WO2021022946A1 - 一种装卸机器人及其控制系统 - Google Patents

一种装卸机器人及其控制系统 Download PDF

Info

Publication number
WO2021022946A1
WO2021022946A1 PCT/CN2020/099165 CN2020099165W WO2021022946A1 WO 2021022946 A1 WO2021022946 A1 WO 2021022946A1 CN 2020099165 W CN2020099165 W CN 2020099165W WO 2021022946 A1 WO2021022946 A1 WO 2021022946A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
terminal
loading
module
microcontroller
Prior art date
Application number
PCT/CN2020/099165
Other languages
English (en)
French (fr)
Inventor
王明富
王艺霖
韦炽海
杨建波
范基明
Original Assignee
桂林市富华金属制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林市富华金属制品有限公司 filed Critical 桂林市富华金属制品有限公司
Publication of WO2021022946A1 publication Critical patent/WO2021022946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • the invention relates to the technical field of loading and unloading machinery and automatic control, in particular to a loading and unloading robot and its control system.
  • Logistics warehouse handling/loading and unloading robots mainly use electric forklifts, which can carry out autonomous handling/loading and unloading of small goods in planned routes and areas; traditional forklifts are large in size and need to be placed in large trucks for transportation, and loading and carrying are very difficult. Convenience. When a traditional forklift is used in a field environment, the uneven ground in the field environment makes it difficult to load and unload cargo. When working, a traditional forklift is driven by a licensed driver, which can carry large and medium-sized goods. When carrying and unloading dangerous goods, there is almost no protective measures in the driver's cab. In the event of an accident, the safety of the driver cannot be guaranteed.
  • control content of the electronic control system for each work process is changed from traditional mechanical means to electronic control means, which improves the control accuracy and expands the control content and control means.
  • traditional loading and unloading forklift products must be combined with modern electronic technology, robotics, computer technology, artificial intelligence technology, communication technology, multi-sensor fusion technology, and network information technology.
  • Mutual penetration and integration and continuously improve the technical content of equipment.
  • the electronic control system of logistics loading and unloading robots has become the main factor determining equipment performance. It is currently an important research and development direction of logistics loading and unloading robots and is currently the research and development of various logistics equipment manufacturers. The focus of work.
  • the purpose of the present invention is to provide a loading and unloading robot and its control system, which can ensure the safety of personnel, is convenient to carry, can adapt to the changeable outdoor environment and terrain, and has the internal combustion engine power system control, driving and walking speed of the loading and unloading robot.
  • Main control functions such as control, mast and fork hydraulic system control, operation safety protection, wireless remote control and communication.
  • the present invention provides the following solutions:
  • a loading and unloading robot includes a control end, a driving device, a crawler walking device, a bottom plate and a folding door frame platform.
  • the crawler walking device is arranged on both sides of the bottom plate, and one end of the bottom plate is provided with the driving device.
  • the chassis frame of the crawler walking device is provided with the folding mast platform, and the driving device provides power for the driving wheels of the crawler walking device and the hydraulic system of the folding mast platform.
  • the folding mast platform includes a hydraulic system, a mast and a fork frame, the hydraulic system is connected to the chassis frame, the fork frame is slidably connected to the inner mast, so The door frame and the fork frame can be folded and placed; the control end is connected to the drive device, and the control end can control the movement of the crawler walking device and the action of the folding door frame platform.
  • the driving device includes a tank and a diesel engine, a pump unit, a diesel tank, and a hydraulic oil tank arranged in the tank, the diesel engine is connected to the diesel tank, and the diesel engine is connected to the pump.
  • the unit is connected, the pump unit is connected with the hydraulic oil tank, and the diesel engine and the pump unit are connected with the control end.
  • a fan is connected to the rotating shaft of the diesel engine, a radiator is provided on one side of the fan, the radiator is a water-oil radiator, and the water tank in the radiator can dissipate heat for the diesel engine ,
  • the oil tank in the radiator is in communication with the hydraulic oil tank and dissipates heat for the hydraulic oil;
  • the control terminal is arranged on the upper surface of the box body, the control terminal is connected to a receiver, the receiver is matched with a remote control signal, and the control terminal and the receiver are both connected to a battery,
  • the receiver and the battery are both arranged in the box body, the box body is provided with a warning light, and the warning light is connected to the control terminal;
  • the lifting mechanism includes a lifting rail, a column, and a lifting cylinder.
  • the lifting rail is fixed on one side of the box.
  • the column has a hollow structure and is housed inside. There is the lifting cylinder, the side of the column is provided with a chute matching the lifting rail, the column and the lifting cylinder are both fixed on the bottom plate, and the telescopic rod of the lifting cylinder is lifted The top of the rail;
  • the pump unit includes a plunger pump and a gear pump that communicate with each other, and the plunger pump and the gear pump are respectively communicated with the hydraulic oil tank through a multi-way valve, and the plunger pump is in the crawler walking device.
  • the crawler walking device includes a hydraulic motor, a driving wheel, a bearing wheel, a tensioning mechanism, a crawler mechanism and a chassis frame that are symmetrically arranged, the hydraulic motor is connected to the plunger pump, and the hydraulic motor is connected to the The driving wheel is connected, the tension mechanism is arranged at the end of the crawler mechanism, the two sides of the chassis frame are symmetrically connected to the crawler mechanism, and the chassis frame is connected to the bottom plate.
  • the hydraulic system includes a lifting cylinder, a corner cylinder and a translation cylinder
  • the mast includes an outer mast and an inner mast that are slidably connected
  • the fork frame is slidably connected to the inner mast
  • the bottom of the outer mast is connected to a connecting plate
  • the telescopic rod of the lifting cylinder is connected to the top of the inner mast
  • the cylinder body of the lifting cylinder is connected to the connecting plate
  • the corner cylinders are symmetrically arranged on a sliding carriage
  • the telescopic rod of the corner cylinder is hinged with the connecting plate
  • a sliding rail is symmetrically arranged on the inner side of the crawler mechanism
  • the sliding trolley matches the sliding rail
  • the cylinder of the translation cylinder is fixed to the On the chassis frame
  • the telescopic rod of the translation oil cylinder is connected with the sliding trolley.
  • a control system for a loading and unloading robot including a remote controller portable terminal and a control terminal;
  • the control terminal includes an onboard remote control terminal, an onboard electronic control terminal, an execution terminal and a sensing terminal installed on the loading and unloading robot;
  • the portable terminal of the remote controller communicates with the onboard terminal of the remote controller in a wired or wireless manner; the onboard terminal of the remote controller and the onboard electronic control terminal, the onboard terminal of the remote controller and the execution terminal, The airborne electronic control terminal and the execution terminal, and the sensing terminal and the airborne electronic control terminal are all connected by a wire harness;
  • the portable terminal of the remote controller is used to output the control instruction information of the loading and unloading robot according to the obtained user operation instruction and encode and modulate it;
  • the onboard terminal of the remote controller is used to receive and analyze the control instruction information, and transmit it to the onboard electronic control terminal through a corresponding wire harness;
  • the sensor terminal is used for real-time collection of operating status information and external environment video information of the loading and unloading robot;
  • the onboard electronic control terminal is used to output the drive control pulse width modulation signal of the electronic control proportional valve according to the control command information and the operating state information of the loading and unloading robot, and transmit it to the execution terminal through the corresponding wire harness to realize the Control of loading and unloading robots;
  • the onboard electronic control terminal is also used to upload the operating status information and external environment video information of the loading and unloading robot to the portable terminal of the remote control so as to display the operating status and external environment of the loading and unloading robot to the user in real time;
  • the onboard terminal of the remote controller is also used to receive and parse the control command information, generate a drive control pulse width modulation signal for the electronically controlled proportional valve, and transmit it to the execution terminal through the corresponding wire harness to control the loading and unloading robot.
  • the portable terminal of the remote controller includes a first microcontroller, a first data acquisition module, a first 433MHz radio frequency module, a first 2.4GHz radio frequency module, a first RS485 interface module, a first display module, and peripheral circuits;
  • the first data acquisition module is connected to the first microcontroller through a universal input/output port
  • the first 433MHz radio frequency module is connected to the first microcontroller through a serial peripheral interface
  • the first The 2.4GHz radio frequency module is connected to the first microcontroller through a serial peripheral interface
  • the first display module is connected to the first microcontroller through a universal input/output port
  • the first RS485 interface module is connected through The serial port is connected with the first microcontroller.
  • the onboard end of the remote controller includes a second microcontroller, a second 433MHz radio frequency module, a second 2.4GHz radio frequency module, a driver module, a second RS485 interface module and peripheral circuits; the second 433MHz radio frequency module Connected to the second microcontroller through a serial peripheral interface, the second 2.4GHz radio frequency module is connected to the second microcontroller through a serial peripheral interface, and the second RS485 interface module is connected to the second microcontroller through a serial port
  • the second microcontroller is connected, and the second microcontroller is connected to the drive module through a universal input/output port; the drive module is also connected to the execution end.
  • the onboard electronic control terminal includes a third microcontroller, a communication module, a second data acquisition module, a control output module, and a second display module;
  • the communication module is connected to the third microcontroller through a serial port,
  • the second data acquisition module is connected to the third microcontroller through a universal input/output port,
  • the second display module is connected to the third microcontroller through a universal input/output port, and
  • the control output module It is connected to the third microcontroller through a universal input/output port.
  • the sensing terminal includes a water temperature sensor, an oil pressure sensor, an air blockage sensor, a fuel level sensor, and a video sensor connected to the second data collection module respectively;
  • the execution end includes an engine start relay, a fuel pump electric control valve, a walking motor electric control valve, a fork control electric control valve, a gantry control electric control valve, and a chassis lifting electric control valve, which are respectively connected to the control output module.
  • the present invention discloses the following technical effects:
  • the remote control loading and unloading robot provided by the present invention breaks this inherent traditional design, is equipped with an intelligent electronic control control system, and realizes all the functions of traditional forklifts by remote operation, combined with sensor feedback It realizes automatic alarm and monitoring to avoid risks in time without manual driving.
  • remote control can be selected for loading and unloading, which solves the problem of traditional forklift operations and greatly improves the environmental adaptability and control of loading and unloading robots. safety.
  • the on-board electronic control terminal has program control modules such as PWM control of the throttle proportional solenoid valve and automatic transmission control strategy.
  • the on-board terminal of the remote controller also contains the PWM drive control program.
  • the electronic control system provided by the present invention can intelligently integrate and generate PWM drive control signals for electronically controlled proportional valves such as fuel pumps, hydraulic motors, masts, forks, etc. according to operator control instructions, robot working status, and external environment information, thereby Realize precise control of engine power output, robot forward/backward, mast movement, fork lift, fork tilt, etc.
  • the portable loading and unloading robot of the present invention has a foldable design so that it has a small volume after being stowed. It can be installed on the bottom of a truck, and can be transported along with the truck. This solves the problem of difficult handling of larger goods in the logistics distribution link; With crawler walking device, load capacity, site adaptability, safety and transportation convenience, it can solve the problem of loading and unloading goods in the field environment; no manual driving is required, and remote control can be selected for loading and unloading when working with dangerous goods, which solves the traditional forklift The problem of dangerous work.
  • Figure 1 is a structural schematic diagram of the loading and unloading robot of the present invention
  • Figure 2 is a second structural diagram of the loading and unloading robot of the present invention.
  • Figure 3 is the third structural diagram of the loading and unloading robot of the present invention.
  • Figure 4 is a fourth structural diagram of the loading and unloading robot of the present invention.
  • Figure 5 is the fifth structural diagram of the loading and unloading robot of the present invention.
  • Figure 6 is a sixth structural diagram of the loading and unloading robot of the present invention.
  • FIG. 7 is a schematic diagram seven of the structure of the loading and unloading robot of the present invention.
  • FIG. 8 is a block diagram of the overall structure of the loading and unloading robot control system according to the embodiment of the present invention.
  • FIG. 10 is a block diagram of the overall hardware structure of the airborne electronic control terminal according to the embodiment of the present invention.
  • Fig. 11 is an overall frame diagram of the control program of the airborne electronic control terminal according to the embodiment of the present invention.
  • 1-controller 2-crawler walking device, 3-base plate, 4-folding mast platform, 5-support beam, 6-fork rack, 7-diesel engine, 8-pump unit, 9-multi-way valve ,10-Water and oil radiator,11-fan,12-diesel tank,13-hydraulic oil tank,14-connecting plate,15-battery,16-hydraulic motor,17-driving wheel,18-warning light,19-tension Mechanism, 20-track mechanism, 21-chassis frame, 22-corner cylinder, 23-box, 24-translation cylinder, 25-lift cylinder, 26-sliding trolley, 27-slide rail, 28-receiver, 29-camera , 30-lighting lamp, 31-outer door frame, 32-inner door frame, 33-chain, 34-lifting rail, 35-post, 36-lifting cylinder.
  • this embodiment provides a loading and unloading robot, including a control terminal 1, a driving device, a crawler walking device 2, a bottom plate 3 and a folding portal platform 4, the crawler walking device 2 is arranged on the bottom plate 3
  • a driving device which can complete the lifting movement on the bottom plate 3
  • the chassis frame 21 of the crawler walking device 2 is provided with a folding door frame platform 4, and the driving device is the driving wheel of the crawler walking device 2.
  • 17 and the hydraulic system of the folding mast platform 4 provide power.
  • the bottom plate 3 is made of low-alloy structural steel by cutting and welding.
  • the driving device is bolted to the bottom plate 3 and its surface cover is made of carbon steel. Most of the parts are installed on the bottom plate 3 of the robot.
  • the folding mast platform 4 includes a hydraulic system, a mast, and a fork frame 6.
  • the hydraulic system is connected with the chassis frame 21.
  • the fork frame 6 is hinged to the bottom of the mast frame. Both the mast frame and the fork frame 6 can be folded and placed.
  • the hydraulic system includes a lifting cylinder 25, a corner cylinder 22 and a translation cylinder 24.
  • the mast includes an outer mast 31 and an inner mast 32 that are slidably connected.
  • the fork frame 6 is slidingly connected to the inner mast 32, and the bottom of the outer mast 31 is connected to a
  • the connecting plate 14 is connected, the telescopic rod of the lifting cylinder 25 is connected with the top of the inner mast 32, the cylinder body of the lifting cylinder 25 is connected with the connecting plate 14; the corner cylinder 22 is symmetrically arranged on the bottom surface of a sliding trolley 26, and the corner cylinder 22 is telescopic
  • the rod is hinged with the connecting plate 14.
  • a slide rail 27 is symmetrically provided on the inner side of the crawler mechanism 20, and the sliding trolley 26 matches the slide rail 27; the cylinder of the translation cylinder 24 is fixed on the chassis frame 21, and the telescopic rod of the translation cylinder 24 is connected to the slide The trolley 26 is connected.
  • a chain 33 is wound on the fixed pulleys.
  • One end of the chain 33 is fixed to the front baffle plate of the fork frame 6, and the other end of the chain 33 is fixed to a cross beam, which is connected to the outside.
  • a camera 29 and a lighting lamp 30 are arranged on the door frame and the beam, and the camera 29 and the lighting lamp 30 are connected to the control terminal 1.
  • the lifting cylinder 25 and the chain 33 drive the fork frame 6 to move upward for loading and unloading goods. Among them, the lifting cylinder 25 can be replaced with a ball screw to realize the lifting of the fork frame 6.
  • the fork frame 6 of this embodiment can be manually turned and folded at 90° and the goods can be lifted and unloaded; the door frame can be turned and folded at 0-90°, which is a double folding structure, which solves the limitation of insufficient corners of the traditional forklift fork frame 6.
  • the forklift can still be forklifted after the road surface is at a certain angle to the object placement plane. After the forklift item is raised to a certain height, the translation cylinder 24 can be moved backwards in the slide rails 27 on both sides of the chassis frame 21 to move the center of gravity of the whole machine back and maintain the overall balance of the robot.
  • the fork frame 6 and the mast can be turned and folded at 90°, the height of the robot is greatly reduced, and the space is small, and it is convenient to transport it with the vehicle.
  • the overall volume of the loading and unloading robot of this embodiment is small, its internal components are compactly installed, the layout is reasonable, and the folded outer dimension is less than 750mm*1350mm*2500mm.
  • the control terminal 1 is connected to the driving device, and the control terminal 1 can control the movement of the crawler walking device 2 and the action of the folding door frame platform 4.
  • the control terminal 1 is arranged on the upper surface of the driving device box 23, and the control terminal 1 is connected to a receiver 28, The receiver 28 matches a remote control signal.
  • the control terminal 1 and the receiver 28 are both connected to a battery.
  • the receiver 28 and the battery are both arranged in the box 23.
  • the box 23 is provided with a warning light 18 and a warning light 18 Connect with control terminal 1.
  • the driving device includes a box body 23 and a diesel engine 7, a pump unit 8, a diesel tank 12 and a hydraulic oil tank 13, which are arranged in the box body 23.
  • the diesel engine 7 is connected to the diesel tank 12, the diesel engine 7 is connected to the pump unit 8, and the pump unit 8 is connected to the hydraulic oil tank 13, and the diesel engine 7 and the pump unit 8 are connected to the control terminal 1.
  • the crawler walking device 2 includes a symmetrically arranged hydraulic motor 16, a driving wheel 17, a bearing wheel, a tensioning mechanism 19, a crawler mechanism 20, and a chassis frame 21.
  • the hydraulic motor 16 is connected to a plunger pump, and the hydraulic motor 16 is connected to the driving wheel.
  • the driving device in this embodiment can be replaced by a lithium battery pack or 380V power driven by a motor.
  • a fan 11 is connected to the rotating shaft of the diesel engine 7, and a radiator is provided on one side of the fan 11.
  • the radiator is a water-oil radiator 10.
  • the water tank in the radiator can dissipate heat from the diesel engine 7, and the fuel tank in the radiator is The hydraulic oil tank 13 is in communication.
  • the diesel engine 7 is installed in the box 23 on the bottom plate 3, and the shell of the box 23 is provided with a heat insulation layer and heat dissipation holes to prevent the operator from accidentally getting burned by touching the high temperature diesel engine 7.
  • a fan 11 is installed on the right side of the diesel engine 7 close to the metal mesh.
  • the cooling water tank and the hydraulic oil cooling oil tank of the diesel engine 7 are installed side by side, so that the fan 11 can heat the water tank and hydraulic oil of the engine at the same time.
  • the lifting mechanism includes a lifting rail 34, a column 35 and a lifting cylinder 36.
  • the lifting rail 34 is fixed on one side of the box body 23.
  • the column 35 has a hollow structure and contains a lifting cylinder. 36.
  • the side of the column 35 is provided with a sliding groove that matches the lifting rail 34, the column 35 and the lifting cylinder 36 are both fixed on the bottom plate, and the telescopic rod of the lifting cylinder 36 lifts the top of the guide rail 34.
  • the pump unit 8 includes a plunger pump and a gear pump that communicate with each other, and the plunger pump and the gear pump are respectively connected to the hydraulic oil tank 13 through a multi-way valve 9.
  • the plunger pump provides power for the driving wheel 17 in the crawler walking device 2;
  • the gear pump provides power for the hydraulic system of the folding gantry platform 4.
  • the plunger pump and the gear pump are connected in series to achieve precise control of the working angle of the foldable gantry.
  • the internal components of the loading and unloading robot of this embodiment are compactly installed, have a reasonable layout, and have a small overall volume.
  • the folded outline size is less than 750mm*1350mm*2500mm. It can be stored in the bottom of a truck, and it can be easily transported anywhere and anytime.
  • the hydraulic system is applied and the load is large. Its maximum loading and unloading weight can reach 1500kg, the maximum lifting height is 2600mm, the maximum walking speed of crawler walking device 2 is 9km/h, it can cross 300mm deep ravines, and the climbing angle is 30° slope. It can operate normally in the ambient temperature range of -25°C to 60°C, and can work continuously for more than 2 hours. It has outstanding field operation ability and strong adaptability to terrain.
  • the robot can be controlled by remote control without personnel riding and driving, reducing labor intensity.
  • the loading and unloading robot of this embodiment has a larger load, and has the smallest volume under the same load. This solves the problem of insufficient corners of the fork frame 6 of the traditional forklift, and the mast cannot be moved back.
  • the forklift is heavy. Its own transportation takes up too much space and the defects of high transportation cost.
  • FIG. 8 is a block diagram of the overall structure of the loading and unloading robot control system according to the embodiment of the present invention.
  • the loading and unloading robot control system provided in this embodiment includes a remote control portable terminal and a remote control air terminal installed on the loading and unloading robot. Carrying electric control end, execution end and sensing end.
  • the portable terminal of the remote control is connected to the on-board terminal of the remote control by wired or wireless means; the on-board terminal of the remote control and the on-board electric control terminal, the on-board terminal and the execution terminal of the remote control, the on-board electric control terminal and the executive terminal, and the sensor terminal It is connected with the onboard electronic control terminal by wire harness.
  • the sensing end includes a water temperature sensor, an oil pressure sensor, an air blockage sensor, a fuel level sensor, and a video sensor respectively connected to the second data collection module of the airborne electronic control end.
  • the executive end includes the engine start relay, the fuel pump electric control valve, the walking motor electric control valve, the fork control electric control valve, the main frame control electric control valve and the chassis lift electric control valve respectively connected to the control output module of the airborne electric control terminal. .
  • the portable terminal of the remote controller is used to output the control instruction information of the loading and unloading robot according to the obtained user operation instruction and encode and modulate it.
  • the airborne terminal of the remote controller is used to receive and analyze the control command information, and transmit it to the airborne electronic control terminal through the corresponding wiring harness.
  • the sensor terminal is used to collect the operating status information of the loading and unloading robot in real time.
  • the onboard electronic control terminal is used to output the execution control signal according to the control command information and the operation status information of the loading and unloading robot, and transmit it to the execution end through the corresponding wiring harness to realize the control of the loading and unloading robot.
  • the onboard electronic control terminal is also used to upload the operating status information and external environment video information of the loading and unloading robot to the portable terminal of the remote control so as to display the operating status and external environment of the loading and unloading robot to the user in real time.
  • the onboard end of the remote controller is also used to receive the analytical control command information, generate the drive control pulse width modulation signal of the electronically controlled proportional valve, and transmit it to the execution end through the corresponding wire harness to realize the control of the loading and unloading robot.
  • the remote controller is composed of a portable terminal and an airborne terminal, and wireless communication between the two is mainly through a radio frequency module, and cable communication is used as a backup method.
  • the portable terminal of the remote controller is responsible for collecting operating instructions and status information such as buttons and joysticks, generating corresponding control instructions, and sending them to the onboard terminal of the remote controller through a radio frequency module/cable.
  • the onboard terminal of the remote controller is responsible for receiving and analyzing the control command information, and transmits it to the onboard electronic control terminal through the corresponding wiring harness to realize the control of the robot.
  • the hardware circuit of the portable terminal of the remote control is shown in Figure 9, including the first microcontroller (MCU), the first power module, the first data acquisition module, the first 433MHz radio frequency module, the first 2.4GHz radio frequency module, and the first RS485 interface Module, first display module and other peripheral circuits, etc.
  • MCU microcontroller
  • the first power module the first power module
  • the first data acquisition module the first 433MHz radio frequency module
  • the first 2.4GHz radio frequency module the first 2.4GHz radio frequency module
  • the first RS485 interface Module first display module and other peripheral circuits, etc.
  • the first data acquisition module is connected to the first microcontroller (MCU) through a general-purpose input/output port (GPIO), and the first 433MHz radio frequency module is connected to the first microcontroller (MCU) through a serial peripheral interface (SPI),
  • the first 2.4GHz radio frequency module is connected to the first microcontroller (MCU) through the serial peripheral interface (SPI)
  • the first RS485 interface module is connected to the first microcontroller (MCU) through the serial port
  • the first display module is connected through the universal
  • the input/output port (GPIO) is connected with the first microcontroller (MCU), and the first power supply module regulates the power supply to various voltage levels and routes it to the power input ports of other phase application electrical modules.
  • the onboard hardware circuit of the remote controller is shown in Figure 9, including a second microcontroller (MCU), a second power module, a second 433MHz radio frequency module, a second 2.4GHz radio frequency module, a driver module, a second RS485 interface module and Other peripheral circuits, etc.
  • the second 433MHz radio frequency module is connected to the second microcontroller (MCU) through the serial peripheral interface (SPI)
  • the second 2.4GHz radio frequency module is connected to the second microcontroller (MCU) through the serial peripheral interface (SPI)
  • the second RS485 interface module is connected to the second microcontroller (MCU) through the serial port.
  • the second power module regulates the external power supply (on-board 12V battery) to various voltage levels and wire it to the power input of other phase application modules Port, the second microcontroller (MCU) is connected to the drive module through a general-purpose input/output port (GPIO).
  • GPIO general-purpose input/output port
  • the remote control software mainly completes the following tasks:
  • the onboard end of the remote controller generates the drive control pulse width modulation (PWM) signal output of the hydraulic motor, the gantry, the fork, and the electronic control proportional valve of the chassis according to the control command.
  • PWM pulse width modulation
  • the wireless communication process of the remote control After the first data acquisition module of the portable terminal of the remote control collects the user operation instruction, it transmits the user operation instruction signal to the first microcontroller (MCU) through the general-purpose input/output port (GPIO). The controller (MCU) processes the user operation instruction signal and transmits the control instruction signal to the first 433MHz radio frequency module through the serial peripheral interface (SPI). The first 433MHz radio frequency module encodes and modulates the control instruction signal signal through the wireless channel Transmit to the onboard end of the remote control.
  • MCU microcontroller
  • SPI serial peripheral interface
  • the second 433MHz radio frequency module on the airborne end of the remote controller receives the control command signal, demodulates, decodes, and transmits it to the second microcontroller (MCU) through the serial peripheral interface (SPI), and then the second microcontroller (MCU) For subsequent processing.
  • MCU microcontroller
  • SPI serial peripheral interface
  • the Wired communication process of the remote control In the wire control mode, the first data collection module on the portable end of the remote control collects the user operation instructions, and then transmits the user operation instruction signals to the first microcontroller through the general input/output port (GPIO) (MCU), the first microcontroller (MCU) processes the user's operation instruction signal and transmits the control instruction signal to the first RS485 interface module through the serial port.
  • the first RS485 interface module encodes the control instruction signal and transmits it to the remote control via cable The onboard end of the device.
  • the second RS485 interface module on the onboard end of the remote control receives the control command signal from the portable end of the remote control, decodes it and transmits it to the second microcontroller (MCU) through the serial port, and the second microcontroller (MCU) performs subsequent processing .
  • the hardware composition of the airborne electronic control terminal is shown in Figure 10, which mainly includes a third microcontroller, a third power supply module, a communication module, a second data acquisition module, a control output module, and a second display module.
  • the second display module is connected to the third microcontroller through a general-purpose input/output port (GPIO)
  • the communication module is connected to the third microcontroller through a serial port
  • the second data acquisition module is connected to the third microcontroller through a general-purpose input/output port (GPIO).
  • Microcontroller connection, the control output module is connected to the third microcontroller through a general-purpose input/output port (GPIO).
  • the third power supply module regulates the power supply to various voltage levels and routes it to the power input ports of other phase application modules .
  • Other external devices or signals such as 12V power supply, sensors, key switches, remote control/wire control commands, ignition switches, generators, starting motors, etc. are connected through the wiring terminals on the on-board electronic control terminal circuit board.
  • the third microcontroller is the core part of the airborne electronic control terminal.
  • the third microcontroller adopts the ARM core chip and is responsible for signal acquisition and the main control tasks of the system.
  • the third power module is responsible for converting the 12V power supply into the corresponding voltage level for each module circuit to use.
  • the communication module realizes the wired communication between the airborne electronic control terminal and the remote control airborne terminal.
  • the second data acquisition module realizes the acquisition of sensor data such as engine water temperature, oil pressure, fuel level, environmental video, etc., and receives control command information input from the airborne terminal of the remote control.
  • the control output module generates corresponding execution control signals according to the control command information and the working status information of the loading and unloading robot, including engine start control signals, generator control signals, start motor control signals, throttle proportional solenoid valve control signals, lighting headlight control signals, Warning light control signal, speaker control signal, etc.
  • the second display module includes a color liquid crystal display, a fault indicator, and has the indicating functions such as displaying oil level, engine oil, water temperature, receiving wireless signals, lighting control output, and battery alarm parameters.
  • the entire control program of the airborne electronic control terminal adopts the main program to cyclically scan, and the program framework parallel to the timer interrupt service program effectively realizes the control of the loading and unloading robot, and meets the requirements of system control and monitoring.
  • the control program of the airborne electronic control terminal adopts modular design, which is mainly composed of data acquisition program module, wire control communication program module, real-time control program module, system management module, interface display module and alarm monitoring module.
  • the overall framework of the control program is shown in Figure 11.
  • the real-time control program module covers a lot of control functions, mainly including the engine start program, the generator start program and the switch output control program of the lighting headlights, warning lights, speakers, etc., the PWM control of the throttle proportional solenoid valve, and the automatic transmission control. Strategy etc.
  • the remote control loading and unloading robot can be safely controlled, so that the loading and unloading robot can still realize all functions such as loading, unloading and handling even when the loading and unloading robot is beyond the sight of the operator.
  • the operator sends instructions from the portable terminal of the remote control, and the loading and unloading robot can receive and accurately realize the following actions within the effective range of 400m: 1) The vehicle moves forward and backward, accelerating and decelerating; 2) The inner and outer mast moves up and down and forward and backward along the guide rail; 3) The inner and outer door frames are turned and folded at 0° ⁇ 90°; 4) Part of the chassis is lifted and lowered.
  • the on-board electronic control terminal can feed back the driving status information of the robot power system, working device, external environment and other information to the operator in time through the remote communication module, so as to assist the control decision-making and ensure the safety of the robot operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种装卸机器人及其控制系统,包括控制端(1)、驱动装置、履带行走装置(2)、底板(3)和折叠门架平台(4),履带行走装置(2)设置于底板(3)的两侧,底板(3)的一端设置有驱动装置,履带行走装置(2)的底盘架上设置有折叠门架平台(4),驱动装置为履带行走装置(2)的驱动轮(17)和折叠门架平台(4)的液压系统提供动力,控制端(1)连接驱动装置,且控制端(1)还与外界的遥控器便携端通信,控制端(1)能够根据遥控器便携端传输的用户操作指令控制履带行走装置(2)的移动和折叠门架平台(4)的动作。该装卸机器人无需人工驾驶,解决了传统叉车作业危险的问题,且体积小,可随车运输,安装有履带行走装置(2),可适应于户外多变的环境和地形,提升了装卸机器人的环境适应性和操控安全性。

Description

一种装卸机器人及其控制系统 技术领域
本发明涉及装卸机械及自动化控制技术领域,特别是涉及一种装卸机器人及其控制系统。
背景技术
现有的物流仓储机器人主要应用于室内且需要一套完整的控制系统来运行,成本高,但载重量却低,且对场地要求较高,无法适应户外多变的环境和地形。而室外装卸作业环境相对于物流仓库来说较为复杂,特别是装卸较重较大货物时,需要对室外场地适应性强的装卸机器人来完成装卸工作。
物流仓储搬运/装卸机器人主要采用电动叉车,可在规划好的路线和区域对小型货物进行自主搬运/装卸工作;传统叉车体积大,需放置于大型货车车厢中进行运输,装车携带也十分不方便。传统叉车在野外环境中使用时,由于野外环境的地面不平整,致使其装卸货物困难。工作时,传统叉车由持证驾驶员驾驶,可搬运大中型货物,当搬运装卸危险品时,因驾驶室几乎无防护措施,发生意外时,驾驶员安全得不到保障。
另外,电控系统对各工作过程的控制内容由传统的机械手段转变为电子控制手段,提高了控制精度,扩展了控制内容和控制手段。为了开发出适应市场发展要求的新一代物流装卸机器人产品,传统的装卸叉车产品要与现代电子技术、机器人技术、计算机技术、人工智能技术、通讯技术、多传感器融合技术和网络信息技术等高新技术相互渗透融合,不断提高装备的技术含量。物流装卸机器人电控系统作为装备实现自动化、智能化、高效化和网络化的重要载体,已成为决定装备性能的主要因素,是目前物流装卸机器人的重要研发方向,是目前各物流装备厂商的研发工作重心所在。
发明内容
本发明的目的是提供一种装卸机器人及其控制系统,使人员安全得以保障,携带方便,可以适应户外多变的环境和地形,且具有装卸机器人的内燃机动力系统控制、驱动与行走速度自适应控制、门架与货叉液压系统控制、作业 安全保护、无线遥控与通信等主要控制功能。
为实现上述目的,本发明提供了如下方案:
一种装卸机器人,包括控制端、驱动装置、履带行走装置、底板和折叠门架平台,所述履带行走装置设置于所述底板的两侧,所述底板的一端设置有所述驱动装置,所述履带行走装置的底盘架上设置有所述折叠门架平台,所述驱动装置为所述履带行走装置的驱动轮和所述折叠门架平台的液压系统提供动力,所述驱动装置能够在所述底板上完成升降运动;所述折叠门架平台包括液压系统、门架和货叉架,所述液压系统与所述底盘架连接,所述货叉架与所述内门架滑动连接,所述门架及所述货叉架均能够折叠放置;所述控制端连接所述驱动装置,所述控制端能够控制履带行走装置的移动和折叠门架平台的动作。
可选的,所述驱动装置包括箱体和设置于所述箱体内的柴油发动机、泵机组、柴油箱、液压油箱,所述柴油发动机与所述柴油箱连接,所述柴油发动机与所述泵机组连接,所述泵机组与所述液压油箱连通,所述柴油发动机、泵机组与所述控制端连接。
可选的,所述柴油发动机的转轴上连接一风扇,所述风扇的一侧设置有一散热器,所述散热器为水油散热器,所述散热器中的水箱能够为所述柴油发动机散热,所述散热器中的油箱与所述液压油箱连通并为液压油散热;
所述控制端设置于所述箱体的上表面,所述控制端连接一接收器,所述接收器与一遥控器信号相匹配,所述控制端和所述接收器均与一电池连接,所述接收器与所述电池均设置于所述箱体内,所述箱体上设置有警示灯,所述警示灯与所述控制端连接;
所述箱体上对称设置有两个升降机构,所述升降机构包括升降导轨、立柱和升降油缸,所述升降导轨固定于所述箱体的一侧面上,所述立柱为中空结构且内部容纳有所述升降油缸,所述立柱的侧面设置有与所述升降导轨相匹配的滑槽,所述立柱和所述升降油缸均固定于所述底板上,所述升降油缸的伸缩杆所述升降导轨的顶部;
所述泵机组包括相互连通的柱塞泵和齿轮泵,且所述柱塞泵和所述齿轮泵通过一多路阀分别与所述液压油箱连通,所述柱塞泵为履带行走装置中的驱动 轮提供动力;所述齿轮泵为所述折叠门架平台的液压系统提供动力。
可选的,所述履带行走装置包括对称设置的液压马达、驱动轮、承重轮、张紧机构、履带机构和底盘架,所述液压马达与所述柱塞泵连接,所述液压马达与所述驱动轮连接,所述张紧机构设置于所述履带机构的末端,所述底盘架两侧对称连接所述履带机构,所述底盘架与所述底板连接。
可选的,所述液压系统包括提升油缸、转角油缸和平移油缸,所述门架包括滑动连接的外门架和内门架,所述货叉架与所述内门架滑动连接,所述外门架底部与一连接板连接,所述提升油缸的伸缩杆与内门架的顶部连接,所述提升油缸的缸体与所述连接板连接;所述转角油缸对称设置于一滑动小车的底面,所述转角油缸的伸缩杆与所述连接板铰接,所述履带机构的内侧对称设置有一滑轨,所述滑动小车与所述滑轨相匹配;所述平移油缸的缸体固定于所述底盘架上,所述平移油缸的伸缩杆与所述滑动小车连接。
一种装卸机器人的控制系统,包括遥控器便携端和控制端;所述控制端包括安装在装卸机器人上的遥控器机载端、机载电控端、执行端和传感端;
所述遥控器便携端通过有线或者无线方式与所述遥控器机载端通信;所述遥控器机载端与所述机载电控端、所述遥控器机载端与所述执行端、所述机载电控端与所述执行端、所述传感端与所述机载电控端均通过线束方式相连;
其中,
所述遥控器便携端用于根据获取的用户操作指令输出装卸机器人的控制指令信息并编码调制;
所述遥控器机载端用于接收解析所述控制指令信息,并通过相应线束传输至所述机载电控端;
所述传感端用于实时采集装卸机器人的运行状态信息和外部环境视频信息;
所述机载电控端用于根据所述控制指令信息和所述装卸机器人的运行状态信息输出电控比例阀的驱动控制脉冲宽度调制信号,并通过相应线束传输至所述执行端以实现对装卸机器人的控制;
所述机载电控端还用于将所述装卸机器人的运行状态信息和外部环境视频信息上传至所述遥控器便携端以便向用户实时显示所述装卸机器人的运行 状态和外部环境;
所述遥控器机载端还用于接收解析所述控制指令信息,产生电控比例阀的驱动控制脉冲宽度调制信号,并通过相应线束传输至所述执行端以实现对装卸机器人的控制。
可选的,所述遥控器便携端包括第一微控制器、第一数据采集模块、第一433MHz射频模块、第一2.4GHz射频模块、第一RS485接口模块、第一显示模块及外围电路;所述第一数据采集模块通过通用输入/输出端口与所述第一微控制器连接,所述第一433MHz射频模块通过串行外设接口与所述第一微控制器连接,所述第一2.4GHz射频模块通过串行外设接口与所述第一微控制器连接,所述第一显示模块通过通用输入/输出端口与所述第一微控制器连接,所述第一RS485接口模块通过串口与所述第一微控制器连接。
可选的,所述遥控器机载端包括第二微控制器、第二433MHz射频模块、第二2.4GHz射频模块、驱动模块、第二RS485接口模块及外围电路;所述第二433MHz射频模块通过串行外设接口与所述第二微控制器连接,所述第二2.4GHz射频模块通过串行外设接口与所述第二微控制器连接,所述第二RS485接口模块通过串口与所述第二微控制器连接,所述第二微控制器通过通用输入/输出端口与所述驱动模块连接;所述驱动模块还与所述执行端连接。
可选的,机载电控端包括第三微控制器、通讯模块、第二数据采集模块、控制输出模块和第二显示模块;所述通讯模块通过串口与所述第三微控制器连接,所述第二数据采集模块通过通用输入/输出端口与所述第三微控制器连接,所述第二显示模块通过通用输入/输出端口与所述第三微控制器连接,所述控制输出模块通过通用输入/输出端口与所述第三微控制器连接。
可选的,所述传感端包括与所述第二数据采集模块分别连接的水温传感器、机油压力传感器、空气阻塞传感器、燃油液位传感器以及视频传感器;
所述执行端包括与所述控制输出模块分别连接的发动机启动继电器、燃油泵电控阀、行走马达电控阀、货叉控制电控阀、门架控制电控阀和底盘升降电控阀。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
(1)遥控方式提升了装卸机器人环境适应性和安全性
以往重型叉车主要以驾驶员乘车驾驶的方式进行作业,本发明提供的遥控装卸机器人打破这一固有传统设计,装配智能电控控制系统,以遥控操作方式实现所有传统叉车的功能,结合传感器反馈的行车信息,实现自动报警与监控,及时规避风险,无需人工驾驶,作业危险品时,可选择远程遥控方式进行装卸,解决了传统叉车作业危险的问题,大大提升装卸机器人的环境适应性和操控安全性。
(2)智能化电磁阀比例控制技术提升机器人控制的水平
机载电控端具有油门比例电磁阀的PWM控制、自动变速控制策略等程序控制模块,遥控器机载端也含有PWM驱动控制程序。本发明提供的电控系统能根据操作员控制指令、机器人工作状态及外部环境信息,智能融合生成对燃油泵、液压马达、门架、货叉等的电控比例阀的PWM驱动控制信号,从而实现发动机功率输出、机器人前进/后退、门架移动、货叉升降、货叉倾斜等的精准控制。
(3)携带方便且适应户外多变的环境和地形
本发明便携式的装卸机器人,可折叠的设计使其收起后体积小,可装在于货车底部,随货车一起运输可随车运输,解决了物流配送环节中,较大货物的搬运困难问题;安装有履带行走装置,载重能力、场地适应性、安全性和运输便捷性,可解决野外环境装卸货物困难的问题;无需人工驾驶,作业危险品时,可选择远程遥控方式进行装卸,解决了传统叉车作业危险的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明装卸机器人的结构示意图一;
图2为本发明装卸机器人的结构示意图二;
图3为本发明装卸机器人的结构示意图三;
图4为本发明装卸机器人的结构示意图四;
图5为本发明装卸机器人的结构示意图五;
图6为本发明装卸机器人的结构示意图六;
图7为本发明装卸机器人的结构示意图七;
图8为本发明实施例装卸机器人控制系统的整体结构框图;
图9为本发明实施例遥控器总体组成框架图;
图10为本发明实施例机载电控端的总体硬件结构框图;
图11为本发明实施例机载电控端的控制程序总体框架图。
其中:1-控制器,2-履带行走装置,3-底板,4-折叠门架平台,5-支撑梁,6-货叉架,7-柴油发动机,8-泵机组,9-多路阀,10-水油散热器,11-风扇,12-柴油箱,13-液压油箱,14-连接板,15-电池,16-液压马达,17-驱动轮,18-警示灯,19-张紧机构,20-履带机构,21-底盘架,22-转角油缸,23-箱体,24-平移油缸,25-提升油缸,26-滑动小车,27-滑轨,28-接收器,29-摄像头,30-照明灯,31-外门架,32-内门架,33-链条,34-升降导轨,35-立柱,36-升降油缸。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1至图7所示:本实施例提供了一种装卸机器人,包括控制端1、驱动装置、履带行走装置2、底板3和折叠门架平台4,履带行走装置2设置于底板3的两侧,底板3的一端设置有驱动装置,驱动装置能够在底板3上完成升降运动;履带行走装置2的底盘架21上设置有折叠门架平台4,驱动装置为履带行走装置2的驱动轮17和折叠门架平台4的液压系统提供动力。底板 3由低合金结构钢切割焊接而成,驱动装置用螺栓固定底板3上且其的表面盖板由碳钢制成,大部分零部件安装在机器人的底板3上。
折叠门架平台4包括液压系统、门架和货叉架6,液压系统与底盘架21连接,货叉架6与门架的底部铰接,门架及货叉架6均能够折叠放置。液压系统包括提升油缸25、转角油缸22和平移油缸24,门架包括滑动连接的外门架31和内门架32,货叉架6与内门架32滑动连接,外门架31底部与一连接板14连接,提升油缸25的伸缩杆与内门架32的顶部连接,提升油缸25的缸体与连接板14连接;转角油缸22对称设置于一滑动小车26的底面,转角油缸22的伸缩杆与连接板14铰接,履带机构20的内侧对称设置有一滑轨27,滑动小车26与滑轨27相匹配;平移油缸24的缸体固定于底盘架21上,平移油缸24的伸缩杆与滑动小车26连接。内门架32顶部对称设置有定滑轮,定滑轮上缠绕有链条33,链条33的一端固定于货叉架6的前挡板上,链条33的另一端固定于一横梁上,横梁连接于外门架上,且横梁上设置有摄像头29和照明灯30,摄像头29和照明灯30与控制端1连接。通过提升油缸25和链条33带动货叉架6向上移动进行装卸货物。其中,提升油缸25可以替换为滚珠丝杠来实现对货叉架6的举升。
本实施例的货叉架6可手动90°翻转折叠和对货物进行升降装卸;门架可0~90°翻转折叠,为双折叠结构,解决了传统叉车货叉架6转角不足的限制,当叉车行驶路面与物体摆放平面成一定角度后仍然可以叉运。叉运物品提升一定高度后,可以通过平移油缸24在底盘架21两侧的滑轨27内向后移动,使整机重心后移,保持机器人整体的配重平衡。由于货叉架6和门架均可90°翻转及折叠,极大程度上降低了机器人的自身高度,占用空间小,便于对其自身的随车运输。本实施例的装卸机器人整体体积小,其内部各零部件安装紧凑,布局合理,折叠后的外形尺寸小于750mm*1350mm*2500mm。
控制端1连接驱动装置,控制端1能够控制履带行走装置2的移动和折叠门架平台4的动作,控制端1设置于驱动装置箱体23的上表面,控制端1连接一接收器28,接收器28与一遥控器信号相匹配,控制端1和接收器28均与一电池连接,接收器28与电池均设置于箱体23内,箱体23上设置有警示灯18,警示灯18与控制端1连接。通过电比例控制多路阀、液压逻辑控制和 过载系统保护的集合应用,使用遥控控制和操作装卸机器人运动,无需人工驾驶,尤其作业危险品时,可选择远程遥控方式进行装卸货物,避免对人工的伤害。
驱动装置包括箱体23和设置于箱体23内的柴油发动机7、泵机组8、柴油箱12和液压油箱13,柴油发动机7与柴油箱12连接,柴油发动机7与泵机组8连接,泵机组8与液压油箱13连通,柴油发动机7、泵机组8与控制端1连接。具体的,履带行走装置2包括对称设置的液压马达16、驱动轮17、承重轮、张紧机构19、履带机构20和底盘架21,液压马达16与柱塞泵连接,液压马达16与驱动轮17连接,张紧机构19设置于履带机构20的末端,底盘架21两侧对称连接履带机构20,底盘架21与底板3连接,底盘架21包括若干个支撑梁5和支撑板。驱动轮17与张紧机构19之间绕设有履带,履带机构20上设置有若干个承重轮,承重轮位于驱动轮17与张紧机构19之间。承重轮和履带的设置均遵循本领域常规设置,本实施例中的承重轮每侧各设置有四个。本实施例中的驱动装置可以替换为锂电池组或380V电力由电机来驱动。
其中,柴油发动机7的转轴上连接一风扇11,风扇11的一侧设置有一散热器,散热器为水油散热器10,散热器中的水箱能够为柴油发动机7散热,散热器中的油箱与液压油箱13连通。柴油发动机7安装在底板3上的箱体23内,箱体23外壳上设置有隔热层和散热孔,防止操作人员因触碰到高温的柴油发动机7意外烫伤。柴油发动机7右侧紧贴金属网处装有风扇11,柴油发动机7的冷却水箱及液压油冷却油箱并排安装,使风扇11可同时为发动机的水箱和液压油散热。
箱体23上对称设置有两个升降机构,升降机构包括升降导轨34、立柱35和升降油缸36,升降导轨34固定于箱体23的一侧面上,立柱35为中空结构且内部容纳有升降油缸36,立柱35的侧面设置有与升降导轨34相匹配的滑槽,立柱35和升降油缸36均固定于底板上,升降油缸36的伸缩杆升降导轨34的顶部。
泵机组8包括相互连通的柱塞泵和齿轮泵,且柱塞泵和齿轮泵通过一多路阀9分别与液压油箱13连通,柱塞泵为履带行走装置2中的驱动轮17提供动 力;齿轮泵为折叠门架平台4的液压系统提供动力,采用柱塞泵和齿轮泵串联的方式,实现对可折叠的门架工作角度的精准控制。
本实施例的装卸机器人内部各零部件安装紧凑,布局合理,整体体积小,折叠后的外形尺寸小于750mm*1350mm*2500mm,可收藏于货车底部,随车运输方便随时随地使用。应用液压系统,载重较大,其最大装卸载重可达1500kg,最大举升高度为2600mm,履带行走装置2的最大行走速度为9km/h,可跨越300mm深的沟壑,爬倾角为30°斜坡,可在-25℃至60℃的环境温度范围内正常运作,且可连续工作2小时以上,野外作业能力突出,对地形适应能力强,以遥控方式操控机器人,无需人员乘坐驾驶,减少劳动强度。本实施例的装卸机器人在同等尺寸的搬运机器人中,载重量较大,在同等载重量下,体积最小,解决了传统叉车的货叉架6转角不足,门架无法后移,配重大,叉车自身运输占用空间过大、运输成本较高的缺陷。
图8为本发明实施例装卸机器人控制系统的整体结构框图,如图8所示,本实施例提供的装卸机器人控制系统包括遥控器便携端以及安装在装卸机器人上的遥控器机载端、机载电控端、执行端和传感端。
遥控器便携端通过有线或者无线方式与遥控器机载端连接;遥控器机载端与机载电控端、遥控器机载端与执行端、机载电控端与执行端、传感端与机载电控端均通过线束方式相连。
传感端包括与机载电控端的第二数据采集模块分别连接的水温传感器、机油压力传感器、空气阻塞传感器、燃油液位传感器以及视频传感器。
执行端包括与机载电控端的控制输出模块分别连接的发动机启动继电器、燃油泵电控阀、行走马达电控阀、货叉控制电控阀、门架控制电控阀和底盘升降电控阀。
其中,
遥控器便携端用于根据获取的用户操作指令输出装卸机器人的控制指令信息并编码调制。
遥控器机载端用于接收解析控制指令信息,并通过相应线束传输至机载电控端。
传感端用于实时采集装卸机器人的运行状态信息。
机载电控端用于根据控制指令信息和装卸机器人的运行状态信息输出执行控制信号,并通过相应线束传输至执行端以实现对装卸机器人的控制。
机载电控端还用于将所述装卸机器人的运行状态信息和外部环境视频信息上传至所述遥控器便携端以便向用户实时显示所述装卸机器人的运行状态和外部环境。
遥控器机载端还用于接收解析控制指令信息,产生电控比例阀的驱动控制脉冲宽度调制信号,并通过相应线束传输至执行端以实现对装卸机器人的控制。
遥控器
遥控器由便携端与机载端组成,两者之间主要通过射频模块进行无线通信,线缆通信作为备用方式。
遥控器便携端负责采集按键、摇杆等操作指令及状态信息,产生相应的控制指令,并通过无线射频模块/线缆发送至遥控器机载端。遥控器机载端负责接收并解析控制指令信息,并通过相应线束传输至机载电控端以实现对机器人的控制。
遥控器便携端的硬件电路如图9所示,包括第一微控制器(MCU)、第一电源模块、第一数据采集模块、第一433MHz射频模块、第一2.4GHz射频模块、第一RS485接口模块、第一显示模块及其它外围电路等。第一数据采集模块通过通用输入/输出端口(GPIO)与第一微控制器(MCU)连接,第一433MHz射频模块通过串行外设接口(SPI)与第一微控制器(MCU)连接,第一2.4GHz射频模块通过串行外设接口(SPI)与第一微控制器(MCU)连接,第一RS485接口模块通过串口与第一微控制器(MCU)连接,第一显示模块通过通用输入/输出端口(GPIO)与第一微控制器(MCU)连接,第一电源模块将电源调压至各种电压等级并布线到其他相应用电模块的电源输入端口。
遥控器机载端硬件电路如图9所示,包括第二微控制器(MCU)、第二电源模块、第二433MHz射频模块、第二2.4GHz射频模块、驱动模块、第二 RS485接口模块及其它外围电路等。第二433MHz射频模块通过串行外设接口(SPI)与第二微控制器(MCU)连接,第二2.4GHz射频模块通过串行外设接口(SPI)与第二微控制器(MCU)连接,第二RS485接口模块通过串口与第二微控制器(MCU)连接,第二电源模块将外部电源(机载12V蓄电池)调压至各种电压等级并布线到其他相应用电模块的电源输入端口,第二微控制器(MCU)通过通用输入/输出端口(GPIO)与驱动模块连接。
遥控器控制软件主要完成以下工作:
(1)系统初始化。包括硬件配置与软件配置。
(2)数据采集程序。通过I/O电路采集按键、摇杆等开关量信号与模拟量信号,实现操作指令及装卸机器人状态信息的采集。
(3)无线通信程序。通过射频通信传输协议,控制装卸机器人动作及获取装卸机器人状态信息、系统运行状态、外部环境状态信息;
(4)串口通信程序。实现遥控器便携端与遥控器机载端线缆方式控制。
(5)驱动控制程序。遥控器机载端根据控制指令产生液压马达、门架、货叉、底盘部分的电控比例阀的驱动控制脉冲宽度调制(PWM)信号输出。
遥控器无线通信过程:遥控器便携端的第一数据采集模块采集到用户操作指令后,通过通用输入/输出端口(GPIO)将用户操作指令信号传输给第一微控制器(MCU),第一微控制器(MCU)对用户操作指令信号处理后通过串行外设接口(SPI)将控制指令信号传输给第一433MHz射频模块,第一433MHz射频模块对控制指令信号信号编码、调制后通过无线信道传输到遥控器机载端。遥控器机载端的第二433MHz射频模块接收到控制指令信号经解调、解码后通过串行外设接口(SPI)传输给第二微控制器(MCU),第二微控制器(MCU)再作后续处理。
遥控器有线通信过程:在选用线控方式下,遥控器便携端的第一数据采集模块采集到用户操作指令后,通过通用输入/输出端口(GPIO)将用户操作指令信号传输给第一微控制器(MCU),第一微控制器(MCU)对用户操作指令信号处理后通过串口将控制指令信号传输给第一RS485接口模块,第一 RS485接口模块对控制指令信号编码后通过线缆传输到遥控器机载端。遥控器机载端的第二RS485接口模块接收到来自遥控器便携端的控制指令信号,并经解码后通过串口传输给第二微控制器(MCU),第二微控制器(MCU)再作后续处理。
机载电控端
机载电控端的硬件组成如图10所示,主要包括第三微控制器、第三电源模块、通讯模块、第二数据采集模块、控制输出模块、第二显示模块等。第二显示模块通过通用输入/输出端口(GPIO)与第三微控制器连接,通讯模块通过串口与第三微控制器连接,第二数据采集模块通过通用输入/输出端口(GPIO)与第三微控制器连接,控制输出模块通过通用输入/输出端口(GPIO)与第三微控制器连接,第三电源模块将电源调压至各种电压等级并布线到其他相应用电模块的电源输入端口,其他外部设备或信号(如12V电源、传感器、按键开关、遥控/线控指令、点火开关、发电机、启动电机等)则通过机载电控端电路板上的接线端子连接。
第三微控制器是机载电控端的核心部分,第三微控制器采用ARM核芯片,负责信号的采集和系统的主要控制任务。第三电源模块负责将12V电源转化为相应电压级别给各模块电路使用。通讯模块实现机载电控端与遥控器机载端的有线通讯。第二数据采集模块实现对内燃机水温、机油压力、燃油液位、环境视频等传感器数据的采集以及接收来至遥控器机载端输入的控制指令信息。控制输出模块根据控制指令信息及装卸机器人的工作状态信息产生相应的执行控制信号,包括发动机启动控制信号、发电机控制信号、启动电机控制信号、油门比例电磁阀控制信号、照明大灯控制信号、警示灯控制信号、扬声器控制信号等。第二显示模块包括彩色液晶显示屏、故障指示灯,具有显示油量、机油、水温、接收到无线信号、照明控制输出、电池告警参数等指示功能。
机载电控端的整个控制程序采用主程序循环扫描,与定时中断服务程序并行的程序框架有效地实现对装卸机器人的控制,满足系统控制和监测的要求。机载电控端的控制程序采用模块化设计,主要由数据采集程序模块、线控通讯 程序模块、实时控制程序模块、系统管理模块、界面显示模块以及报警监控模块组成。控制程序总体框架如图11所示。其中实时控制程序模块涵盖控制功能较多,主要包含了发动机启动程序、发电机启动程序以及照明大灯、警示灯、扬声器等的开关量输出控制程序,油门比例电磁阀的PWM控制、自动变速控制策略等。
在对操作人员进行简单培训后便能安全操控遥控装卸机器人,使装卸机器人在超出操作人员视线范围的情况下,依然能实现装卸、搬运等所有功能。操作人员通过遥控器便携端发出的指令,装卸机器人能在400m有效范围内接收并精准实现以下动作:1)整车的前后移动,加速减速;2)内外门架沿导轨作上下和前后移动;3)内外门架0°~90°翻转折叠;4)底盘部分结构升降。机载电控端能够通过遥控通信模块能及时向操作人员反馈机器人动力系统、工作装置、外部环境等行车状态信息,从而起到辅助操控决策的作用,确保机器人作业安全。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种装卸机器人,其特征在于,包括控制端、驱动装置、履带行走装置、底板和折叠门架平台,所述履带行走装置设置于所述底板的两侧,所述底板的一端设置有所述驱动装置,所述履带行走装置的底盘架上设置有所述折叠门架平台,所述驱动装置为所述履带行走装置的驱动轮和所述折叠门架平台的液压系统提供动力,所述驱动装置能够在所述底板上完成升降运动;所述折叠门架平台包括液压系统、门架和货叉架,所述液压系统与所述底盘架连接,所述货叉架与所述内门架滑动连接,所述门架及所述货叉架均能够折叠放置;所述控制端连接所述驱动装置,所述控制端能够控制履带行走装置的移动和折叠门架平台的动作。
  2. 根据权利要求1所述的装卸机器人,其特征在于,所述驱动装置包括箱体和设置于所述箱体内的柴油发动机、泵机组、柴油箱、液压油箱,所述柴油发动机与所述柴油箱连接,所述柴油发动机与所述泵机组连接,所述泵机组与所述液压油箱连通,所述柴油发动机、泵机组与所述控制端连接。
  3. 根据权利要求2所述的装卸机器人,其特征在于,所述柴油发动机的转轴上连接一风扇,所述风扇的一侧设置有一散热器,所述散热器为水油散热器,所述散热器中的水箱能够为所述柴油发动机散热,所述散热器中的油箱与所述液压油箱连通并为液压油散热;
    所述控制端设置于所述箱体的上表面,所述控制端连接一接收器,所述接收器与一遥控器信号相匹配,所述控制端和所述接收器均与一电池连接,所述接收器与所述电池均设置于所述箱体内,所述箱体上设置有警示灯,所述警示灯与所述控制端连接;
    所述箱体上对称设置有两个升降机构,所述升降机构包括升降导轨、立柱和升降油缸,所述升降导轨固定于所述箱体的一侧面上,所述立柱为中空结构且内部容纳有所述升降油缸,所述立柱的侧面设置有与所述升降导轨相匹配的滑槽,所述立柱和所述升降油缸均固定于所述底板上,所述升降油缸的伸缩杆所述升降导轨的顶部;
    所述泵机组包括相互连通的柱塞泵和齿轮泵,且所述柱塞泵和所述齿轮泵通过一多路阀分别与所述液压油箱连通,所述柱塞泵为履带行走装置中的驱动轮提供动力;所述齿轮泵为所述折叠门架平台的液压系统提供动力。
  4. 根据权利要求2所述的装卸机器人,其特征在于,所述履带行走装置包括对称设置的液压马达、驱动轮、承重轮、张紧机构、履带机构和底盘架,所述液压马达与所述柱塞泵连接,所述液压马达与所述驱动轮连接,所述张紧机构设置于所述履带机构的末端,所述底盘架两侧对称连接所述履带机构,所述底盘架与所述底板连接。
  5. 根据权利要求2所述的装卸机器人,其特征在于,所述液压系统包括提升油缸、转角油缸和平移油缸,所述门架包括滑动连接的外门架和内门架,所述货叉架与所述内门架滑动连接,所述外门架底部与一连接板连接,所述提升油缸的伸缩杆与内门架的顶部连接,所述提升油缸的缸体与所述连接板连接;所述转角油缸对称设置于一滑动小车的底面,所述转角油缸的伸缩杆与所述连接板铰接,所述履带机构的内侧对称设置有一滑轨,所述滑动小车与所述滑轨相匹配;所述平移油缸的缸体固定于所述底盘架上,所述平移油缸的伸缩杆与所述滑动小车连接。
  6. 一种装卸机器人的控制系统,其特征在于,所述控制系统包括遥控器便携端和控制端;所述控制端包括安装在装卸机器人上的遥控器机载端、机载电控端、执行端和传感端;
    所述遥控器便携端通过有线或者无线方式与所述遥控器机载端通信;所述遥控器机载端与所述机载电控端、所述遥控器机载端与所述执行端、所述机载电控端与所述执行端、所述传感端与所述机载电控端均通过线束方式相连;
    其中,
    所述遥控器便携端用于根据获取的用户操作指令输出装卸机器人的控制指令信息并编码调制;
    所述遥控器机载端用于接收解析所述控制指令信息,并通过相应线束传输至所述机载电控端;
    所述传感端用于实时采集装卸机器人的运行状态信息和外部环境视频信息;
    所述机载电控端用于根据所述控制指令信息和所述装卸机器人的运行状态信息输出电控比例阀的驱动控制脉冲宽度调制信号,并通过相应线束传输至所述执行端以实现对装卸机器人的控制;
    所述机载电控端还用于将所述装卸机器人的运行状态信息和外部环境视频信息上传至所述遥控器便携端以便向用户实时显示所述装卸机器人的运行状态和外部环境;
    所述遥控器机载端还用于接收解析所述控制指令信息,产生电控比例阀的驱动控制脉冲宽度调制信号,并通过相应线束传输至所述执行端以实现对装卸机器人的控制。
  7. 根据权利要求6所述的一种装卸机器人的控制系统,其特征在于,所述遥控器便携端包括第一微控制器、第一数据采集模块、第一433MHz射频模块、第一2.4GHz射频模块、第一RS485接口模块、第一显示模块及外围电路;所述第一数据采集模块通过通用输入/输出端口与所述第一微控制器连接,所述第一433MHz射频模块通过串行外设接口与所述第一微控制器连接,所述第一2.4GHz射频模块通过串行外设接口与所述第一微控制器连接,所述第一显示模块通过通用输入/输出端口与所述第一微控制器连接,所述第一RS485接口模块通过串口与所述第一微控制器连接。
  8. 根据权利要求6所述的一种装卸机器人的控制系统,其特征在于,所述遥控器机载端包括第二微控制器、第二433MHz射频模块、第二2.4GHz射频模块、驱动模块、第二RS485接口模块及外围电路;所述第二433MHz射频模块通过串行外设接口与所述第二微控制器连接,所述第二2.4GHz射频模块通过串行外设接口与所述第二微控制器连接,所述第二RS485接口模块通过串口与所述第二微控制器连接,所述第二微控制器通过通用输入/输出端口与所述驱动模块连接;所述驱动模块还与所述执行端连接。
  9. 根据权利要求6所述的一种装卸机器人的控制系统,其特征在于,机载电控端包括第三微控制器、通讯模块、第二数据采集模块、控制输出模块和第二显示模块;所述通讯模块通过串口与所述第三微控制器连接,所述第二数据采集模块通过通用输入/输出端口与所述第三微控制器连接,所述第二显示模块通过通用输入/输出端口与所述第三微控制器连接,所述控制输出模块通过通用输入/输出端口与所述第三微控制器连接。
  10. 根据权利要求6所述的一种装卸机器人的控制系统,其特征在于,所述传感端包括与所述第二数据采集模块分别连接的水温传感器、机油压力传感 器、空气阻塞传感器、燃油液位传感器以及视频传感器;
    所述执行端包括与所述控制输出模块分别连接的发动机启动继电器、燃油泵电控阀、行走马达电控阀、货叉控制电控阀、门架控制电控阀和底盘升降电控阀。
PCT/CN2020/099165 2019-08-08 2020-06-30 一种装卸机器人及其控制系统 WO2021022946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910729487.X 2019-08-08
CN201910729487.XA CN110356757B (zh) 2019-08-08 2019-08-08 一种装卸机器人及其控制系统

Publications (1)

Publication Number Publication Date
WO2021022946A1 true WO2021022946A1 (zh) 2021-02-11

Family

ID=68223330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099165 WO2021022946A1 (zh) 2019-08-08 2020-06-30 一种装卸机器人及其控制系统

Country Status (2)

Country Link
CN (1) CN110356757B (zh)
WO (1) WO2021022946A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184755A (zh) * 2021-06-11 2021-07-30 陕西秦之基智能科技有限公司 一种气动履带式叉车及方法
CN113587993A (zh) * 2021-07-30 2021-11-02 华中农业大学 一种鸡舍环境采集机器人
CN115047872A (zh) * 2022-05-30 2022-09-13 湘潭新力机械有限公司 一种履带式抢险救援车辆的遥控驾驶操纵系统
CN115056177A (zh) * 2022-06-14 2022-09-16 山东中烟工业有限责任公司 一种狭小空间多角度调节的拆装辅助车和方法
CN115947268A (zh) * 2023-02-21 2023-04-11 湖南三湘银行股份有限公司 一种用于数据中心机房设备上架的智能机器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110329958A (zh) * 2019-08-08 2019-10-15 桂林市富华金属制品有限公司 一种装卸机器人
CN110356757B (zh) * 2019-08-08 2020-06-02 桂林市富华金属制品有限公司 一种装卸机器人及其控制系统
CN111099521A (zh) * 2020-01-20 2020-05-05 枣庄职业学院 一种建筑工地施工用抬升转移机械
CN114802498A (zh) * 2022-05-11 2022-07-29 江苏天煤机电科技有限公司 一种以防爆电池为动力的矿用门式支架搬运车
CN115417033A (zh) * 2022-09-21 2022-12-02 江苏悦达专用车有限公司 一种纯电动自装卸式垃圾车机电液设置结构
CN115947269B (zh) * 2023-03-13 2023-06-02 山东明宇重工机械有限公司 一种用于狭窄空间内货物搬运的叉车
CN116902876B (zh) * 2023-09-13 2023-12-08 中感(安徽)矿山技术有限公司 一种多功能垂直举升安装装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1634758A (zh) * 2004-10-03 2005-07-06 缪慰时 折叠机架随车式搬运机器人
CN1792571A (zh) * 2005-12-21 2006-06-28 缪慰时 遥控操作履带式反恐机器人
CN104221517A (zh) * 2013-06-18 2014-12-24 西北农林科技大学 一种液压驱动的多功能果园作业机
CN104991538A (zh) * 2015-06-25 2015-10-21 西北农林科技大学 一种多功能履带作业车的电控系统
CN105858546A (zh) * 2016-05-04 2016-08-17 桂林市富华金属制品有限公司 一种前叉、门架双折叠前后可移动装置
CN206970145U (zh) * 2017-07-18 2018-02-06 湖北先行专用汽车有限公司 一种多功能侧向叉举式作业车操作系统
KR20180078943A (ko) * 2016-12-30 2018-07-10 장진만 밸런스 조절이 가능한 지게차
CN109719731A (zh) * 2019-01-29 2019-05-07 广州供电局有限公司 隧道机器人复合通信系统
CN110329958A (zh) * 2019-08-08 2019-10-15 桂林市富华金属制品有限公司 一种装卸机器人
CN110356757A (zh) * 2019-08-08 2019-10-22 桂林市富华金属制品有限公司 一种装卸机器人及其控制系统
CN110434875A (zh) * 2019-08-08 2019-11-12 桂林市富华金属制品有限公司 一种装卸机器人的控制系统
CN210505420U (zh) * 2019-08-08 2020-05-12 桂林市富华金属制品有限公司 一种装卸机器人

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1634758A (zh) * 2004-10-03 2005-07-06 缪慰时 折叠机架随车式搬运机器人
CN1792571A (zh) * 2005-12-21 2006-06-28 缪慰时 遥控操作履带式反恐机器人
CN104221517A (zh) * 2013-06-18 2014-12-24 西北农林科技大学 一种液压驱动的多功能果园作业机
CN104991538A (zh) * 2015-06-25 2015-10-21 西北农林科技大学 一种多功能履带作业车的电控系统
CN105858546A (zh) * 2016-05-04 2016-08-17 桂林市富华金属制品有限公司 一种前叉、门架双折叠前后可移动装置
KR20180078943A (ko) * 2016-12-30 2018-07-10 장진만 밸런스 조절이 가능한 지게차
CN206970145U (zh) * 2017-07-18 2018-02-06 湖北先行专用汽车有限公司 一种多功能侧向叉举式作业车操作系统
CN109719731A (zh) * 2019-01-29 2019-05-07 广州供电局有限公司 隧道机器人复合通信系统
CN110329958A (zh) * 2019-08-08 2019-10-15 桂林市富华金属制品有限公司 一种装卸机器人
CN110356757A (zh) * 2019-08-08 2019-10-22 桂林市富华金属制品有限公司 一种装卸机器人及其控制系统
CN110434875A (zh) * 2019-08-08 2019-11-12 桂林市富华金属制品有限公司 一种装卸机器人的控制系统
CN210505420U (zh) * 2019-08-08 2020-05-12 桂林市富华金属制品有限公司 一种装卸机器人

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184755A (zh) * 2021-06-11 2021-07-30 陕西秦之基智能科技有限公司 一种气动履带式叉车及方法
CN113184755B (zh) * 2021-06-11 2024-05-07 陕西秦之基智能科技有限公司 一种气动履带式叉车及方法
CN113587993A (zh) * 2021-07-30 2021-11-02 华中农业大学 一种鸡舍环境采集机器人
CN115047872A (zh) * 2022-05-30 2022-09-13 湘潭新力机械有限公司 一种履带式抢险救援车辆的遥控驾驶操纵系统
CN115056177A (zh) * 2022-06-14 2022-09-16 山东中烟工业有限责任公司 一种狭小空间多角度调节的拆装辅助车和方法
CN115056177B (zh) * 2022-06-14 2024-03-15 山东中烟工业有限责任公司 一种狭小空间多角度调节的拆装辅助车和方法
CN115947268A (zh) * 2023-02-21 2023-04-11 湖南三湘银行股份有限公司 一种用于数据中心机房设备上架的智能机器
CN115947268B (zh) * 2023-02-21 2023-08-15 湖南三湘银行股份有限公司 一种用于数据中心机房设备上架的智能机器

Also Published As

Publication number Publication date
CN110356757B (zh) 2020-06-02
CN110356757A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2021022946A1 (zh) 一种装卸机器人及其控制系统
CN110329958A (zh) 一种装卸机器人
CN206086958U (zh) 一种基于麦克纳姆轮技术的全向运输平台
CN102040176A (zh) 电动全方位移动升降机
CN105014651B (zh) 变电站带电水冲洗机器人及方法
CN113443585A (zh) 码垛机器人
CN105502231A (zh) 一种液压万向四驱叉车
CN204529227U (zh) 一种多功能搬运车
CN113371647A (zh) 一种遥控式小型电驱折叠叉车
CN106430020A (zh) 过载保护装置、系统及高空作业平台
CN111201890A (zh) 一种具有自动调平功能的采摘装置
CN104998847B (zh) 一种用于变电站带电水冲洗机器人的高压喷水系统
CN205045775U (zh) 一种液压万向四驱叉车
CN210505420U (zh) 一种装卸机器人
CN207106924U (zh) 一种警用无人机
CN109892033B (zh) 一种四向五轮侧面式电动装卸搬运车
CN215322986U (zh) 一种智能万向升降平板车
CN203451173U (zh) 理货机
CN215756238U (zh) 一种遥控式小型电驱折叠叉车
CN215756204U (zh) 自动导引叉车
CN115676631A (zh) 驾驶室可分离式起重机
CN204605982U (zh) 一种农用机械
CN213446054U (zh) 一种新型多功能双向叉车
CN211364760U (zh) 一种多功能果园四轮运输车
CN103303806A (zh) 一种紧凑空间履带式电动起吊装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850923

Country of ref document: EP

Kind code of ref document: A1