable the filter connection device to be arranged on the main board of the device in parallel along the line direction. Less space is required in the direction perpendicular to the main board, so that the structural design around the main board can be more compact.
  • the second connection terminal is inserted into the first jack, and the plurality of first jacks correspond to the plurality of L-shaped pins in a one-to-one correspondence.
  • the second connector is plugged into the first socket through the L-shaped pin.
  • it is easy to disassemble and assemble, and on the other hand, it realizes that different signals pass through different L-shaped plugs in the second connector.
  • the needles transmit without interfering with each other.
  • the mounting cover is a shielding cover.
  • the shielding cover by designing the shielding cover, the interference of the main board and the like on the filter circuit board can be reduced, and the filtering effect can be ensured. At the same time, it can also reduce the interference of the filter circuit board to the motherboard.
  • the first connector includes: a housing and a pin located in the housing, both ends of the housing are respectively provided with a wire inlet and a connection part with the second connector, the One end of the pin is located in the wire inlet and forms the cable connection interface with the wire inlet, and the other end of the pin extends from the connecting portion to form the first connection terminal.
  • connection with the cable and the second connector is realized through a housing with an inlet and a connecting portion at both ends, and one end of the pin in the housing is located in the inlet to form a line with the inlet In the cable connection interface, the other end of the pin extends from the connection part to form a first connection terminal, which ensures that the first connector can be electrically connected to the cable and the filter plate.
  • the first connection terminal is inserted into the second jack, and the plurality of second jacks correspond to the plurality of pins in a one-to-one correspondence.
  • the first connector is inserted through the pin and the second socket.
  • it is easy to disassemble and assemble.
  • different signals are transmitted through different pins in the first connector. Do not interfere with each other.
  • the housing further includes a sealing plate located between the wire inlet and the connecting end, and the pin passes through the sealing plate.
  • a sealing plate is provided in the first connector to seal one end of the connecting cable to prevent external water vapor from entering the cavity from the wire inlet, which affects the stability of the filter connection device.
  • the first connector and the second connector are detachably connected.
  • the first connector and the second connector are detachably connected, so as to realize the detachable connection of the entire filter connection device, which facilitates the replacement of components.
  • first connector and the second connector are connected by a fastener, and the fastener connecting the first connector and the second connector passes through the first connector. Filter board.
  • the first and second connectors are connected by a fastener to realize a detachable connection; at the same time, the fastener passes through the first filter plate to ensure the stability of the filter plate.
  • the fastener may be a bolt, and a through hole for the bolt to pass is provided on the first filter plate.
  • At least one embodiment of the present application provides a filtering method, the filtering method being executed by the filtering connection device according to any one of the first aspect, the filtering method including:
  • the received multiple signals can be processed separately, instead of using the traditional method of uniformly processing multiple signals, making signal filtering more targeted , The effect is better.
  • Fig. 1 shows a schematic structural diagram of a filter connection device provided by an embodiment of the present application
  • Fig. 2 is an exploded schematic diagram of the filter connection device shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the structure of the first connector in FIG. 1;
  • FIG. 4 is a view from another direction of the filter connection device shown in FIG. 1;
  • 5 to 8 are schematic diagrams of the structure of a double-layer printed circuit board provided by an embodiment of the application.
  • Fig. 9 shows a circuit diagram of a first filter circuit provided by an embodiment of the present application.
  • FIG. 10 shows a circuit diagram of a second filter circuit provided by an embodiment of the present application.
  • FIG. 11 shows a circuit diagram of a third filter circuit provided by an embodiment of the present application.
  • FIG. 12 shows a flowchart of a filtering method provided by an embodiment of the present application.
  • Fig. 1 shows a schematic structural diagram of a filter connection device provided by an embodiment of the present application
  • Fig. 2 is an exploded schematic diagram of the filter connection device shown in Fig. 1. 1 and 2, the filter connection device includes: a first connector 100, a first filter plate 200, and a second connector 300, and the first connector 100 and the second connector 300 are connected.
  • FIG. 3 is a schematic diagram of the structure of the first connector 100 in FIG. 1. 2 and 3, the first connector 100 has a cable connection interface 101 and a first connection terminal 102 that are arranged oppositely.
  • the cable connection interface 101 of the first connector 100 is used for electrical connection with a cable,
  • the first connection terminal 102 of the connector 100 is electrically connected to the first filter plate 200.
  • the second connector 300 has a main board connection terminal 301 and a second connection terminal 302 disposed oppositely, the second connection terminal 302 of the second connector 300 is electrically connected to the first filter board 200, and the second The main board connection terminal 301 of the connector 300 is used for electrical connection with the main board of the device.
  • the first filter board 200 is used to filter the signal transmitted between the first connector 100 and the second connector 300.
  • the first connector 100 and the second connector 300 are connected, a cavity is formed between the first connector 100 and the second connector 300, and the first filter plate 200 is located in the cavity through the first connection.
  • the device 100 and the second connector 300 are respectively connected to the cable and the main board of the device, and then filtered through the first filter board 200. Since the first connector 100, the first filter board 200 and the second connector 300 form an integral structure, and at the same time, a filter board with a small space occupation is selected, which occupies a small space. Therefore, the filter connection device occupies a small space.
  • the aforementioned device may be an electric vehicle, and the main board may be the main board of the OBC of the electric vehicle or the main board of the MCU.
  • the aforementioned cable is a cable for charging the OBC, or a cable for supplying power or transmitting signals to the MCU.
  • the filter connection device provided in this application can meet the filtering requirements in this scenario due to its small space.
  • the aforementioned electric vehicle and the corresponding motherboard and cable types are only examples, and the filter connection device provided in this application is also suitable for signal filtering of other equipment.
  • a cavity (not shown in the figure) is formed between the first connector 100 and the second connector 300, and the first filter plate 200 is located in the cavity. Since the filter plate is located in the cavity formed between the first connector 100 and the second connector 300 and does not occupy external space, the filter connection device occupies a small space.
  • the second connector 300 may include: an adapter 310 and a mounting cover 320.
  • the mounting cover 320 is connected to the first connector 100.
  • the aforementioned cavity is formed between the mounting cover 320 and the first connector 100.
  • One end of the adapter 310 is used as the second connecting terminal 302 to be electrically connected to the first filter plate 200, The other end of the device 310 protrudes from the mounting cover 320 as the main board connection terminal 301.
  • the second connector 300 of the filter connection device includes two parts: the adaptor 310 and the mounting cover 320. These two parts are used to facilitate disassembly and assembly on the one hand, and on the other hand to ensure the connection with the first filter plate 200. And the electrical connection of the motherboard.
  • the mounting cover 320 is a box-shaped structure, as shown in FIGS. 1 and 2, the mounting cover 320 includes a rectangular bottom plate 321 and three side plates 322, and the three side plates 322 surround the rectangular The three sides of the bottom plate 321 are arranged perpendicular to the rectangular bottom plate 321. As shown in FIG. 2, the fourth side of the rectangular bottom plate 321 is provided with a narrow side plate 322a perpendicular to the rectangular bottom plate 321. The width of the narrow side plate 322a in the direction perpendicular to the rectangular bottom plate 321 is smaller than the other three side plates 322. In this way, the assembly of the mounting cover 320 and the first connector 100 can be facilitated, and the first connector 100 can be put into the box-shaped structure from one side of the narrow side plate 322a to complete the assembly.
  • the number of side plates 322 may also be more or less, which is not limited in this application.
  • the rectangular bottom plate 321 of the mounting cover 320 is provided with a through hole 323, and the through hole 323 is used for passing the adapter 310 as one end of the mainboard connection terminal 301.
  • the through hole 323 may be rectangular.
  • the structure of the mounting cover in FIG. 1 and FIG. 2 is only an example. In other embodiments, the mounting cover 320 can also be implemented in other shapes.
  • the mounting cover 320 may be a shielding cover.
  • the shielding cover by designing the shielding cover, the interference of the main board and the like on the filter circuit board can be reduced, and the filtering effect can be ensured. At the same time, it can also reduce the interference of the filter circuit board to the motherboard.
  • the mounting cover 320 is a metal mounting cover, so as to achieve the aforementioned shielding effect.
  • the adapter 310 may include a plurality of L-shaped pins 311 and insulating material blocks 312 arranged in parallel and spaced apart.
  • the two ends of the L-shaped pins 311 are the second connecting terminal 302 and the main board connecting terminal 301, respectively.
  • the L-shapes pass through 311 and are fixedly positioned by insulating material blocks 312.
  • the L-shaped pin 311 can be used to directly plug the filter connection device into the main board of the device for easy installation.
  • the L-shaped pin 311 can enable the filter connection device to be arranged on the main board of the device in parallel along the line direction , Less space is required in the direction perpendicular to the main board, making the structural design around the main board more compact.
  • a plurality of L-shaped pins 311 can be arranged in two rows, thereby reducing the space occupied by the L-shaped pins 311 and facilitating miniaturization of the filter connection device.
  • the multiple L-shaped pins 311 may also be arranged in more rows or fewer rows, such as 1 row, 3 rows, and so on.
  • the multiple L-shaped pins 311 can be fixed by two insulating material blocks 312 arranged at intervals, so that the multiple L-shaped pins 311 are more stable.
  • the number of insulating material blocks 312 may be more or less, for example, 1 block, 3 blocks, etc.
  • one of the insulating material blocks 312 is provided with two positioning posts 3121, and the extension direction of the two positioning posts 3121 is parallel to the extension direction of the L-shaped pin 311 as one end of the mainboard connection terminal 301.
  • the positioning post 3121 is assembled with the positioning hole on the main board of the device to facilitate positioning and facilitate the connection between the second connector 300 and the main board.
  • the insulating material block 312 provided with the positioning post 3121 is located outside the through hole 323 of the rectangular bottom plate 321 to ensure that it can be connected to the main board.
  • another insulating material block 312 is provided with two positioning pins 3122, and the extension direction of the two positioning pins 3122 is parallel to the extension direction of the L-shaped pin 311 as one end of the second connecting terminal 302.
  • the size of the positioning pin 3122 is similar to the size of one end of the L-shaped pin 311.
  • the first filter board 200 has a first jack 201, and the L-shaped pin 311 can be inserted into the first jack 201.
  • the number of the first sockets 201 for inserting the L-shaped pin 311 is multiple, the second connecting terminal 302 is inserted into the first socket 201, and there are multiple first sockets 201.
  • the number of the first sockets 201 for inserting the L-shaped pins 311 can be arranged according to actual needs.
  • the first jacks 201 for inserting the L-shaped pins 311 can be arranged in 2 rows.
  • two first jacks 201 for inserting the setting pins 3122 can also be provided.
  • the two first receptacles 201 are arranged outside the two rows, which is easy to distinguish.
  • the positioning pin 3122 is matched with the first socket 201 on the filter board of the device to help the positioning and assembly between the adapter 310 and the first filter board 200.
  • the insulating material block 312 provided with the positioning pin 3122 is located in the through hole 323 of the rectangular bottom plate 321, and the positioning pin 3122 extends from the through hole 323 to the filter board to be inserted into the first socket 201 on the filter board. Arranging the insulating material block 312 in the through hole 323 can ensure insulation between the L-shaped pin 311 and the shielding cover, and avoid short circuits between multiple lines.
  • the positioning posts 3121 and the positioning feet 3122 can be made of the same material as the insulating material block 312, and are designed by an integral molding process.
  • the adapter 310 may be molded by injection molding, that is, placing a plurality of L-shaped pins 311 in an injection mold, and forming an insulating material block 312 and positioning posts 3121 that wrap the plurality of L-shaped pins 311 by injection molding.
  • Fig. 4 is a view from another direction of the filter connection device shown in Fig. 1.
  • the first connector 100 may include: a housing 110 and a pin 120 located in the housing 110.
  • the wire port 111 and the connection portion 112 with the second connector 300, one end of the pin 120 is located in the wire inlet 111 and forms a cable connection interface 101 with the wire inlet 111, and the other end of the pin 120 is from the connection portion 112
  • a first connection terminal 102 is formed by extending from there.
  • connection with the cable and the second connector 300 is realized by the housing 110 with the inlet 111 and the connecting portion 112 at both ends, and one end of the pin 120 in the housing 110 is located at the inlet
  • the port 111 and the cable inlet 111 form a cable connection interface 101.
  • the other end of the pin 120 extends from the connecting portion 112 to form a first connection terminal 102, ensuring that the pin 120 can be connected to the cable and the first filter plate 200. Electric connection.
  • the pins 120 can be arranged in multiple rows, and the pins 120 can be bent in the housing 110, so that the number of rows at the cable connection interface 101 and the first connection terminal 102 is different .
  • the first connector 100 includes 18 pins 120.
  • the 18 pins 120 are arranged in 3 rows, and at the first connection terminal 102, the 18 pins 120 are arranged 2 rows.
  • the number of pins 120 and the number of rows here are only examples. In other possible implementations, the number and number of rows of pins 120 can be designed to be more or less.
  • the first filter board 200 has a second jack 202, and the pin 120 of the first connecting terminal 102 can be inserted into the second jack 202.
  • the number of second jacks 202 is multiple, the first connecting terminal 102 is inserted into the second jack 202, and the multiple second jacks 202 correspond to the multiple pins 120 one-to-one. That is, each second jack 202 is plugged into a first connecting terminal 102.
  • the number of second jacks 202 can be arranged according to actual needs. Exemplarily, the second jacks 202 may be arranged in three rows for inserting three rows of pins 120.
  • the housing 110 may further include a sealing plate 113 between the wire inlet 111 and the connecting portion 112, and the pin 120 passes through the sealing plate 113.
  • a sealing plate is provided in the first connector to seal one end of the connecting cable to prevent external water vapor from entering the cavity from the wire inlet, which affects the stability of the filter connection device.
  • a side of the connecting portion 112 of the housing 110 facing the second connector 300 is provided with a positioning post 114, and the first filter plate 200 is provided with a positioning hole 203 corresponding to the positioning post 114.
  • the positioning between the first connector 100 and the first filter plate 200 is achieved by designing the positioning post 114 and the positioning hole 203, which is convenient for installation.
  • mounting screw holes 115 are arranged on the housing 110.
  • the housing 110 has two mounting screw holes 115 arranged diagonally.
  • the first filter plate 200 is provided with a first through hole 204, and the bolt 205 sequentially passes through the first through hole 204 and the mounting screw hole 105 on the housing 110 to realize the first filter plate 200 and the first connector 100 Between fixed.
  • a stud 116 is provided on the side of the housing 110 facing the second connector 300.
  • a stud 116 is provided on the side of the housing 110 facing the second connector 300.
  • a nut mounting hole 117 communicating with the stud 116 is provided on the side of the housing 110 facing away from the second connector 300.
  • the first filter plate 200 is provided with a second through hole 206
  • the mounting cover 320 is provided with a through hole (not shown in the figure).
  • the stud 116 passes through the second through hole 206 and is aligned with the through hole on the mounting cover 320.
  • the bolt 324 on the mounting cover 320 passes through the through hole on the mounting cover 320, the stud 116 and the nut mounting hole 117 in turn, and is connected to the nut
  • the nut (not shown in the figure) in the mounting hole 117 is threaded.
  • the assembly and fixing of the first connector 100, the first filter plate 200 and the second connector 300 are stable and easy to disassemble and assemble.
  • a washer 325 is further provided between the aforementioned bolt 324 and the mounting cover 320 to serve as a buffer.
  • the connecting portion 112 has a rectangular parallelepiped structure, and the side of the connecting portion 112 facing the second connector 300 is provided with the aforementioned positioning posts 114, mounting screw holes 115, and studs 116.
  • a plurality of grooves 118 are further provided on the side of the connecting portion 112 facing the second connector 300. These grooves 118 do not pass through the aforementioned sealing plate 113. These grooves 118 can reduce the overall weight of the housing 100. , So as to realize the lightweight design of the filter connection device.
  • the wire inlet 111 is a cylindrical structure, and a buckle structure 119 is arranged on the outer surface of the cylindrical structure.
  • the buckle structure 119 is used to insert the cable connector into the wire inlet It snapped at 111.
  • the structure of the housing 110 in FIG. 2 and FIG. 3 is only an example. In other embodiments, the housing 110 may also be implemented in other shapes.
  • the first filter board 200 includes a filter element 207 arranged thereon, and the filter element 207 is used to form a filter circuit.
  • the first filter board 200 may have multiple filter circuits, and each filter circuit in the multiple filter circuits is used to filter a signal.
  • the received multiple signals can be processed separately, instead of using the traditional method of uniformly processing the multiple signals, the signal filtering is more effective. Pertinence and better results.
  • the filter circuit is configured to filter the signal input from the first connector 100 and filter the signal input from the second connector 300.
  • the filter circuit can filter the signal input to the filter board from the first connector, and can also filter the signal input to the filter board from the second connector, so as to realize the bidirectional filtering function of the filter connection device.
  • each filter circuit in the multiple filter circuit can filter the signal input by the first connector 100 and filter the signal input by the second connector 300.
  • only part of the filter circuits in the multiple filter circuit can filter the signal input from the first connector 100 and filter the signal input from the second connector 300; the multiple filter circuit The remaining filter circuits in can only filter the signal input from the first connector 100 or filter the signal input from the second connector 300.
  • each filter circuit includes at least one filter component 207; the multiple filter circuit may include at least one filter circuit, and the filter components 207 in the two filter circuits of different types are at least partially different, and the filter circuits of different types Used to filter different kinds of signals.
  • the filter circuit may include one or more types, and different types of filter circuits may be used to process different types of signals, so that the filter board can meet the needs of signal filtering processing.
  • the filter components 207 include at least one of the following: common mode inductors, magnetic beads, and capacitors, the number of each filter component 207 included in the filter circuit is one or more, and the filter components 207 in the filter circuit
  • the connection mode includes at least one of series and parallel.
  • the filter circuit is made of magnetic beads, common mode inductors, capacitors and other components, that is, the filter board in this application is filtered by power electronic technology instead of electromagnetic technology, and power electronic technology
  • the volume of the filter plate used for filtering is much smaller than the filter used for filtering by electromagnetic technology, so that a miniaturized design can be realized.
  • the number of each filter component can be one or more, and the connection mode can be series and parallel, so that the circuit design can be designed according to the signal needs to meet the needs of signal filtering processing.
  • the first filter board 200 has multiple pairs of jacks, and the multiple pairs of jacks are respectively connected to the multiple filter circuits, and each pair of jacks is connected with a filter circuit; each pair of jacks includes a first plug.
  • the second connector 300 is electrically connected to the first jack 201 from one side of the first filter plate 200, and the first connector 100 is electrically connected to the second jack from the other side of the first filter plate 200.
  • the hole 202 is electrically connected, that is, the first connector 100 and the second connector 300 are connected to the first filter plate 200 from opposite sides of the first filter plate 200.
  • the first filter board 200 may be at least one layer of printed circuit boards, and each of the at least one layer of printed circuit boards is provided with multiple filter circuits. Part of the filter circuit.
  • At least one layer of printed circuit board refers to a single-layer printed circuit board, or a composite of two or more layers of printed circuit boards, and the aforementioned filter elements 207 are simultaneously arranged on each layer of printed circuit boards.
  • the filter components 207 are simultaneously arranged on both sides of the double-layer printed circuit board.
  • the first filter board is implemented by using at least one layer of printed circuit board.
  • the multiple filter circuits can be arranged in layers, which can reduce the volume of the entire first filter board 200, thereby more meeting the requirements of miniaturization.
  • the first filter board 200 may also be a single-layer printed circuit board.
  • Each printed circuit board in the double-layer printed circuit board includes front and back sides, and each layer of the printed circuit board faces the other.
  • One side of one layer of printed circuit board is used for wiring, and the side of each layer of printed circuit board facing the other layer of printed circuit board (that is, the side facing outward) is used to arrange filter components 207.
  • FIGS. 5 to 8 are schematic diagrams of the structure of a double-layer printed circuit board provided by embodiments of the application.
  • Figure 5 is a circuit diagram of the top surface of the first layer of printed circuit board
  • Figure 6 is a circuit diagram of the bottom surface of the first layer of printed circuit board (toward the second layer of printed circuit board)
  • Figure 7 is a circuit diagram of the second layer of printed circuit
  • FIG. 8 is the circuit diagram of the top surface of the second layer printed circuit board (towards the first layer printed circuit board).
  • each layer of printed circuit board is provided with the aforementioned first insertion hole 201, second insertion hole 202, positioning hole 203, first through hole 205 and second through hole 206.
  • two second through holes 206 are numbered “2" and "3" respectively.
  • the second through holes 206 numbered 2 in the two-layer printed circuit board are aligned, and the second through holes 206 numbered 3 are aligned.
  • the two through holes 206 are aligned.
  • the first layer printed circuit board is designed with 18 first jacks 201 for inserting L-shaped pins, and 18 second jacks 202.
  • 18 first jacks 201 and Eighteen second jacks 202 are arranged in pairs, each pair of first jack 201 and second jack 202 is connected to the same filter component to form a filter circuit, and the jacks in the filter circuit are the two connections of the filter circuit end.
  • the number of the first jacks 201 and the second jacks 202 can be designed to be more or less as required.
  • the first jack 201 numbered 1 and the second jack 202 numbered 9 are a pair
  • the first jack 201 numbered 10 and the second jack 202 numbered 18 are a pair
  • the second jack 202 numbered 9 A jack 201 and a second jack 202 numbered 1 are a pair
  • a first jack 201 numbered 18 and a second jack 202 numbered 10 are a pair.
  • the number here is just an example, it can actually be set as needed.
  • some of the circuits connected to the jacks are located on the first layer printed circuit board, and the other parts of the circuits connected to the jacks are located on the second layer printed circuit board.
  • the top surface of the first layer of printed circuit board is used to set filter components, and the filter components on the top surface of the first layer of printed circuit board include common mode inductor M, capacitor C and magnetic beads L .
  • the pins of these filter components pass through the printed circuit board in a direction perpendicular to the top surface, are arranged on the bottom surface of the first layer of the printed circuit board, and are connected by lines on the bottom surface, that is, the dotted line in FIG. 5.
  • the first filter board 200 has multiple filter circuits 210, such as a first filter circuit 211, a second filter circuit 212, and a third filter circuit 213.
  • Each filter circuit 210 in the multiple filter circuit 210 has two connecting ends.
  • the two connecting ends of the filter circuit in this application are a pair of jacks (a first jack 201 and a second jack) on the filter board. Hole 202).
  • the first filter circuit 211 has two series-connected magnetic beads L, and two ends of the two series-connected magnetic beads L are respectively connected to two connection ends of the first filter circuit 211.
  • Fig. 9 shows a circuit diagram of the first filter circuit 211 provided by an embodiment of the present application. Referring to Figs. 5 and 9, the first jack 201 numbered 11 and the second jack 202 numbered 17 are connected with two magnets connected in series.
  • the bead L constitutes the above-mentioned first filter circuit.
  • the number of magnetic beads connected in series in the first filter circuit may be greater than two.
  • FIG. 10 shows a circuit diagram of a second filter circuit 212 provided by an embodiment of the present application. See FIGS.
  • a first jack 201 numbered 9, a second jack 202 numbered 1, and a first jack numbered 18 201 and the second jack 202 numbered 10 are connected to the same common mode inductor M, a second filter circuit is formed between the first jack 201 numbered 9 and the second jack 202 numbered 1, the first jack numbered 18 Another second filter circuit is formed between 201 and the second jack 202 numbered 10.
  • the common mode inductor M has two coils, and each filter circuit uses one of the coils.
  • the two third filter circuits 213 share two common mode inductors M connected in series.
  • the two common mode inductors M are connected to the two connecting ends of a third filter circuit 213.
  • the two common mode inductors M are connected in series.
  • the two ends of the other serially connected coil in M are connected to the two connecting ends of the other third filter circuit 213, and the two connecting ends of the two third filter circuits 213 connected to the same common mode inductor M are respectively connected to the two connecting ends of the capacitor C. ⁇ End connection.
  • FIG. 11 shows a circuit diagram of a third filter circuit 213 provided by an embodiment of the present application. See FIGS.
  • a first jack 201 numbered 1, a second jack 202 numbered 9, and a first jack numbered 10 201 and the second jack 202 numbered 18 are connected to two common mode inductors M in series, and a capacitor C is connected between the first jack 201 numbered 1 and the first jack 201 numbered 10, and the first jack numbered 1
  • a third filter circuit is formed between the hole 201 and the second jack 202 numbered 9, and another third filter circuit is formed between the first jack 201 numbered 10 and the second jack 202 numbered 18.
  • Two series-connected common-mode inductors M form two series-connected coils, and each filter circuit uses one of the series-connected coils.
  • the number of common mode inductors connected in series in the third filter circuit may be greater than two.
  • the filter circuit is made of magnetic beads, common mode inductors, capacitors and other components, that is, the first filter board 200 in this application is filtered by power electronics technology instead of electromagnetic technology.
  • the volume of the first filter board 200 used for filtering by the power electronic technology is much smaller than the filter used for filtering by the electromagnetic technology, so that a miniaturized design can be realized.
  • the multiple circuits on the first filter board 200 may also include only one or more of the first to third filter circuits.
  • the filter circuit may include one or more types, and different types of filter circuits may be used to process different types of signals, so that the filter board can meet the needs of signal filtering processing.
  • the pins of the aforementioned filter components and the lines connecting these pins are provided on the bottom surface of the first-layer printed circuit board, which will not be repeated here.
  • circuit distribution in Figs. 7 and 8 is similar to that in Figs. 5 and 6, except that only the aforementioned first filter circuit is provided on the second-layer printed circuit board, and the second and third filter circuits are not provided.
  • the circuit distribution on each layer of the printed circuit board can also adopt other methods, which is not limited in this application.
  • the specifications of the filter components on the first filter board 200 can be selected as follows:
  • Common mode inductance M automotive (power) electromagnetic interference (EMI) common mode inductance, the package size is 9.2mm*7.2mm*4.5mm;
  • Capacitor C The capacity is 4.7uF ⁇ 10%, the rated voltage is 35V, and the manufacturer's model is CGA4J1X7R1V475KT000N;
  • Magnetic beads L includes two types: the first type, the resistance value is 600 ⁇ , the impedance is 600 ⁇ 30%, the frequency is 100MHz, the type is 0805 packaged patch, the patch thickness is ⁇ 3mm; the second type, the resistance value The range is 2000-2250 ⁇ , the impedance is 2000-2250 ⁇ 20%, the frequency is 100MHz, the type is 0805 packaged patch, and the patch thickness is less than 3mm.
  • the two types of magnetic beads can be selected according to the signal targeted by the filter circuit on the filter board.
  • the first filter circuit used to process the wake-up output signal (PSR_out) can use the first type of magnetic beads to process other signals.
  • the circuit can use the second type of magnetic beads.
  • the filter connection device may further include: at least one second filter plate 400, any one of the second filter plate 400 and the first filter plate 200 have the same mounting dimensions, and any one of the second filter plates 400 and The specifications of filter components in at least one of the filter circuits of the first filter board 200 are different.
  • the installation size refers to the position, number, and size of the first hole 201, the second hole 202, the positioning hole 203, the first through hole 205, and the second through hole 206 on the filter board. As long as the positions, numbers, and sizes of these holes are the same, even if the dimensions of the outer contour of the mounting plate are different, as long as the filter plate can be accommodated in the cavity, it can be replaced.
  • the different specifications of the filter components can refer to any one or more of the electrical parameters of the filter components, such as resistance value, frequency, rated voltage, and capacitance.
  • the filter connection device can be configured with multiple filter boards.
  • the installation dimensions of the multiple filter boards are the same, but the components used in the circuit have different specifications. In this way, different types and specifications can be changed by replacing the filter boards. (Signal size) signals are processed in a targeted manner. Moreover, when the filter plate is replaced, since the structure and size of the filter plate remain unchanged, there is no need to change the structure of the first connector and the second connector, and the replacement is more convenient.
  • the filter connection device provided in the embodiment of the present application can be used for signal filtering of equipment in various fields, such as signal filtering of the OBC/MCU main board in an electric vehicle.
  • Fig. 12 shows a flow chart of a filtering method provided by an embodiment of the present application.
  • the filtering method is executed by the filtering connection device shown in Figs. 1 to 11, and the filtering method includes:
  • Step 401 Obtain multiple signals to be filtered.
  • the signal to be filtered may be a signal transmitted by the cable obtained through the first connector, or a signal output by the main board of the device obtained through the second connector.
  • Step 402 Use a filter connection device to filter the multiple signals respectively.
  • the first filter board 200 in the filter connection device can process the received multiple signals separately through the multiple filter circuits designed on it, instead of using the traditional method of uniformly processing the multiple signals, so that The signal filtering is more targeted and the effect is better.
  • Step 403 Output the filtered multiple signals.
  • the multiple signals output by the filter board are sent to the main board of the device through the second connector, or the multiple signals output by the filter board are transmitted to the cable through the first connector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Filters And Equalizers (AREA)

Abstract

本申请公开了一种滤波连接装置及滤波方法,属于滤波技术领域。滤波连接装置包括:第一连接器、第一滤波板和第二连接器;第一连接器和第二连接器连接;第一连接器具有线缆连接接口和与第一滤波板电连接的第一连接端子,第二连接器具有主板连接端子和与第一滤波板电连接的第二连接端子,第一滤波板用于对第一连接器和第二连接器之间传输的信号进行滤波。由于第一连接器、第一滤波板和第二连接器形成一个整体结构,同时选用空间占用很小的滤波板,占用空间小,因此,该滤波连接装置占用空间小。

Description

滤波连接装置及滤波方法
本申请要求于2019年08月09日提交的申请号为201910735638.2、发明名称为“滤波连接装置及滤波方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及滤波技术领域,特别涉及一种滤波连接装置及滤波方法。
背景技术
随着电力电子技术的高速发展,特别是电力电子技术日益向高频率、高速度、高灵敏度的方向发展,电力、电子设备的功率越来越大,灵敏度越来越高,接收微弱信号的能力越来越强。电力、电子设备的电磁兼容问题日益成为电力电子技术中的核心难点问题和研究热点问题。电磁兼容问题,轻则引起产品性能降低,重则使产品损坏不能工作。
目前常规的解决电磁兼容问题的办法,主要是增加滤波器、磁环或者滤波组件等。以近年来热门的电动汽车领域为例,为了解决电动汽车的车载充电机(On Board Charger,OBC)以及马达控制单元(Motor Control Unit,MCU)等设备的电磁兼容问题,通常需要在OBC或MCU主板上额外增加滤波组件。
示例性地,该滤波组件通常包括一个滤波器和两个连接器。两个连接器负责信号的输入和输出,其中,一个连接器负责滤波器和OBC或MCU的主板相连,另一个连接器负责滤波器和外部线缆相连,滤波器负责信号滤波处理,从而使整个滤波组件具备信号滤波能力。
在OBC或MCU主板上,需要分别为上述滤波组件的两个连接器和一个滤波器预留空间,导致需要预留给该滤波组件的空间较大,不利于车载OBC或MCU小型化。
发明内容
本申请提供了一种滤波连接装置及滤波方法,本发明通过采用小型化的滤波板,同时将滤波板和与外部信号相连的连接器集成,大大降低了占用空间,有利于车载OBC或MCU的小型化,同时本发明的滤波连接装置和方法也可以用于电源或者其他有电磁兼容问题的场合。
第一方面,本申请的至少一实施例提供了一种滤波连接装置,所述滤波连接装置包括:第一连接器、第一滤波板和第二连接器;
所述第一连接器和所述第二连接器连接,所述第一连接器具有线缆连接接口和与所述第一滤波板电连接的第一连接端子,所述第二连接器具有主板连接端子和与所述第一滤波板电连接的第二连接端子,所述第一滤波板用于对所述第一连接器和所述第二连接器之间传输的信号进行滤波。
在本申请实施例中,第一连接器和所述第二连接器连接,第一连接器和第二连接器之间形成腔体,第一滤波板位于所述腔体内,通过第一连接器和第二连接器分别来连接线缆和设备的主板,然后通过第一滤波板来进行滤波。由于第一连接器、第一滤波板和第二连接器形成一个整体结构,同时选用空间占用很小的滤波板,占用空间小,因此,该滤波连接装置占 用空间小。
可选地,所述第一连接器和所述第二连接器之间形成腔体,所述第一滤波板位于所述腔体内。
在该实现方式中,滤波板位于第一连接器和第二连接器之间形成的腔体内,不占用外部空间,因此,该滤波连接装置占用空间小。
可选地,所述第一滤波板具有多路滤波电路,所述多路滤波电路中的每路滤波电路用于对一路信号进行滤波。
在该实现方式中,通过在滤波板上设计多路滤波电路可以对接收到的多路信号分别进行处理,而非采用传统的对多路信号统一处理的方式,使得信号滤波更有针对性、效果更佳。
可选地,所述滤波电路被配置为对所述第一连接器输入的信号进行滤波,以及对所述第二连接器输入的信号进行滤波。
在该实现方式中,滤波电路能够对第一连接器输入到滤波板的信号进行滤波,也可以对第二连接器输入到滤波板的信号进行滤波,实现了该滤波连接装置的双向滤波功能。
可选地,所述第一滤波板为至少一层印制电路板,所述至少一层印制电路板中的每一层印制电路板上设置有所述多路滤波电路中的部分路滤波电路。
在该实现方式中,第一滤波板采用至少一层印制电路板实现。在采用双层或多层印制电路板实现时,可以将多路滤波电路分层设置,这样可以减小整个滤波板的体积,从而更加符合小型化设计的需求。
可选地,每路所述滤波电路包括至少一个滤波元器件;
所述多路滤波电路包括至少一种滤波电路,不同种类的两路所述滤波电路中的滤波元器件至少部分不同,不同种类的所述滤波电路用于对不同种类的信号进行滤波。
在该实现方式中,滤波电路可以包括一种或多种类型,不同类型的滤波电路可以用于处理不同类型的信号,从而使得该滤波板能够满足信号滤波处理的需要。
可选地,所述滤波元器件包括以下至少一种:共模电感、磁珠和电容,所述滤波电路包括的每种所述滤波元器件的数量为一个或多个,且所述滤波电路中的所述滤波元器件的连接方式包括串联和并联中的至少一种。
在该实现方式中,滤波电路采用磁珠、共模电感、电容等元器件制成,也即本申请中滤波板是通过电力电子技术进行滤波,而非采用电磁技术进行滤波,采用电力电子技术进行滤波所使用的滤波板体积远小于采用电磁技术进行滤波所使用的滤波器,从而能够实现小型化设计。同时,每种滤波元器件的数量可以为一个或多个,且连接方式可以选用串联和并联,从而能够针对信号需要进行电路设计,满足信号滤波处理的需要。
可选地,所述滤波连接装置还包括:至少一块第二滤波板,任一块所述第二滤波板与所述第一滤波板的安装尺寸相同,任一块所述第二滤波板与所述第一滤波板的滤波电路中的至少一路滤波电路中滤波元器件的规格不同。
在该实现方式中,滤波连接装置可以配置有多块滤波板,多块滤波板的安装尺寸相同,而电路中所使用的元器件规格不同,这样,可以通过更换滤波板来对不同大小的信号进行针对性的处理。并且,在更换滤波板时,由于滤波板的结构和尺寸不变,因此无需对第一连接器和第二连接器的结构进行更变,更换更方便。
可选地,所述第一滤波板上具有多对插孔,所述多对插孔分别与所述多路滤波电路连接, 所述多对插孔中的每对插孔之间连接一条所述滤波电路;
所述每对插孔包括一个第一插孔和一个第二插孔,所述第二连接器从所述第一滤波板的一面与所述第一插孔电连接,所述第一连接器从所述第一滤波板的另一面与所述第二插孔电连接。
在该实现方式中,通过在滤波板上提供插孔来连接第一连接器和第二连接器,使得第一连接器和第二连接器与滤波电路连起来,一方面方便连接拆装,另一方面能够实现滤波连接装置的免线缆设计,无需为线缆预留布置空间,有利于小型化设计。
可选地,所述第二连接器,包括:转接器和安装罩;
所述安装罩和所述第一连接器之间连接,所述转接器的一端作为所述第二连接端子与所述第一滤波板电连接,所述转接器的另一端从所述安装罩中伸出作为所述主板连接端子。
在该实现方式中,滤波连接装置的第二连接器包括两个部分,通过这两个部分一方面便于拆装,另一方面保证了与滤波板及主板的电连接。
可选地,所述转接器包括多根平行间隔布置的L型插针和绝缘材料块,所述L型插针的两端分别为所述第二连接端子和所述主板连接端子,多根所述L型插针均穿过所述绝缘材料块。
在该实现方式中,采用L型插针能够将滤波连接装置直接插到设备的主板上,便于安装,同时L型插针能够使得滤波连接装置能够沿进线方向平行设置在设备主板上,在垂直于主板方向上所需空间少,使得主板周围的结构设计可以更紧凑。
可选地,所述第二连接端子插接在所述第一插孔中,且多个所述第一插孔与多根所述L型插针一一对应。
在该实现方式中,第二连接器通过L型插针和第一插孔插接,一方面能够便于拆装,另一方面,实现了不同路信号通过第二连接器中不同的L型插针进行传输,互不干扰。
可选地,所述安装罩为屏蔽罩。
在该实现方式中,通过设计屏蔽罩可以减小主板等对滤波电路板的干扰,保证滤波的效果。同时,也能减小滤波电路板对主板的干扰。
可选地,所述第一连接器包括:壳体和位于所述壳体内的插针,所述壳体的两端分别具有进线口和与所述第二连接器的连接部,所述插针的一端位于所述进线口内与所述进线口形成所述线缆连接接口,所述插针的另一端从所述连接部伸出形成所述第一连接端子。
在该实现方式中,通过两端分别具有进线口和与连接部的壳体来实现与线缆及第二连接器连接,壳体内的插针的一端位于进线口内与进线口形成线缆连接接口,插针的另一端从连接部处伸出形成第一连接端子,保证第一连接器可以与线缆及滤波板的电连接。
可选地,所述第一连接端子插接在所述第二插孔中,且多个所述第二插孔与多根所述插针一一对应。
在该实现方式中,第一连接器通过插针和第二插孔插接,一方面能够便于拆装,另一方面,实现了不同路信号通过第一连接器中不同的插针进行传输,互不干扰。
可选地,所述壳体还包括位于所述进线口和所述连接端之间的密封板,所述插针穿过所述密封板。
在该实现方式中,通过在第一连接器中设置密封板,使得连接线缆的一端密封,避免外部的水汽从进线口进入腔体内,影响滤波连接装置的稳定性。
可选地,所述第一连接器和所述第二连接器之间可拆卸连接。
在该实现方式中,通过可拆卸连接第一连接器和第二连接器,从而实现整个滤波连接装置的可拆卸连接,便于更换其中的部件。
可选地,所述第一连接器和所述第二连接器之间通过紧固件连接,且连接所述第一连接器和所述第二连接器的紧固件穿过所述第一滤波板。
在该实现方式中,通过紧固件连接第一、第二连接器,实现可拆卸连接;同时,该紧固件穿过第一滤波板,保证滤波板的稳固性。
示例性地,紧固件可以为螺栓,第一滤波板上开设有供螺栓通过的通孔。
第二方面,本申请的至少一实施例提供了一种滤波方法,所述滤波方法由如第一方面任一项所述的滤波连接装置执行,所述滤波方法包括:
获取待滤波的多路信号;
采用所述滤波连接装置分别对所述多路信号进行滤波;
输出滤波后的所述多路信号。
在本申请实施例中,通过在滤波板上设计多路滤波电路可以对接收到的多路信号分别进行处理,而非采用传统的对多路信号统一处理的方式,使得信号滤波更有针对性、效果更佳。
附图说明
图1示出了本申请的一实施例提供的一种滤波连接装置的结构示意图;
图2是图1所示的滤波连接装置的分解示意图;
图3是图1中第一连接器的结构示意图;
图4是图1所示的滤波连接装置另一个方向上的视图;
图5~图8为本申请实施例提供的一种双层印制电路板的结构示意图;
图9示出了本申请实施例提供的第一滤波电路的电路图;
图10示出了本申请实施例提供的第二滤波电路的电路图;
图11示出了本申请实施例提供的第三滤波电路的电路图;
图12示出了本申请的一实施例提供的一种滤波方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本申请的一实施例提供的一种滤波连接装置的结构示意图;图2是图1所示的滤波连接装置的分解示意图。参见图1和图2,该滤波连接装置包括:第一连接器100、第一滤波板200和第二连接器300,第一连接器100和第二连接器300连接。
图3是图1中第一连接器100的结构示意图。参见图2和图3,该第一连接器100具有相对设置的线缆连接接口101和第一连接端子102,第一连接器100的线缆连接接口101用于与线缆电连接,第一连接器100的第一连接端子102与第一滤波板200电连接。
再次参见图1和图2,第二连接器300具有相对设置的主板连接端子301和第二连接端 子302,第二连接器300的第二连接端子302与第一滤波板200电连接,第二连接器300的主板连接端子301用于与设备的主板电连接。
第一滤波板200用于对第一连接器100和第二连接器300之间传输的信号进行滤波。
在本申请实施例中,第一连接器100和第二连接器300连接,第一连接器100和第二连接器300之间形成腔体,第一滤波板200位于腔体内,通过第一连接器100和第二连接器300分别来连接线缆和设备的主板,然后通过第一滤波板200来进行滤波。由于第一连接器100、第一滤波板200和第二连接器300形成一个整体结构,同时选用空间占用很小的滤波板,占用空间小,因此,该滤波连接装置占用空间小。
示例性地,前述设备可以为电动汽车,主板可以为电动汽车的OBC的主板,或者MCU的主板。相应地,前述电缆为给OBC充电的电缆,或者给MCU供电或传输信号的电缆。对于电动汽车的OBC的主板或者MCU的主板而言,空间有限,本申请提供的滤波连接装置由于占用空间小,能够满足该场景下的滤波需求。当然,前述电动汽车以及相应的主板和电缆类型仅为举例,本申请提供的滤波连接装置也适用于其他设备的信号滤波工作。
在本申请实施例中,第一连接器100和第二连接器300之间形成腔体(图未示出),第一滤波板200位于腔体内。由于滤波板位于第一连接器100和第二连接器300之间形成的腔体内,不占用外部空间,因此,该滤波连接装置占用空间小。
如图1和图2所示,在本申请的一种实现方式中,第二连接器300可以包括:转接器310和安装罩320。
安装罩320和第一连接器100连接,安装罩320和第一连接器100之间形成前述腔体,转接器310的一端作为第二连接端子302与第一滤波板200电连接,转接器310的另一端从安装罩320中伸出作为主板连接端子301。
在该实现方式中,滤波连接装置的第二连接器300包括转接器310和安装罩320两个部分,通过这两个部分一方面便于拆装,另一方面保证了与第一滤波板200及主板的电连接。
在本申请的一种实现方式中,该安装罩320为盒型结构,如图1和2所示,该安装罩320包括矩形底板321以及三块侧板322,三块侧板322围绕该矩形底板321的三边且与该矩形底板321垂直布置。如图2所示,矩形底板321的第四边设置有与该矩形底板321垂直的窄侧板322a,该窄侧板322a在垂直于矩形底板321的方向上的宽度小于另外三块侧板322,这样可以便于安装罩320和第一连接器100的装配,该第一连接器100可以从窄侧板322a的一侧放入盒型结构内完成装配。
在其他可能的实现方式中,侧板322的数量也可以更多或者更少,本申请对此不做限制。
如图1所示,该安装罩320的矩形底板321上开设有通孔323,该通孔323用于供转接器310作为主板连接端子301的一端穿过。示例性地,该通孔323可以为矩形。
图1和图2中关于安装罩的结构仅为一种示例性地,在其他实施例中,该安装罩320也可以采用其他形状实现。
可选地,安装罩320可以为屏蔽罩。
在该实现方式中,通过设计屏蔽罩可以减小主板等对滤波电路板的干扰,保证滤波的效果。同时,也能减小滤波电路板对主板的干扰。
示例性地,该安装罩320为金属安装罩,从而能够实现上述屏蔽效果。
参见图2,转接器310可以包括多根平行间隔布置的L型插针311和绝缘材料块312,L 型插针311的两端分别为第二连接端子302和主板连接端子301,多根L型均穿过311通过绝缘材料块312进行固定定位。
在该实现方式中,采用L型插针311能够将滤波连接装置直接插到设备的主板上,便于安装,同时L型插针311能够使得滤波连接装置能够沿进线方向平行设置在设备主板上,在垂直于主板方向上所需空间少,使得主板周围的结构设计可以更紧凑。
如图2所示,多根L型插针311可以设置成2排,从而减小L型插针311所占的空间,便于实现滤波连接装置的小型化。在其他可能的实现方式中,多根L型插针311也可以设置成更多排或更少排,例如1排、3排等。
如图2所示,多根L型插针311可以采用2块间隔布置的绝缘材料块312固定,使得多根L型插针311更稳固。在其他可能的实现方式中,绝缘材料块312的数量可以布置更多或更少,例如1块、3块等。
示例性地,其中一块绝缘材料块312上设置有两个定位桩3121,两个定位桩3121的延伸方向和L型插针311作为主板连接端子301的一端的延伸方向平行。
该定位桩3121与设备的主板上的定位孔装配,方便定位以及有助于第二连接器300和主板之间的连接。设置有定位桩3121的绝缘材料块312位于矩形底板321的通孔323外,保证能够与主板连接。
如图2所示,另一块绝缘材料块312上设置有两个定位脚3122,两个定位脚3122的延伸方向和L型插针311作为第二连接端子302的一端的延伸方向平行。
这里,定位脚3122的尺寸与L型插针311一端的尺寸相近。
如图2所示,第一滤波板200上具有第一插孔201,该L型插针311可以插接到第一插孔201中。如图2所示,用于插设L型插针311的第一插孔201的数量为多个,第二连接端子302插接在第一插孔201中,且多个第一插孔201与多根L型插针311一一对应,也即每个第一插孔201插接一个第二连接端子302。用于插设L型插针311的第一插孔201的数量可以根据实际需要布置。示例性地,用于插设L型插针311的第一插孔201可以排成2排,除此之外,还可以设置两个用于插设定位脚3122的第一插孔201,这两个第一插孔201设置在这两排之外,这样便于区分。
该定位脚3122与设备的滤波板上的第一插孔201位配合,帮助转接器310和第一滤波板200间的定位和装配。设置有定位脚3122的绝缘材料块312位于矩形底板321的通孔323内,定位脚3122从该通孔323向滤波板伸出,以与滤波板上的第一插孔201插接。将绝缘材料块312设置在通孔323中,可以保证L型插针311和屏蔽罩之间绝缘,避免多条线路之间短路。
在本申请实施例中,定位桩3121和定位脚3122可以与绝缘材料块312采用相同材料制作,且采用一体成型工艺设计。
示例性地,转接器310可以采用注塑方式成型,即将多根L型插针311放置在注塑模具中,通过注塑形成包裹多根L型插针311的绝缘材料块312及定位桩3121。
图4是图1所示的滤波连接装置另一个方向上的视图。如图2~图4所示,在本申请的一种实现方式中,第一连接器100可以包括:壳体110和位于壳体110内的插针120,壳体110的两端分别具有进线口111和与第二连接器300的连接部112,插针120的一端位于进线口111内与所述进线口111形成线缆连接接口101,插针120的另一端从连接部112处伸出形成第一连接端子102。
在该实现方式中,通过两端分别具有进线口111和与连接部112的壳体110来实现与线缆及第二连接器300连接,壳体110内的插针120的一端位于进线口111内与进线口111形成线缆连接接口101,插针120的另一端从连接部112处伸出形成第一连接端子102,保证插针120可以与线缆及第一滤波板200的电连接。
如图2和图3所示,插针120可以布置成多排,且该插针120在壳体110内可弯折,使得在线缆连接接口101和第一连接端子102处的排数不同。
示例性地,该第一连接器100包括18根插针120,在线缆连接接口101处,这18根插针120排成3排,而在第一连接端子102处,这18根插针120排成2排。这里的插针120数量和排数仅为举例,在其他可能的实现方式中,插针120的数量和排数均可以设计更多或更少。
如图2所示,第一滤波板200上具有第二插孔202,该第一连接端子102的插针120可以插接到第二插孔202中。如图2所示,第二插孔202的数量为多个,第一连接端子102插接在第二插孔202中,且多个第二插孔202与多根插针120一一对应,也即每个第二插孔202插接一个第一连接端子102。第二插孔202的数量可以根据实际需要布置。示例性地,第二插孔202可以排成3排,用于插设3排插针120。
如图2~图4所示,壳体110还可以包括位于进线口111和连接部112之间的密封板113,插针120穿过密封板113。
在该实现方式中,通过在第一连接器中设置密封板,使得连接线缆的一端密封,避免外部的水汽从进线口进入腔体内,影响滤波连接装置的稳定性。
如图2和图3所示,壳体110的连接部112朝向第二连接器300的一面设有定位柱114,第一滤波板200设置有与所述定位柱114对应的定位孔203。
在该实现方式中,通过设计定位柱114和定位孔203实现第一连接器100和第一滤波板200之间的定位,便于安装。
如图2和图3所示,壳体110上布置有安装螺孔115,例如图3所示,壳体110上有2个对角布置的安装螺孔115。相应地,第一滤波板200上设有第一通孔204,螺栓205依次穿过第一通孔204和壳体110上的安装螺孔105,实现第一滤波板200和第一连接器100之间的固定。
如图2和图3所示,壳体110朝向第二连接器300的一面上设置有螺柱116,例如图3所示,壳体110上有2个对角布置的螺柱116,且两个螺柱116和前述两个安装螺孔115呈四角布置。参见图2和图4,壳体110背向第二连接器300的一面上设置有与螺柱116连通的螺母安装孔117。
相应地,第一滤波板200上设有第二通孔206,安装罩320上设置有通孔(图中未示出)。
螺柱116穿过第二通孔206后与安装罩320上的通孔对齐,安装罩320上的螺栓324依次穿过安装罩320上的通孔、螺柱116和螺母安装孔117,与螺母安装孔117中的螺母(图中未示出)螺纹连接。
通过上述方式实现,第一连接器100、第一滤波板200和第二连接器300间的装配和固定,稳固性好,且便于拆装。
可选地,前述螺栓324和安装罩320之间还设有垫片325,起到缓冲作用。
如图2和图3所示,连接部112为一长方体结构,连接部112朝向第二连接器300的一 面设置有前述定位柱114、安装螺孔115、螺柱116等结构。
示例性地,连接部112朝向第二连接器300的一面上还设置有多个凹槽118,这些凹槽118并未穿过前述密封板113,这些凹槽118可以减轻壳体100的整体重量,从而实现滤波连接装置的轻量设计。
如图2和图3所示,进线口111为一筒状结构,该筒状结构的外表面上布置有卡扣结构119,该卡扣结构119用于在线缆的接头插入进线口111时与之卡接。
图2和图3中关于壳体110的结构仅为一种示例性地,在其他实施例中,该壳体110也可以采用其他形状实现。
再次参见图2,第一滤波板200包括上布置有滤波元器件207,滤波元器件207用于构成滤波电路。
在本申请实施例的一种实现方式中,第一滤波板200可以具有多路滤波电路,多路滤波电路中的每路滤波电路用于对一路信号进行滤波。
在该实现方式中,通过在第一滤波板200上设计多路滤波电路可以对接收到的多路信号分别进行处理,而非采用传统的对多路信号统一处理的方式,使得信号滤波更有针对性、效果更佳。
可选地,该滤波电路被配置为对第一连接器100输入的信号进行滤波,以及对第二连接器300输入的信号进行滤波。
在该实现方式中,滤波电路能够对第一连接器输入到滤波板的信号进行滤波,也可以对第二连接器输入到滤波板的信号进行滤波,实现了该滤波连接装置的双向滤波功能。
在一种可能的实现方式中,多路滤波电路中的每一路滤波电路均可以对第一连接器100输入的信号进行滤波,以及对第二连接器300输入的信号进行滤波。
在另一种可能的实现方式中,多路滤波电路中只有部分滤波电路均可以对第一连接器100输入的信号进行滤波,以及对第二连接器300输入的信号进行滤波;多路滤波电路中的其余滤波电路只能对第一连接器100输入的信号进行滤波,或者对第二连接器300输入的信号进行滤波。
可选地,每路滤波电路包括至少一个滤波元器件207;多路滤波电路可以包括至少一种滤波电路,不同种类的两路滤波电路中的滤波元器件207至少部分不同,不同种类的滤波电路用于对不同种类的信号进行滤波。
在该实现方式中,滤波电路可以包括一种或多种类型,不同类型的滤波电路可以用于处理不同类型的信号,从而使得该滤波板能够满足信号滤波处理的需要。
可选地,滤波元器件207包括以下至少一种:共模电感、磁珠和电容,滤波电路包括的每种滤波元器件207的数量为一个或多个,且滤波电路中的滤波元器件207的连接方式包括串联和并联中的至少一种。
在该实现方式中,滤波电路采用磁珠、共模电感、电容等元器件制成,也即本申请中滤波板是通过电力电子技术进行滤波,而非采用电磁技术进行滤波,采用电力电子技术进行滤波所使用的滤波板体积远小于采用电磁技术进行滤波所使用的滤波器,从而能够实现小型化设计。同时,每种滤波元器件的数量可以为一个或多个,且连接方式可以选用串联和并联,从而能够针对信号需要进行电路设计,满足信号滤波处理的需要。
可选地,第一滤波板200上具有多对插孔,多对插孔分别与多路滤波电路连接,每对插 孔之间连接有一条滤波电路;每对插孔包括1个第一插孔201和一个第二插孔202,第二连接器300从第一滤波板200的一面与第一插孔201电连接,第一连接器100从第一滤波板200的另一面与第二插孔202电连接,也即第一连接器100和第二连接器300从第一滤波板200相反的两面连接第一滤波板200。
在该实现方式中,通过在第一滤波板200上提供插孔来连接第一连接器100和第二连接器300,一方面方便连接拆装,另一方面能够实现滤波连接装置的免线缆设计,无需为线缆预留布置空间,有利于小型化设计。
在本申请实施例的一种实现方式中,第一滤波板200可以为至少一层印制电路板,至少一层印制电路板中的每一层印制电路板上设置有多路滤波电路中的部分路滤波电路。至少一层印制电路板是指单层印制电路板、或者由两层或多层印制电路板复合而成,前述滤波元器件207同时设置在各层印制电路板上。例如,在双层印制电路板中,滤波元器件207同时设置在双层印制电路板的两面上。
在该实现方式中,第一滤波板采用至少一层印制电路板实现。在采用双层或多层印制电路板实现时,可以将多路滤波电路分层设置,这样可以减小整个第一滤波板200的体积,从而更加符合小型化设计的需求。
在其他实现方式中,该第一滤波板200也可以为单层印制电路板。
下面以双层印制电路板为例来介绍本申请中滤波板的结构,双层印制电路板中的每一层印制电路板均包括正反两面,每层印制电路板中朝向另一层印制电路板的一面用来走线,每层印制电路板背向另一层印制电路板的一面(也即朝外的一面)用来布置滤波元器件207。
图5~图8为本申请实施例提供的一种双层印制电路板的结构示意图。其中,图5为第一层印制电路板顶面的电路图,图6为第一层印制电路板底面(朝向第二层印制电路板)的电路图,图7为第二层印制电路板底面的电路图,图8为第二层印制电路板顶面(朝向第一层印制电路板)的电路图。
如图5~图8所示,每层印制电路板上均设置有前述第一插孔201、第二插孔202、定位孔203、第一通孔205和第二通孔206。
图中两个第二通孔206分别编号“2”和“3”,在双层印制电路板中,两层图印制电路板中编号2的第二通孔206对齐,编号3的第二通孔206对齐。
参见图5,第一层印制电路板上设计有18个用于插设L型插针的第一插孔201,还设计有18个第二插孔202。18个第一插孔201和18个第二插孔202成对设置,每对第一插孔201和第二插孔202连接同一滤波元器件,构成一条滤波电路,滤波电路中的插孔即为该滤波电路的两个连接端。在其他可能的实现方式中,第一插孔201和第二插孔202的数量可以根据需要设计得更多或更少。
例如图5中编号1的第一插孔201和编号9的第二插孔202为一对、编号10的第一插孔201和编号18的第二插孔202为一对、编号9的第一插孔201和编号1的第二插孔202为一对、编号18的第一插孔201和编号10的第二插孔202为一对。这里的编号仅为示例,实际可以根据需要设置。
在这些成对设置的插孔中,部分对插孔连接的电路位于第一层印制电路板上,其他部分对插孔连接的电路位于第二层印制电路板上。
如图5所示,第一层印制电路板的顶面用于设置滤波元器件,位于第一层印制电路板的 顶面的滤波元器件包括共模电感M、电容C和磁珠L。这些滤波元器件的引脚沿垂直于顶面的方向穿过印制电路板,设置到第一层印制电路板的底面上,通过底面上的线路连接,也即图5中的虚线。
示例性地,该第一滤波板200具有多路滤波电路210,例如第一滤波电路211、第二滤波电路212和第三滤波电路213。多路滤波电路210中的每路滤波电路210具有两个连接端,本申请中滤波电路的两个连接端也即滤波板上的一对插孔(一个第一插孔201和一个第二插孔202)。
第一滤波电路211具有两个串联的磁珠L,两个串联的磁珠L的两端分别与第一滤波电路211的两个连接端连接。图9示出了本申请实施例提供的第一滤波电路211的电路图,参见图5和9,编号11的第一插孔201和编号17的第二插孔202间连接有2个串联的磁珠L,构成上述第一滤波电路。这里,第一滤波电路中串联的磁珠的数量可以大于2。
两个第二滤波电路212共用一个共模电感M,共模电感M的一个线圈的两端与一个第二滤波电路212的两个连接端连接,共模电感M的另一个线圈的两端与另一个第二滤波电路212的两个连接端连接。图10示出了本申请实施例提供的第二滤波电路212的电路图,参见图5和10,编号9的第一插孔201、编号1的第二插孔202、编号18的第一插孔201和编号10的第二插孔202连接同一共模电感M,编号9的第一插孔201和编号1的第二插孔202之间形成一个第二滤波电路,编号18的第一插孔201和编号10的第二插孔202之间形成另一个第二滤波电路。该共模电感M具有2个线圈,每个滤波电路使用其中一个线圈。
两个第三滤波电路213共用两个串联的共模电感M,两个共模电感M中一路串联的线圈的两端与一个第三滤波电路213的两个连接端连接,两个共模电感M中另一路串联的线圈的两端与另一个第三滤波电路213的两个连接端连接,两个第三滤波电路213与同一共模电感M连接的两个连接端分别与电容C的两端连接。图11示出了本申请实施例提供的第三滤波电路213的电路图,参见图5和11,编号1的第一插孔201、编号9的第二插孔202、编号10的第一插孔201和编号18的第二插孔202连接串联的两个共模电感M,且编号1的第一插孔201和编号10的第一插孔201间连接有电容C,编号1的第一插孔201和编号9的第二插孔202之间形成一个第三滤波电路,编号10的第一插孔201和编号18的第二插孔202之间形成另一个第三滤波电路。两个串联的共模电感M形成2路串联的线圈,每个滤波电路使用其中一路串联的线圈。这里,第三滤波电路中串联的共模电感的数量可以大于2。
在该实现方式中,滤波电路采用磁珠、共模电感、电容等元器件制成,也即本申请中第一滤波板200是通过电力电子技术进行滤波,而非采用电磁技术进行滤波,采用电力电子技术进行滤波所使用的第一滤波板200体积远小于采用电磁技术进行滤波所使用的滤波器,从而能够实现小型化设计。
需要说明的是,第一滤波板200上的多条电路也可以只包括第一~第三滤波电路中的一种或几种。滤波电路可以包括一种或多种类型,不同类型的滤波电路可以用于处理不同类型的信号,从而使得该滤波板能够满足信号滤波处理的需要。
如图6所示,第一层印制电路板的底面上设置有前述滤波元器件的引脚以及连接这些引脚的线路,这里不做赘述。
图7和图8中的电路分布与图5及图6类似,区别仅在于,在第二层印制电路板上仅设置有前述第一滤波电路,没有设置第二、第三滤波电路。当然,每层印制电路板上的电路分 布也可以采用其他方式,本申请对此不做限制。
在本公开实施例中,第一滤波板200上的滤波元器件的规格可以选择如下:
a、共模电感M:车载(功率类)电磁干扰(Electromagnetic Interference,EMI)共模电感,封装尺寸为9.2mm*7.2mm*4.5mm;
b、电容C:容量为4.7uF±10%,额定电压为35V,厂家型号CGA4J1X7R1V475KT000N;
c、磁珠L:包括两类:第一类,阻值为600Ω,阻抗为600Ω±30%,频率为100MHz,型式为0805封装的贴片,贴片厚度≤3mm;第二类,阻值范围为2000-2250Ω,阻抗为2000-2250Ω±20%,频率为100MHz,型式为0805封装的贴片,贴片厚度≤3mm。这里两类磁珠可以根据滤波板上的滤波电路所针对的信号进行选择,例如用于处理唤醒输出信号(PSR_out)的第一滤波电路可以选用第一类磁珠,处理其他信号的第一滤波电路可以选用第二类磁珠。
在本公开实施例中,该滤波连接装置还可以包括:至少一块第二滤波板400,任一块第二滤波板400与第一滤波板200的安装尺寸均相同,任一块第二滤波板400与第一滤波板200的滤波电路中的至少一路滤波电路中滤波元器件的规格不同。
这里,安装尺寸是指滤波板上的第一插孔201、第二插孔202、定位孔203、第一通孔205和第二通孔206的位置、数量、及尺寸大小。只要这些孔的位置、数量、及尺寸大小相同,即使安装板外轮廓的尺寸不同,只要滤波板能够容纳在腔体内,均可以实现替换。
滤波元器件的规格不同可以是指滤波元器件的任意一种或多种电气参数不同,例如电阻值、频率、额定电压、电容大小等。
在该实现方式中,滤波连接装置可以配置有多块滤波板,多块滤波板的安装尺寸相同,而电路中所使用的元器件规格不同,这样,可以通过更换滤波板来对不同种类和规格(信号大小)的信号进行针对性的处理。并且,在更换滤波板时,由于滤波板的结构和尺寸不变,因此无需对第一连接器和第二连接器的结构进行更变,更换更方便。
本申请实施例提供的滤波连接装置,可以用于各个领域的设备的信号滤波,例如电动汽车中OBC/MCU的主板的信号滤波工作。
图12示出了本申请的一实施例提供的一种滤波方法的流程图,该滤波方法采用图1-图11所示滤波连接装置执行,该滤波方法包括:
步骤401:获取待滤波的多路信号。
这里待滤波的信号既可以是通过第一连接器获取到的线缆传输的信号,也可以是通过第二连接器获取到的设备的主板输出的信号。
步骤402:采用滤波连接装置分别对多路信号进行滤波。
示例性地,滤波连接装置中的第一滤波板200通过其上设计的多路滤波电路可以对接收到的多路信号分别进行处理,而非采用传统的对多路信号统一处理的方式,使得信号滤波更有针对性、效果更佳。
步骤403:输出滤波后的多路信号。
例如,通过第二连接器将滤波板输出的多路信号发送给设备的主板,或者,通过第一连接器将滤波板输出的多路信号传输给线缆。
以上所述仅为本申请的可选实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种滤波连接装置,其特征在于,所述滤波连接装置包括:第一连接器(100)、第一滤波板(200)和第二连接器(300);
    所述第一连接器(100)和所述第二连接器(300)连接,所述第一连接器(100)具有线缆连接接口(101)和与所述第一滤波板(200)电连接的第一连接端子(102),所述第二连接器(300)具有主板连接端子(301)和与所述第一滤波板(200)电连接的第二连接端子(302),所述第一滤波板(200)用于对所述第一连接器(100)和所述第二连接器(300)之间传输的信号进行滤波。
  2. 根据权利要求1所述的滤波连接装置,其特征在于,所述第一连接器(100)和所述第二连接器(300)之间形成腔体,所述第一滤波板(200)位于所述腔体内。
  3. 根据权利要求1所述的滤波连接装置,其特征在于,所述第一滤波板(200)具有多路滤波电路(210),所述多路滤波电路(210)中的每路滤波电路(210)用于对一路信号进行滤波。
  4. 根据权利要求3所述的滤波连接装置,其特征在于,所述滤波电路(210)被配置为对所述第一连接器(100)输入的信号进行滤波,以及对所述第二连接器(300)输入的信号进行滤波。
  5. 根据权利要求3所述的滤波连接装置,其特征在于,所述第一滤波板(200)为至少一层印制电路板,所述至少一层印制电路板中的每一层印制电路板上设置有所述多路滤波电路(210)中的部分路滤波电路(210)。
  6. 根据权利要求3所述的滤波连接装置,其特征在于,所述每路滤波电路(210)包括至少一个滤波元器件(207);
    所述多路滤波电路(210)包括至少一种滤波电路(210),不同种类的两路所述滤波电路(210)中的滤波元器件(207)至少部分不同,不同种类的所述滤波电路(210)用于对不同种类的信号进行滤波。
  7. 根据权利要求6所述的滤波连接装置,其特征在于,所述滤波元器件(207)包括以下至少一种:共模电感、磁珠和电容,所述滤波电路(210)包括的每种所述滤波元器件(207)的数量为一个或多个,且所述滤波电路(210)中的所述滤波元器件(207)的连接方式包括串联和并联中的至少一种。
  8. 根据权利要求3所述的滤波连接装置,其特征在于,所述滤波连接装置还包括:至少一块第二滤波板,任一块所述第二滤波板与所述第一滤波板(200)的安装尺寸相同,任一块所述第二滤波板与所述第一滤波板(200)的滤波电路中的至少一路滤波电路中滤波元器件(207)的规格不同。
  9. 根据权利要求3至8任一项所述的滤波连接装置,其特征在于,所述第一滤波板(200)上具有多对插孔,所述多对插孔分别与所述多路滤波电路(210)连接,所述多对插孔中的每对插孔之间连接一条所述滤波电路(210);
    所述每对插孔包括一个第一插孔(201)和一个第二插孔(202),所述第二连接器(300) 从所述第一滤波板(200)的一面与所述第一插孔(201)电连接,所述第一连接器(100)从所述第一滤波板(200)的另一面与所述第二插孔(202)电连接。
  10. 根据权利要求9所述的滤波连接装置,其特征在于,所述第二连接器(300),包括:转接器(310)和安装罩(320);
    所述安装罩(320)和所述第一连接器(100)连接,所述转接器(310)的一端作为所述第二连接端子(302)与所述第一滤波板(200)电连接,所述转接器(310)的另一端从所述安装罩(320)中伸出作为所述主板连接端子(301)。
  11. 根据权利要求10所述的滤波连接装置,其特征在于,所述转接器(310)包括多根平行间隔布置的L型插针(311)和绝缘材料块(312),所述L型插针(311)的两端分别为所述第二连接端子(302)和所述主板连接端子(301),多根所述L型插针(311)均穿过所述绝缘材料块(312)。
  12. 根据权利要求11所述的滤波连接装置,其特征在于,所述第二连接端子(302)插接在所述第一插孔(201)中,且多个所述第一插孔(201)与多根所述L型插针(311)一一对应。
  13. 根据权利要求10所述的滤波连接装置,其特征在于,所述安装罩(320)为屏蔽罩。
  14. 根据权利要求9所述的滤波连接装置,其特征在于,所述第一连接器(100)包括:壳体(110)和位于所述壳体(110)内的插针(120),所述壳体(110)的两端分别具有进线口(111)和与所述第二连接器(300)的连接部(112),所述插针(120)的一端位于所述进线口(111)内与所述进线口(111)形成所述线缆连接接口(101),所述插针(120)的另一端从所述连接部(112)伸出形成所述第一连接端子(102)。
  15. 根据权利要求14所述的滤波连接装置,其特征在于,所述第一连接端子(102)插接在所述第二插孔(202)中,且多个所述第二插孔(202)与多根所述插针(120)一一对应。
  16. 根据权利要求14所述的滤波连接装置,其特征在于,所述壳体(110)还包括位于所述进线口(111)和所述连接部(112)之间的密封板(113),所述插针(120)穿过所述密封板(113)。
  17. 根据权利要求1至8任一项所述的滤波连接装置,其特征在于,所述第一连接器(100)和所述第二连接器(300)之间通过紧固件连接,且连接所述第一连接器(100)和所述第二连接器(300)的紧固件穿过所述第一滤波板(200)。
  18. 一种滤波方法,其特征在于,所述滤波方法由如权利要求1至17任一项所述的滤波连接装置执行,所述滤波方法包括:
    获取待滤波的多路信号;
    采用所述滤波连接装置分别对所述多路信号进行滤波;
    输出滤波后的所述多路信号。
PCT/CN2020/092664 2019-08-09 2020-05-27 滤波连接装置及滤波方法 WO2021027360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563675A JP2022530233A (ja) 2019-08-09 2020-05-27 フィルタ接続装置およびフィルタリング方法
EP20852580.8A EP3930116B1 (en) 2019-08-09 2020-05-27 Filter connection apparatus and filter method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910735638.2A CN110571606B (zh) 2019-08-09 2019-08-09 滤波连接装置及滤波方法
CN201910735638.2 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021027360A1 true WO2021027360A1 (zh) 2021-02-18

Family

ID=68775058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092664 WO2021027360A1 (zh) 2019-08-09 2020-05-27 滤波连接装置及滤波方法

Country Status (4)

Country Link
EP (1) EP3930116B1 (zh)
JP (1) JP2022530233A (zh)
CN (2) CN114094403B (zh)
WO (1) WO2021027360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803923B (zh) * 2021-07-30 2023-06-01 昱萊股份有限公司 電連接器及其濾波器模組

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094403B (zh) * 2019-08-09 2024-06-14 华为数字能源技术有限公司 滤波连接装置及滤波方法
CN113671222B (zh) * 2021-08-17 2022-04-22 深圳市精泰达科技有限公司 具有高屏蔽性能的滤波模组及其对应的屏蔽箱
CN114759389A (zh) * 2022-03-23 2022-07-15 北京理工大学重庆创新中心 一种车载ecu90°分离式连接器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540564B1 (en) * 2002-02-13 2003-04-01 Hon Hai Precision Ind. Co., Ltd. Connector assembly
CN207265339U (zh) * 2017-09-20 2018-04-20 东莞湧德电子科技有限公司 带滤波功能的电缆连接器
CN207442098U (zh) * 2017-09-20 2018-06-01 东莞湧德电子科技有限公司 带滤波功能的结构紧凑型连接器
CN207504271U (zh) * 2017-09-26 2018-06-15 东莞湧德电子科技有限公司 一种带滤波功能的电缆连接器
CN207691122U (zh) * 2017-09-20 2018-08-03 东莞湧德电子科技有限公司 一种带滤波功能的电缆连接器
CN110571606A (zh) * 2019-08-09 2019-12-13 华为技术有限公司 滤波连接装置及滤波方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161570U (zh) * 1988-04-30 1989-11-09
JP2510786Y2 (ja) * 1991-06-12 1996-09-18 矢崎総業株式会社 シ―ルドコネクタ
EP0692848A4 (en) * 1994-02-03 1997-07-23 Nippon Carbide Kogyo Kk FILTER CONNECTOR
JPH11289235A (ja) * 1998-04-03 1999-10-19 Nippon Telegr & Teleph Corp <Ntt> 通信濾波方法及び通信線用フィルタ
US6238247B1 (en) * 1999-09-22 2001-05-29 Berg Technology, Inc. Electrical connector with retaining device for releasably retaining component package therein
CN2466822Y (zh) * 2001-02-28 2001-12-19 宣得股份有限公司 具有电子元件连接器的线路板
CN2805147Y (zh) * 2005-04-28 2006-08-09 连康电子股份有限公司 连接器
CN2891329Y (zh) * 2006-02-18 2007-04-18 富士康(昆山)电脑接插件有限公司 堆叠式模组连接器
TWI393300B (zh) * 2011-02-01 2013-04-11 Ajoho Entpr Co Ltd Filter module and manufacturing method of electronic signal connector
CN202495644U (zh) * 2012-02-28 2012-10-17 佳邦科技股份有限公司 使用积层式共模滤波模块的电连接器
CN203180858U (zh) * 2013-01-24 2013-09-04 番禺得意精密电子工业有限公司 滤波电路及应用该电路的电连接器
CN103346755B (zh) * 2013-07-02 2015-08-26 天津精通控制仪表技术有限公司 一种滤波模块
TWI540594B (zh) * 2013-09-10 2016-07-01 緯創資通股份有限公司 傳輸線及濾波模組
CN203787649U (zh) * 2014-04-09 2014-08-20 东莞建冠塑胶电子有限公司 一种适合smt制程的网络连接器
CN203826614U (zh) * 2014-04-18 2014-09-10 李洋银 网络连接器
CN105375090A (zh) * 2015-12-09 2016-03-02 重庆大及电子科技有限公司 一种快速安装式滤波板
CN205376948U (zh) * 2015-12-31 2016-07-06 东莞鸿爱斯通信科技有限公司 适用于腔体滤波器的连接器
CN205960335U (zh) * 2016-05-31 2017-02-15 康舒科技股份有限公司 滤波连接器及其滤波电路板
US10236648B2 (en) * 2016-06-01 2019-03-19 Server Technology, Inc. Power distribution unit system incorporating smart cables and adapters
WO2018009430A1 (en) * 2016-07-08 2018-01-11 Commscope Technologies Llc Emi reduction within a connector using a feed-through capacitor
CN205945668U (zh) * 2016-08-22 2017-02-08 重庆大及电子科技有限公司 一种集成式组合滤波板
CN106129671B (zh) * 2016-08-22 2018-09-04 重庆大及电子科技有限公司 一种集成式机箱滤波板结构
CN207116776U (zh) * 2017-05-15 2018-03-16 东莞市交泰实业有限公司 一种具有滤波屏蔽功能的连接器
JP2018200823A (ja) * 2017-05-29 2018-12-20 矢崎総業株式会社 コネクタ装置
US10326246B2 (en) * 2017-09-20 2019-06-18 U. D. Electronic Corp. Electrical connector with filtering function
TWI675516B (zh) * 2017-09-20 2019-10-21 湧德電子股份有限公司 濾波連接器
CN207283509U (zh) * 2017-09-29 2018-04-27 重庆大及电子科技有限公司 一种滤波组件
CN207819087U (zh) * 2017-12-21 2018-09-04 苏州汇川联合动力系统有限公司 接线端子及电子设备
CN208956377U (zh) * 2018-08-24 2019-06-07 重庆泽淞科技有限公司 一种自带背板结构的滤波板组件
CN209016372U (zh) * 2018-09-28 2019-06-21 泰科电子(上海)有限公司 滤波器及具有滤波功能的连接器
CN208956004U (zh) * 2018-10-30 2019-06-07 重庆大及电子科技有限公司 一种滤波组件
CN109546429B (zh) * 2018-12-05 2020-01-21 四川华丰企业集团有限公司 滤波连接器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540564B1 (en) * 2002-02-13 2003-04-01 Hon Hai Precision Ind. Co., Ltd. Connector assembly
CN207265339U (zh) * 2017-09-20 2018-04-20 东莞湧德电子科技有限公司 带滤波功能的电缆连接器
CN207442098U (zh) * 2017-09-20 2018-06-01 东莞湧德电子科技有限公司 带滤波功能的结构紧凑型连接器
CN207691122U (zh) * 2017-09-20 2018-08-03 东莞湧德电子科技有限公司 一种带滤波功能的电缆连接器
CN207504271U (zh) * 2017-09-26 2018-06-15 东莞湧德电子科技有限公司 一种带滤波功能的电缆连接器
CN110571606A (zh) * 2019-08-09 2019-12-13 华为技术有限公司 滤波连接装置及滤波方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930116A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803923B (zh) * 2021-07-30 2023-06-01 昱萊股份有限公司 電連接器及其濾波器模組

Also Published As

Publication number Publication date
EP3930116A4 (en) 2022-06-01
CN114094403B (zh) 2024-06-14
CN110571606A (zh) 2019-12-13
CN114094403A (zh) 2022-02-25
JP2022530233A (ja) 2022-06-28
EP3930116B1 (en) 2023-03-01
EP3930116A1 (en) 2021-12-29
CN110571606B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2021027360A1 (zh) 滤波连接装置及滤波方法
US9065217B2 (en) High speed RJ45 connector having magnetic module
US8535100B2 (en) Electrical connector with inductance and contact module used in the electrical connector
US7708594B2 (en) Electrical connector with magnetic module
US9077120B2 (en) Electrical connector
CN201323122Y (zh) 电子元件
US8272898B2 (en) Electrical connector system with magnetic module
US8251744B2 (en) Electrical connector with magnetic module
CN108617156B (zh) 一种集成emc模块的控制器甩线结构
CN201656757U (zh) 多路输入/输出交直流电源与信号线滤波的滤波器
US20150373860A1 (en) Electric connector, plug-in module thereof and method for manufacturing plug-in module
US20110304411A1 (en) Magnetic interface circuit
CN211238448U (zh) 一种高稳定陶瓷介质滤波器
CN207283509U (zh) 一种滤波组件
CN107528560B (zh) 一种激光定位系统滤波组件
CN205790753U (zh) 一种电连接器
US20130078830A1 (en) Electrical connector having circuit defining a number of differential channels
CN212062912U (zh) 结构优化的连接器
CN201355713Y (zh) 电连接器
US9413122B2 (en) Modular jack having middle metal plate shielding two adjacent ports
CN203787649U (zh) 一种适合smt制程的网络连接器
TWM461196U (zh) 電連接器
CN201536198U (zh) 用于圆形电连接器的滤波器
CN221042663U (zh) 滤波器及电源系统
CN210629346U (zh) 电磁兼容性滤波模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020852580

Country of ref document: EP

Effective date: 20210923

ENP Entry into the national phase

Ref document number: 2021563675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE