WO2021023314A1 - 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法 - Google Patents

一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法 Download PDF

Info

Publication number
WO2021023314A1
WO2021023314A1 PCT/CN2020/118701 CN2020118701W WO2021023314A1 WO 2021023314 A1 WO2021023314 A1 WO 2021023314A1 CN 2020118701 W CN2020118701 W CN 2020118701W WO 2021023314 A1 WO2021023314 A1 WO 2021023314A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydride
carbonate
room temperature
methane
reaction
Prior art date
Application number
PCT/CN2020/118701
Other languages
English (en)
French (fr)
Inventor
欧阳柳章
刘芬
钟丹
朱敏
王辉
刘江文
曾美琴
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021023314A1 publication Critical patent/WO2021023314A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • C07C1/326Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom the hetero-atom being a magnesium atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • C07C1/328Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom the hetero-atom being an alkali metal atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides

Definitions

  • the invention belongs to the technical field of clean energy, and specifically relates to a method for producing methane by using hydride to convert carbonate at room temperature.
  • Carbonate is a cheap and abundant C resource. Finding suitable methods to convert carbonates into chemicals and fuels is conducive to the realization of C recycling. This process requires the addition of reducing agents. At present, regarding carbonic acid There are few studies on salt reduction, and almost all the reactions need to be carried out under higher temperature and pressure conditions. At the same time, the specific reaction mechanism and intermediate species for the conversion of carbonate to methane are not yet clear. Therefore, studying the performance and mechanism of carbonate reduction at room temperature will provide a reference for the future carbonate reduction and the realization of global carbon resource recycling.
  • the purpose of the present invention is to provide a method for producing methane by using hydride to convert carbonate at room temperature.
  • a method for producing methane by using hydride to convert carbonate at room temperature includes the following steps:
  • the carbonate and hydride are placed in a ball mill tank, and at room temperature, a ball mill is used for ball milling reaction to obtain methane gas.
  • the preparation method of the hydride is: in a protective atmosphere, the hydrogen storage alloy is crushed, passed through a standard sieve, and then placed in a hydrogen atmosphere for hydrogen absorption reaction, and after the reaction is completed, the hydride is obtained by cooling to room temperature;
  • the hydrogen storage alloy is RNi 5 , and R has the same meaning as above.
  • the mesh size of the standard sieve is 200-500 mesh; the pressure of the hydrogen is 1 to 4 MPa, the reaction temperature of the hydrogen absorption reaction is 100 to 300° C., and the reaction time is 5 to 10 hours.
  • the carbonate is lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), magnesium carbonate (MgCO 3 ) , At least one of calcium carbonate (CaCO 3 ) and lanthanum dioxycarbonate (La 2 O 2 CO 3 ), etc., preferably at least one of Na 2 CO 3 and CaCO 3 .
  • the molar ratio of H 2 in the hydride to CO 3 2- or HCO 3 - in the carbonate is 1:1-20:1. Preferably it is 2:1-12:1.
  • the ball milling tank is preferably a stainless steel ball milling tank
  • the ball milling medium of the ball milling reaction is preferably steel balls
  • the mass ratio of the ball milling medium to the reaction material is 10:1-40:1, preferably 40:1.
  • the reaction materials are carbonate and hydride.
  • the rotation speed of the ball mill is 300 rpm to 500 rpm, preferably 500 rpm; the reaction time of the ball mill is 10 to 40 hours, preferably 40 hours.
  • the protective atmosphere of the present invention is one or more of rare gas or nitrogen, preferably argon.
  • Both the room temperature and the unspecified reaction temperature in the present invention are 15-32°C.
  • the mechanism of the present invention is as follows:
  • the hydride is used for the room temperature reduction of carbonate, which can realize the conversion of hydrogen energy and the reuse of waste hydrogen, and realize the recycling of carbonate.
  • the present invention has the following advantages and beneficial effects:
  • the present invention realizes the purpose of converting carbonate into methane at room temperature, and produces and stores methane through the reaction of hydride and carbonate, which provides a new method for the rational utilization of carbonate, replacing H 2 with hydride, At the same time, the insecurity of H 2 is avoided.
  • Nano-Ni The solid product of hydride (RNi 5 H 6 ) generated in situ during the ball milling reaction.
  • Nano-Ni has a small crystal size (5-10nm), which can be used as a catalyst for the methanation of carbonates and traditional catalysts.
  • the catalyst has higher catalytic activity under room temperature ball milling conditions, and at the same time, the solid product can regenerate metal hydrides through hydrogen absorption, thereby realizing the recycling of hydrides.
  • the reaction involved in the present invention uses carbonate as the material to produce methane and water.
  • the whole reaction process is green and pollution-free, the reaction conditions are mild, the yield is considerable, and there are no other by-products, and the carbonate that exists stably in nature
  • the reduction of medium carbonate produces methane gas, which embodies the concept of green chemistry and is conducive to promoting the global carbon cycle.
  • Figure 1 shows the LaNi 5 H 6 and Na 2 CO 3 ratios of H 2 to CO 3 2- in Examples 1 to 4, respectively, with the ratio of 2:1, 4:1, 8:1, 12:1 mixed ball milling (500 revolutions/ Minutes) CH 4 yield chart after 10h, 20h, 30h, 40h reaction.
  • Figure 2 shows the reaction of LaNi 5 H 6 and NaHCO 3 in Examples 5 to 8 according to H 2 and HCO 3 - ratios of 2:1, 4:1, 8:1, 12:1 mixed ball milling (500 revolutions per minute) CH 4 yield chart after 10h, 20h, 30h, and 40h.
  • Figure 3 shows the mixed ball milling of LaNi 5 H 6 and CaCO 3 according to the ratio of H 2 to CO 3 2- in Examples 9-12, respectively, at 2:1, 4:1, 8:1, and 12:1 (500 revolutions/min) CH 4 yield chart after 10h, 20h, 30h, 40h reaction.
  • Figure 4 shows the LaNi 5 H 6 and La 2 O 2 CO 3 ratios of H 2 to CO 3 2- in Examples 13 to 16 respectively at 2:1, 4:1, 8:1, 12:1 mixed ball milling (500 Revolution/min) CH 4 yield chart after 10h, 20h, 30h reaction.
  • Figure 5 shows LaNi 5 H 6 and Na 2 CO 3 , NaHCO 3 , CaCO 3 , La 2 O 2 CO 3 , Li 2 CO 3 , K 2 CO 3 in Examples 4 , 8 , 12 , 16 and 17-19, respectively press seven kinds of carbonates MgCO 3 and H 2 or CO 3 2- and HCO 3 - ratio of 12: 1 mixture of ball (500 rev / min) CH 4 after 40h the reaction yield of FIG.
  • Figure 6 shows LaNi 5 H 6 , CeNi 5 H 6 , PrNi 5 H 6 , NdNi 5 H 6 and MmNi 5 H 6 in Examples 4, 12 and 20-27, respectively, and Na 2 CO 3 or CaCO 3 according to H 2 and The CO 3 2- ratio is 12:1 and the CH 4 yield chart after 40 hours of mixed ball milling (500 revolutions/min).
  • the material preparation and transfer storage involved in the examples are all carried out under argon atmosphere.
  • the hydrogen absorption reaction involved in the examples is carried out in a high temperature and high pressure reactor, while the carbonate reduction reaction is carried out in a planetary ball mill.
  • the target gas phase products of the examples are characterized by mass spectrometry (MS) and calculated to obtain the CH 4 yield of the reaction. .
  • Ratio to Ar is the ratio of carbonate to Ar in the carbonate before the reaction. The calculation method is:
  • the carbonate mass examples have been given, the molar masses of lithium carbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, magnesium carbonate, calcium carbonate, and lanthanum dioxycarbonate are 74, 106, 84, 138, 84, respectively.
  • the generated gas is detected by mass spectrometry, and the signal intensity of the gas with a charge-to-mass ratio (m/z) of 15, 40 is measured.
  • the product is characterized by the charge-to-mass ratio (m/z), and the signal intensity is used to calculate the CH 4 production. rate. No gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • the gas detection method is the same as in Example 1, and no gas products other than methane and H 2 were detected in mass spectrometry and gas chromatography.
  • Figure 1 shows the LaNi 5 H 6 and Na 2 CO 3 obtained in Examples 1 to 4 according to the ratio of H 2 and CO 3 2- to 2:1, 4:1, 8:1, 12:1 mixed ball milling (500 revolutions/min) ) CH 4 yield diagram after reaction for 10h, 20h, 30h, 40h. It can be seen from the figure that the hydride successfully converts the carbonate in the carbonate into methane, and as the reaction time increases, the CH 4 yield takes the lead After increasing, it reaches equilibrium. Under the condition that the ratio of H 2 to CO 3 2- is 12:1, the yield of CH 4 basically reaches equilibrium after 40 hours, and the highest yield is 32.0%.
  • Figure 4 shows the LaNi 5 H 6 and La 2 O 2 CO 3 ratios of H 2 to CO 3 2- obtained in Examples 13-16 at 2:1, 4:1, 8:1, 12:1 mixed ball milling (500 revolutions) /Min) after 10h, 20h, and 30h CH 4 yield chart. From the performance chart, it can be seen that the CH 4 yield in the gas phase increases with time, and the reaction basically reaches equilibrium at 30 h. This result confirms LaNi 5 H 6
  • Figure 5 shows the LaNi 5 H 6 obtained in Examples 4, 8, 12, 16 and 17-19 mixed with seven carbonates (MCO 3 ) at a ratio of H 2 to CO 3 2- or HCO 3 - of 12:1
  • the CH 4 yield chart after the ball milling (500 revolutions/min) reaction for 40 hours. From the performance chart, it can be seen that the carbonate radicals in several carbonates have been reduced to form CH 4. This result confirms the hydrogenation of LaNi 5 H 6 Among them, La 2 O 2 CO 3 has the most thorough reduction of carbonate, with a yield of 92.1%, followed by K 2 CO 3 , and Li 2 CO 3 has the lowest yield of CH 4 .
  • Figure 6 shows the RNi 5 H 6 obtained in Examples 4, 12, and 20-27, respectively, reacted with Na 2 CO 3 or CaCO 3 at a ratio of H 2 to CO 3 2- of 12:1 and mixed ball milling (500 revolutions/min) for 40 hours CH 4 yield diagram. It can be seen from the performance diagram that among several material hydrides, CeNi 5 H 6 can reduce Na 2 CO 3 or CaCO 3 to the greatest extent when used as a reducing agent, and the CH 4 yield reaches 44.2% (Na 2 CO 3 ) and 40.5% (CaCO 3 ), followed by LaNi 5 H 6 and NdNi 5 H 6 is the worst. The CH 4 yield is only 28.2% (Na 2 CO 3 ) and 27.9% (CaCO 3 ).
  • the yield of CH 4 is the highest under the action of RNi 5 H 6 and carbonate, and the yield of CH 4 is affected by H 2 and carbonate.
  • Medium CO 3 2- or HCO 3 - ratio, carbonate type and hydride type have a greater impact, you can choose a relatively suitable speed of 500 rpm; you can choose suitable H 2 and carbonate CO in accordance with equipment conditions 3 2- or HCO 3 - ratio; when the ball milling reaction time is 40 h, the yield of CH 4 reaches equilibrium, which is the optimal ball milling reaction time; when CeNi 5 H 6 reacts with carbonate in hydride, the CH 4 yield is the highest, LaNi 5 H 6 is second, but LaNi 5 H 6 requires the lowest temperature and the fastest hydrogenation rate due to the hydrogenation of LaNi 5.
  • LaNi 5 H 6 is the best hydride when considering the cost; La 2 O in carbonate 2 CO 3 has the highest reduction rate, but its abundance in the earth's crust is low.
  • La 2 O 2 CO 3 is prepared by the reaction of La 2 O 3 and CO 2 while other carbonates with higher reduction degree are K 2 CO 3 and Li 2 CO 3 are expensive and are not commonly used carbonates.
  • sodium carbonate or calcium carbonate is the preferred carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明属于清洁能源的技术领域,公开了一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法。具体包括以下步骤:在保护气氛下,将碳酸盐及氢化物置于球磨罐中,在室温下,采用球磨机进行球磨反应后制得甲烷气体。本发明实现了室温下碳酸盐转化为甲烷的目的,通过氢化物和碳酸盐反应生产存储甲烷,为碳酸盐的合理利用提供了新的方法,用氢化物代替H 2,同时避免了H 2的不安全问题。氢化物在球磨反应过程中原位生成的固体产物纳米Ni具有较小的晶粒尺寸,可作为碳酸盐甲烷化反应的催化剂与传统的催化剂对比,该催化剂在室温球磨条件下具有较高的催化活性,同时固体产物可以通过氢化吸氢重新得到金属氢化物,从而实现氢化物的循环使用。

Description

一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法 技术领域
本发明属于清洁能源的技术领域,具体涉及一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法。
背景技术
早在2003年有研究者通过行星式傅里叶光谱仪探测到了火星上甲烷的存在,进而对火星上甲烷的来源进行了模拟与分析,其主要来源除了细菌及微生物的作用还有火星内部及火山口处水与岩石的反应,以及外来因素例如彗星撞击产生的甲烷,因此研究者们对各种因素形成甲烷的条件进行了深入的研究,其中火星内部非生物的岩石向甲烷的转化引起了广泛的关注。研究者发现地壳中非生物的岩石能被还原得到甲烷等燃料,即岩石的主要成分碳酸盐与蛇纹石反应实现可实现碳酸盐向甲烷的转化(方程式1),这些反应几乎都需要在压力>1GPa,温度>500℃条件下才能进行。
Figure PCTCN2020118701-appb-000001
对碳酸盐还原的积极思考引发了研究者们对实现以及促进全球C循环有了更深探索,作为C循环中重要物质的CO 2是引起全球气候变化的主要元凶,自工业革命以来,由于人类的工业生产活动排放了大量的二氧化碳等污染气体到大气环境中,使得大气中二氧化碳的浓度快速升高,造成了温室效应不断加剧,全球气候逐渐变暖,世界各国都纷纷开启了环境污染治理,减少大气中CO 2浓度的方法主要包括3个方面,即CO 2的捕获与存储(CCS技术),CO 2的分离以及CO 2的转化。其中,CCS技术即实现CO 2的固化生成碳酸盐的过程,该过程受到了广泛的关注及利用,2016年Science上发表了将CO 2变成“石头”的报道,该反应机理如下(方程式2~4):
CO 2+H 2O=2H+CO 3 2-   (2)
CaSiO 3+2H=Ca 2++SiO 2+H 2O   (3)
CO 3 2-+Ca 2+=CaCO 3↓   (4)
碳酸盐作为一种具廉价,储量丰富的C资源,寻找合适的方法将碳酸盐转化成化学品及燃料有利于实现C的循环利用,这个过程需要还原剂的加入,目前,关于碳酸盐还原的研究较少,且该反应几乎都需要在较高温度以及压力条件下才能进行。同时,该反应将碳酸盐转化为甲烷的具体反应机理以及中间物种尚未明晰。因此,研究室温下碳酸盐还原的性能及机理将对今后碳酸盐还原及实现全球碳资源循环利用提供借鉴意义。
发明内容
为了解决现有技术的缺点和不足之处,本发明的目的在于提供一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法。
本发明的目的通过下述方案实现:
一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法,包括以下步骤:
在保护气氛下,将碳酸盐及氢化物置于球磨罐中,在室温下,采用球磨机进行球磨反应后制得甲烷气体。
进一步的,所述氢化物为RNi 5H 6中的至少一种,其中R=镧(La),铈(Ce),镨(Pr),钕(Nd);优选为LaNi 5H 6
进一步的,所述氢化物是的制备方法为:在保护气氛中,将储氢合金破碎后过标准筛,然后置于氢气气氛中进行吸氢反应,反应完成后冷却至室温即得到氢化物;其中所述储氢合金为RNi 5,R与上述含义相同。
更进一步的,所述标准筛的目数为200~500目;所述氢气的压强为1~4MPa,所述吸氢反应的反应温度为100~300℃,反应时间为5~10h。
进一步的,所述碳酸盐为碳酸锂(Li 2CO 3),碳酸钠(Na 2CO 3),碳酸氢钠(NaHCO 3),碳酸钾(K 2CO 3),碳酸镁(MgCO 3),碳酸钙(CaCO 3)以及碳酸二氧镧(La 2O 2CO 3)等中的至少一种,优选为Na 2CO 3和CaCO 3中的至少一种。
进一步的,所述氢化物中H 2与碳酸盐中CO 3 2-或HCO 3 -的摩尔比为1:1~20:1。优选为2:1~12:1。
进一步的,所述球磨罐优选为不锈钢球磨罐,所述球磨反应的球磨介质优 选为钢珠,所述球磨介质和反应物料的质量比(球料比)为10:1~40:1,优选为40:1。其中所述反应物料为碳酸盐及氢化物。
进一步的,所述球磨机的转速为300转/分钟~500转/分钟,优选为500转/分钟;所述球磨反应的时间为10~40h,优选为40h。
进一步的,本发明所述的保护气氛为稀有气体或氮气中的一种或多种,优选为氩气。
本发明所述室温和未指明反应温度均为15~32℃。
本发明的机理如下:
本发明将储氢合金(例如RNi 5,R=稀土金属)引入碳酸盐甲烷化球磨反应体系中,可实现碳酸盐的室温还原,消除高温高压催化反应所带来的安全隐患问题,将氢化物用于碳酸盐的室温还原,可以实现氢能转化和废氢的再利用,实现碳酸盐的循环利用。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明实现了室温下碳酸盐转化为甲烷的目的,通过氢化物和碳酸盐反应生产存储甲烷,为碳酸盐的合理利用提供了新的方法,用氢化物代替H 2,同时避免了H 2的不安全问题。
(2)氢化物(RNi 5H 6)在球磨反应过程中原位生成的固体产物纳米Ni具有较小的晶粒尺寸(5~10nm),可作为碳酸盐甲烷化反应的催化剂与传统的催化剂对比,该催化剂在室温球磨条件下具有较高的催化活性,同时固体产物可以通过氢化吸氢重新得到金属氢化物,从而实现氢化物的循环使用。
(3)本发明涉及的反应以碳酸盐作为物料,反应产生甲烷和水,整个反应过程绿色无污染,反应条件温和,产率可观,无其他副产物,将自然界中稳定存在的碳酸盐中碳酸根的还原,制得了甲烷气体,体现了绿色化学的概念,有利于促进全球碳循环。
附图说明
图1为实施例1~4中LaNi 5H 6与Na 2CO 3分别按H 2与CO 3 2-比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图。
图2为实施例5~8中LaNi 5H 6与NaHCO 3分别按H 2与HCO 3 -比值为2:1,4:1, 8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图。
图3为实施例9~12中LaNi 5H 6与CaCO 3分别按H 2与CO 3 2-比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图。
图4为实施例13~16中LaNi 5H 6与La 2O 2CO 3分别按H 2与CO 3 2-比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h后CH 4产率图。
图5为实施例4,8,12,16以及17-19中LaNi 5H 6分别与Na 2CO 3,NaHCO 3,CaCO 3,La 2O 2CO 3,Li 2CO 3,K 2CO 3以及MgCO 3七种碳酸盐按H 2与CO 3 2-或HCO 3 -比值为12:1混合球磨(500转/分钟)反应40h后CH 4产率图。
图6为实施例4,12以及20-27中LaNi 5H 6,CeNi 5H 6,PrNi 5H 6,NdNi 5H 6以及MmNi 5H 6分别与Na 2CO 3或CaCO 3按H 2与CO 3 2-比值为12:1混合球磨(500转/分钟)反应40h后CH 4产率图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中涉及到材料制备以及转移存储,都是在氩气气氛的条件下所进行。实施例中所涉及的吸氢反应是在高温高压反应釜,碳酸盐还原反应是在行星球磨罐中进行同时,实施例目标气相产物通过质谱(MS)表征并计算得到该反应CH 4产率。
实施例中CH 4产率计算方法为:
Figure PCTCN2020118701-appb-000002
其中,“反应后CH 4/Ar信号比”为反应后气体产物质谱分析中m/z=15与m/z=40两种信号强度比值,“反应前球磨罐中碳酸盐中的
Figure PCTCN2020118701-appb-000003
Figure PCTCN2020118701-appb-000004
与Ar比值”为反应前碳酸盐中的碳酸根与Ar比值,计算方法为:
碳酸盐中的
Figure PCTCN2020118701-appb-000005
Figure PCTCN2020118701-appb-000006
Figure PCTCN2020118701-appb-000007
其中,碳酸盐质量实例中已给出,碳酸锂,碳酸钠,碳酸氢钠,碳酸钾, 碳酸镁,碳酸钙,碳酸二氧镧的摩尔质量分别取74,106,84,138,84,100,370g/mol,氩气气压为0.1MPa,球磨罐容积取180mL(球磨罐原容积为200mL,装入钢球后,容积约为180mL),室温条件下温度为298K。
实施例1
(1)在0.1MPa氩气气氛的手套箱中,取1g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,再向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为2:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
将生成的气体通入质谱中检测,测得气体中荷质比(m/z)为15,40的信号强度,通过荷质比(m/z)进行产物定性,信号强度来计算CH 4产率。在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例2
(1)在0.1MPa氩气气氛的手套箱中,取2g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,再向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为4:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例3
(1)在0.1MPa氩气气氛的手套箱中,取4g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,再向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为8:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例4
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,再向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例5
(1)在0.1MPa氩气气氛的手套箱中,取1g经过电弧熔炼并充分破碎,过 200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.29g NaHCO 3,使得氢化物中H 2与NaHCO 3中HCO 3 -的摩尔比值为2:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例6
(1)在0.1MPa氩气气氛的手套箱中,取2g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.29g NaHCO 3,使得氢化物中H 2与NaHCO 3中HCO 3 -的摩尔比值为4:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例7
(1)在0.1MPa氩气气氛的手套箱中,取4g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间), 在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.29g NaHCO 3,使得氢化物中H 2与NaHCO 3中HCO 3 -的摩尔比值为8:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例8
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.29g NaHCO 3,使得氢化物中H 2与NaHCO 3中HCO 3 -的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例9
(1)在0.1MPa氩气气氛的手套箱中,取1g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为2:1,再将小钢珠置入球磨罐中,使得球料比保 持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例10
(1)在0.1MPa氩气气氛的手套箱中,取2g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为4:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例11
(1)在0.1MPa氩气气氛的手套箱中,取4g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为8:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外 的气体产物。
实施例12
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,40h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例13
(1)在0.1MPa氩气气氛的手套箱中,取1g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入1.26g碳酸二氧镧(La 2O 2CO 3),使得氢化物中H 2与La 2O 2CO 3中CO 3 2-的摩尔比值为2:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例14
(1)在0.1MPa氩气气氛的手套箱中,取2g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入1.26g碳酸二氧镧(La 2O 2CO 3),使得氢化物中H 2与La 2O 2CO 3中CO 3 2-的摩尔比值为4:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例15
(1)在0.1MPa氩气气氛的手套箱中,取4g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入1.26g碳酸二氧镧(La 2O 2CO 3),使得氢化物中H 2与La 2O 2CO 3中CO 3 2-的摩尔比值为8:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例16
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入1.26g碳酸二氧镧(La 2O 2CO 3),使得氢化物中H 2与La 2O 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例17
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.25g Li 2CO 3,使得氢化物中H 2与Li 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例18
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.47g K 2CO 3,使得氢化物中H 2 与K 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例19
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的LaNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于150℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(LaNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.29g MgCO 3,使得氢化物中H 2MgCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例20
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的CeNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(CeNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球 磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例21
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的PrNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(PrNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例22
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的NdNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(NdNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外 的气体产物。
实施例23
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的MmNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(MmNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.36g Na 2CO 3,使得氢化物中H 2与Na 2CO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例24
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的CeNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(CeNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例25
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的PrNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(PrNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例26
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的NdNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(NdNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
实施例27
(1)在0.1MPa氩气气氛的手套箱中,取6g经过电弧熔炼并充分破碎,过200目标准检验筛选的MmNi 5粉末装入容积为25mL高温高压反应釜(NS-25-316L)中,充入4MPa的氢气,置于300℃下反应10h,使之充分吸氢,冷却至室温;
(2)将釜内剩余气体抽出(在抽气过程中釜内氢气气压在0.1~1MPa之间),在氩气手套箱中,打开反应釜取出其中的氢化产物(MmNi 5H 6),将其投入到容积为200mL的行星球磨罐中,向球磨罐中加入0.34g CaCO 3,使得氢化物中H 2与CaCO 3中CO 3 2-的摩尔比值为12:1,再将小钢珠置入球磨罐中,使得球料比保持40:1,使用行星式球磨机(QM-3SP4)分别在500转/分钟的转速下分别球磨反应10h,20h,30h,制得甲烷气体。
气体的检测方法同实施例1,在质谱及气相色谱中未测得甲烷以及H 2以外的气体产物。
以上所有实施例选用氢化物,碳酸盐种类,H 2与碳酸盐中CO 3 2-或HCO 3 -比值,反应时间等参数数据以及最终CH 4产率见下表1:
Figure PCTCN2020118701-appb-000008
Figure PCTCN2020118701-appb-000009
试验结果分析:
图1为实施例1~4所得LaNi 5H 6与Na 2CO 3按H 2与CO 3 2-比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图,从图中可看出,氢化物成功地将碳酸盐中的碳酸根转化成了甲烷,且随着反应时间延长CH 4产率先增加后达到平衡,H 2与CO 3 2-比值为12:1的条件下CH 4产率在40h后基本达到平衡,最高产率为32.0%,对比不同H 2与CO 3 2-比值可发现CH 4产率随着比值的增加而增加,即氢化物中活性H原子浓度的增加促进了反应的进行,该反应最佳条件为H 2:CO 3 2-=12:1,反应时间40h。
图2为实施例5~8所得LaNi 5H 6与NaHCO 3按H 2与HCO 3 -比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图。从图中可看出,与实例1中的结果相同,氢化物也成功地将NaHCO 3转化成了CH 4其CH 4产率在H 2与HCO 3 -比值为12:1,反应时间为40h时基本达到平衡,CH 4产率为31.0%,且随着H 2与HCO 3 -比值增加,即氢化物中活性H原子浓度的增加,CH 4产率也得到提升,该反应最佳条件为H 2:HCO 3 -=12:1,反应时间40h。
图3为实施例9~12所得LaNi 5H 6与CaCO 3按H 2与CO 3 2-比值为2:1,4:1, 8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h,40h后CH 4产率图。从图中可看出,氢化物成功地将中的CaCO 3转化成了CH 4,随着H 2与CO 3 2-比值的增加,CH 4产率也得到了相应的提高,反应在40h基本达到平衡,最佳CH 4产率可达到30.8%,该反应最佳条件为H 2:CO 3 2-=12:1,反应时间40h。
图4为实施例13~16所得LaNi 5H 6与La 2O 2CO 3按H 2与CO 3 2-比值为2:1,4:1,8:1,12:1混合球磨(500转/分钟)反应10h,20h,30h后CH 4产率图,从性能图可看出,气相中CH 4产率随时间延长而升高,反应在30h基本达到平衡该结果证实了LaNi 5H 6氢化物的还原性能,通过改变氢化物的投入量控制球磨罐中H 2浓度,在H 2与CO 3 2-比值为12:1的条件下,CH 4产率最高可达92.1%,该反应最佳条件为H 2:CO 3 2-=12:1,反应时间30h。
图5为实施例4,8,12,16以及17-19所得LaNi 5H 6分别与七种碳酸盐(MCO 3)按H 2与CO 3 2-或HCO 3 -比值为12:1混合球磨(500转/分钟)反应40h后CH 4产率图,从性能图可看出,几种碳酸盐中碳酸根均得到了还原,生成了CH 4,该结果证实了LaNi 5H 6氢化物的还原性能,其中,La 2O 2CO 3中碳酸根的还原最彻底,产率可达92.1%,K 2CO 3次之,Li 2CO 3还原得到的CH 4产率最低。
图6为实施例4,12以及20-27所得RNi 5H 6分别与Na 2CO 3或CaCO 3按H 2与CO 3 2-比值为12:1混合球磨(500转/分钟)反应40h后CH 4产率图,从性能图可看出几种材料氢化物中,CeNi 5H 6作为还原剂时能最大程度地还原Na 2CO 3或CaCO 3,CH 4产率达到44.2%(Na 2CO 3)和40.5%(CaCO 3),LaNi 5H 6次之,NdNi 5H 6最差,CH 4产率仅为28.2%(Na 2CO 3)和27.9%(CaCO 3)。
综上所述,室温下通过机械球磨氢化物与碳酸盐的CH 4化反应中:RNi 5H 6与碳酸盐作用下CH 4产率最高,CH 4产率受H 2与碳酸盐中CO 3 2-或HCO 3 -比值,碳酸盐种类及氢化物种类影响较大,可以选取相对适宜转速为500转/分钟;可以根据设备条件来选择适合的H 2与碳酸盐中CO 3 2-或HCO 3 -比值;球磨反应时间在40h时CH 4的产率达到平衡,为最优球磨反应时间;氢化物中CeNi 5H 6与碳酸盐作用时CH 4产率最高,LaNi 5H 6次之,但因LaNi 5氢化得到LaNi 5H 6所需温度最低,氢化速率最快,在考虑成本的情况下,LaNi 5H 6为最优氢化物;碳酸盐中La 2O 2CO 3还原率最高,但其在地壳中丰度较低,实施例中La 2O 2CO 3是由La 2O 3与CO 2反应制得的而其它还原度较高的碳酸盐例如K 2CO 3以及Li 2CO 3价格较昂 贵,不是常用的碳酸盐,结合地壳中碳酸盐的丰度及组成,碳酸钠或碳酸钙为优选的碳酸盐。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变,修饰,替代,组合,简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法,其特征在于包括以下步骤:
    在保护气氛下,将碳酸盐及氢化物置于球磨罐中,在室温下,采用球磨机进行球磨反应后制得甲烷气体。
  2. 根据权利要求1所述的利用氢化物在室温下实现碳酸盐转换生产甲烷的方法,其特征在于:
    所述氢化物为RNi 5H 6中的至少一种,其中R=La,Ce,Pr,Nd。
  3. 根据权利要求2所述的利用氢化物在室温下实现碳酸盐转换生产甲烷的方法,其特征在于所述氢化物是的制备方法为:
    在保护气氛中,将储氢合金破碎后过标准筛,然后置于氢气气氛中进行吸氢反应,反应完成后冷却至室温即得到氢化物;其中所述储氢合金为RNi 5,R与权利要求2中的含义相同。
  4. 根据权利要求3所述的利用氢化物在室温下实现碳酸盐转换生产甲烷的方法,其特征在于:
    所述标准筛的目数为200~500目;所述氢气的压强为1~4MPa,所述吸氢反应的反应温度为100~300℃,反应时间为5~10h。
  5. 根据权利要求1所述的氢化物室温球磨还原碳酸盐合成甲烷的方法,其特征在于:
    所述碳酸盐为碳酸锂、碳酸钠、碳酸氢钠、碳酸钾、碳酸镁、碳酸钙以及碳酸二氧镧中的至少一种。
  6. 根据权利要求1所述的氢化物室温球磨还原碳酸盐合成甲烷的方法,其特征在于:所述氢化物中H 2与碳酸盐中CO 3 2-或HCO 3 -的摩尔比为1:1~20:1。
  7. 根据权利要求1所述的氢化物室温球磨还原碳酸盐合成甲烷的方法,其特征在于:所述氢化物中H 2与碳酸盐中CO 3 2-或HCO 3 -的摩尔比为2:1~12:1。
  8. 根据权利要求1所述的氢化物室温球磨还原碳酸盐合成甲烷的方法,其特征在于:
    所述球磨罐为不锈钢球磨罐,所述球磨反应的球磨介质为钢珠,所述球磨介质和反应物理的质量比为10:1~40:1。
  9. 根据权利要求1所述的氢化物室温球磨还原碳酸盐合成甲烷的方法,其特征在于:
    所述球磨机的转速为300~500转/分钟,球磨反应时间为10~40h。
PCT/CN2020/118701 2019-08-08 2020-09-29 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法 WO2021023314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910729558.6A CN110452081B (zh) 2019-08-08 2019-08-08 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法
CN201910729558.6 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021023314A1 true WO2021023314A1 (zh) 2021-02-11

Family

ID=68485560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118701 WO2021023314A1 (zh) 2019-08-08 2020-09-29 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法

Country Status (2)

Country Link
CN (1) CN110452081B (zh)
WO (1) WO2021023314A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452081B (zh) * 2019-08-08 2020-06-19 华南理工大学 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法
CN113582798B (zh) * 2021-09-09 2023-04-25 北京化工大学 一种以储氢溶剂为氢源的无机碳酸盐加氢分解方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316732A (zh) * 2016-08-19 2017-01-11 扬州大学 一种利用碱金属氢化物在室温机械球磨条件下还原二氧化碳制备清洁燃料的方法
CN107188118A (zh) * 2017-06-16 2017-09-22 扬州大学 一种利用碱土金属氢化物制备氢气甲烷混合燃料的方法
CN110357759A (zh) * 2019-07-04 2019-10-22 华南理工大学 一种利用储氢合金氢化物在室温下实现二氧化碳甲烷化的方法
CN110452081A (zh) * 2019-08-08 2019-11-15 华南理工大学 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261157A (zh) * 2018-10-24 2019-01-25 华南理工大学 一种Ni@LaCO3OH复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316732A (zh) * 2016-08-19 2017-01-11 扬州大学 一种利用碱金属氢化物在室温机械球磨条件下还原二氧化碳制备清洁燃料的方法
CN107188118A (zh) * 2017-06-16 2017-09-22 扬州大学 一种利用碱土金属氢化物制备氢气甲烷混合燃料的方法
CN110357759A (zh) * 2019-07-04 2019-10-22 华南理工大学 一种利用储氢合金氢化物在室温下实现二氧化碳甲烷化的方法
CN110452081A (zh) * 2019-08-08 2019-11-15 华南理工大学 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG BAO-XIA, WANG LU, ZHAO JUAN, TENG YUN-LEI, PING CHAO, ZHU WEI, CHEN HUA-BO, LIU WEN-LONG: "Highly Selective Room-Temperature Catalyst-Free Reduction of Alkaline Carbonates to Methane by Metal Hydride", ENERGY TECHNOLOGY, vol. 7, no. 3, 12 March 2019 (2019-03-12), pages 1 - 11, XP055778368, ISSN: 1293-2558, DOI: 10.1002/ente.201800719 *
TAI YUN-LONG; WANG LU; CHEN HAN-QING; DONG BAO-XIA; KAN XIAO-TIAN; TENG YUN-LEI: "Improved Mechanochemical Methanation Performance of the Metal Carbonate-Hydride System", SOLID STATE SCIENCES, vol. 109, 29 August 2020 (2020-08-29), pages 1 - 6, XP086356915, ISSN: 1293-2558, DOI: 10.1016/j.solidstatesciences.2020.106398 *
ZHONG DAN; OUYANG LIUZHANG; LIU JIANGWEN; WANG HUI; JIA YI; ZHU MIN: "Metallic Ni Nanocatalyst in situ Formed from LaNi5H5 toward Efficient CO2 Methanation", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 44, no. 55, 20 March 2019 (2019-03-20), pages 29068 - 29074, XP085880304, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2019.02.153 *

Also Published As

Publication number Publication date
CN110452081A (zh) 2019-11-15
CN110452081B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021023314A1 (zh) 一种利用氢化物在室温下实现碳酸盐转换生产甲烷的方法
Liu et al. Hydrolysis of Mg-based alloys and their hydrides for efficient hydrogen generation
CN106809803A (zh) 一种MgH2基储氢复合材料及其制备方法
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
CN103101880B (zh) 一种硼氢化锂/稀土镁基合金复合储氢材料及其制备方法
JP2011502938A (ja) 水素吸蔵複合材料
CN108285131B (zh) 一种室温固相球磨制备硼氢化锂的方法
CN101733155B (zh) 一种Li-Mg-B-N-H催化可逆储氢材料及其制备方法
CN113896167B (zh) 一种复合储氢材料、其制备方法及其应用
Wang et al. Synthesis of Mg-based composite material with in-situ formed LaH3 and its hydrogen storage characteristics
JP5491041B2 (ja) 可逆的な水素吸蔵用の不安定化触媒化ホウ水素化物
CN109768255A (zh) 一种稀土储氢合金/硼氢化物复合储氢材料及其制备方法
CN102807191A (zh) 一种Li-Mg-B-H储氢材料的合成方法
CN103879957B (zh) 一种催化剂掺杂的镁基储氢材料及制备
WO2021000456A1 (zh) 一种利用储氢合金氢化物在室温下实现二氧化碳甲烷化的方法
CN112899548A (zh) 一种钇-锆-铁-铝合金材料、制备方法及应用
US8105974B2 (en) Destabilized and catalyzed borohydride for reversible hydrogen storage
CN105296031A (zh) 一种室温下co2转化为合成燃料的方法
CN109261157A (zh) 一种Ni@LaCO3OH复合材料及其制备方法和应用
CN101709396B (zh) 一种镁钛基储氢合金的制备方法
CN103159171A (zh) 一种LiBH4掺杂金属硫化物的储氢复合材料及其制备方法
CN103111279A (zh) LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用
CN105692553B (zh) 一种纳米镁基储氢合金氢化物的制备工艺
WO2006005892A1 (en) Hydrogen storage materials
CN112299366B (zh) 一种制备储氢材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849373

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20849373

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20849373

Country of ref document: EP

Kind code of ref document: A1