WO2021024697A1 - シールリング、バルブ装置、およびシールリングの製造方法 - Google Patents

シールリング、バルブ装置、およびシールリングの製造方法 Download PDF

Info

Publication number
WO2021024697A1
WO2021024697A1 PCT/JP2020/027072 JP2020027072W WO2021024697A1 WO 2021024697 A1 WO2021024697 A1 WO 2021024697A1 JP 2020027072 W JP2020027072 W JP 2020027072W WO 2021024697 A1 WO2021024697 A1 WO 2021024697A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
gas passage
diameter side
lip
circumferential direction
Prior art date
Application number
PCT/JP2020/027072
Other languages
English (en)
French (fr)
Inventor
孝浩 神頭
三上 修也
徳幸 稲垣
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021024697A1 publication Critical patent/WO2021024697A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end

Definitions

  • the present disclosure relates to a seal ring, a valve device using the seal ring, and a method for manufacturing the seal ring.
  • a butterfly type valve device capable of opening and closing a gas passage.
  • the seal ring used in this valve device fits into a groove provided on the outer periphery of the disk-shaped valve body constituting the valve device. Then, when the valve device is fully closed to block the gas passage, the seal ring abuts on the inner wall of the gas passage to block the gas flow in the gas passage.
  • the time when the valve device closes the gas passage is referred to as "when the valve device is fully closed” or simply "when the valve device is fully closed”.
  • the seal ring described in Patent Document 1 is formed of a resin in an annular shape, and has a step-cut shape in which one end and the other end in the circumferential direction overlap in the axial direction.
  • the gap formed between one end and the other end of the seal ring in the circumferential direction is referred to as a "joint".
  • the inventors have found that gas leakage can be prevented when the valve device is fully closed by tapering the inner wall of the gas passage where the valve device opens and closes. Specifically, when the inner wall of the gas passage where the valve device opens and closes is tapered, the seal ring itself presses the inner wall of the gas passage radially outward when the valve device is fully closed. A component force in the direction parallel to the inner wall and a component force in the direction perpendicular to the inner wall of the gas passage are generated. Of these components, the component in the direction parallel to the inner wall of the gas passage brings the side surface of the seal ring and the side surface of the groove of the valve body into close contact with each other.
  • the seal ring described in Patent Document 1 when the inner wall of the gas passage is formed in a tapered shape, the outer wall surface on the radial outer side of the seal ring and the inner wall surface of the gas passage come into line contact when the valve device is fully closed. It becomes a composition. Therefore, the flow path on the upstream side and the flow path on the downstream side of the valve body communicate with each other through the abutment formed on the outer peripheral side in the step cut shape provided in the seal ring, and the gas flows. Therefore, the seal ring described in Patent Document 1 has a configuration in which gas leakage cannot be sufficiently prevented when the valve device is fully closed when the inner wall of the gas passage is formed in a tapered shape.
  • the seal ring that fits into the groove provided on the outer periphery of the valve body that can open and close the gas passage has the following configuration.
  • the inner wall surface with which the seal ring comes into contact when fully closed has a tapered shape in which the distance from the central axis gradually decreases from one side of the gas passage toward the other.
  • the seal ring has a step-cut shape in which one end and the other end in the circumferential direction overlap in the axial direction.
  • the outer wall surface on the outer side in the radial direction of the seal ring has a tapered portion in which the distance from the central axis gradually decreases from one side of the gas passage toward the other when fully closed.
  • the tapered portion of the outer wall surface on the radial outer side of the seal ring is in surface contact with the tapered portion of the inner wall of the gas passage. Therefore, it is possible to increase the area in contact between the inner wall of the gas passage and the outer wall surface on the radial outer side of the seal ring. Further, since the portion of the step-cut shape of the seal ring around the abutment on the outer peripheral side abuts on the inner wall of the gas passage, it is possible to prevent gas leakage through the abutment. Therefore, this seal ring can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body when fully closed.
  • the component force in the direction parallel to the inner wall of the gas passage is opposed to the force of the seal ring pressing the inner wall of the gas passage radially outward. Then, a component force is generated in the direction perpendicular to the inner wall of the gas passage.
  • the component in the direction parallel to the tapered surface of the gas passage is the force that moves the seal ring itself to the larger diameter side of the taper.
  • the side surface of the seal ring that is, one surface of the seal ring in the axial direction
  • the side surface of the groove portion of the valve body that is, one surface of the groove portion in the axial direction
  • this seal ring can surely prevent gas leakage even when the pressure difference between the flow path on the upstream side and the flow path on the downstream side of the valve body becomes small when the valve device is fully closed.
  • the valve device that opens and closes the gas passage includes a housing, a valve body, a shaft, a groove, and a seal ring.
  • the housing has a gas passage.
  • the valve body is rotatably provided in the gas passage.
  • the shaft rotatably supports the valve body in the gas passage.
  • the groove extends circumferentially to the outer outer edge of the valve body in the radial direction.
  • the seal ring is formed in an annular shape, fits into the groove, and abuts on the inner wall of the gas passage.
  • the inner wall surface with which the seal ring comes into contact when fully closed has a tapered shape in which the distance from the central axis gradually decreases from one side of the gas passage toward the other.
  • the seal ring of this valve device has the configuration described in one aspect of the present disclosure.
  • this valve device since this valve device includes the seal ring having the configuration described in one aspect of the present disclosure, as described in the one aspect of the present disclosure, when fully closed, It is possible to reliably prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body.
  • This seal ring has a step-cut shape in which one end and the other end in the circumferential direction overlap in the axial direction.
  • the outer wall surface on the outer side in the radial direction of the seal ring has a tapered portion in which the distance from the central axis gradually decreases from one side in the axial direction toward the other side.
  • the dividing surface formed on the outer wall surface on the radial outer side of the seal ring by the step cut shape is formed on the tapered portion of the outer wall surface on the outer wall surface on the radial side of the seal ring.
  • the step cut shape has a small diameter side lip, a small diameter side lip fitting portion, a large diameter side lip, and a large diameter side lip fitting portion.
  • the small diameter side lip is a portion extending from one end to the other end side in the circumferential direction on the small diameter side and the inner peripheral side of the seal ring.
  • the small diameter side lip fitting portion is provided at the other end of the seal ring in the circumferential direction, and is a portion where the small diameter side lip fits.
  • the large diameter side lip is a portion extending from the other end in the circumferential direction to one end side on the large diameter side and the outer peripheral side of the seal ring.
  • the large diameter side lip fitting portion is provided at one end in the circumferential direction of the seal ring, and is a portion where the large diameter side lip fits.
  • the manufacturing method of this seal ring is to form a prototype seal ring in a state where one end and the other end in the circumferential direction of the seal ring are separated in the circumferential direction, and seal inside the tubular outer peripheral fixing jig. Inserting the ring by shrinking it in the radial direction, inserting an inner circumference regulation jig having an outer diameter equal to or slightly smaller than the inner diameter of the seal ring inside the seal ring, and heating the seal ring, This includes correcting the shape of the seal ring and removing the seal ring from between the outer peripheral fixing jig and the inner peripheral regulating jig.
  • the elastic force of the seal ring itself causes the large diameter side lip to be larger than the radial inner surface.
  • the radial outer surface of the radial lip fitting portion is in close contact.
  • the radial inner surface of the small diameter side lip fitting portion and the radial outer surface of the small diameter side lip are in close contact with each other. Therefore, it is possible to prevent a gap from being formed between the radial inner surface of the large-diameter lip and the radial outer surface of the large-diameter lip fitting portion, and the inside of the small-diameter lip fitting portion in the radial direction.
  • the seal ring manufactured by this method for manufacturing the seal ring can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body when fully closed.
  • FIG. 1 It is a figure which shows the schematic structure of the exhaust gas recirculation device which uses the valve device which concerns on 1st Embodiment. It is a front view of the valve device which concerns on 1st Embodiment. It is a side view of the valve device in the direction III of FIG. It is sectional drawing of the valve device in line IV-IV of FIG. It is an enlarged view of the V part of FIG. It is a figure which looked at the seal ring which concerns on 1st Embodiment from the large diameter side in the axial direction. It is a figure which looked at the seal ring from the radial direction in the VII direction of FIG. It is a figure which looked at the seal ring from the axial small diameter side in the VIII direction of FIG.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with a broken line.
  • FIG. 11 is a diagram showing a step cut shape on the large diameter side with
  • FIG. 2 is a cross-sectional view showing a state in which a seal ring is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the line XXIII-XXIII in FIG.
  • FIG. 2 is a cross-sectional view showing a state in which a seal ring is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the line XXIV-XXIV in FIG. 22.
  • FIG. 2 is a cross-sectional view showing a state in which a seal ring is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the line XXV-XXV in FIG.
  • FIG. 6 is a cross-sectional view showing a state in which a seal ring of a comparative example is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the XXVII-XXVII line of FIG. 26.
  • FIG. 6 is a cross-sectional view showing a state in which a seal ring of a comparative example is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the line XXVIII-XXVIII in FIG. 26.
  • FIG. 6 is a cross-sectional view showing a state in which a seal ring of a comparative example is inserted between the outer peripheral fixing jig and the inner peripheral regulating jig with respect to the portion of the line XXVIII-XXVIII in FIG. 26.
  • FIG. 5 is a cross-sectional view showing a seal ring of a comparative example in a state where heat correction is performed in the state of FIG. 28. It is an enlarged cross-sectional view of a part of a valve device and a seal ring which concerns on 2nd Embodiment, and corresponds to the part shown in FIG.
  • the valve device 1 of the present embodiment is used, for example, in the EGR device 5 that recirculates a part of the exhaust gas flowing through the exhaust pipe 3 of the engine 2 to the intake pipe 4.
  • the valve device 1 has a function of adjusting the flow rate of the exhaust gas flowing through the EGR passage 6 connecting the exhaust pipe 3 and the intake pipe 4, and a function of allowing and blocking the flow of the exhaust gas.
  • the valve device 1 is required to be hermetically sealed so that the exhaust gas does not leak when the flow of the exhaust gas in the EGR passage 6 is blocked (that is, when the valve device 1 is fully closed).
  • the valve device 1 includes a housing 10, a valve body 20, a shaft 30, a seal ring 40, and the like.
  • the housing 10 has a gas passage 11.
  • the gas passage 11 is formed in a substantially cylindrical shape.
  • the gas passage 11 communicates with the EGR passage 6 shown in FIG. Therefore, the exhaust gas flowing through the EGR passage 6 flows through the gas passage 11.
  • FIGS. 4 and 5 the flow direction of the exhaust gas flowing through the gas passage 11 from the exhaust pipe 3 side to the intake pipe 4 side is indicated by an arrow GF.
  • FIGS. 4 and 5 show a state in which the valve device 1 completely closes the gas passage 11 when the gas passage 11 is completely closed, no exhaust gas flow occurs.
  • a tubular nozzle (not shown) may be provided inside the gas passage 11. In that case, the inner wall of the nozzle becomes the inner wall of the gas passage 11.
  • the exhaust pipe 3 side may be referred to as the upstream side
  • the intake pipe 4 side may be referred to as the downstream side.
  • the exhaust gas is sometimes simply referred to as "gas".
  • the inner wall surface 12 with which the seal ring 40 abuts when fully closed is formed in a tapered shape in which the distance from the central axis Ax gradually decreases from one side of the gas passage 11 toward the other. ing. It can also be said that the inner diameter of the tapered inner wall surface 12 gradually decreases from the downstream side to the upstream side.
  • the tapered inner wall surface 12 has a linear cross-sectional view parallel to the central axis Ax of the gas passage 11. The tapered inner wall surface 12 is formed on the entire circumference of the gas passage 11.
  • a drive device for rotationally driving the valve body 20 provided in the gas passage 11 is provided inside the housing 10.
  • the drive device is composed of a motor (not shown), a gear (not shown) that decelerates the rotation of the motor and transmits the rotation to the shaft 30, a shaft 30 connected to the gear, and the like.
  • the shaft 30 is rotatably supported by the housing 10 via bearings.
  • FIGS. 2 to 4 the portion where the motor is arranged inside the housing 10 is indicated by reference numeral 13.
  • the valve body 20 is formed in a substantially disk shape and is rotatably provided in the gas passage 11.
  • the end of the shaft 30 is fixed to the surface of the valve body 20 facing the thickness direction.
  • the valve body 20 and the shaft 30 are fixed by welding or bolts, for example.
  • the shaft 30 rotatably supports the valve body 20 in the gas passage 11.
  • Power is supplied to the motor in the housing 10 from the connector 14 provided on the upper part of the housing 10, and when the motor rotates, the torque of the motor is transmitted to the shaft 30 via the gear. As a result, the shaft 30 rotates about its axis. As the shaft 30 rotates, the valve body 20 rotates in the gas passage 11.
  • a groove 21 extending in the circumferential direction is provided on the outer outer edge of the valve body 20 in the radial direction.
  • the groove portion 21 extends over the entire circumference of the valve body 20.
  • the seal ring 40 is fitted to the groove 21 of the valve body 20.
  • the seal ring 40 is formed in an annular shape and is fitted in a groove 21 provided on the outer periphery of the valve body 20.
  • the seal ring 40 is, for example, a resin molded product formed of resin.
  • the seal ring 40 has a configuration in which a C-shaped metal spring 43 is arranged in a fitting groove 42 provided on one surface of the resin ring in the axial direction.
  • the outer wall surface on the outer side in the radial direction of the seal ring 40 has a tapered portion 44 in which the distance from the central axis Ax gradually decreases from one side of the gas passage 11 toward the other when fully closed. It can also be said that the outer diameter of the tapered portion 44 gradually decreases from the downstream side to the upstream side of the gas passage 11 when fully closed.
  • the tapered portion 44 has a linear cross-sectional view parallel to the central axis Ax of the gas passage 11 when fully closed. The tapered portion 44 is formed on the entire circumference of the seal ring 40.
  • the taper angle of the tapered portion 44 of the outer wall surface on the radial outer side of the seal ring 40 and the taper angle of the tapered inner wall surface 12 formed on the inner wall of the gas passage 11 are the same or similar. It is preferable to have.
  • the tapered portion 44 of the radial outer wall surface of the seal ring 40 comes into surface contact with the tapered inner wall surface 12 of the inner wall of the gas passage 11. Therefore, it is possible to increase the area in contact between the inner wall of the gas passage 11 and the outer wall surface on the outer side in the radial direction of the seal ring 40. Therefore, the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • the seal ring 40 has an elastic force that can be expanded and contracted in the radial direction in order to improve the adhesion with the inner wall of the gas passage 11 when the gas passage 11 is fully closed. Then, when the valve device 1 fully closes the gas passage 11, the seal ring 40 hits the inner wall of the gas passage 11 while pressing the inner wall of the gas passage 11 radially outward in a state where the diameter is reduced. I'm in contact. Therefore, when fully closed, the radial outer surface of the seal ring 40 and the inner wall of the gas passage 11 are in close contact with each other, and the gas flow of the gas passage 11 is blocked.
  • FIGS. 6 to 12 show only the seal ring 40.
  • one end and the other end of the seal ring 40 in the circumferential direction have a step cut shape that overlaps in the axial direction.
  • the tapered portion 44 is hatched with a broken line.
  • the first dividing surface 50 formed on the outer wall surface on the radial outer side of the seal ring 40 by the step cut shape is formed on the tapered portion 44 of the outer wall surface on the radial outer side of the seal ring 40. It is formed.
  • the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • a portion around the abutment 52 on the outer peripheral side formed between one end and the other end of the seal ring 40 is also formed in a tapered portion 44 of the outer wall surface on the radial outer side of the seal ring 40. ..
  • the portion around the abutment 52 on the outer peripheral side formed between one end and the other end of the seal ring 40 is closed by the tapered inner wall surface 12 of the inner wall of the gas passage 11 when fully closed. .. Therefore, the seal ring 40 can prevent gas leakage from occurring through the abutment 52 when fully closed.
  • the step cut shapes formed at one end and the other end of the seal ring 40 in the circumferential direction include a small diameter side lip 45, a small diameter side lip fitting portion 46, a large diameter side lip 47, and It has a large diameter side lip fitting portion 48.
  • the side having a small outer diameter of the seal ring 40 is referred to as a small diameter side
  • the side having a large outer diameter of the seal ring 40 is referred to as a large diameter side.
  • the radial inner side of the seal ring 40 is referred to as an inner peripheral side
  • the radial outer side of the seal ring 40 is referred to as an outer peripheral side.
  • the small diameter side lip 45 is a portion extending from one end to the other end side in the circumferential direction on the small diameter side and the inner peripheral side of the seal ring 40.
  • the small diameter side lip fitting portion 46 is provided at the other end of the seal ring 40 in the circumferential direction, and is a portion where the small diameter side lip 45 fits.
  • the large diameter side lip 47 is a portion extending from the other end in the circumferential direction to one end side on the large diameter side and the outer peripheral side of the seal ring 40.
  • the large-diameter side lip fitting portion 48 is provided at one end of the seal ring 40 in the circumferential direction, and is a portion where the large-diameter side lip 47 fits.
  • first divided surface 50 the divided surface in which the large diameter side lip 47 and the large diameter side lip fitting portion 48 are in contact with each other.
  • second divided surface 49 the divided surface in which the small diameter side lip 45 and the small diameter side lip fitting portion 46 are in contact with each other.
  • first division surface 50 and the second division surface 49 are located at positions deviated from each other in the circumferential direction.
  • the step cut shape of the present embodiment has the first to fourth joints 51 to 54.
  • the first joint portion 51 is a space formed on the small diameter side and the inner peripheral side of the seal ring 40 between the circumferential surface of the small diameter side lip 45 and the small diameter side lip fitting portion 46.
  • the second abutment portion 52 is a space formed on the small diameter side and the outer peripheral side of the seal ring 40 between one end and the other end in the circumferential direction of the seal ring 40.
  • the third joint portion 53 is a space formed on the large-diameter side and the outer peripheral side of the seal ring 40 between the circumferential surface of the large-diameter side lip 47 and the large-diameter side lip fitting portion 48.
  • the fourth abutment portion 54 is a space formed on the large diameter side and the inner peripheral side of the seal ring 40 between one end and the other end in the circumferential direction of the seal ring 40.
  • the first to fourth abutments 51 to 54 are arranged so that none of them overlap in the axial direction (that is, do not communicate in the axial direction). Therefore, the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when the seal ring 40 is fully closed.
  • FIG. 13 shows the position of the cross section of the seal ring 40 shown in FIGS. 14 and 15. That is, FIG. 14 shows a cross section of the large diameter side lip 47 and the large diameter side lip fitting portion 48, and FIG. 15 shows a cross section of the small diameter side lip 45 and the small diameter side lip fitting portion 46. Note that in FIGS. 14 and 15, hatching showing a cross section of the seal ring 40 is omitted in order to make the figure easier to see. This also applies to FIGS. 17, 18, 23 to 25, and 27 to 29, which are referred to in the description below.
  • the tapered portion 44 on the outer side in the radial direction is in close contact with the inner wall surface 12 of the gas passage 11. Further, surface pressure is generated on each of the radialally oriented surface 501 and the axially oriented surface 502 of the first divided surface 50, and the large diameter side lip 47 and the large diameter side lip fitting portion 48 are the first. Adhere on the dividing surface 50.
  • the surface of the small diameter side lip fitting portion 46 facing the downstream side and the surface of the groove portion 21 of the valve body 20 facing the upstream side 211 are in close contact with each other.
  • the tapered portion 44 on the outer side in the radial direction of the small diameter side lip fitting portion 46 and the inner wall surface 12 of the gas passage 11 are in close contact with each other.
  • surface pressure is generated on the radial direction surface 491 and the axial direction surface 492 of the second division surface 49, respectively, and the small diameter side lip 45 and the small diameter side lip fitting portion 46 are the second division surface 49. Adhere with.
  • FIG. 16 shows a seal ring 400 of a comparative example.
  • both the small diameter side lip 450 and the large diameter side lip 470 are provided on the outer peripheral side.
  • the abutment portion 500 formed between one end and the other end of the seal ring 400 in the circumferential direction on the inner peripheral side of the seal ring 400 communicates with each other in the axial direction.
  • FIG. 16 also shows the position of the cross section of the seal ring 400 shown in FIGS. 17 and 18. That is, FIG. 17 shows a cross section of the large diameter side lip 470 and the large diameter side lip fitting portion 480, and FIG. 18 shows a cross section of the small diameter side lip 450 and the small diameter side lip fitting portion 460.
  • the tapered portion 440 on the outer side in the radial direction is in close contact with the inner wall surface 12 of the gas passage 11.
  • surface pressure is generated on the radial direction surface 511 and the axial direction surface 512 of the first divided surface 510, respectively, and the large diameter side lip 470 and the large diameter side lip fitting portion 480 are the first. It is in close contact with the dividing surface 510.
  • the surface of the small diameter side lip fitting portion 460 facing the downstream side and the surface of the groove portion 21 of the valve body 20 facing the upstream side 211 are in close contact with each other.
  • the tapered portion 440 on the outer side in the radial direction and the inner wall surface 12 of the gas passage 11 are in close contact with each other.
  • a gap S1 is generated between the radial outer surface 461 of the small diameter side lip fitting portion 460 and the radial inner surface 451 of the small diameter side lip 450. It ends up.
  • the comparative example has a configuration in which gas easily flows between the flow path on the upstream side and the flow path on the downstream side through the gap S1.
  • the seal ring 40 of the present embodiment described above ensures gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed. It can be said that the configuration can be prevented.
  • step S10 the original seal ring 40 is molded by, for example, resin injection molding. As shown in FIG. 20, the original seal ring 40 is formed in a state where one end and the other end of the seal ring 40 in the circumferential direction are separated from each other in the circumferential direction.
  • a tubular outer peripheral fixing jig 60 is prepared.
  • the inner wall surface of the outer peripheral fixing jig 60 is a perfect circle with high accuracy.
  • the seal ring 40 is contracted and inserted inside the outer peripheral fixing jig 60 in the radial direction. Specifically, one end and the other end of the seal ring 40 in the circumferential direction are combined in a step-cut shape and inserted inside the outer peripheral fixing jig 60.
  • step S30 an inner circumference regulating jig 61 having an outer diameter equal to or slightly smaller than the inner diameter of the seal ring 40 is prepared. Then, the inner circumference regulating jig 61 is inserted inside the seal ring 40.
  • FIG. 21 shows a state in which the seal ring 40 is inserted between the outer peripheral fixing jig 60 and the inner peripheral regulating jig 61.
  • a plurality of seal rings 40 may be inserted between the outer circumference fixing jig 60 and the inner circumference regulating jig 61 in a state of being overlapped in the axial direction.
  • step S40 the seal ring 40 is heated in, for example, a constant temperature bath (not shown) to correct the shape of the seal ring 40.
  • the seal ring 40 is inserted inside the outer peripheral fixing jig 60 in a state of being contracted in the radial direction. Therefore, the seal ring 40 comes into contact with the inner wall of the outer peripheral fixing jig 60 by its own elastic force that tends to expand outward in the radial direction. Therefore, by heating the seal ring 40 with the seal ring 40 inserted between the outer circumference fixing jig 60 and the inner circumference regulating jig 61, the outer circumference of the seal ring 40 is aligned with the inner wall of the outer circumference fixing jig 60. The accuracy of the perfect circle can be improved.
  • FIG. 22 shows the position of the cross section of the seal ring 40 shown in FIGS. 23 to 25. That is, FIG. 23 shows a position of the seal ring 40 other than the step cut shape, FIG. 24 shows a cross section of the large diameter side lip 47 and the large diameter side lip fitting portion 48, and FIG. 25 shows the small diameter side lip 45 and the small diameter.
  • the cross section of the side lip fitting portion 46 is shown.
  • the white arrows shown in FIGS. 23 to 25 indicate the elastic force of the seal ring 40 itself.
  • the seal ring 40 comes into contact with the inner wall of the outer peripheral fixing jig 60 by its own elastic force, and the roundness of the outer circumference on the large diameter side of the seal ring 40 is corrected.
  • the radial outer surface of the large diameter side lip 47 comes into contact with the inner wall of the outer peripheral fixing jig 60, and the roundness of the outer circumference of the large diameter side lip 47 is corrected. Further, the surface 481 on the outer side in the radial direction of the large-diameter lip fitting portion 48 and the surface 471 on the inner side in the radial direction of the large-diameter lip 47 are corrected so as to be in close contact with each other.
  • the radial outer surface of the small diameter side lip fitting portion 46 comes into contact with the inner wall of the outer peripheral fixing jig 60, and the outer circumference of the small diameter side lip fitting portion 46 on the large diameter side is a perfect circle. The degree is corrected. Further, the surface 451 on the outer side in the radial direction of the small diameter side lip 45 and the surface 461 on the inner side in the radial direction of the small diameter side lip fitting portion 46 are corrected so as to be in close contact with each other.
  • FIG. 26 shows a seal ring 400 of the same comparative example as that shown in FIG.
  • FIG. 26 shows the position of the cross section of the seal ring 400 shown in FIGS. 27 to 29. That is, FIG. 27 shows a cross section of the large diameter side lip 470 and the large diameter side lip fitting portion 480, and FIGS. 28 and 29 show a cross section of the small diameter side lip 450 and the small diameter side lip fitting portion 460. ..
  • the white arrows shown in FIGS. 27 to 29 also indicate the elastic force of the seal ring 40 itself.
  • the radial outer surface 4700 of the large diameter side lip 470 is in contact with the inner wall of the outer peripheral fixing jig 60, and the outer circumference of the large diameter side lip 470 is a perfect circle. The degree is corrected. Further, the radial outer surface 4801 of the large diameter side lip fitting portion 480 and the radial inner surface 4701 of the large diameter side lip 470 are corrected so as to be in close contact with each other.
  • the radial outer surface 4600 of the small diameter side lip fitting portion 460 comes into contact with the inner wall of the outer peripheral fixing jig 60, and the true outer circumference of the small diameter side lip fitting portion 460 on the large diameter side.
  • the roundness is corrected.
  • the space S2 is formed between the small diameter side lip 450 and the inner wall of the outer peripheral fixing jig 60. Therefore, as shown in FIG. 29, in the comparative example, when the small diameter side lip 450 moves to the outer peripheral fixing jig 60 side by its own elastic force during heat straightening, a step D is formed on the outer peripheral surface of the seal ring 400.
  • the seal ring 40 of the present embodiment as described with reference to FIG. 24, the radial outer surface 481 of the large diameter side lip fitting portion 48 and the radial direction of the large diameter side lip 47 during heat correction
  • the structure is such that the inner surface 471 is in close contact with the inner surface 471.
  • the radial outer surface 451 of the small diameter side lip 45 and the radial inner surface 461 of the small diameter side lip fitting portion 46 are in close contact with each other during heat straightening. Therefore, the seal ring 40 of the present embodiment can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • step S40 After heating the seal ring 40 for a certain period of time in step S40 described above, the seal ring 40 is taken out from between the outer peripheral fixing jig 60 and the inner circumference regulating jig 61 in step S50. As a result, the seal ring 40 is completed.
  • the method for manufacturing the seal ring 40, the valve device 1, and the seal ring 40 of the present embodiment described above has the following effects.
  • the seal ring 40 of the present embodiment has a tapered portion 44 on the outer wall surface on the outer side in the radial direction, in which the distance from the central axis Ax gradually decreases from one side of the gas passage 11 toward the other when fully closed. doing. According to this, when the valve device 1 is fully closed, the tapered portion 44 of the radial outer wall surface of the seal ring 40 comes into surface contact with the tapered inner wall surface 12 of the inner wall of the gas passage 11. .. Therefore, it is possible to increase the area in contact between the inner wall of the gas passage 11 and the outer wall surface on the outer side in the radial direction of the seal ring 40.
  • the seal ring 40 of the first embodiment since the peripheral portion of the second abutment portion 52 provided on the small diameter side and the outer peripheral side of the seal ring 40 abuts on the inner wall of the gas passage 11, the second abutment portion 52 It is possible to prevent gas leakage via. Therefore, the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • the seal ring 40 when the seal ring 40 comes into surface contact with the inner wall surface 12 of the gas passage 11 when the valve device 1 is fully closed, the seal ring 40 makes the inner wall surface 12 of the gas passage 11 radially outward.
  • Two component forces are generated with respect to the pressing force.
  • One of the two component forces is a component force in the direction parallel to the tapered inner wall surface 12 of the gas passage 11, and the other component force is a component force in the direction perpendicular to the inner wall surface 12 of the gas passage 11. It is a component force.
  • the component force of one of the two component forces is a force that moves the seal ring 40 itself to the larger diameter side of the taper. Therefore, the side surface of the seal ring 40 (that is, one surface of the seal ring 40 in the axial direction) and the side surface of the groove portion 21 of the valve body 20 (that is, one surface of the groove portion 21 in the axial direction) are in close contact with each other. .. Therefore, this seal ring 40 can surely prevent gas leakage even when the pressure difference between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 becomes small when the valve device 1 is fully closed. it can.
  • the first divided surface 50 formed on the outer wall surface on the radial outer side of the seal ring 40 by the step cut shape is a tapered portion 44 of the outer wall surface on the radial outer side of the seal ring 40. Is formed in.
  • the first dividing surface 50 formed on the outer wall surface on the outer side in the radial direction of the seal ring 40 is closed by the tapered inner wall surface 12 of the inner walls of the gas passage 11 when fully closed. Therefore, the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • the surface 49 is located at a position deviated in the circumferential direction.
  • the seal ring 40 is arranged so that the first abutment portion 51, the second abutment portion 52, the third abutment portion 53, and the fourth abutment portion 54 do not communicate with each other in the axial direction. ..
  • the seal ring 40 can reliably prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • the seal ring 40 is a resin molded product. Thereby, the wear of the inner wall surface 12 of the gas passage 11 can be reduced.
  • the valve device 1 of the present embodiment includes a housing 10, a valve body 20, a shaft 30, a groove 21, and a seal ring 40.
  • the inner wall surface 12 with which the seal ring 40 abuts when fully closed has a tapered shape having a linear cross-sectional view parallel to the central axis Ax of the gas passage 11.
  • the outer wall surface on the outer side in the radial direction of the seal ring 40 has a tapered portion 44 having a linear cross-sectional view parallel to the central axis Ax of the gas passage 11 when fully closed.
  • this valve device 1 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • the original seal ring 40 is inserted between the outer peripheral fixing jig 60 and the inner peripheral regulating jig 61 by contracting the original seal ring 40 in the radial direction, and then the seal ring 40 is inserted. Includes heating to correct the shape of the seal ring 40.
  • the seal ring 40 is contracted in the radial direction between the outer circumference fixing jig 60 and the inner circumference regulating jig 61, the elastic force of the seal ring 40 itself causes the large diameter side lip 47 to be inside in the radial direction.
  • the surface 471 and the radial outer surface 481 of the large diameter side lip fitting portion 48 are in close contact with each other.
  • the radial inner surface 461 of the small diameter side lip fitting portion 46 and the radial outer surface 451 of the small diameter side lip 45 are in close contact with each other. Therefore, it is possible to prevent a gap from being formed between the radial inner surface 471 of the large diameter side lip 47 and the radial outer surface 481 of the large diameter side lip fitting portion 48. Further, it is possible to prevent a gap from being formed between the radial inner surface 461 of the small diameter side lip fitting portion 46 and the radial outer surface 451 of the small diameter side lip 45. Therefore, the seal ring 40 manufactured by this manufacturing method of the seal ring 40 can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed.
  • FIG. 30 is an enlarged cross-sectional view of a part of the valve device 1 and the seal ring 40 according to the second embodiment, and corresponds to the portion shown in FIG. 5 when the first embodiment is described.
  • the arrow GF indicates the flow direction of the exhaust gas flowing through the gas passage 11 from the exhaust pipe 3 side (that is, the upstream side) to the intake pipe 4 side (that is, the downstream side).
  • FIG. 30 shows the state when fully closed, no exhaust gas flow is generated.
  • the inner wall surface 121 with which the seal ring 40 abuts when fully closed is cross-sectionally viewed parallel to the central axis Ax of the gas passage 11.
  • the tapered inner wall surface 121 is formed so that the distance from one of the gas passages 11 toward the other is gradually reduced from the central axis Ax.
  • the tapered inner wall surface 121 is formed so that the distance from the central axis Ax gradually decreases from the downstream side to the upstream side of the gas passage 11.
  • the tapered inner wall surface 121 is formed on the entire circumference of the gas passage 11.
  • the cross-sectional view parallel to the central axis Ax of the gas passage 11 is convex outward in the radial direction. It has a curved tapered portion 441.
  • the tapered portion 441 of the outer wall surface of the seal ring 40 is formed so that the distance from the central axis Ax gradually decreases from one side of the gas passage 11 toward the other when fully closed.
  • the tapered portion 441 is formed so that the distance from the central axis Ax gradually decreases from the downstream side to the upstream side of the gas passage 11 when fully closed.
  • the tapered portion 44 is formed on the entire circumference of the seal ring 40.
  • the curvature of the tapered portion 441 of the outer wall surface on the outer side in the radial direction of the seal ring 40 and the curvature of the tapered inner wall surface 121 formed on the inner wall of the gas passage 11 are the same or similar. Is preferable.
  • the curvature referred to here is the curvature in a cross-sectional view parallel to the central axis Ax of the gas passage 11.
  • the seal ring 40 of the second embodiment can surely prevent gas leakage between the flow path on the upstream side and the flow path on the downstream side of the valve body 20 when fully closed. it can.
  • valve device 1 has been described as being used for, for example, an EGR device, but the present invention is not limited to this.
  • the valve device 1 can be used for various purposes of adjusting the flow rate of gas flowing through the gas passage 11, such as adjusting the flow rate of gaseous fuel in a fuel cell.
  • the valve device 1 can be suitably used for a valve device 1 that requires airtightness when the gas passage 11 is fully closed.
  • valve device 1 has been described as a butterfly type valve device 1, but the present invention is not limited to this.
  • the valve device 1 may be, for example, a rotary type. Even in this case, the shapes of the inner wall surfaces 12 and 121 of the gas passage 11, the shape of the seal ring 40, and the like can be the same as those described in the above embodiment.
  • the tapered inner wall surface 12 of the gas passage 11 has been described as having an inner diameter gradually decreasing from the downstream side to the upstream side of the gas passage 11, but the present invention is not limited to this.
  • the tapered inner wall surface 12 of the gas passage 11 may be configured so that the inner diameter gradually decreases from the upstream side to the downstream side of the gas passage 11.
  • the tapered portion 44 of the outer wall surface on the radial outer side of the seal ring 40 is configured such that the outer diameter gradually decreases from the upstream side to the downstream side of the gas passage 11 when fully closed.
  • the gas passage 11, the valve body 20, and the seal ring 40 are all described as being circular when viewed from the axial direction, but the present invention is not limited to this. These shapes may be, for example, an elliptical shape, an oval shape, a polygonal shape, or a combination thereof when viewed from the axial direction.
  • the seal ring 40 is configured such that the C-shaped metal spring 43 is arranged in the fitting groove 42 provided on one surface in the axial direction of the resin ring, but the present invention is not limited to this. ..
  • the seal ring 40 may be a resin ring alone, or may be made of other materials.
  • the manufacturing method of the seal ring 40 has been described in the order of steps S10 to S50, but the present invention is not limited to this.
  • steps S20 and S30 the order in which the seal ring 40 is inserted into the outer peripheral fixing jig 60 and the inner peripheral regulating jig 61 may be changed, or the outer peripheral fixing jig 60 and the inner peripheral regulating jig 61 may be inserted.
  • the seal ring 40 may be inserted into the assembled one.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Sealing Devices (AREA)

Abstract

シールリング(40)は、ガス通路(11)を開閉可能なバルブ本体(20)の外周に設けられた溝部(21)に嵌合する。ガス通路(11)の内壁のうち全閉時にシールリング(40)が当接する内壁面(12)は、ガス通路(11)の一方から他方に向かい中心軸(Ax)からの距離が次第に近くなるテーパ状である。シールリング(40)は、周方向の一端と他端とが軸方向に重なるステップカット形状である。そして、シールリング(40)の径方向外側の外壁面は、全閉時においてガス通路(11)の一方から他方に向かい中心軸(Ax)からの距離が次第に近くなるテーパ状の部位(44)を有している。

Description

シールリング、バルブ装置、およびシールリングの製造方法 関連出願への相互参照
 本出願は、2019年8月8日に出願された日本特許出願番号2019-146527号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、シールリング、それを用いたバルブ装置、および、シールリングの製造方法に関するものである。
 従来、ガス通路を開閉可能なバタフライ式のバルブ装置が知られている。このバルブ装置に用いられるシールリングは、バルブ装置を構成する円盤状のバルブ本体の外周に設けられた溝部に嵌合する。そして、バルブ装置がガス通路を閉塞する全閉時、シールリングはガス通路の内壁に当接し、ガス通路のガス流れを遮断する。なお、以下の説明では、バルブ装置がガス通路を閉塞する全閉時を「バルブ装置の全閉時」または、単に「全閉時」という。
 特許文献1に記載のシールリングは、樹脂により環状に形成され、周方向の一端と他端とが軸方向に重なるステップカット形状とされている。これにより、バルブ装置の全閉時に、シールリングの周方向の一端と他端との間に形成される隙間を通じてガス漏れが生じることが抑制される。なお、以下の説明では、シールリングの周方向の一端と他端との間に形成される隙間を「合口」という。
特開2017-180726号公報
 ここで、発明者らは、バルブ装置が開閉するガス通路の内壁をテーパ状にすることで、バルブ装置の全閉時にガス漏れを防ぐことができることを見出した。具体的には、バルブ装置が開閉するガス通路の内壁をテーパ状とした場合、バルブ装置の全閉時に、シールリング自身がガス通路の内壁を径方向外側に押圧する力に対し、ガス通路の内壁に平行な方向の分力と、ガス通路の内壁に垂直な方向の分力が発生する。それらの分力のうち、ガス通路の内壁に平行な方向の分力により、シールリングの側面とバルブ本体の溝部の側面とが密着する。これにより、バルブ装置の全閉時に、バルブ本体の上流側の流路と下流側の流路の圧力差が小さい場合にも、シールリングの側面とバルブ本体の溝部の側面との接触面からのガス漏れを防ぐことができる。
 しかしながら、特許文献1に記載のシールリングは、ガス通路の内壁をテーパ状に形成した場合、バルブ装置の全閉時にシールリングの径方向外側の外壁面とガス通路の内壁面とが線接触する構成となる。そのため、シールリングが備えるステップカット形状で外周側に形成される合口を通じて、バルブ本体より上流側の流路と下流側の流路とが連通し、ガスが流通することとなる。したがって、特許文献1に記載のシールリングは、ガス通路の内壁をテーパ状に形成した場合、バルブ装置の全閉時にガス漏れを十分に防ぐことのできない構成である。
 本開示は、全閉時のガス漏れを確実に防ぐことの可能なシールリング、バルブ装置、およびシールリングの製造方法を提供することを目的とする。
 本開示の1つの観点によれば、ガス通路を開閉可能なバルブ本体の外周に設けられた溝部に嵌合するシールリングは、次の構成である。ガス通路の内壁のうち全閉時にシールリングが当接する内壁面は、ガス通路の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状である。シールリングは、周方向の一端と他端とが軸方向に重なるステップカット形状である。そして、シールリングの径方向外側の外壁面は、全閉時においてガス通路の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状の部位を有している。
 これによれば、バルブ装置の全閉時に、ガス通路の内壁のうちテーパ状の部位に対し、シールリングの径方向外側の外壁面のうちテーパ状の部位が面接触する構成となる。そのため、ガス通路の内壁と、シールリングの径方向外側の外壁面とが接する面積を大きくすることが可能である。また、シールリングのステップカット形状のうち外周側の合口の周囲の部位がガス通路の内壁に当接するので、その合口を経由するガス漏れを防ぐことが可能である。したがって、このシールリングは、全閉時において、バルブ本体より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 また、バルブ装置の全閉時にシールリングがガス通路の内壁に面接触する際、シールリングがガス通路の内壁を径方向外側に押圧する力に対し、ガス通路の内壁に平行な方向の分力と、ガス通路の内壁に垂直な方向の分力が発生する。それらの分力のうち、ガス通路のテーパ面に平行な方向の分力は、シールリング自身をテーパの大径側へ移動させる力となる。そのため、シールリングの側面(すなわち、シールリングのうち軸方向の一方の面)と、バルブ本体の溝部の側面(すなわち、溝部のうち軸方向の一方の面)とが密着する。したがって、このシールリングは、バルブ装置の全閉時に、バルブ本体より上流側の流路と下流側の流路との圧力差が小さくなる場合にも、ガス漏れを確実に防ぐことができる。
 また、別の観点によれば、ガス通路を開閉するバルブ装置は、ハウジング、バルブ本体、シャフト、溝部およびシールリングを備える。ハウジングは、ガス通路を有している。バルブ本体は、ガス通路内で回転可能に設けられる。シャフトは、バルブ本体をガス通路内で回転可能に支持する。溝部は、バルブ本体の径方向外側の外縁に周方向に延びる。シールリングは、環状に形成されて溝部に嵌合し、ガス通路の内壁に当接する。ハウジングが有するガス通路の内壁のうち全閉時にシールリングが当接する内壁面は、ガス通路の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状である。そして、このバルブ装置のシールリングは、上記本開示の1つの観点に記載した構成を備えている。
 これによれば、このバルブ装置は、上記本開示の1つの観点に記載した構成のシールリングを備えているので、上記本開示の1つの観点で述べたことと同様に、全閉時において、バルブ本体より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 さらに別の観点によれば、シールリングの製造方法に関する開示である。このシールリングは、周方向の一端と他端とが軸方向に重なるステップカット形状である。シールリングの径方向外側の外壁面は、軸方向の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状の部位を有する。ステップカット形状によりシールリングの径方向外側の外壁面に形成される分割面は、シールリングの径方向外側の外壁面のテーパ状の部位に形成される。そして、ステップカット形状は、小径側リップ、小径側リップ嵌合部、大径側リップおよび大径側リップ嵌合部を有している。小径側リップは、シールリングの小径側且つ内周側で周方向の一端から他端側へ延びる部位である。小径側リップ嵌合部は、シールリングの周方向の他端に設けられ、小径側リップが嵌合する部位である。大径側リップは、シールリングの大径側且つ外周側で周方向の他端から一端側へ延びる部位である。大径側リップ嵌合部は、シールリングの周方向の一端に設けられ、大径側リップが嵌合する部位である。
 そして、このシールリングの製造方法は、シールリングの周方向の一端と他端とが周方向に離れた状態の原形のシールリングを形成することと、筒状の外周固定治具の内側にシールリングを径方向に縮めて挿入することと、シールリングの内径と同一または僅かに小さく外径が形成された内周規制治具をシールリングの内側に挿入することと、シールリングを加熱し、シールリングの形状を矯正することと、外周固定治具と内周規制治具の間からシールリングを取り出すことを含んでいる。
 これによれば、外周固定治具と内周規制治具との間にシールリングを径方向に縮めて入れると、シールリング自身の弾性力により、大径側リップの径方向内側の面と大径側リップ嵌合部の径方向外側の面とが密着する。また、小径側リップ嵌合部の径方向内側の面と小径側リップの径方向外側の面とが密着する。そのため、大径側リップの径方向内側の面と大径側リップ嵌合部の径方向外側の面との間に隙間が生じることが防がれ、小径側リップ嵌合部の径方向内側の面と小径側リップの径方向外側の面との間に隙間が生じることが防がれる。したがって、このシールリングの製造方法により製造されたシールリングは、全閉時において、バルブ本体より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係るバルブ装置が用いられる排気再循環装置の概略構成を示す図である。 第1実施形態に係るバルブ装置の正面図である。 図2のIII方向におけるバルブ装置の側面図である。 図2のIV―IV線におけるバルブ装置の断面図である。 図4のV部分の拡大図である。 第1実施形態に係るシールリングを軸方向大径側から視た図である。 図6のVII方向において、シールリングを径方向から視た図である。 図7のVIII方向において、シールリングを軸方向小径側から視た図である。 図6のIX部分の拡大図である。 図7のX部分の拡大図である。 図8のXI部分の拡大図である。 図11に対し、大径側のステップカット形状を破線で示した図である。 第1実施形態に係るシールリングの斜視図である。 図13のXIV―XIV線の部位に関し、バルブ装置にシールリングが設置された状態を示す断面図である。 図13のXV―XV線の部位に関し、バルブ装置にシールリングが設置された状態を示す断面図である。 比較例のシールリングの斜視図である。 図16のXVII―XVII線の部位に関し、バルブ装置に比較例のシールリングが設置された状態を示す断面図である。 図16のXVIII―XVIII線の部位に関し、バルブ装置に比較例のシールリングが設置された状態を示す断面図である。 第1実施形態に係るシールリングの製造方法を示すフローチャートである。 原形のシールリングの一端と他端を示す図である。 外周固定治具と内周規制治具の間にシールリングが挿入された状態を示す図である。 第1実施形態に係るシールリングの斜視図である。 図22のXXIII―XXIII線の部位に関し、外周固定治具と内周規制治具の間にシールリングが挿入された状態を示す断面図である。 図22のXXIV―XXIV線の部位に関し、外周固定治具と内周規制治具の間にシールリングが挿入された状態を示す断面図である。 図22のXXV―XXV線の部位に関し、外周固定治具と内周規制治具の間にシールリングが挿入された状態を示す断面図である。 比較例のシールリングの斜視図である。 図26のXXVII―XXVII線の部位に関し、外周固定治具と内周規制治具の間に比較例のシールリングが挿入された状態を示す断面図である。 図26のXXVIII―XXVIII線の部位に関し、外周固定治具と内周規制治具の間に比較例のシールリングが挿入された状態を示す断面図である。 図28の状態で熱矯正が行われた状態の比較例のシールリングを示す断面図である。 第2実施形態に係るバルブ装置およびシールリングの一部を拡大した断面図であり、図5に示した箇所に相当するものである。
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。図1に示すように、本実施形態のバルブ装置1は、例えば、エンジン2の排気管3を流れる排ガスの一部を吸気管4へ再循環させるEGR装置5に用いられる。バルブ装置1は、排気管3と吸気管4とを接続するEGR通路6を流れる排ガスの流量を調整する機能、並びに、排ガスの流れを許容および遮断する機能を有する。このバルブ装置1には、EGR通路6の排ガスの流れを遮断した状態(すなわち、全閉時)のときに排ガスの漏れが生じることの無い、密閉性が求められる。
 図2~図4に示すように、バルブ装置1は、ハウジング10、バルブ本体20、シャフト30およびシールリング40などを備えている。
 ハウジング10は、ガス通路11を有している。ガス通路11は、略円筒状に形成されている。ガス通路11は、図1に示したEGR通路6に連通する。そのため、ガス通路11には、EGR通路6を流れる排ガスが流れる。図4および図5では、ガス通路11を排気管3側から吸気管4側へ流れる排ガスの流れ方向を矢印GFで示している。ただし、図4および図5は、バルブ装置1がガス通路11を完全に閉塞した全閉時の状態を示しているので、排ガスの流れは生じていない。
 ガス通路11の内側には、図示しない筒状のノズルを設けてもよい。その場合、そのノズルの内壁が、ガス通路11の内壁となる。
 なお、以下の説明では、排気管3側を上流側といい、吸気管4側を下流側ということがある。また、排ガスを、単に「ガス」ということがある。
 本実施形態では、ガス通路11の内壁のうち全閉時にシールリング40が当接する内壁面12は、ガス通路11の一方から他方に向かい中心軸Axからの距離が次第に近くなるテーパ状に形成されている。また、そのテーパ状の内壁面12は、下流側から上流側に向かい内径が次第に小さくなっている、ということもできる。第1実施形態では、そのテーパ状の内壁面12は、ガス通路11の中心軸Axに平行な断面視が直線状となっている。なお、そのテーパ状の内壁面12は、ガス通路11の全周に形成されている。
 ハウジング10の内側には、ガス通路11内に設けられるバルブ本体20を回転駆動するための図示しない駆動装置が設けられている。駆動装置は、図示しないモータ、そのモータの回転を減速してシャフト30に伝達する図示しないギア、そのギアに連結されるシャフト30などにより構成されている。シャフト30は、ハウジング10に対し軸受を介して回転可能に支持されている。なお、図2~図4では、ハウジング10の内側にモータが配置される部位を、符号13で示している。
 バルブ本体20は、略円盤状に形成され、ガス通路11内で回転可能に設けられている。バルブ本体20のうち厚み方向を向く面にシャフト30の端部が固定されている。バルブ本体20とシャフト30は、例えば溶接またはボルト等により固定されている。シャフト30は、バルブ本体20をガス通路11内で回転可能に支持している。
 ハウジング10の上部に設けられたコネクタ14からハウジング10内のモータに電力が供給され、モータが回転すると、そのモータのトルクがギアを介してシャフト30に伝達される。これにより、シャフト30は、その軸周りに回転する。シャフト30の回転に伴ってバルブ本体20はガス通路11内で回転する。
 図4および図5に示すように、バルブ本体20の径方向外側の外縁には、周方向に延びる溝部21が設けられている。溝部21は、バルブ本体20の全周に亘り延びている。そのバルブ本体20の溝部21に対し、シールリング40が嵌合している。
 シールリング40は、環状に形成され、バルブ本体20の外周に設けられた溝部21に嵌合している。シールリング40は、例えば、樹脂により形成された樹脂成型品である。なお、このシールリング40は、樹脂リングの軸方向の一方の面に設けた嵌合溝42にC字状の金属スプリング43が配置される構成である。
 シールリング40の径方向外側の外壁面は、全閉時においてガス通路11の一方から他方に向かい中心軸Axからの距離が次第に近くなるテーパ状の部位44を有している。そのテーパ状の部位44は、全閉時においてガス通路11の下流側から上流側に向かい外径が次第に小さくなっている、ということもできる。第1実施形態では、そのテーパ状の部位44は、全閉時においてガス通路11の中心軸Axに平行な断面視が直線状となっている。そのテーパ状の部位44は、シールリング40の全周に形成されている。
 なお、シールリング40の径方向外側の外壁面が有するテーパ状の部位44のテーパ角と、ガス通路11の内壁に形成されるテーパ状の内壁面12のテーパ角とは、同一または近似していることが好ましい。これにより、バルブ装置1の全閉時に、ガス通路11の内壁のうちテーパ状の内壁面12に対し、シールリング40の径方向外側の外壁面のうちテーパ状の部位44が面接触する。そのため、ガス通路11の内壁と、シールリング40の径方向外側の外壁面とが接する面積を大きくすることが可能である。したがって、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 また、シールリング40は、ガス通路11の全閉時にガス通路11の内壁との密着性を良くするため、径方向に拡大および縮小可能な弾性力を有している。そして、バルブ装置1がガス通路11を全閉状態にしたとき、シールリング40は、径が縮小した状態で、ガス通路11の内壁を径方向外側に押圧しつつ、ガス通路11の内壁に当接している。したがって、全閉時では、シールリング40の径方向外側の面とガス通路11の内壁とが密着し、ガス通路11のガス流れが遮断される。
 図6~図12は、シールリング40のみを示している。図6~図12に示すように、シールリング40の周方向の一端と他端は、軸方向に重なるステップカット形状とされている。
 図10では、シールリング40の径方向外側の外壁面が有するテーパ状の部位44を明示するため、そのテーパ状の部位44に破線のハッチングを付している。図10に示すように、ステップカット形状によりシールリング40の径方向外側の外壁面に形成される第1分割面50は、シールリング40の径方向外側の外壁面のうちテーパ状の部位44に形成されている。これにより、シールリング40の径方向外側の外壁面に形成される第1分割面50は、全閉時に、ガス通路11の内壁のうちテーパ状の内壁面12によって塞がれる。そのため、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことが可能である。
 また、シールリング40の一端と他端との間に形成される外周側の合口52の周囲の部位も、シールリング40の径方向外側の外壁面のうちテーパ状の部位44に形成されている。これにより、シールリング40の一端と他端との間に形成される外周側の合口52の周囲の部位は、全閉時に、ガス通路11の内壁のうちテーパ状の内壁面12によって塞がれる。そのため、このシールリング40は、全閉時に合口52を通じてガス漏れが生じることを防ぐことが可能である。
 図9~図12に示すように、シールリング40の周方向の一端と他端に形成されるステップカット形状は、小径側リップ45、小径側リップ嵌合部46、大径側リップ47、および大径側リップ嵌合部48を有している。
 なお、以下の説明では、シールリング40の外径が小さい側を小径側といい、シールリング40の外径が大きい側を大径側という。また、シールリング40の径方向内側を内周側といい、シールリング40の径方向外側を外周側という。
 小径側リップ45は、シールリング40の小径側且つ内周側で、周方向の一端から他端側へ延びる部位である。小径側リップ嵌合部46は、シールリング40の周方向の他端に設けられ、小径側リップ45が嵌合する部位である。大径側リップ47は、シールリング40の大径側且つ外周側で、周方向の他端から一端側へ延びる部位である。大径側リップ嵌合部48は、シールリング40の周方向の一端に設けられ、大径側リップ47が嵌合する部位である。
 ここで、大径側リップ47と大径側リップ嵌合部48とが接する分割面を、第1分割面50と称する。一方、小径側リップ45と小径側リップ嵌合部46とが接する分割面を、第2分割面49と称する。本実施形態のステップカット形状では、第1分割面50と第2分割面49とは、周方向にずれた位置にある。
 また、本実施形態のステップカット形状は、第1~第4合口部51~54を有している。第1合口部51は、シールリング40の小径側且つ内周側で、小径側リップ45の周方向の面と小径側リップ嵌合部46との間に形成される空間である。第2合口部52は、シールリング40の小径側且つ外周側で、シールリング40の周方向の一端と他端との間に形成される空間である。第3合口部53は、シールリング40の大径側且つ外周側で、大径側リップ47の周方向の面と大径側リップ嵌合部48との間に形成される空間である。第4合口部54は、シールリング40の大径側且つ内周側で、シールリング40の周方向の一端と他端との間に形成される空間である。
 本実施形態のステップカット形状では、第1~第4合口部51~54が、いずれも軸方向に重ならない(すなわち、軸方向に連通しない)ように配置されている。そのため、シールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことが可能である。
 次に、シールリング40がバルブ装置1に設置された状態で、バルブ本体20より上流側の流路の圧力が下流側の流路の圧力より大きいときのシールリング40の挙動について説明する。
 なお、図13には、図14および図15に示すシールリング40の断面の位置が示されている。すなわち、図14は、大径側リップ47および大径側リップ嵌合部48の断面を示し、図15は、小径側リップ45および小径側リップ嵌合部46の断面を示している。なお、図14および図15では、図を見やすくするため、シールリング40の断面を示すハッチングを省略している。このことは、後述の説明で参照する図17、図18、図23~図25、図27~図29についても同じである。
 図14および図15においてハッチングを付した矢印に示すように、バルブ装置1の全閉時にバルブ本体20より上流側の流路の圧力が下流側の流路の圧力よりも大きい場合、シールリング40の上流側の側面と内周面に対してガス圧が作用する。そのため、図14の白矢印に示すように、大径側リップ47および大径側リップ嵌合部48のうち下流側を向く面と、バルブ本体20の溝部21のうち上流側を向く面211とが密着する。大径側リップ47および大径側リップ嵌合部48のうち径方向外側のテーパ状の部位44と、ガス通路11の内壁面12とが密着する。また、第1分割面50のうち径方向を向く面501と軸方向を向く面502にもそれぞれ面圧が発生し、大径側リップ47と大径側リップ嵌合部48とがその第1分割面50で密着する。
 また、図15の白矢印に示すように、小径側リップ嵌合部46のうち下流側を向く面と、バルブ本体20の溝部21のうち上流側を向く面211とが密着する。小径側リップ嵌合部46のうち径方向外側のテーパ状の部位44と、ガス通路11の内壁面12とが密着する。また、第2分割面49のうち径方向を向く面491と軸方向を向く面492にそれぞれ面圧が発生し、小径側リップ45と小径側リップ嵌合部46とがその第2分割面49で密着する。
 上述した本実施形態のシールリング40の挙動と比較するため、比較例のシールリング400の挙動について説明する。
 図16は、比較例のシールリング400を示したものである。図16に示すように、比較例のシールリング400の周方向の一端と他端に形成されるステップカット形状は、小径側リップ450と大径側リップ470とがいずれも外周側に設けられている。なお、シールリング400の内周側でシールリング400の周方向の一端と他端との間に形成される合口部500は、軸方向に連通している。
 図16には、図17および図18に示すシールリング400の断面の位置も示されている。すなわち、図17は、大径側リップ470および大径側リップ嵌合部480の断面を示し、図18は、小径側リップ450および小径側リップ嵌合部460の断面を示している。
 図17および図18においてハッチングを付した矢印に示すように、比較例でも、バルブ装置1の全閉時にバルブ本体20より上流側の流路の圧力が下流側の流路の圧力よりも大きい場合、シールリング400の上流側の側面と内周面に対してガス圧が作用する。そのため、図17の白矢印に示すように、大径側リップ470および大径側リップ嵌合部480のうち下流側を向く面と、バルブ本体20の溝部21のうち上流側を向く面211とが密着する。大径側リップ470および大径側リップ嵌合部480のうち径方向外側のテーパ状の部位440と、ガス通路11の内壁面12とが密着する。また、第1分割面510のうち径方向を向く面511と軸方向を向く面512にもそれぞれ面圧が発生し、大径側リップ470と大径側リップ嵌合部480とがその第1分割面510で密着する。
 また、図18の白矢印に示すように、小径側リップ嵌合部460のうち下流側を向く面と、バルブ本体20の溝部21のうち上流側を向く面211とが密着する。小径側リップ450および小径側リップ嵌合部460のうち径方向外側のテーパ状の部位440と、ガス通路11の内壁面12とが密着する。しかしながら、比較例では、第2分割面490のうち、小径側リップ嵌合部460の径方向外側の面461と、小径側リップ450の径方向内側の面451との間に隙間S1が生じてしまう。したがって、比較例は、その隙間S1を通じて上流側の流路と下流側の流路とをガスが流れやすい構成となっている。
 このような比較例のシールリング400に対し、上述した本実施形態のシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことのできる構成であるといえる。
 続いて、本実施形態のシールリング40の製造方法の一例について、図19のフローチャートなどを参照して説明する。
 この製造方法では、まず、ステップS10で、例えば樹脂射出成形などにより、原形のシールリング40を成形する。図20に示すように、原形のシールリング40は、シールリング40の周方向の一端と他端とが周方向に離れた状態で形成される。
 次に、ステップS20で、筒状の外周固定治具60を用意する。外周固定治具60の内壁面は真円の精度の高いものである。そして、その外周固定治具60の内側にシールリング40を径方向に縮めて挿入する。具体的には、シールリング40の周方向の一端と他端をステップカット形状に組み合わせた状態として、外周固定治具60の内側に挿入する。
 続いて、ステップS30で、シールリング40の内径と同一または僅かに小さく外径が形成された内周規制治具61を用意する。そして、その内周規制治具61をシールリング40の内側に挿入する。
 図21では、外周固定治具60と内周規制治具61との間にシールリング40が挿入された状態を示している。なお、外周固定治具60および内周規制治具61との間には、複数個のシールリング40を軸方向に重ねた状態で挿入してもよい。
 次に、ステップS40で、例えば図示しない恒温槽などでシールリング40を加熱し、シールリング40の形状を矯正する。上述したように、シールリング40は径方向に縮められた状態で外周固定治具60の内側に挿入されている。そのため、シールリング40は、径方向外側に拡がろうとする自身の弾性力により、外周固定治具60の内壁に接触する。したがって、外周固定治具60と内周規制治具61との間にシールリング40を挿入した状態でシールリング40を加熱することで、外周固定治具60の内壁に合わせてシールリング40の外周の真円の精度を向上することができる。
 ここで、外周固定治具60と内周規制治具61との間でシールリング40を加熱矯正するときのシールリング40の挙動について説明する。図22には、図23~図25に示すシールリング40の断面の位置が示されている。すなわち、図23はシールリング40のうちステップカット形状以外の位置を示し、図24は大径側リップ47および大径側リップ嵌合部48の断面を示し、図25は小径側リップ45および小径側リップ嵌合部46の断面を示している。なお、図23~図25に示した白矢印は、シールリング40自身の弾性力を示したものである。
 図23に示すように、シールリング40は、自身の弾性力により外周固定治具60の内壁に接触し、シールリング40の大径側外周の真円度が矯正される。
 また、図24に示すように、大径側リップ47の径方向外側の面が外周固定治具60の内壁に接触し、大径側リップ47の外周の真円度が矯正される。また、大径側リップ嵌合部48の径方向外側の面481と、大径側リップ47の径方向内側の面471とが密着するように矯正される。
 また、図25に示すように、小径側リップ嵌合部46の径方向外側の面が外周固定治具60の内壁に接触し、小径側リップ嵌合部46の大径側の外周の真円度が矯正される。また、小径側リップ45の径方向外側の面451と、小径側リップ嵌合部46の径方向内側の面461とが密着するように矯正される。
 上述した本実施形態のシールリング40の加熱矯正時の挙動と比較するため、比較例のシールリング400の加熱矯正時の挙動について説明する。
 図26は、図16で示したものと同じ比較例のシールリング400を示したものである。図26には、図27~図29に示すシールリング400の断面の位置が示されている。すなわち、図27は、大径側リップ470および大径側リップ嵌合部480の断面を示し、図28および図29は、小径側リップ450および小径側リップ嵌合部460の断面を示している。なお、図27~図29に示した白矢印も、シールリング40自身の弾性力を示したものである。
 図27に示すように、比較例のシールリング400においても、大径側リップ470の径方向外側の面4700は外周固定治具60の内壁に接触し、大径側リップ470の外周の真円度が矯正される。また、大径側リップ嵌合部480の径方向外側の面4801と、大径側リップ470の径方向内側の面4701とが密着するように矯正される。
 また、図28に示すように、小径側リップ嵌合部460の径方向外側の面4600は外周固定治具60の内壁に接触し、小径側リップ嵌合部460の大径側の外周の真円度が矯正される。しかし、比較例では、小径側リップ450と外周固定治具60の内壁との間に空間S2が形成される構成となっている。そのため、図29に示すように、比較例では、加熱矯正時に小径側リップ450が自身の弾性力により外周固定治具60側に移動すると、シールリング400の外周面に段差Dができてしまう。そして、小径側リップ450の径方向内側の面4501と、小径側リップ嵌合部460の径方向外側の面4601との間に隙間S3が生じてしまう。そのため、比較例のシールリング400は、バルブ装置1に設置された際、全閉時に、その隙間S3を通じてガス漏れが生じるおそれがある。
 それに対し、本実施形態のシールリング40は、図24を参照して説明したように、加熱矯正時に大径側リップ嵌合部48の径方向外側の面481と大径側リップ47の径方向内側の面471とが密着する構成である。また、図25を参照して説明したように、加熱矯正時に小径側リップ45の径方向外側の面451と小径側リップ嵌合部46の径方向内側の面461とが密着する構成である。そのため、本実施形態のシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことが可能である。
 上述したステップS40でシールリング40の加熱を一定の時間行った後、ステップS50で外周固定治具60と内周規制治具61との間からシールリング40を取り出す。これにより、シールリング40が完成する。
 以上説明した本実施形態のシールリング40、バルブ装置1、およびシールリング40の製造方法は、次の作用効果を奏するものである。
 (1)本実施形態のシールリング40は、径方向外側の外壁面に、全閉時においてガス通路11の一方から他方に向かい中心軸Axからの距離が次第に近くなるテーパ状の部位44を有している。
 これによれば、バルブ装置1の全閉時に、ガス通路11の内壁のうちテーパ状の内壁面12に対し、シールリング40の径方向外側の外壁面のうちテーパ状の部位44が面接触する。そのため、ガス通路11の内壁と、シールリング40の径方向外側の外壁面とが接する面積を大きくすることが可能である。
 また、第1実施形態のシールリング40は、シールリング40の小径側且つ外周側に設けられた第2合口部52の周囲の部位がガス通路11の内壁に当接するので、第2合口部52を経由するガス漏れを防ぐことが可能である。したがって、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 さらに、第1実施形態の構成では、バルブ装置1の全閉時にシールリング40がガス通路11の内壁面12に面接触する際、シールリング40がガス通路11の内壁面12を径方向外側に押圧する力に対し、2つの分力が発生する。その2つの分力のうち一方の分力は、ガス通路11のテーパ状の内壁面12に平行な方向の分力であり、他方の分力はガス通路11の内壁面12に垂直な方向の分力である。その2つの分力のうち一方の分力、すなわちガス通路11のテーパ状の内壁面12に平行な方向な分力は、シールリング40自身をテーパの大径側へ移動させる力となる。そのため、シールリング40の側面(すなわち、シールリング40のうち軸方向の一方の面)と、バルブ本体20の溝部21の側面(すなわち、溝部21のうち軸方向の一方の面)とが密着する。したがって、このシールリング40は、バルブ装置1の全閉時に、バルブ本体20より上流側の流路と下流側の流路との圧力差が小さくなる場合にも、ガス漏れを確実に防ぐことができる。
 (2)本実施形態では、ステップカット形状によりシールリング40の径方向外側の外壁面に形成される第1分割面50は、シールリング40の径方向外側の外壁面のうちテーパ状の部位44に形成されている。
 これにより、シールリング40の径方向外側の外壁面に形成される第1分割面50は、全閉時に、ガス通路11の内壁のうちテーパ状の内壁面12によって塞がれる。そのため、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (3)本実施形態では、大径側リップ47と大径側リップ嵌合部48とが接する第1分割面50と、小径側リップ45と小径側リップ嵌合部46とが接する第2分割面49とは、周方向にずれた位置にある。
 これにより、バルブ本体20より上流側の流路からシールリング40にガス圧が印加されると、第1分割面50のうち径方向を向く面501と軸方向を向く面502にそれぞれ面圧が発生する。また、第2分割面49のうち径方向を向く面491と軸方向を向く面492にもそれぞれ面圧が発生する。そのため、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (4)本実施形態では、シールリング40は、第1合口部51、第2合口部52、第3合口部53および第4合口部54がいずれも軸方向に連通しないように配置されている。
 これにより、このシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (5)本実施形態では、シールリング40は樹脂成型品である。
 これにより、ガス通路11の内壁面12の摩耗を低減することができる。
 (6)本実施形態のバルブ装置1は、ハウジング10、バルブ本体20、シャフト30、溝部21およびシールリング40を備える。そのハウジング10が有するガス通路11の内壁のうち全閉時にシールリング40が当接する内壁面12は、ガス通路11の中心軸Axに平行な断面視が直線状のテーパ形状である。また、シールリング40の径方向外側の外壁面は、全閉時においてガス通路11の中心軸Axに平行な断面視が直線状のテーパ状の部位44を有している。
 これにより、ガス通路11の内壁のうちテーパ状の内壁面12を容易に形成することが可能である。また、ガス通路11の内壁のうちテーパ状の内壁面12と、シールリング40の径方向外側の外壁面のうちテーパ状の部位44とを面接触させることが可能である。そのため、このバルブ装置1は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (7)本実施形態のシールリング40の製造方法は、外周固定治具60と内周規制治具61との間に原形のシールリング40を径方向に縮めて挿入した後、そのシールリング40を加熱してシールリング40の形状を矯正することを含んでいる。
 これにより、外周固定治具60と内周規制治具61との間にシールリング40を径方向に縮めて入れると、シールリング40自身の弾性力により、大径側リップ47の径方向内側の面471と大径側リップ嵌合部48の径方向外側の面481とが密着する。また、小径側リップ嵌合部46の径方向内側の面461と小径側リップ45の径方向外側の面451とが密着する。そのため、大径側リップ47の径方向内側の面471と大径側リップ嵌合部48の径方向外側の面481との間に隙間が生じることが防がれる。また、小径側リップ嵌合部46の径方向内側の面461と小径側リップ45の径方向外側の面451との間に隙間が生じることが防がれる。したがって、このシールリング40の製造方法により製造されたシールリング40は、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してガス通路11の内壁とシールリング40の径方向外側の外壁面の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図30は、第2実施形態に係るバルブ装置1およびシールリング40の一部を拡大した断面図であり、第1実施形態の説明の際に図5で示した箇所に相当するものである。なお、図30では、ガス通路11を排気管3側(すなわち、上流側)から吸気管4側(すなわち、下流側)へ流れる排ガスの流れ方向を矢印GFで示している。ただし、図30は、全閉時の状態を示しているので、排ガスの流れは生じていない。
 図30に示すように、第2実施形態では、ハウジング10の有するガス通路11の内壁のうち全閉時にシールリング40が当接する内壁面121は、ガス通路11の中心軸Axに平行な断面視が径方向外側に凹となる曲線状のテーパ形状である。そのテーパ状の内壁面121は、ガス通路11の一方から他方に向かい中心軸Axからの距離が次第に近くなるように形成されている。具体的には、そのテーパ状の内壁面121は、ガス通路11の下流側から上流側に向かい中心軸Axからの距離が次第に近くなるように形成されている。なお、そのテーパ状の内壁面121は、ガス通路11の全周に形成されている。
 一方、バルブ本体20の溝部21に嵌合するシールリング40は、その径方向外側の外壁面が、全閉時においてガス通路11の中心軸Axに平行な断面視が径方向外側に凸となる曲線状のテーパ状の部位441を有している。そのシールリング40の外壁面の有するテーパ状の部位441は、全閉時においてガス通路11の一方から他方に向かい中心軸Axからの距離が次第に近くなるように形成されている。具体的には、そのテーパ状の部位441は、全閉時においてガス通路11の下流側から上流側に向かい中心軸Axからの距離が次第に近くなるように形成されている。なお、そのテーパ状の部位44は、シールリング40の全周に形成されている。
 なお、シールリング40の径方向外側の外壁面が有するテーパ状の部位441の曲率と、ガス通路11の内壁に形成されるテーパ状の内壁面121の曲率とは、同一または近似していることが好ましい。なお、ここでいう曲率とは、ガス通路11の中心軸Axに平行な断面視における曲率である。これにより、バルブ装置1の全閉時に、ガス通路11の内壁のうちテーパ状の内壁面121に対し、シールリング40の径方向外側の外壁面のうちテーパ状の部位441が面接触する。そのため、ガス通路11の内壁と、シールリング40の径方向外側の外壁面とが接する面積を大きくすることが可能である。したがって、第2実施形態のシールリング40も、第1実施形態と同様に、全閉時において、バルブ本体20より上流側の流路と下流側の流路とのガス漏れを確実に防ぐことができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (1)上記実施形態では、バルブ装置1は、例えばEGR装置に用いられるものとして説明したが、これに限らない。バルブ装置1は、例えば燃料電池の気体燃料の流量調整など、ガス通路11を流れるガスの流量を調整する種々の用途に用いることが可能である。なお、バルブ装置1は、ガス通路11を全閉状態にしたときの密閉性が求められるものに好適に用いることができる。
 (2)上記実施形態では、バルブ装置1は、バタフライ式のものについて説明したが、これに限らない。バルブ装置1は、例えば、ロータリ式としてもよい。この場合でも、ガス通路11の内壁面12、121の形状、および、シールリング40の形状等は、上記実施形態で説明したものと同一のものを適用することが可能である。
 (3)上記実施形態では、ガス通路11のテーパ状の内壁面12は、ガス通路11の下流側から上流側に向かい内径が次第に小さくなるものとして説明したが、これに限らない。ガス通路11のテーパ状の内壁面12は、ガス通路11の上流側から下流側に向かい内径が次第に小さくなるように構成してもよい。その場合、シールリング40の径方向外側の外壁面の有するテーパ状の部位44は、全閉時においてガス通路11の上流側から下流側に向かい外径が次第に小さくなる構成とする。
 (4)上記実施形態では、ガス通路11、バルブ本体20、シールリング40はいずれも、軸方向から視て円形のものとして説明したが、これに限らない。それらの形状は、軸方向から視て、例えば、楕円形状、長円形状、多角形状、またはそれらを組み合わせた形状としてもよい。
 (5)上記実施形態では、シールリング40は、樹脂リングの軸方向の一方の面に設けた嵌合溝42にC字状の金属スプリング43が配置される構成としたが、これに限らない。シールリング40は、樹脂リングのみとしてもよく、または、その他の材料で構成してもよい。
 (6)上記実施形態では、シールリング40の製造方法をステップS10~S50の順に説明したが、これに限らない。例えば、ステップS20とステップS30において、外周固定治具60と内周規制治具61にシールリング40を挿入する順序を変えてもよく、または、外周固定治具60と内周規制治具61を組付けたものに対してシールリング40を挿入してもよい。

Claims (9)

  1.  ガス通路(11)を開閉可能なバルブ本体(20)の外周に設けられた溝部(21)に嵌合するシールリングにおいて、
     前記ガス通路の内壁のうち全閉時に前記シールリングが当接する内壁面(12、121)は、前記ガス通路の一方から他方に向かい中心軸(Ax)からの距離が次第に近くなるテーパ状であり、
     前記シールリングは、周方向の一端と他端とが軸方向に重なるステップカット形状であり、
     前記シールリングの径方向外側の外壁面は、全閉時において前記ガス通路の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状の部位(44、441)を有している、シールリング。
  2.  前記ステップカット形状により前記シールリングの径方向外側の外壁面に形成される分割面(50)は、前記シールリングの径方向外側の外壁面のうち前記テーパ状の部位に形成されている、請求項1に記載のシールリング。
  3.  前記ステップカット形状は、
     前記シールリングの小径側且つ内周側で周方向の一端から他端側へ延びる小径側リップ(45)と、
     前記シールリングの周方向の他端に設けられ、前記小径側リップが嵌合する小径側リップ嵌合部(46)と、
     前記シールリングの大径側且つ外周側で周方向の他端から一端側へ延びる大径側リップ(47)と、
     前記シールリングの周方向の一端に設けられ、前記大径側リップが嵌合する大径側リップ嵌合部(48)と、を有し、
     前記大径側リップと前記大径側リップ嵌合部とが接する第1分割面(50)と、前記小径側リップと前記小径側リップ嵌合部とが接する第2分割面(49)とは、周方向にずれた位置にある、請求項1または2に記載のシールリング。
  4.  前記シールリングの小径側且つ内周側で前記小径側リップの周方向の面と前記小径側リップ嵌合部との間に形成される第1合口部(51)と、
     前記シールリングの小径側且つ外周側で前記シールリングの周方向の一端と他端との間に形成される第2合口部(52)と、
     前記シールリングの大径側且つ外周側で前記大径側リップの周方向の面と前記大径側リップ嵌合部との間に形成される第3合口部(53)と、
     前記シールリングの大径側且つ内周側で前記シールリングの周方向の一端と他端との間に形成される第4合口部(54)と、はいずれも軸方向に連通しないように配置されている、請求項3に記載のシールリング。
  5.  前記シールリングは樹脂成型品である、請求項1ないし4のいずれか1つに記載のシールリング。
  6.  ガス通路(11)を開閉するバルブ装置において、
     前記ガス通路を有するハウジング(10)と、
     前記ガス通路内で回転可能に設けられるバルブ本体(20)と、
     前記バルブ本体を前記ガス通路内で回転可能に支持するシャフト(30)と、
     前記バルブ本体の径方向外側の外縁に周方向に延びる溝部(21)と、
     環状に形成されて前記溝部に嵌合し、前記ガス通路の内壁に当接するシールリング(40)と、を備え、
     前記ハウジングが有する前記ガス通路の内壁のうち全閉時に前記シールリングが当接する内壁面(12、121)は、前記ガス通路の一方から他方に向かい中心軸(Ax)からの距離が次第に近くなるテーパ状であり、
     前記シールリングは、請求項1ないし5のいずれか1つに記載の構成を備えている、バルブ装置。
  7.  前記ハウジングが有する前記ガス通路の内壁のうち全閉時に前記シールリングが当接する内壁面(12)は、前記ガス通路の中心軸(Ax)に平行な断面視が直線状のテーパ形状であり、
     前記シールリングの径方向外側の外壁面は、全閉時において前記ガス通路の中心軸に平行な断面視が直線状の前記テーパ状の部位(44)を有している、請求項6に記載のバルブ装置。
  8.  前記ハウジングが有する前記ガス通路の内壁のうち全閉時に前記シールリングが当接する内壁面(121)は、前記ガス通路の中心軸に平行な断面視が径方向外側に凹となる曲線状のテーパ形状であり、
     前記シールリングの径方向外側の外壁面は、全閉時において前記ガス通路の中心軸に平行な断面視が径方向外側に凸となる曲線状の前記テーパ状の部位(441)を有している、請求項6に記載のバルブ装置。
  9.  シールリングの製造方法において、
     前記シールリングは、周方向の一端と他端とが軸方向に重なるステップカット形状であり、
     前記シールリングの径方向外側の外壁面は、軸方向の一方から他方に向かい中心軸からの距離が次第に近くなるテーパ状の部位(44、441)を有し、
     前記ステップカット形状により前記シールリングの径方向外側の外壁面に形成される分割面(50)は、前記シールリングの径方向外側の外壁面の前記テーパ状の部位に形成され、
     前記ステップカット形状は、
     前記シールリングの小径側且つ内周側で周方向の一端から他端側へ延びる小径側リップ(45)と、
     前記シールリングの周方向の他端に設けられ、前記小径側リップが嵌合する小径側リップ嵌合部(46)と、
     前記シールリングの大径側且つ外周側で周方向の他端から一端側へ延びる大径側リップ(47)と、
     前記シールリングの周方向の一端に設けられ、前記大径側リップが嵌合する大径側リップ嵌合部(48)と、を有しており、
     前記シールリングの製造方法は、
     前記シールリングの周方向の一端と他端とが周方向に離れた状態の原形となるシールリングを形成すること(S10)と、
     筒状の外周固定治具(60)の内側に前記シールリングを径方向に縮めて挿入すること(S20)と、
     前記シールリングの内径と同一または僅かに小さく外径が形成された内周規制治具(61)を前記シールリングの内側に挿入すること(S30)と、
     前記シールリングを加熱し、前記シールリングの形状を矯正すること(S40)と、
     前記外周固定治具と前記内周規制治具の間から前記シールリングを取り出すこと(S50)を含む、シールリングの製造方法。
PCT/JP2020/027072 2019-08-08 2020-07-10 シールリング、バルブ装置、およびシールリングの製造方法 WO2021024697A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146527A JP2021025632A (ja) 2019-08-08 2019-08-08 シールリング、バルブ装置、およびシールリングの製造方法
JP2019-146527 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021024697A1 true WO2021024697A1 (ja) 2021-02-11

Family

ID=74503512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027072 WO2021024697A1 (ja) 2019-08-08 2020-07-10 シールリング、バルブ装置、およびシールリングの製造方法

Country Status (2)

Country Link
JP (1) JP2021025632A (ja)
WO (1) WO2021024697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220259975A1 (en) * 2021-02-17 2022-08-18 Pratt & Whitney Canada Corp. Split ring seal for gas turbine engine rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230161246A (ko) * 2022-05-18 2023-11-27 한온시스템 주식회사 스크롤 압축기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028320A (ja) * 2002-06-28 2004-01-29 Sanyo Electric Co Ltd ピストンリング
JP2007040488A (ja) * 2005-08-05 2007-02-15 Denso Corp 流量制御弁
WO2008013281A1 (fr) * 2006-07-27 2008-01-31 Nok Corporation Bague d'étanchéité
JP2010203546A (ja) * 2009-03-04 2010-09-16 Nok Corp シールリングの癖付け方法、シールリングの癖付け装置及びシールリング
JP2017180726A (ja) * 2016-03-31 2017-10-05 三菱電線工業株式会社 シールリング

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028320A (ja) * 2002-06-28 2004-01-29 Sanyo Electric Co Ltd ピストンリング
JP2007040488A (ja) * 2005-08-05 2007-02-15 Denso Corp 流量制御弁
WO2008013281A1 (fr) * 2006-07-27 2008-01-31 Nok Corporation Bague d'étanchéité
JP2010203546A (ja) * 2009-03-04 2010-09-16 Nok Corp シールリングの癖付け方法、シールリングの癖付け装置及びシールリング
JP2017180726A (ja) * 2016-03-31 2017-10-05 三菱電線工業株式会社 シールリング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220259975A1 (en) * 2021-02-17 2022-08-18 Pratt & Whitney Canada Corp. Split ring seal for gas turbine engine rotor
US11542819B2 (en) * 2021-02-17 2023-01-03 Pratt & Whitney Canada Corp. Split ring seal for gas turbine engine rotor

Also Published As

Publication number Publication date
JP2021025632A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2021024697A1 (ja) シールリング、バルブ装置、およびシールリングの製造方法
WO2011093075A1 (ja) ターボチャージャのシール装置
JP6447461B2 (ja) シールリング
JP5931853B2 (ja) 2部品の封止ガスケットを有するバルブ
US11085543B2 (en) Butterfly valve including a valve body, shaft, groove portion and seal ring
WO2019039372A1 (ja) バルブ装置の製造方法
JP2008106823A (ja) シール構造
US20120298900A1 (en) Low Torque, High Flow and Tight Sealing Tube Butterfly Valve
WO2020017131A1 (ja) シールリング及びこれを用いた弁装置
JPH11223163A (ja) 樹脂製部材の接続構造
JP2019002497A (ja) シェル形ころ軸受
JP2021067290A (ja) バタフライバルブ
JP5199298B2 (ja) 吸気用バルブ装置
JP6701436B2 (ja) バタフライバルブ及び排気ガス再循環バルブ
JP7080989B2 (ja) 密封装置
WO2020213544A1 (ja) バルブ装置
JP4750078B2 (ja) 流量制御弁
JP7354961B2 (ja) 複合シールリング
JP5751057B2 (ja) 弁装置
JP7107237B2 (ja) バタフライバルブ
JP6692167B2 (ja) バルブ
JP7115070B2 (ja) 弁装置
JP2023000181A (ja) スロットル装置
WO2018203385A1 (ja) 排気ガス再循環バルブ、および排気ガス再循環バルブの製造方法
JP2019183859A (ja) 巻きブッシュの取付構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850933

Country of ref document: EP

Kind code of ref document: A1