CN103111279A - LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用 - Google Patents

LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用 Download PDF

Info

Publication number
CN103111279A
CN103111279A CN2013100459408A CN201310045940A CN103111279A CN 103111279 A CN103111279 A CN 103111279A CN 2013100459408 A CN2013100459408 A CN 2013100459408A CN 201310045940 A CN201310045940 A CN 201310045940A CN 103111279 A CN103111279 A CN 103111279A
Authority
CN
China
Prior art keywords
libh
catalyst
preparation
hydrogen storage
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100459408A
Other languages
English (en)
Other versions
CN103111279B (zh
Inventor
陈立新
范修林
肖学章
邵杰
张刘挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310045940.8A priority Critical patent/CN103111279B/zh
Publication of CN103111279A publication Critical patent/CN103111279A/zh
Application granted granted Critical
Publication of CN103111279B publication Critical patent/CN103111279B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及储氢材料领域,公开了一种LiBH4基储氢材料的纳米硼化物催化剂的制备方法,通过使用还原剂NaBH4或KBH4还原溶解于LiCL和KCl在较低温度下形成的共融盐中的过渡金属氯化物,制备具有纳米结构的硼化物催化剂,并将该催化剂用于高效储氢材料的制备。本发明的优点在于,方法简洁,反应条件温和,所制备的催化剂具有纳米结构,具有较高的催化活性。

Description

LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用
技术领域
本发明涉及储氢材料领域,特别涉及一种LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用。
背景技术
能源是人类发展的源泉。面临石油资源的日益匮乏和生态环境恶化的双重压力,利用氢能这一清洁能源取代以化石燃料为基础的现有能源已成为全球的共识。以氢为燃料的质子交换膜燃料电池及电动汽车的技术进步和市场化进一步推动了氢能系统技术的研究与发展,在氢能系统技术链中,储氢技术被认为是关键的一环。LiBH4储氢材料由于具有高的储氢容量(13.9 wt%),故此得到了广泛研究。但未掺杂催化的LiBH4储氢材料动力学性能慢、需要较高温度才能实现放氢,而再吸氢则更加困难,需要高压、高温。故而,严重制约了其实际应用。Vajo等人首次利用MgH2等与LiBH4形成复合物,降低了体系吸放氢反应的焓变,从而改善了体系的吸放氢热力学性能,但吸放氢反应的动力学性能依然很慢。为此,有些学者利用过渡金属的氧化物或卤化物(如Ti(OBun)4、NbCl5、 CeCl3等)等来催化LiBH4及其复合物,上述催化剂在一定程度上改善了体系的吸放氢动力学性能,但依然未达到实用要求,并且此类催化剂会与LiBH4等基体氢化物反应生成惰性杂质,造成体系中有效储氢量降低。
发明内容
本发明针对现有技术中缺乏可以有效地提升LiBH4储氢材料的吸放氢动力学的催化剂的缺点,提供了一种可以在保持体系中具有较高吸放氢容量的前提下,令吸放氢过程具有较好的吸放氢动力学的新型纳米硼化物催化剂及其制备、应用。
为实现上述目的,本发明可采取下述技术方案:
LiBH4基储氢材料的纳米硼化物催化剂的制备方法,包括以下具体步骤:先将无水LiCl和无水KCl混合均匀,称取过渡金属氯化物和还原剂与上述无水LiCl和无水KCl混合均匀得到混合物,所述还原剂为NaBH4或者KBH4;将所述混合物放入坩埚,在惰性气氛保护下以3-10℃ /min的升温速率升温至600-950℃的烧结温度进行烧结,在所述烧结温度下保温2-10h;将烧结所得产物冷却至室温,用去离子水或者有机溶剂溶解所述产物中的氯化物,离心分离后所得黑色固体即为所述纳米硼化物催化剂。
作为优选,所述无水LiCl和无水KCl的质量总和占所述混合物的质量的90%以上。
作为优选,所述无水LiCl和无水KCl的的质量比为1:1-2。
依据上述LiBH4基储氢材料的纳米硼化物催化剂的制备方法所制备的纳米硼化物催化剂。
根据上述制备方法所制备的纳米硼化物催化剂的应用,包括以下具体步骤: LiBH4或者复合物与所述纳米硼化物催化剂均匀混合,将混合产物置入球磨罐中,在压力为0.5-3MPa的氩气或者氢气的保护气氛下进行球磨,球磨时间为5-60h,所述复合物为LiBH4+MgH2、LiH+MgB2、LiBH4和MgH2中的任一组合。
作为优选,所述LiBH4或者复合物与所述纳米硼化物催化剂的摩尔比为1:0.001-0.1。
本发明通过将LiCl和KCl在较低温度下形成共融盐,将NaBH4或KBH4作为强还原剂,将溶解于上述共融盐中的过渡金属氯化物还原生成相应的过渡金属硼化物TMxBy,然后将制备好的含有TMxBy的混合物(TM代表过渡金属,y为过渡金属的化合价,x为B的化合价)用去离子水或能将LiCl、KCl、NaCl溶解的有机试剂清洗,离心后,获得TMxBy纳米催化剂。
本发明由于采用了以上技术方案,具有显著的技术效果:
本发明的纳米催化剂制备方法可以制备具有纳米结构的过渡金属硼化物,制备方法简单,条件温和。与现有的金属氧化物或者氯化物掺杂剂相比,使用上述制备方法所制备的过渡金属纳米硼化物具有更高的催化活性,可以极大地改善LiBH4基储氢材料的吸放氢动力学,同时可以提高LiBH4基储氢材料在进行循环的吸放氢过程中的循环稳定性。
采用本发明所制备的过渡金属纳米硼化物作为催化剂,不会与基体储氢材料组元反应生成惰性副产物,不会损耗体系的有效储氢组元,因此体系的可逆储氢不会因催化剂的加入而降低,体系的储氢量可以得到很好的保持。
附图说明
图1为实施例1的第2次循环的放氢动力学曲线及所得NbB2纳米硼化物催化剂的透射电镜照片。
图2为实施例2的不同放氢温度下的放氢动力学曲线。
图3为实施例3的第2次循环的吸氢动力学曲线。
具体实施方式
下面结合实施例对本发明作进一步的详细描述。
实施例1
以NbB2纳米硼化物为催化剂,LiBH4和MgH2为基体材料,制备以NbB2纳米硼化物进行催化的2LiBH4+MgH2储氢材料。
采用原料为:NaBH4(纯度98%),NbCl5(纯度大于99%),无水LiCl(纯度大于99%),无水KCl(纯度大于99%),LiBH4(纯度大于95%),MgH2(纯度大于98%),去离子水。原料均未经处理直接采用。
1)NbB2纳米硼化物催化剂的制备 
按质量比45:55,在手套箱中称取无水LiCl和无水KCl,之后研磨混合均匀。按摩尔配比1:2,在手套箱中称取NbCl5和NaBH4,之后将NbCl5和NaBH4与混合好的LiCl和KCl的粉末混合均匀。LiCl和KCl占体系总质量的百分数为92%。然后将混合物放入坩埚中,放入管式炉中,抽真空后通氩气保护,进行烧结,升温至800℃保温3h,升温速率为5℃/min。等样品冷却后,将其放入去离子水中,LiCl、KCl和生成的NaCl会溶于水中,而生成的NbB2纳米颗粒则会悬浮于溶液中。离心分离,将分离后的固体干燥可得纯NbB2纳米硼化物催化剂,NbB2纳米硼化物催化剂的透射电镜照片如图1所示,由照片可知,所生成的NbB2纳米硼化物催化剂具有纳米级颗粒。
2)NbB2纳米硼化物催化2LiBH4+MgH2储氢材料的制备
以上述NbB2纳米硼化物为催化剂,LiBH4和MgH2为基体材料,在氩气氛手套箱内按摩尔比2LiBH4+MgH2+0.05NbB2配比的原料混合均匀后置入不锈钢球磨罐中,在高能球磨机上进行球磨,球磨气氛为氢气氛,球磨氢压2MPa,球料比35:1,球磨时间10h。
采用体积法测试材料的吸放氢性能。循环条件为:放氢温度390℃,放氢压力为0.4MPa;吸氢温度300℃,起始吸氢压力约8MPa。
图1同时给出了典型的放氢动力学曲线。所制备的材料在390℃,0.4 MPa放氢压力下,在60min内放氢量即可达到9wt%以上。
实施例2
以制备的ZrB2纳米硼化物为催化剂、放氢态物质2LiH+MgB2为原料,制备ZrB2纳米硼化物催化的2LiBH4+MgH2储氢材料。
采用原料为:KBH4(纯度98%),ZrCl4(纯度大于98%),无水LiCl(纯度大于99%),无水KCl(纯度大于99%),LiH(纯度大于95%),MgB2(纯度大于98%),去离子水。原料均未经处理直接采用。
1)ZrB2纳米硼化物催化剂的制备
按质量比1:1,在手套箱中称取无水LiCl和无水KCl,之后研磨混合均匀。按摩尔配比1:2,在手套箱中称取ZrCl4和KBH4,之后将ZrCl4和KBH4与混合好的LiCl和KCl的粉末混合均匀。LiCl和KCl占体系总质量的百分数为90%。然后将混合物放入坩埚中,放入管式炉中,抽真空后通氩气保护,进行烧结,升温至700℃保温5h,升温速率为4℃/min。等样品冷却后,将其放入去离子水中,LiCl和KCl会溶于水中,而生成的ZrB2纳米颗粒则会悬浮于溶液中。离心、干燥可得纯ZrB2纳米硼化物催化剂。
2)ZrB2纳米硼化物催化2LiBH4+MgH2储氢材料的制备
以ZrB2纳米硼化物为催化剂,放氢态LiH和MgB2为原料,在氩气气氛手套箱内按摩尔比2LiH+MgB2+0.06ZrB2配比的原料混合均匀后置入不锈钢球磨罐中,在高能球磨机上进行球磨,球磨气氛为氩气氛,气体压力0.1MPa,球料比40:1,球磨时间50h。
采用体积法测试材料的吸放氢动力学性能。
实验结果如图2所示,图2给出了上述放氢实验的的放氢动力学曲线。所制备的材料分别在400℃条件下,0.4MPa放氢压力下,在100min内放氢量即可达到9wt%以上,在370℃、350℃的放氢条件下,也具有较高放氢动力学性能。
实施例3
以制备的CeB6纳米硼化物为催化剂、2LiBH4+MgH2为基体储氢材料原料,制备CeB6纳米硼化物催化的2LiBH4+MgH2储氢材料。
采用原料为:NaBH4(纯度98%),CeCl3(纯度大于98%),无水LiCl(纯度大于99%),无水KCl(纯度大于99%),LiBH4(纯度大于95%),MgH2(纯度大于98%),去离子水。原料均未经处理直接采用。
1)CeB6纳米硼化物催化剂的制备 
按质量比2:3,在手套箱中称取无水LiCl和无水KCl,之后研磨混合均匀。按摩尔配比1:6,在手套箱中称取CeCl3和NaBH4,之后将CeCl3和NaBH4与混合好的LiCl和KCl的粉末混合均匀。LiCl和KCl占体系总质量的百分数为95 %。然后将混合物放入坩埚中,放入管式炉中,抽真空后通氩气保护,进行烧结,升温至850℃保温3h,升温速率为6℃/min。等样品冷却后,将其放入去离子水中,LiCl、KCl和生成的NaCl会溶于水中,而生成的CeB6纳米颗粒则会悬浮于溶液中。离心、干燥可得纯CeB6纳米硼化物催化剂。
2)CeB6纳米硼化物催化2LiBH4+MgH2储氢材料的制备
以CeB6纳米硼化物为催化剂,吸氢态LiBH4和MgH2为原料,在氩气气氛手套箱内按摩尔比2LiBH4+MgH2+0.1CeB6配比的原料混合均匀后置入不锈钢球磨罐中,在高能球磨机上进行球磨,球磨气氛为氢气氛,球磨氢压1MPa,球料比40:1,球磨时间20h。
采用体积法测试材料的吸放氢动力学性能。
图3给出了第2次循环时的吸氢动力学曲线。所制备的材料在320℃,8 MPa吸氢压力下,在120 min内吸氢量即可达到8 wt%以上。
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。

Claims (6)

1.一种LiBH4基储氢材料的纳米硼化物催化剂的制备方法,其特征在于,包括以下具体步骤:
先将无水LiCl和无水KCl混合均匀,称取过渡金属氯化物和还原剂与上述无水LiCl和无水KCl混合均匀得到混合物,所述还原剂为NaBH4或者KBH4;将所述混合物放入坩埚,在惰性气氛保护下以3-10℃ /min的升温速率升温至600-950℃的烧结温度进行烧结,在所述烧结温度下保温2-10h;将烧结所得产物冷却至室温,用去离子水或者有机溶剂溶解所述产物中的氯化物,离心分离后所得黑色固体即为所述纳米硼化物催化剂。
2.根据权利要求1所述的LiBH4基储氢材料的纳米硼化物催化剂的制备方法,其特征在于,所述无水LiCl和无水KCl的质量总和占所述混合物的质量的90%以上。
3.根据权利要求1所述的LiBH4基储氢材料的纳米硼化物催化剂的制备方法,其特征在于,所述无水LiCl和无水KCl的的质量比为1:1-2。
4.根据权利要求1、2任一所述LiBH4基储氢材料的纳米硼化物催化剂的制备方法所制备的纳米硼化物催化剂。
5.根据权利要求3所述纳米硼化物催化剂的应用,其特征在于,包括以下具体步骤: LiBH4或者复合物与所述纳米硼化物催化剂均匀混合,将混合产物置入球磨罐中,在压力为0.5-3MPa的氩气或者氢气的保护气氛下进行球磨,球磨时间为5-60h,所述复合物为LiBH4+MgH2、LiH+MgB2、LiBH4和MgH2中的任一组合。
6.根据权利要求5所述纳米硼化物催化剂的应用,其特征在于,所述LiBH4或者复合物与所述纳米硼化物催化剂的摩尔比为1:0.001-0.1。
CN201310045940.8A 2013-02-06 2013-02-06 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用 Expired - Fee Related CN103111279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310045940.8A CN103111279B (zh) 2013-02-06 2013-02-06 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310045940.8A CN103111279B (zh) 2013-02-06 2013-02-06 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用

Publications (2)

Publication Number Publication Date
CN103111279A true CN103111279A (zh) 2013-05-22
CN103111279B CN103111279B (zh) 2015-12-23

Family

ID=48409690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310045940.8A Expired - Fee Related CN103111279B (zh) 2013-02-06 2013-02-06 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用

Country Status (1)

Country Link
CN (1) CN103111279B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185540A (zh) * 2017-05-22 2017-09-22 济南大学 一种催化MgH2吸放氢的催化剂Co@C的制备方法
CN109821533A (zh) * 2019-02-25 2019-05-31 吉林大学 一种过渡金属硼化物催化剂、制备方法及其应用
CN111013663A (zh) * 2020-01-06 2020-04-17 苏州明德新能源技术有限公司 一种用于催化液体有机氢载体吸氢和放氢的基于过渡金属-硼的催化剂及其制备方法
CN112599798A (zh) * 2020-12-16 2021-04-02 北京大学 一种NaBH4海绵及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616147A (zh) * 2004-11-08 2005-05-18 国家高技术绿色材料发展中心 一种对氢具有高活性的金属硼化物催化剂及其制备方法
CN101920936A (zh) * 2010-04-20 2010-12-22 浙江大学 金属锂基复合储氢材料及其制备方法与用途
EP2423164A1 (en) * 2010-08-25 2012-02-29 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. General synthesis of metal borides in liquid salt melts
CN102807191A (zh) * 2012-09-06 2012-12-05 沈阳师范大学 一种Li-Mg-B-H储氢材料的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616147A (zh) * 2004-11-08 2005-05-18 国家高技术绿色材料发展中心 一种对氢具有高活性的金属硼化物催化剂及其制备方法
CN101920936A (zh) * 2010-04-20 2010-12-22 浙江大学 金属锂基复合储氢材料及其制备方法与用途
EP2423164A1 (en) * 2010-08-25 2012-02-29 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. General synthesis of metal borides in liquid salt melts
CN102807191A (zh) * 2012-09-06 2012-12-05 沈阳师范大学 一种Li-Mg-B-H储氢材料的合成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185540A (zh) * 2017-05-22 2017-09-22 济南大学 一种催化MgH2吸放氢的催化剂Co@C的制备方法
CN107185540B (zh) * 2017-05-22 2018-02-16 济南大学 一种催化MgH2吸放氢的催化剂Co@C的制备方法
CN109821533A (zh) * 2019-02-25 2019-05-31 吉林大学 一种过渡金属硼化物催化剂、制备方法及其应用
CN109821533B (zh) * 2019-02-25 2021-09-21 吉林大学 一种过渡金属硼化物催化剂、制备方法及其应用
CN111013663A (zh) * 2020-01-06 2020-04-17 苏州明德新能源技术有限公司 一种用于催化液体有机氢载体吸氢和放氢的基于过渡金属-硼的催化剂及其制备方法
CN111013663B (zh) * 2020-01-06 2022-11-22 苏州清德氢能源科技有限公司 一种用于催化液体有机氢载体吸氢和放氢的基于过渡金属-硼的催化剂及其制备方法
CN112599798A (zh) * 2020-12-16 2021-04-02 北京大学 一种NaBH4海绵及其制备方法
CN112599798B (zh) * 2020-12-16 2021-12-07 北京大学 一种NaBH4海绵及其制备方法

Also Published As

Publication number Publication date
CN103111279B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN101476070B (zh) 一种镁基储氢合金及其制备方法
Liu et al. Issues and opportunities facing hydrolytic hydrogen production materials
CN102030313B (zh) 一种有机物复合氨硼烷储氢材料及其制备方法
CN103111279B (zh) LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用
CN102392167A (zh) 一种添加稀土元素的镁基储氢材料及其制备方法
CN101920936A (zh) 金属锂基复合储氢材料及其制备方法与用途
CN103539066A (zh) NiF2掺杂LiBH4-LiNH2-CaH2复合储氢材料及其制备方法
CN102556968B (zh) 一种硼烷氨化合物储氢材料的制备方法
CN102807191B (zh) 一种Li-Mg-B-H储氢材料的合成方法
CN102530872B (zh) 多元金属氨硼烷化合物储氢材料及其制备和复合放氢方法
CN103496669B (zh) 一种b-n-h体系储氢材料及其制备方法
CN101920973B (zh) 一种多孔二硼化铝的制备方法
Zhou et al. Effects of REF3 (RE= Y, La, Ce) additives on dehydrogenation properties of LiAlH4
CN103879957A (zh) 一种催化剂掺杂的镁基储氢材料及制备
CN109768255A (zh) 一种稀土储氢合金/硼氢化物复合储氢材料及其制备方法
CN102515095B (zh) 一种金属锰氧化物负载氨硼烷储氢材料及其制备方法
CN109467048A (zh) 复合储氢材料及其制备方法和应用
CN107758611A (zh) 一种镁基纳米复合储氢材料及其制备方法
Qu et al. Comparative catalytic effects of NiCl 2, TiC and TiN on hydrogen storage properties of LiAlH 4
CN101406843B (zh) 铝氢化钠配位氢化物的纳米催化剂及其制备方法与应用
CN106698334B (zh) 一种含碳化钙的复合储氢材料及其制备方法
CN104891434B (zh) 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
CN106517089B (zh) 一种硼氢化锂/碱金属铝氢化物/碳化钙复合储氢材料及其制备方法
CN108193113B (zh) 一种纳米限域富镁合金的制备方法
Kou et al. Verification and kinetics analysis on the synthesis of LiBH4 from LiH+ MgB2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151223

Termination date: 20190206

CF01 Termination of patent right due to non-payment of annual fee