CN107185540A - 一种催化MgH2吸放氢的催化剂Co@C的制备方法 - Google Patents

一种催化MgH2吸放氢的催化剂Co@C的制备方法 Download PDF

Info

Publication number
CN107185540A
CN107185540A CN201710361447.5A CN201710361447A CN107185540A CN 107185540 A CN107185540 A CN 107185540A CN 201710361447 A CN201710361447 A CN 201710361447A CN 107185540 A CN107185540 A CN 107185540A
Authority
CN
China
Prior art keywords
preparation
catalyst
mgh
catalysis
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710361447.5A
Other languages
English (en)
Other versions
CN107185540B (zh
Inventor
李丽
姜高学
任思佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710361447.5A priority Critical patent/CN107185540B/zh
Publication of CN107185540A publication Critical patent/CN107185540A/zh
Application granted granted Critical
Publication of CN107185540B publication Critical patent/CN107185540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明属于一种轻金属氢化物储氢体系技术领域,具体涉及一种催化MgH2吸放氢的催化剂Co@C的制备方法。将钴盐、咪唑衍生物和LiOH•H2O的混合物在惰性气体保护下加热至300~900℃,直接合成Co@C催化剂。本发明的优点在于:合成的Co@C是一种采用低温固相法制备的、催化性能优异的催化剂;通过添加具有纳米结构的Co@C催化剂,大大改善了复合储氢材料的动力学性能,同时也降低了复合储氢材料的储氢温度。

Description

一种催化MgH2吸放氢的催化剂Co@C的制备方法
技术领域
本发明属于轻金属氢化物储氢体系技术领域,具体涉及一种催化MgH2吸放氢的催化剂Co@C的制备方法。
背景技术
面对石油资源的日渐匮乏和生态环境恶化的双重压力,利用氢能这一清洁能源取代以石化燃料为基础的现有能源已成为全球的共识。要想达到车载储氢技术的要求,就必须开发出一种高体积能量密度和高质量能量密度的轻金属氢化物储氢材料。近些年来,镁基材料由于具有高容量(MgH2的储氢量达到7.6wt%)、资源丰富、质量轻、价格低廉等优点而成为研究者关注的焦点。但是由于金属Mg对氢具有较强的吸引力,氢化镁放氢反应的反应焓为75 KJ/mol,使得MgH2具有较高的吸放氢温度和较慢的吸放氢速率,阻碍了其在实际中的应用。
目前,研究者采用纳米化、添加催化剂、元素取代改性、表面处理改性、制备镁基复合储氢材料改性以及新的合成方法、新的合成工艺等来提高镁基材料的储氢性能。其中添加催化剂来制备镁基复合储氢材料这一合成方法,可以提高储氢合金的动力学性能,并且可以保持镁基材料的高储氢量等优点。迄今采用的与Mg基储氢合金复合的材料有其它类型的储氢合金、金属单质、金属单质的碳复合物、金属氧化物或金属卤化物和非金属元素等。而金属单质的碳复合物,特别是Fe、Co、Ni的碳复合物,在多相催化领域具有较广泛的应用。
发明内容
本发明的目的在于提供一种催化MgH2吸放氢的催化剂Co@C的制备方法,其制备方法简单、易于操作、重复性好,该方法制备得到的Co@C材料颗粒均匀、纯度高。
本发明的另一目的在于提供Co@C催化剂来催化MgH2的吸放氢,用该催化剂催化的MgH2具有较好的低温吸放氢性能。
本发明为解决上述问题提出的技术方案:
一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于采用以下步骤:
(1)将钴盐、咪唑衍生物和LiOH•H2O按照摩尔比2:1:3-5:1:3在研钵中研磨15分钟-60分钟,将其置于惰性气体保护下进行煅烧,升温速率为0.5-10 ℃/分钟,保温温度为300-900 ℃,保温时间为1-12小时。待反应完成后,产物经过洗涤、真空干燥,得到Co@C催化剂。
(2)步骤1中所述的钴盐选自水合草酸钴、水合硝酸钴或水合醋酸钴,所述的咪唑衍生物选自苯并咪唑、2-甲基咪唑或者2-乙基咪唑等。
优选地,步骤(1)中所述的钴盐、咪唑衍生物和LiOH•H2O的摩尔比为3:1:3,研磨时间为30分钟。
优选地,步骤(1)中所述的惰性气体保护下进行煅烧时的升温速率为2 ℃/分钟,保温温度为400 ℃,保温时间为4小时。
优选地,步骤(2)中所述的钴盐为水合硝酸钴,所述咪唑衍生物为苯并咪唑。
一种上述制备方法所制备的Co@C催化剂在储氢材料体系中的应用。
有益效果
(1)本发明提供了一种低温固相法合成Co@C催化剂的方法,制备方法简单、易于操作,重复性好,通过调节钴盐、咪唑衍生物和LiOH•H2O的摩尔比,煅烧时的升温速率、保温温度和保温时间,使得制备的Co@C材料粒径大小可控、颗粒均匀、纯度高,并且具有优异的催化性能。
(2)本发明得到的Co@C材料应用于催化MgH2的吸放氢反应,具有较好的催化性能。TPD测试结果表明,添加Co@C催化剂后,MgH2的开始放氢温度降低到约201 oC,比纯MgH2的开始放氢温度降低了99 oC,并且具有较高的储氢容量。HP-DSC结果表明,MgH2-Co@C复合储氢材料具有优良的循环稳定性。
附图说明
图1为本发明实施例1制备的Co@C催化剂的X-射线衍射(XRD)图谱;
图2为本发明实施例1制备的Co@C催化剂的拉曼(Raman)图谱;
图3为本发明实施例1制备的Co@C催化剂的扫描显微镜(SEM)照片;
图4为本发明实施例1制备的Co@C催化剂的投射电子显微镜(TEM)照片;
图5 为本发明实施例2制备的Co@C催化MgH2放氢的TPD放氢曲线;
图6 为本发明实施例3制备的Co@C催化MgH2放氢的HP-DSC吸放氢曲线。
具体实施方式
下面列举实施例对本发明进行说明,但本发明并不局限于这些实施例。
实施例1
1)Co@C催化剂的制备
将2 mmol水合硝酸钴、1 mmol苯并咪唑和3 mmol LiOH•H2O在研钵中研磨30分钟,将其置于高纯氩气保护下进行煅烧,升温速率为2℃/分钟,保温温度为400 ℃,保温时间为6小时。待反应完成后,产物经过洗涤、真空干燥,经测试分析,合成的催化剂为Co@C。
2)MgH2-Co@C复合储氢材料的制备
在无水无氧手套箱中,将氢化镁粉(纯度98%)和Co@C按照MgH2+5wt%Co@C的比例混合后加入到球磨罐中,放入不锈钢球,球料重量比为40:1,密封;球磨罐抽真空后充入高纯氢气,清洗三次,然后充入2 Mpa的高纯氢气;采用高能球磨法,调节转速为450 r/min球磨1小时后,即得所需产品。
XRD结果(图1)显示,得到了纯相Co@C材料。拉曼图谱(图2)表明,在Co@C材料中1355 and 1583 cm-1的两个特征衍射峰,分别对应于碳的D峰和G峰。D峰和G峰的强度比(ID/IG)为0.55,表明制备材料中碳的石墨化程度和缺陷比完全石墨化的碳高。SEM照片(图3)结果表明,Co@C材料是由大量200-400 nm的纳米花组成。TEM结果(图4)与扫描结果一致。
实施例2
1)Co@C催化剂的制备
将3 mmol水合硝酸钴、1 mmol苯并咪唑和3 mmol LiOH•H2O在研钵中研磨15分钟,将其置于高纯氩气保护下进行煅烧,升温速率为5℃/分钟,保温温度为600 ℃,保温时间为6小时。待反应完成后,产物经过洗涤、真空干燥,经测试得到的产物为Co@C催化剂。
2)MgH2-Co@C复合储氢材料的制备
在无水无氧手套箱中,将氢化镁粉(纯度98%)和Co@C按照MgH2+5wt%Co@C的比例混合后加入到球磨罐中,放入不锈钢球,球料重量比为40:1,密封;球磨罐抽真空后充入高纯氢气,清洗三次,然后充入1 Mpa的高纯氢气;采用高能球磨法,调节转速为450 r/min球磨2小时后,即得所需产品。
图5为程序升温放氢性能(TPD)测试,测试结果表明,合成的Co@C复合材料均具有较好的催化性能。添加Co@C催化剂后,MgH2的开始放氢温度降低到约201 oC,比纯MgH2的开始放氢温度降低了99 oC
实施例3
1)Co@C催化剂的制备
将2 mmol水合硝酸钴、1 mmol苯并咪唑和3 mmol LiOH•H2O在研钵中研磨45分钟,将其置于高纯氩气保护下进行煅烧,升温速率为0.5℃/分钟,保温温度为900 ℃,保温时间为1小时。待反应完成后,产物经过洗涤、真空干燥,得到Co@C催化剂。
2)MgH2-Co@C复合储氢材料的制备
在无水无氧手套箱中,将氢化镁粉(纯度98%)和Co@C按照MgH2+10wt%Co@C的比例混合后加入到球磨罐中,放入不锈钢球,球料重量比为40:1,密封;球磨罐抽真空后充入高纯氢气,清洗三次,然后充入0.5 Mpa的高纯氢气;采用高能球磨法,调节转速为450 r/min球磨3小时后,即得所需产品。
采用差示扫描量热分析(HP-DSC)对其进行了3个吸放氢循环测试(图6),循环后吸放氢峰没有明显降低,说明吸放氢量没有明显衰退;结果表明,MgH2-Co@C复合储氢材料具有优良的循环稳定性。
实施例4
1)Co@C催化剂的制备
将将5 mmol水合硝酸钴、1 mmol苯并咪唑和3 mmol LiOH•H2O在研钵中研磨60分钟,将其置于高纯氩气保护下进行煅烧,升温速率为10℃/分钟,保温温度为300 ℃,保温时间为12小时。待反应完成后,产物经过洗涤、真空干燥,得到Co@C催化剂。
2)MgH2-Co@C复合储氢材料的制备
在无水无氧手套箱中,将氢化镁粉(纯度98%)和Co@C按照MgH2+10wt%Co@C的比例混合后加入到球磨罐中,放入不锈钢球,球料重量比为40:1,密封;球磨罐抽真空后充入高纯氢气,清洗三次,然后充入1 Mpa的高纯氢气;采用高能球磨法,调节转速为450 r/min球磨2小时后,即得所需产品。

Claims (7)

1.一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于采用以下步骤:将钴盐、咪唑衍生物和LiOH•H2O的混合物在研钵中研磨15分钟-60分钟,将其置于惰性气体保护下进行煅烧,反应完成后产物经过洗涤、真空干燥,得到Co@C催化剂。
2.根据权利要求1所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于步骤1中所述的钴盐选自水合草酸钴、水合硝酸钴或水合醋酸钴,所述钴盐、咪唑衍生物和LiOH•H2O的摩尔比为2:1:3-5:1:3。
3.根据权利要求1所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于步骤1中所述的咪唑衍生物选自苯并咪唑、2-甲基咪唑或者2-乙基咪唑等。
4.根据权利要求1所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于步骤1中所述的混合物在惰性气氛中煅烧时的升温速率为0.5-10 ℃/分钟,保温温度为300-900 ℃,保温时间为1-12小时。
5.根据权利要求1所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于步骤1中所述的钴盐为水合硝酸钴,所述钴盐、咪唑衍生物和LiOH•H2O的摩尔比为3:1:3,所述的咪唑衍生物为苯并咪唑。
6.根据权利要求1所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法,其特征在于步骤1中所述的混合物在惰性气氛中煅烧时的升温速率为2 ℃/分钟,保温温度为400 ℃,保温时间为4小时。
7.根据权利要求1-6任一项所述的一种催化MgH2吸放氢的催化剂Co@C的制备方法所制备的Co@C在MgH2储氢材料中的应用。
CN201710361447.5A 2017-05-22 2017-05-22 一种催化MgH2吸放氢的催化剂Co@C的制备方法 Expired - Fee Related CN107185540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710361447.5A CN107185540B (zh) 2017-05-22 2017-05-22 一种催化MgH2吸放氢的催化剂Co@C的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710361447.5A CN107185540B (zh) 2017-05-22 2017-05-22 一种催化MgH2吸放氢的催化剂Co@C的制备方法

Publications (2)

Publication Number Publication Date
CN107185540A true CN107185540A (zh) 2017-09-22
CN107185540B CN107185540B (zh) 2018-02-16

Family

ID=59874913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710361447.5A Expired - Fee Related CN107185540B (zh) 2017-05-22 2017-05-22 一种催化MgH2吸放氢的催化剂Co@C的制备方法

Country Status (1)

Country Link
CN (1) CN107185540B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246333A (zh) * 2018-01-18 2018-07-06 浙江大学 一种过渡金属纳米复合催化剂及其制备方法和应用
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用
CN109012664A (zh) * 2018-08-08 2018-12-18 浙江大学 一种无定形碳负载纳米金属颗粒催化剂及其制备方法和应用
CN116873858A (zh) * 2023-07-13 2023-10-13 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123935A1 (en) * 2007-04-02 2008-10-16 Rensselaer Polytechnic Institute Ultrathin magnesium nanoblades
CN101829588A (zh) * 2010-05-27 2010-09-15 复旦大学 一种负载型碳化钼催化剂的合成方法
CN102534338A (zh) * 2011-12-27 2012-07-04 彩虹集团公司 一种储氢用炭化钴材料及其制备方法
CN102910581A (zh) * 2012-10-22 2013-02-06 常州大学 Me-RGO/LiBH4高储氢量复合储氢材料及其制备方法
CN103111279A (zh) * 2013-02-06 2013-05-22 浙江大学 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123935A1 (en) * 2007-04-02 2008-10-16 Rensselaer Polytechnic Institute Ultrathin magnesium nanoblades
CN101829588A (zh) * 2010-05-27 2010-09-15 复旦大学 一种负载型碳化钼催化剂的合成方法
CN102534338A (zh) * 2011-12-27 2012-07-04 彩虹集团公司 一种储氢用炭化钴材料及其制备方法
CN102910581A (zh) * 2012-10-22 2013-02-06 常州大学 Me-RGO/LiBH4高储氢量复合储氢材料及其制备方法
CN103111279A (zh) * 2013-02-06 2013-05-22 浙江大学 LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246333A (zh) * 2018-01-18 2018-07-06 浙江大学 一种过渡金属纳米复合催化剂及其制备方法和应用
CN109012664A (zh) * 2018-08-08 2018-12-18 浙江大学 一种无定形碳负载纳米金属颗粒催化剂及其制备方法和应用
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用
CN116873858A (zh) * 2023-07-13 2023-10-13 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法
CN116873858B (zh) * 2023-07-13 2023-12-29 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法

Also Published As

Publication number Publication date
CN107185540B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Zhang et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides
CN107185540B (zh) 一种催化MgH2吸放氢的催化剂Co@C的制备方法
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Xian et al. A Unique Nanoflake‐Shape Bimetallic Ti–Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH2
Li et al. Preparation of CoB/ZIF-8 supported catalyst by single step reduction and its activity in hydrogen production
Gao et al. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride
CN105734323B (zh) 一种纳米镁基可逆储氢复合材料及其制备方法
Srinivas et al. Nanoconfined ammonia borane in a flexible metal–organic framework Fe–MIL-53: Clean hydrogen release with fast kinetics
Zou et al. Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method
Song et al. Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere
Jiang et al. Remarkable hydrogen absorption/desorption behaviors and mechanism of sodium alanates in-situ doped with Ti-based 2D MXene
Xia et al. Dehybridization effect in improved dehydrogenation of LiAlH4 by doping with two-dimensional Ti3C2
Chen et al. High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: hydrogen storage properties and catalytic mechanism
Zhong et al. Realizing facile regeneration of spent NaBH 4 with Mg–Al alloy
CN106566965B (zh) 一种聚合物包覆的纳米镁基储氢材料及其制备方法
CN110155940A (zh) 一种室温吸氢的镁基储氢材料及其制备方法
Zhang et al. Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12 wt% reversible hydrogen storage at 400° C
Chen et al. Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties
EP3846249A1 (en) Silicon-based negative electrode material of lithium ion battery and preparation method therefor, and battery
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
Lu et al. Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage
CN107338372A (zh) 一种放电等离子烧结的铝基复合制氢材料的制备及其应用
Tan et al. A synergistic strategy established by the combination of two H-enriched B–N based hydrides towards superior dehydrogenation
Yuan et al. Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg-Ni-Zn alloy
US20240262684A1 (en) Composite loaded with nano-magnesium hydride and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180216

Termination date: 20210522

CF01 Termination of patent right due to non-payment of annual fee