WO2021027138A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2021027138A1
WO2021027138A1 PCT/CN2019/117345 CN2019117345W WO2021027138A1 WO 2021027138 A1 WO2021027138 A1 WO 2021027138A1 CN 2019117345 W CN2019117345 W CN 2019117345W WO 2021027138 A1 WO2021027138 A1 WO 2021027138A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
layer
cathode
material layer
quantum dot
Prior art date
Application number
PCT/CN2019/117345
Other languages
English (en)
French (fr)
Inventor
曾维静
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/620,877 priority Critical patent/US11094906B2/en
Publication of WO2021027138A1 publication Critical patent/WO2021027138A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • This application relates to the field of electronic display, and in particular to a display panel.
  • a quantum dot film is usually added to the display panel.
  • the quantum dot film has photoluminescence properties, and the light emitted by it has high color purity and small color shift, which can effectively improve the light-emitting performance of the OLED display panel.
  • the quantum dot film in the prior art is usually applied in a top-emitting OLED display panel.
  • the quantum dot film is arranged on the cover plate above the light-emitting structure.
  • the film thickness of the top-emitting OLED display panel is difficult to adjust, the cathode voltage drop is serious, and the manufacturing process is relatively complicated.
  • the present application provides a display panel to solve the technical problems in the prior art that the film thickness of the top-emitting OLED display panel is difficult to adjust, the cathode voltage drop is serious, and the manufacturing process is relatively complicated.
  • the present application provides a display panel, the display panel includes: a substrate, a thin film transistor layer, and a light-emitting structure; the light-emitting structure includes:
  • An anode located on the thin film transistor layer and is electrically connected to the thin film transistor layer;
  • a luminescent material layer is located on the anode
  • a cathode covers the luminescent material layer
  • the light-emitting structure further includes a cathode reflective layer and a quantum dot film;
  • the cathode reflective layer is located above the cathode, and is electrically insulated from the cathode by a reflective isolation layer;
  • the quantum dot film is located between the cathode and the cathode. In the reflective isolation layer between the cathode reflective layers.
  • the material forming the anode and the cathode is one or a combination of indium tin oxide, aluminum-doped zinc oxide, or fluorine-doped tin oxide.
  • the material forming the cathode reflective layer is one or a combination of silver, copper, aluminum, gold, and iron.
  • the surface of the cathode reflective layer is a smooth mirror structure.
  • the cathode reflective layer is disposed corresponding to the luminescent material layer, and the projection of the cathode reflective layer on the light-emitting surface of the display panel is larger than that of the luminescent material layer on the display panel. Projection on the light-emitting surface.
  • the reflective isolation layer has a positioning through hole, and the quantum dot film is located in the positioning through hole.
  • the positioning through holes are provided corresponding to the luminescent material layer, and the projection of the positioning through holes on the light emitting surface of the display panel is larger than that of the luminescent material layer on the display panel. Projection on the light emitting surface.
  • the quantum dot film includes:
  • a barrier layer the barrier layer being attached to two surfaces of the quantum dot material layer parallel to the light emitting surface of the display panel;
  • the protective layer is respectively attached to the surface of the barrier layer away from the quantum dot material layer.
  • the surface of the protective layer away from the quantum dot material layer has an optical micro-nano structure.
  • the size of the quantum dots in the quantum dot film corresponds to the color of light emitted by the luminescent material layer;
  • the diameter of the quantum dot is greater than or equal to 4 nm
  • the diameter of the quantum dot is less than or equal to 2 nm
  • the diameter of the quantum dot is greater than or equal to 2.5 nm and less than or equal to 3.5 nm.
  • the quantum dot material layer includes a high molecular polymer and quantum dots uniformly distributed in the high molecular polymer; wherein,
  • the quantum dots include silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, lead sulfide quantum dots, lead selenide quantum dots, indium phosphide One or a combination of quantum dots and indium arsenide quantum dots.
  • the anode and cathode of the display panel of the present application are indium tin oxide, which is used to match the work function of the luminescent material in the luminescent material layer to improve the luminous efficiency of the display panel.
  • the present application provides a cathode reflective layer and a quantum dot film above the cathode of the light-emitting structure.
  • This application proposes a bottom-emitting OLED display panel provided with a quantum dot film. On the one hand, it effectively avoids the pixel failure phenomenon caused by the oxidation of the reflective material in the prior art.
  • the quantum dot film is arranged between the cathode and the cathode reflective layer, and the quantum dot film is used to optimize the reflected light.
  • the quantum dot film is arranged on the light-emitting surface of the display panel, The process complexity of the application is low and it is convenient for mass production.
  • FIG. 1 is a schematic diagram of the structure of a display panel in the prior art
  • FIG. 2 is a schematic structural diagram of a display panel in a specific embodiment of the application.
  • FIG. 3 is a schematic diagram of the structure of a quantum dot film in the display panel in FIG. 2.
  • FIG. 1 is a schematic structural diagram of a display panel in the prior art, wherein the display panel is a top-emitting display panel, that is, the light-emitting surface of the display panel is the surface of the cathode of the light-emitting structure away from the anode.
  • a top-emission OLED display panel in the prior art includes a substrate 010, a thin film transistor 020, a planarization layer 030, a light-emitting structure 040, and a cover plate 050.
  • the light emitting structure 040 is located above the planarization layer, and includes an anode 041, a pixel definition layer 042, a light emitting material layer 043, and a cathode 044.
  • the anode 041 is located on the planarization layer 030, and is electrically connected to the thin film transistor 020 through a through hole.
  • the pixel defining layer 042 covers the planarization layer 030 and has an opening exposing the anode 041.
  • the luminescent material layer 043 is located in the opening, and the cathode 044 covers the luminescent material layer 043.
  • the cathode Since the surface of the cathode away from the anode is a light-emitting surface, the cathode is a transparent electrode. At the same time, in order to improve the utilization of light, the anode is a reflective electrode. In the prior art, in order to match the energy levels of the anode and the organic light-emitting material layer, the material in direct contact between the anode and the organic material is ITO. At the same time, since the anode needs to be used as a reflective electrode, the anode also needs to be provided with a metal with high reflectivity to reflect light, and the metal usually used as a reflective material is Ag.
  • a quantum dot film is usually added to the display panel.
  • the quantum dot film has photoluminescence properties, and the light emitted by it has high color purity and small color shift, which can effectively improve the light-emitting performance of the OLED display panel.
  • the quantum dot film is disposed between the light emitting structure 040 and the cover 050.
  • the existing top-emitting OLED display panel has two problems. First, the Ag of the anode is easily oxidized in the air, forming silver oxide bumps. Silver bumps will cause the anode and cathode of the OLED device to short-circuit, making the pixels unable to emit light and affecting the display quality. Second, the film thickness of the top-emitting OLED display panel is difficult to adjust, the cathode voltage drop is serious, and the manufacturing process is relatively complicated.
  • the present application provides a display panel.
  • the display panel includes a substrate 10, a thin film transistor layer 20, a light emitting structure 40 and a cover 70.
  • the light emitting structure 40 includes an anode 41, a pixel defining layer 42, a luminescent material layer 43, a cathode 44, a quantum dot film 50 and a cathode reflective layer 60.
  • the anode 41 is electrically connected to the thin film transistor 20 through a through hole.
  • the pixel definition layer 42 covers the planarization layer 30 and has an opening exposing the anode 41.
  • the luminescent material layer 43 is located in the opening, and the cathode 44 covers the luminescent material layer 43.
  • the anode 41 and the cathode 44 are both light-transmitting electrodes.
  • the materials forming the anode 41 and the cathode 44 are both transparent conductive materials, such as one or a combination of indium tin oxide, aluminum-doped zinc oxide, or fluorine-doped tin oxide.
  • a transparent material is used to form the anode 41, so that the reflective metal is stripped from the anode 41.
  • the transparent conductive material not only matches the work function of the light-emitting material more closely, but also prevents the anode 41 and the cathode 44 from being short-circuited due to the oxidation of the metal to produce bumps, thereby improving the quality of the display panel.
  • the present application provides a cathode reflective layer 60 in the light emitting structure 40.
  • the material forming the cathode reflective layer 60 is a metal with high reflectivity, such as one or a combination of silver, copper, aluminum, gold, and iron.
  • the material forming the cathode reflective layer 60 is silver.
  • the surface of the cathode reflective layer is a smooth mirror structure. The mirror structure can minimize the light loss caused by diffuse reflection, and further improve the light utilization rate of the light emitting structure.
  • the cathode reflective layer 60 is preferably formed by electroplating.
  • the cathode reflective layer 60 is located between the cathode 44 and the cover plate 70, and is electrically insulated from the cathode 44 by the reflective isolation layer 51.
  • the reflective isolation layer 32 is disposed between the body planarization layer 31 and the pixel defining layer 42, and the material forming the reflective isolation layer 51 is an insulating material, such as silicon nitride, silicon oxide, and the like.
  • the reflective isolation layer 51 covers the cathode reflective layer 60 to achieve electrical insulation between the anode 41 and the cathode reflective layer 60.
  • the display panel further includes a quantum dot film 50 disposed between the cathode 44 and the cathode reflective layer 60.
  • the quantum dot film 50 and the luminescent material layer 43 are arranged correspondingly.
  • the reflective isolation layer 51 has a positioning through hole, the positioning through hole is located directly above the luminescent material layer 43, and the quantum dot film 50 fills the positioning through hole.
  • the cathode reflective layer 60 and the quantum dot film 50 are arranged corresponding to the luminescent material layer 43. Specifically, the cathode reflective layer 60 and the quantum dot film 50 are located directly above the luminescent material layer 43. At the same time, in order to ensure that the cathode reflective layer can reflect all the light emitted by the light-emitting structure 40 back to the light-emitting surface, the area of the cathode reflective layer 60 and the quantum dot film 50 is larger than the area of the luminescent material layer 43. In this embodiment, the projection of the cathode reflective layer 60 and the quantum dot film 50 on the light exit surface of the display panel completely covers the projection of the luminescent material layer 43 on the light exit surface of the display panel.
  • both the cathode and the anode in the top-emitting OLED display panel in the prior art are set as transparent electrodes, so that the electrodes and the light-emitting materials are more matched.
  • a cathode reflective layer is arranged between the cathode and the cover plate to transform the top-emitting OLED display panel into a bottom-emitting OLED panel, which is beneficial to reduce the voltage drop of the display panel and simplify the manufacturing process.
  • a quantum dot film is arranged between the cathode and the cathode reflective layer, which effectively improves the light-emitting performance of the OLED display panel without increasing the complexity of the manufacturing process.
  • the quantum dot film 50 includes a quantum dot material layer 51, a barrier layer 52 and a protective layer 53.
  • the quantum dot material layer 51 can strengthen the light emitted from the luminescent material layer 43 to the cathode reflective layer 60 on the one hand, and can strengthen the light reflected by the cathode reflective layer 60 to the light exit surface on the other hand. Therefore, the light emitted from the luminescent material layer to the inside of the display panel will be stronger after two times and then emitted from the light emitting surface of the display panel. Compared with the prior art, the present application further improves the luminous efficiency of the light-emitting structure 40 and optimizes the display effect of the display panel.
  • the quantum dot material layer 51 includes a high molecular polymer and quantum dots uniformly distributed in the high molecular polymer.
  • the quantum dots include silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, lead sulfide quantum dots, lead selenide quantum dots, indium phosphide One or a combination of quantum dots and indium arsenide quantum dots.
  • the barrier layer 52 is attached to two surfaces of the quantum dot material layer 51 parallel to the light-emitting surface of the display panel.
  • the barrier layer 52 is an inorganic protective film that prevents water and oxygen from intruding, such as a silicon dioxide film.
  • the protective layer 53 is respectively attached to the surface of the barrier layer 52 away from the quantum dot material layer 51.
  • the protective layer 53 is preferably an acrylic material or polyethylene terephthalate (PET) with high light transmittance.
  • the surface of the protective layer 53 away from the quantum dot material layer 51 has an optical micro-nano structure.
  • the optical micro-nano structure is a plurality of irregular protrusions and depressions, and the height of the plurality of protrusions and depressions does not exceed 10 microns.
  • the optical micro-nano structure can reduce Newton's rings, balance the intensity and brightness of light, and at the same time can increase the return path of light, which is beneficial to the enhancement of light.
  • the size of the quantum dots in the quantum dot film 50 corresponds to the color of the light emitted by the luminescent material layer 43.
  • the diameter of the quantum dot is greater than or equal to 4 nm.
  • the diameter of the quantum dot is less than or equal to 2 nm.
  • the diameter of the quantum dots is greater than or equal to 2.5 nm and less than or equal to 3.5 nm.
  • the present application effectively avoids the pixel failure phenomenon caused by the oxidation of the reflective material.
  • the quantum dot film is arranged between the cathode and the cathode reflective layer, and the reflected light is optimized by using the quantum dot film.
  • this application The process complexity is low and it is convenient for mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种显示面板,其包括发光结构。所述发光结构包括:位于薄膜晶体管层上的阳极、位于所述阳极上的发光材料层和覆盖所述发光材料层的阴极。所述发光结构还包括阴极反射层和量子点薄膜。所述阴极反射层位于所述阴极上方,通过反射隔离层与所述阴极电绝缘。所述量子点薄膜位于所述阴极和所述阴极反射层之间的反射隔离层中。

Description

显示面板 技术领域
本申请涉及电子显示领域,尤其涉及一种显示面板。
背景技术
为了改善有机发光二极管(organic light emitting diode,OLED)显示面板的显示效果,现有技术中,通常在显示面板中加入量子点薄膜。量子点薄膜具有光致发光特性,其发出的光线的色彩纯度高且色偏小,能够有效的改善OLED显示面板的发光性能。
技术问题
受限于制作工艺,现有技术中的量子点薄膜通常应用在顶发光式OLED显示面板中。通常,将量子点薄膜设置在发光结构上方的盖板上。然而,相比于底发光式OLED显示面板,顶发光式OLED显示面板的膜厚难以调节、阴极压降严重且制作工艺相对复杂。
因此,为了进一步优化显示面板的性能并简化显示面板的制造工艺,需要提出一种应用量子点薄膜的底发光式OLED显示面板。
技术解决方案
本申请提供了一种显示面板,以解决现有技术中的顶发光式OLED显示面板的膜厚难以调节、阴极压降严重且制作工艺相对复杂的技术问题。
为解决上述问题,本申请提供了一种显示面板,所述显示面板包括:基板、薄膜晶体管层、发光结构;所述发光结构包括:
阳极,所述阳极位于所述薄膜晶体管层上,并与所述薄膜晶体管层电连接;
发光材料层,所述发光材料层位于所述阳极上;
阴极,所述阴极覆盖所述发光材料层;
其中,所述发光结构还包括阴极反射层和量子点薄膜;所述阴极反射层位于所述阴极上方,通过反射隔离层与所述阴极电绝缘;所述量子点薄膜位于所述阴极和所述阴极反射层之间的反射隔离层中。
根据本申请的其中一个方面,形成所述阳极和阴极的材料为氧化铟锡、掺铝氧化锌或掺氟氧化锡中的一种或多种的组合。
根据本申请的其中一个方面,形成所述阴极反射层的材料为银、铜、铝、金、铁中的一种或多种的组合。
根据本申请的其中一个方面,所述阴极反射层的表面为光滑的镜面结构。
根据本申请的其中一个方面,所述阴极反射层与所述发光材料层对应设置,且所述阴极反射层在所述显示面板的出光面上的投影大于所述发光材料层在所述显示面板的出光面上的投影。
根据本申请的其中一个方面,所述反射隔离层具有定位通孔,所述量子点薄膜位于所述定位通孔中。
根据本申请的其中一个方面,所述定位通孔与所述发光材料层对应设置,所述定位通孔在所述显示面板的出光面上的投影大于所述发光材料层在所述显示面板的出光面上的投影。
根据本申请的其中一个方面,所述量子点薄膜包括:
量子点材料层;
阻隔层,所述阻隔层附着在所述量子点材料层与所述显示面板的出光面平行的两个表面上;
保护层,所述保护层分别贴附在所述阻隔层远离所述量子点材料层的表面。
根据本申请的其中一个方面,所述保护层远离所述量子点材料层的表面具有光学微纳结构。
根据本申请的其中一个方面,所述量子点薄膜中的量子点的尺寸与所述发光材料层发出的光线颜色相对应;其中,
当所述发光材料层发出的光线为红色,所述量子点的直径大于或等于4nm;
当所述发光材料层发出的光线为蓝色,所述量子点的直径小于或等于2nm;
当所述发光材料层发出的光线为绿色,所述量子点的直径大于或等于2.5nm且小于等于3.5nm。
根据本申请的其中一个方面,所述量子点材料层包括高分子聚合物和均匀分布在所述高分子聚合物中的量子点;其中,
所述量子点包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点中的一种或多种的组合。
有益效果
本申请的显示面板的阳极和阴极为氧化铟锡,用于匹配发光材料层中的发光材料的功函数以提高显示面板的发光效率。同时,为了提高光线的利用率,本申请在发光结构的阴极上方设置了阴极反射层和量子点薄膜。本申请提出了一种设置有量子点薄膜的底发光式OLED显示面板,一方面有效的避免了现有技术中由于反光材料被氧化而导致的像素点失效现象。另一方面,本申请将量子点薄膜设置在阴极和阴极反射层之间,利用量子点薄膜对反射光线进行优化,相比于将量子点薄膜设置在显示面板的出光面上的现有技术,本申请的工艺复杂度低,便于量产。
附图说明
图1为现有技术中的显示面板的结构示意图;
图2为本申请的一个具体实施例中的显示面板的结构示意图;
图3为图2中的显示面板中的量子点薄膜的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
参见图1,图1为现有技术中的显示面板的结构示意图,其中,所述显示面板为顶发光式显示面板,即所述显示面板的出光面为发光结构的阴极的远离阳极的表面。
参见图1,现有技术中的顶发光式OLED显示面板包括基板010、薄膜晶体管020、平坦化层030、发光结构040和盖板050。所述发光结构040位于所述平坦化层上方,包括阳极041、像素定义层042、发光材料层043以及阴极044。其中,所述阳极041位于所述平坦化层030上,并通过通孔与所述薄膜晶体管020电连接。所述像素定义层042覆盖所述平坦化层030,并具有暴露出所述阳极041的开口。所述发光材料层043位于所述开口中,所述阴极044覆盖所述发光材料层043。
由于所述阴极远离所述阳极的表面为出光面,因此所述阴极为透明电极。同时为了提高光线利用率,所述阳极为反射电极。现有技术中,为了使阳极与有机发光材料层的能级匹配,阳极与有机材料直接接触的材料为ITO。同时,由于阳极需要作为反射电极,阳极还需要设置具有高反射率的金属进行反光,通常作为反射材料的金属为Ag。
此外,为了改善OLED显示面板的显示效果,通常在显示面板中加入量子点薄膜。量子点薄膜具有光致发光特性,其发出的光线的色彩纯度高且色偏小,能够有效的改善OLED显示面板的发光性能。受限于制作工艺,通常,将量子点薄膜设置在发光结构040和盖板050之间。
现有的顶发光式OLED显示面板存在两个问题。第一,阳极的Ag在空气中极易氧化,形成氧化银凸点。银凸点会导致OLED器件的阳极和阴极短路,使像素点无法发光,影响显示画质。第二、顶发光式OLED显示面板的膜厚难以调节、阴极压降严重且制作工艺相对复杂。
为解决上述问题,本申请提供了一种显示面板,参见图2,所述显示面板包括基板10、薄膜晶体管层20、发光结构40和盖板70。所述发光结构40包括阳极41、像素定义层42、发光材料层43、阴极44、量子点薄膜50和阴极反射层60。
所述阳极41通过通孔与所述薄膜晶体管20电连接。所述像素定义层42覆盖所述平坦化层30,并具有暴露出所述阳极41的开口。所述发光材料层43位于所述开口中,所述阴极44覆盖所述发光材料层43。
本申请中,所述阳极41和阴极44均为透光电极。形成所述阳极41和阴极44的材料均为透明导电材料,例如氧化铟锡、掺铝氧化锌或掺氟氧化锡中的一种或多种的组合。本申请采用透明材料形成阳极41,从而将反射金属从阳极41中剥离出去。透明导电材料不仅与发光材料的功函数更加匹配,同时避免了金属被氧化产生凸点导致阳极41和阴极44短路,改善了显示面板的质量。
由于将反射金属从阴极44中剥离了出来,为了不降低发光结构40的光线利用率,本申请在发光结构40中设置了阴极反射层60。本申请中,形成所述阴极反射层60的材料为具有高反射率的金属,例如银、铜、铝、金、铁中的一种或多种的组合。本实施例中,形成所述阴极反射层60的材料为银。优选的,为了增强所述阴极反射层对光线的反射能力所述阴极反射层的表面为光滑的镜面结构。镜面结构能够最大限度的减小漫反射带来的光线损失,进一步提高发光结构的光线利用率。在实践中,由于电镀形成的金属层的表面为镜面结构,优选的采用电镀的方式形成所述阴极反射层60。
所述阴极反射层60位于所述阴极44和所述盖板70之间,通过反射隔离层51与所述阴极44电绝缘。所述反射隔离层32设置在身上平坦化层31和像素定义层42之间,形成所述反射隔离层51的材料为绝缘材料,例如氮化硅、氧化硅等。所述反射隔离层51覆盖所述阴极反射层60,实现阳极41和阴极反射层60之间的电绝缘。
本申请中,参见图2,为了进一步提高反射光线的利用率,所述显示面板还包括设置所述阴极44和阴极反射层60之间的量子点薄膜50。本实施例中,为了节约成本,所述量子点薄膜50与所述发光材料层43对应设置。具体的,所述反射隔离层51具有定位通孔,所述定位通孔位于所述发光材料层43正上方,所述量子点薄膜50填充所述定位通孔。
本申请中,所述阴极反射层60、量子点薄膜50与所述发光材料层43对应设置,具体的,所述阴极反射层60和量子点薄膜50位于所述发光材料层43的正上方。同时,为了保证所述阴极反射层能够将发光结构40发出的光线全部反射回出光面,所述阴极反射层60和所述量子点薄膜50的面积大于所述发光材料层43的面积。在本实施例中,所述阴极反射层60和量子点薄膜50在所述显示面板的出光面上的投影完全覆盖所述发光材料层43在所述显示面板的出光面上的投影。
通过上述实施例可以看出,本申请将现有技术中的顶发光式OLED显示面板中的阴极和阳极都设置为透明电极,使电极与发光材料更加匹配。同时,本申请在阴极和盖板之间设置了阴极反射层,将顶发光式OLED显示面板改造为底发光式OLED面板,有利于减小显示面板的压降以及简化制造工艺。另外,本申请在阴极和阴极反射层之间设置了量子点薄膜,在有效的改善了OLED显示面板的发光性能的同时没有增加制造工艺的复杂度。
参见图3,本实施例中,所述量子点薄膜50包括量子点材料层51、阻隔层52和保护层53。
所述量子点材料层51一方面能够对由发光材料层43射向阴极反射层60的光线进行加强,另一方面能够对由所述阴极反射层60反射向出光面的光线进行加强。因此,发光材料层射向显示面板内部的光线再经过两次将强后由显示面板的出光面射出。相比于现有技术,本申请进一步提高了发光结构40的发光效率,优化了显示面板的显示效果。
本实施例中,所述量子点材料层51包括高分子聚合物和均匀分布在所述高分子聚合物中的量子点。所述量子点包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点中的一种或多种的组合。
所述阻隔层52附着在所述量子点材料层51与所述显示面板的出光面平行的两个表面上。本实施例中,所述阻隔层52为阻挡水和氧气入侵的无机保护膜,例如二氧化硅薄膜。
所述保护层53分别贴附在所述阻隔层52远离所述量子点材料层51的表面上。所述保护层53优选的为具有高透光率的亚克力材料或聚对苯二甲酸类塑料(Polyethylene terephthalate,PET)。
参见图3,在本实施例中,所述保护层53远离所述量子点材料层51的表面具有光学微纳结构。所述光学微纳结构为多个不规则的凸起和凹陷,所述多个凸起和凹陷的高度不超过10微米。所述光学微纳结构能够减少牛顿环,均衡光线的强度和亮度,同时能够增加光线的折返路径,有利于光线被增强。
本申请中,所述量子点薄膜50中的量子点的尺寸与所述发光材料层43发出的光线颜色相对应。当所述发光材料层43发出的光线为红色,所述量子点的直径大于或等于4nm。当所述发光材料层43发出的光线为蓝色,所述量子点的直径小于或等于2nm。当所述发光材料层43发出的光线为绿色,所述量子点的直径大于或等于2.5nm且小于等于3.5nm。
相比于现有技术中的顶发光式OLED显示面板,本申请有效的避免了由于反光材料被氧化而导致的像素点失效现象。同时,本申请将量子点薄膜设置在阴极和阴极反射层之间,利用量子点薄膜对反射光线进行优化,相比于将量子点薄膜设置在显示面板的出光面上的现有技术,本申请的工艺复杂度低,便于量产。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (11)

  1. 一种显示面板,其中,所述显示面板包括:基板、薄膜晶体管层、发光结构;所述发光结构包括:
    阳极,所述阳极位于所述薄膜晶体管层上,并与所述薄膜晶体管层电连接;
    发光材料层,所述发光材料层位于所述阳极上;
    阴极,所述阴极覆盖所述发光材料层;
    其中,所述发光结构还包括阴极反射层和量子点薄膜;所述阴极反射层位于所述阴极上方,通过反射隔离层与所述阴极电绝缘;所述量子点薄膜位于所述阴极和所述阴极反射层之间的反射隔离层中。
  2. 根据权利要求1所述的显示面板,其中,形成所述阳极和阴极的材料为氧化铟锡、掺铝氧化锌或掺氟氧化锡中的一种或多种的组合。
  3. 根据权利要求2所述的显示面板,其中,形成所述阴极反射层的材料为银、铜、铝、金、铁中的一种或多种的组合。
  4. 根据权利要求3所述的显示面板,其中,所述阴极反射层的表面为光滑的镜面结构。
  5. 根据权利要求1所述的显示面板,其中,所述阴极反射层与所述发光材料层对应设置,且所述阴极反射层在所述显示面板的出光面上的投影大于所述发光材料层在所述显示面板的出光面上的投影。
  6. 根据权利要求5所述的显示面板,其中,所述反射隔离层具有定位通孔,所述量子点薄膜位于所述定位通孔中。
  7. 根据权利要求5所述的显示面板,其中,所述定位通孔与所述发光材料层对应设置,所述定位通孔在所述显示面板的出光面上的投影大于所述发光材料层在所述显示面板的出光面上的投影。
  8. 根据权利要求7所述的显示面板,其中,所述量子点薄膜包括:
    量子点材料层;
    阻隔层,所述阻隔层附着在所述量子点材料层与所述显示面板的出光面平行的两个表面上;
    保护层,所述保护层分别贴附在所述阻隔层远离所述量子点材料层的表面。
  9. 根据权利要求8所述的显示面板,其中,所述保护层远离所述量子点材料层的表面具有光学微纳结构。
  10. 根据权利要求8所述的显示面板,其中,所述量子点薄膜中的量子点的尺寸与所述发光材料层发出的光线颜色相对应;其中,
    当所述发光材料层发出的光线为红色,所述量子点的直径大于或等于4nm;
    当所述发光材料层发出的光线为蓝色,所述量子点的直径小于或等于2nm;
    当所述发光材料层发出的光线为绿色,所述量子点的直径大于或等于2.5nm且小于等于3.5nm。
  11. 根据权利要求8所述的显示面板,其中,所述量子点材料层包括高分子聚合物和均匀分布在所述高分子聚合物中的量子点;其中,
    所述量子点包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点中的一种或多种的组合。
PCT/CN2019/117345 2019-08-15 2019-11-12 显示面板 WO2021027138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,877 US11094906B2 (en) 2019-08-15 2019-11-12 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755693.8 2019-08-15
CN201910755693.8A CN110571353A (zh) 2019-08-15 2019-08-15 显示面板

Publications (1)

Publication Number Publication Date
WO2021027138A1 true WO2021027138A1 (zh) 2021-02-18

Family

ID=68775518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117345 WO2021027138A1 (zh) 2019-08-15 2019-11-12 显示面板

Country Status (2)

Country Link
CN (1) CN110571353A (zh)
WO (1) WO2021027138A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064324B (zh) * 2020-01-02 2023-04-07 京东方科技集团股份有限公司 硅量子点光刻胶、彩膜层、oled显示结构及显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498046A (zh) * 2002-10-01 2004-05-19 ��˹���´﹫˾ 具有增强的光提取效率的有机发光器件
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
JP2015018771A (ja) * 2013-07-12 2015-01-29 パナソニック株式会社 有機エレクトロルミネッセンス素子及び照明装置
CN105098093A (zh) * 2015-06-18 2015-11-25 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
WO2019072938A1 (en) * 2017-10-10 2019-04-18 Katholieke Universiteit Leuven PLATE-GUIDE LIGHT
CN109721692A (zh) * 2017-10-27 2019-05-07 北京大学 一种含有量子点的液晶/高分子复合材料的光学薄膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235620B (en) * 2003-12-09 2005-07-01 Au Optronics Corp Organic electro-luminescent display
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN105609656B (zh) * 2016-01-06 2017-05-17 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
KR102429881B1 (ko) * 2017-11-02 2022-08-05 삼성전자주식회사 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498046A (zh) * 2002-10-01 2004-05-19 ��˹���´﹫˾ 具有增强的光提取效率的有机发光器件
JP2015018771A (ja) * 2013-07-12 2015-01-29 パナソニック株式会社 有機エレクトロルミネッセンス素子及び照明装置
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
CN105098093A (zh) * 2015-06-18 2015-11-25 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
WO2019072938A1 (en) * 2017-10-10 2019-04-18 Katholieke Universiteit Leuven PLATE-GUIDE LIGHT
CN109721692A (zh) * 2017-10-27 2019-05-07 北京大学 一种含有量子点的液晶/高分子复合材料的光学薄膜及其制备方法

Also Published As

Publication number Publication date
CN110571353A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
TWI740078B (zh) 有機發光二極體顯示器
TWI539591B (zh) 有機電致發光裝置及其製造方法
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
US10651427B2 (en) Organic light emitting diode display device
TWI695364B (zh) 有機發光二極體顯示裝置
WO2021120314A1 (zh) 一种显示面板
KR101727668B1 (ko) 유기 발광 표시 장치
JP2007248484A (ja) 表示装置
US20210367186A1 (en) Oled display panel and manufacturing method
WO2020056865A1 (zh) 显示面板及显示装置
US10658449B2 (en) Package substrate, method of manufacturing the same, display panel and display device
CN110212004A (zh) 一种像素界定层、有机发光二极管显示面板和制作方法
WO2021082146A1 (zh) 显示面板及其制造方法
CN103579287A (zh) 有机发光二极管显示器
KR20120067644A (ko) 유기전계 발광소자
KR20120052851A (ko) 유기전계 발광소자
WO2021027141A1 (zh) 显示面板
KR102010849B1 (ko) 유기발광소자
KR20140087914A (ko) 유기전계발광표시장치 및 그 제조방법
KR20210064559A (ko) 발광 표시 장치
WO2021027133A1 (zh) 显示面板
WO2021027138A1 (zh) 显示面板
US11094906B2 (en) Display panel
WO2022227452A1 (zh) 顶发光显示面板及显示装置
WO2021159614A1 (zh) 一种阵列基板及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941015

Country of ref document: EP

Kind code of ref document: A1