WO2021020817A1 - 배터리 상태 예측 장치 및 배터리 상태 예측 방법 - Google Patents

배터리 상태 예측 장치 및 배터리 상태 예측 방법 Download PDF

Info

Publication number
WO2021020817A1
WO2021020817A1 PCT/KR2020/009784 KR2020009784W WO2021020817A1 WO 2021020817 A1 WO2021020817 A1 WO 2021020817A1 KR 2020009784 W KR2020009784 W KR 2020009784W WO 2021020817 A1 WO2021020817 A1 WO 2021020817A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vehicle
battery cell
state
predicting
Prior art date
Application number
PCT/KR2020/009784
Other languages
English (en)
French (fr)
Inventor
윤호병
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080048763.7A priority Critical patent/CN114072310B/zh
Priority to JP2022500509A priority patent/JP7389217B2/ja
Priority to US17/628,731 priority patent/US20220260641A1/en
Priority to CN202410011241.XA priority patent/CN117922375A/zh
Priority to EP20847019.5A priority patent/EP3981642A4/en
Publication of WO2021020817A1 publication Critical patent/WO2021020817A1/ko
Priority to JP2023195008A priority patent/JP2024026100A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/667Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an apparatus and method for predicting a battery state by using not only battery information but also external environment information.
  • the secondary battery is a battery capable of charging and discharging, and includes all of a conventional Ni/Cd battery, a Ni/MH battery, and a recent lithium ion battery.
  • lithium-ion batteries have the advantage of having much higher energy density than conventional Ni/Cd batteries and Ni/MH batteries, and lithium-ion batteries can be manufactured in a small size and light weight, so they are used as power sources for mobile devices. .
  • These lithium-ion batteries are attracting attention as a next-generation energy storage medium as their range of use has expanded as a power source for electric vehicles.
  • the secondary battery is generally used as a battery pack including a battery module in which a plurality of battery cells are connected in series and/or in parallel.
  • the state and operation of the battery pack are managed and controlled by a battery management system (hereinafter also referred to as'BMS').
  • the electric vehicle BMS measures the voltage, current, and temperature of the battery cells to estimate the current state of the battery (charging state, degree of degradation, output).
  • BMS calculates the driving distance and output power by estimating the battery cell status based on the current measured value, but it cannot predict the battery status that changes according to the driving environment that will occur in the future. It is difficult to calculate accurately.
  • An object of the present invention is to predict a more accurate battery state by using experimental data on battery information tested in the same environment as the external environment of an electric vehicle.
  • the battery state prediction apparatus receives temperature, current, and voltage data of a plurality of battery cells measured by a battery management system included in a battery pack, and the vehicle from a vehicle in which the corresponding battery cell is used.
  • a first communication unit for receiving the first environment information while driving;
  • a second communication unit for receiving experimental data on the state of the battery cell or pack in various environments received from the outside;
  • a battery state predictor configured to predict a battery state by using temperature, current, voltage, and the first environmental information and the state experiment data of each of the plurality of received battery cells, wherein the battery state includes a battery cell charging state and It characterized in that it includes a battery cell deterioration state.
  • an apparatus for predicting a state of a battery may include a driving distance predicting unit that predicts a driving distance of the vehicle based on a state of charge of the battery cell; A fast charging predictor for predicting a fast charging current and time of a battery pack including the battery cells based on the battery cell deterioration state; And a battery cell ignition prediction unit for predicting a possibility of battery cell ignition using the cell ignition data included in the experimental data, wherein the first communication unit includes the driving distance prediction unit, the fast charging prediction unit, or the battery cell And transmitting at least one of the result values predicted by the utterance prediction unit to the battery management system.
  • the driving distance prediction unit, the rapid charge prediction unit, and the battery cell firing prediction unit each perform prediction as many times as a preset number at a first time interval.
  • the one cycle may be set within 0.7 seconds, and the preset number of times is determined based on the one cycle.
  • a result value predicted by the available driving distance prediction unit, the fast charging prediction unit, or the battery cell firing prediction unit transmitted by the first communication unit is
  • the first communication unit 2 Receive environmental information, and if the first environmental information and the second environmental information are the same value, it is diagnosed as a malfunction of the vehicle's algorithm and causes the first communication unit to transmit an algorithm abnormality signal of the vehicle, and the second environmental information If the first environmental measurement data and the second environmental measurement data are not the same, the battery cell state prediction unit further comprises a control unit to predict the state of the battery cell again using the second environmental measurement data.
  • the preset error range is 5%.
  • a result value predicted by the available driving distance prediction unit, the fast charging prediction unit, or the battery cell firing prediction unit transmitted by the first communication unit is If the driable distance calculated by the algorithm, the fast charging current and time, or the battery cell ignition probability prediction result value does not exceed a preset error range, the driable distance estimating unit, the fast charging estimating unit, or the battery cell ignition prediction It is characterized in that the result value predicted by the unit is displayed on the display of the vehicle.
  • the battery state prediction method is performed by a battery state prediction apparatus that predicts the state of the battery cell using temperature, current, and voltage of the battery cell, and environment information in which the vehicle is driven.
  • the state of the battery cell includes a state of charge of the battery cell and a state of deterioration of the battery cell
  • the driving distance of the vehicle is determined by using the state of charge of the battery cell. It is predicted, and the fast charging current and time of the vehicle are predicted using the deterioration state of the battery cell.
  • the experimental data further includes cell ignition data
  • the second step includes the predicted state of the battery cell and the cell ignition data. It characterized in that it comprises the step of predicting the probability of ignition.
  • the second step is performed as a cycle in which the second step is performed a predetermined number of times at a first time interval, and the vehicle is operated during the second step. Further comprising the step of determining whether the amount of change in data representing the driving environment is less than or equal to a preset first value, and if the amount of change in data representing the environment is less than the first value, the predicted driving distance, rapid charging And transmitting current and time and ignition possibility information of the battery cell to the vehicle, and performing the first step again when a change amount of data representing the environment exceeds the first value.
  • the one cycle may be set within 0.7 seconds, and the preset number of times is determined based on the one cycle.
  • the predicted driving distance of the vehicle, the rapid charging current and time, the cell ignition possibility information and the driving distance calculated by the algorithm of the vehicle, rapid charging If the difference between the current and time or the predicted result of the battery cell ignition probability is out of a preset error range, the first step by receiving information on the temperature, current and voltage of the new battery cell and the environment in which the vehicle is driven from the vehicle. It is characterized in that performing again.
  • the preset error range is 5%.
  • the present invention can achieve the effect of predicting a more accurate battery state by using experimental data on battery information tested in the same environment as the external environment of the electric vehicle.
  • FIG. 1 illustrates a battery condition prediction system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an apparatus for predicting a battery state according to an embodiment or another embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for predicting a battery state according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for predicting a battery state according to another embodiment of the present invention.
  • first, second, first, or second used in various embodiments may modify various elements regardless of order and/or importance, and the corresponding elements Not limited.
  • a first component may be referred to as a second component, and similarly, a second component may be renamed to a first component.
  • FIG. 1 shows a battery condition prediction system 1 according to an embodiment of the present invention.
  • the battery condition prediction system 1 may include a vehicle 100, a server serving as a battery condition prediction device 108, and an experiment center 110.
  • Vehicle 100 includes a battery management system (BMS) 104 that monitors and controls battery cells 102.
  • the battery management system 104 measures the temperature, current and voltage of the battery cells 102.
  • the battery management system 104 transmits battery cell information including temperature, current, and voltage values of the battery cells 102 measured in real time to the host controller 106.
  • the vehicle 100 includes a sensor 105 capable of measuring various external environments.
  • External environments may include temperature and humidity, and may include road conditions.
  • information on a region driving by using the GPS of the vehicle 100 may be included as an environmental factor.
  • the external environment may include all environmental factors on which the vehicle is running, and although not all are shown, a configuration capable of measuring all such environmental factors may also be included in the vehicle 100.
  • Measurement values (environmental information) for environmental factors measured in real time are also transmitted to the host controller 106.
  • the host controller 106 transmits the battery cell information and environment information to the server 108.
  • the experiment center 110 conducts experiments under various environmental conditions (temperature, region, weather, driving environment, time) and transmits experiment data on the state of the battery cells to the server 108 under various environmental conditions.
  • Various environmental conditions may include, for example, a hot and humid area + summer, a hot and humid area + winter, a desert area + summer, a desert area + winter, a highway environment, an urban environment-congestion, an urban environment-smooth, and the like.
  • the experiment center 110 performs each experiment on the state change of the battery cell in this environment.
  • the state of the battery cell under various environmental conditions of the experimental data includes cell ignition data, which is data related to environment and state data in which the battery cell may ignite.
  • the server 108 receives battery cell information, environment information, and experimental data.
  • the server 108 may predict the state of the battery cell of the vehicle by using information on the received battery cell information, environment information, and experimental data.
  • the server 108 is a component that performs the function of a battery state prediction device, and hereinafter, a "server” and a “battery state prediction device” are mixed and described.
  • the state of the battery cell predicted by using experimental data corresponding to environmental information can be predicted more accurately than the state of the battery cell predicted by simply using only the temperature, current, and voltage of the battery. This is because the battery is also affected by the environment in which the vehicle is driven.
  • the server 108 may receive environmental information from the vehicle, but does not separately receive environmental information, and the environment in which the vehicle is running using real-time change amount and experimental data of battery cell information received from the vehicle. It is also possible to predict the state of the battery cell by inferring information.
  • the server 108 predicts the driving distance of the vehicle by using the state of charge of the battery cell predicted from the state of the battery cell. In addition, the server 108 predicts the fast charging current and time of the vehicle by using the deterioration state of the battery cell predicted from the state of the battery cell.
  • the server 108 predicts a battery cell ignition possibility using the predicted battery cell state and cell ignition data.
  • the server 108 stores the predicted driving distance of the vehicle, the rapid charging current and time of the vehicle, and result values of the battery cell ignition probability.
  • the server 108 predicts the state of the battery by using the environmental information of the vehicle received in real time, the information of the battery cell, and the experimental data, and the possible driving distance of the vehicle, the rapid charging current and time of the vehicle, and the possibility of battery cell firing. You can predict the result value for. In this case, such prediction is performed at a preset prediction period, and when the number of predictions exceeds a preset number (eg, 5 times), the predicted information is transmitted to the vehicle. That is, the operation is repeated as one cycle in which prediction is repeatedly performed a predetermined number of times in the above-described prediction cycle.
  • a preset number eg, 5 times
  • the preset number of times is determined so that one cycle is within a preset time.
  • the preset time may be about 0.5 seconds to 0.7 seconds.
  • This preset time may be determined in consideration of a time required to separate the battery from the system when a problem occurs in the battery cell. For example, if a problem occurs in the battery cell and the battery needs to be disconnected from the system within 1 second, the time to repeat the prediction for a preset number of times is within 0.7 seconds (the battery is electrically connected to the system for the remaining 0.3 seconds). To be separated), a preset number of times may be determined based on the above-described prediction period. It will be appreciated by those of ordinary skill in the art that the above-described number of times and times are illustrative only, and are not limited thereto, and can be changed according to various conditions such as system specifications and performance of the BMS 104.
  • the server 108 determines whether the environmental information has changed by using the environmental information of the vehicle received in real time. If the environmental information is changed in real time and the rate of change is more than 20% within one cycle, the server 108 does not transmit the predicted driving distance of the vehicle, the rapid charging current of the vehicle, and the result of the battery cell ignition to the vehicle. Does not.
  • the server 108 again predicts the battery cell state by using the battery information and environment information newly received from the vehicle and the experiment data received from the experiment center. In other words, the server starts the prediction cycle again.
  • the state of the battery cell may be predicted by comparing the state of the battery cell predicted by the vehicle with the state of the battery cell predicted by the server.
  • the BMS 104 in the vehicle predicts the battery condition in a conventional manner. Using the battery state predicted by the BMS 104, vehicle driving distance, fast charging current and time prediction, and cell ignition probability prediction are performed. Subsequently, the BMS 104 receives the battery cell status, the driving distance, the fast charging current and time, and the cell ignition probability predicted by the server 108 from the server 108 in real time, and this is predicted by the BMS 104. Compare with the value. As a result of the comparison, if the difference between the value predicted by the BMS 104 and the value predicted by the server 108 is within a preset range, the vehicle can determine the driving distance, the fast charging current and time, and the possibility of cell ignition received from the server 108. Display on my display.
  • the difference between the value predicted by the BMS 104 and the value predicted by the server 108 exceeds a preset range, it is determined whether the vehicle driving environment has changed. If it has not changed, it is determined that the vehicle's battery condition prediction algorithm is broken, and if it is determined that the external environment of the vehicle has changed, the measured environmental information of the vehicle and information of the battery cell are transmitted to the server 108 to predict the battery cell state. Start over.
  • FIG. 2 is a block diagram of an apparatus 108 for predicting a battery state according to an embodiment or another embodiment of the present invention.
  • the battery condition predicting device 108 (corresponding to the server of FIG. 1) includes a first communication unit 200, a second communication unit 202, a condition predicting unit 204, a driving distance predicting unit 206, and a fast charging predicting unit ( 208) a battery cell firing prediction unit 210, a storage unit 211, and a control unit 212.
  • the first communication unit 200 receives battery cell information and environment information measured from the vehicle.
  • the battery cell information includes current, temperature, and voltage values of the battery cells.
  • the environmental information is information on the driving environment of the vehicle, and may include temperature, region, weather, driving environment, time information, and the like.
  • the second communication unit 202 receives experimental data on the state of the battery cells under various environmental conditions obtained by performing experiments under various environmental conditions (temperature, region, weather, driving environment, time) from the experiment center.
  • Various environmental conditions may include, for example, a hot and humid area + summer, a hot and humid area + winter, a desert area + summer, a desert area + winter, a highway environment, an urban environment-congestion, an urban environment-smooth, and the like.
  • the experiment center 110 performs each experiment on the state change of the battery cell in this environment.
  • the state of the battery cell under various environmental conditions of the experimental data includes cell ignition data, which is data related to environment and state data in which the battery cell may ignite.
  • the first communication unit 200 and the second communication unit 202 are illustrated as separate configurations, but are not limited thereto. When the first communication unit 200 and the second communication unit 202 use the same communication protocol, one The configuration could also communicate with vehicles and experiment centers.
  • the state prediction unit 204 may predict the battery state by using the battery cell information and environment information received from the first communication unit 200 and experimental data received from the second communication unit 202. At this time, the state prediction unit 204 may predict the battery state of the vehicle by using experimental data identical or similar to the environmental information and battery information of the vehicle.
  • the battery state may include a battery cell charging state and a battery cell deterioration state. The battery cell deterioration state can be predicted through an internal resistance value.
  • the driving distance predictor 206 receives the state of charge of the battery cell predicted by the state predictor 204.
  • the available driving distance predictor 206 calculates the driving distance of the vehicle using the received battery cell charging state.
  • the driable distance predictor 206 may calculate the driable distance of the vehicle by further taking into account not only the received state of charge of the battery cell, but also the received experimental data and the received environmental information of the vehicle.
  • the fast charging predicting unit 208 receives the battery cell deterioration state predicted by the state predicting unit 204.
  • the fast charging prediction unit 208 calculates the fast charging current and time of the vehicle by using the received battery cell deterioration state.
  • the fast charging predictor 208 may calculate the fast charging current and time of the vehicle by further considering the received experimental data and the received environmental information of the vehicle.
  • the battery cell ignition prediction unit 210 predicts the possibility of ignition of the battery cell using cell ignition data included in the experimental data, environmental information received from the vehicle, and battery cell information.
  • the storage unit 211 stores the predicted driving distance of the vehicle, the rapid charging current and time, and the possibility of cell ignition.
  • the controller 212 stores the predicted driving distance of the vehicle, the rapid charging current and time, and the possibility of igniting the cell, and repeats this operation in units of one cycle. For example, if one cycle is a preset number of times (prediction cycle) at a certain time interval (prediction cycle), for example, a period of predicting five times, the vehicle's mileage, fast charging current and time, and cell ignition potential during one cycle Predict. During one cycle, vehicle environment information at the start of one cycle is set within a preset range, e.g. 20, while predicting a preset number of times at regular time intervals for the vehicle's driving distance, fast charging current and time, and the possibility of cell firing. Determines whether or not it changes to% or more.
  • the controller 212 transmits the predicted driving distance, fast charging current and time, and cell ignition possibility information of the vehicle to the vehicle.
  • the controller 212 predicts the state of the battery cell using battery information and environmental information received from the vehicle again.
  • the state predicting unit 204 may infer the environmental information of the vehicle using the amount of change in battery information received from the vehicle and experimental data.
  • control unit 212 may not determine the environmental change of the vehicle during one cycle, but may be determined by the vehicle side.
  • the first communication unit 200 transmits the state of the battery cell predicted by the vehicle, the driving distance, the rapid charging current and time, and the cell ignition possibility information.
  • the vehicle When the error range of the state of the battery cell predicted by the vehicle and the state value of the battery cell predicted by the battery state predicting device is within a preset range, the vehicle will be able to drive the distance predicted by the battery state predicting device, the fast charging current and time, and Cell ignition possibility information is displayed on the display.
  • FIG. 3 is a flowchart of a method for predicting a battery state according to an embodiment of the present invention.
  • Vehicle 100 includes a battery management system 104 that monitors and controls battery cells 102.
  • the battery management system 104 measures the temperature, current, and voltage of the battery cell 102 (S300).
  • the battery management system 104 transmits battery cell information including temperature, current, and voltage values of the battery cells 102 measured in real time to the host controller 106.
  • various external environments are measured through various sensors mounted on the vehicle 100 (S302).
  • External environments may include temperature and humidity, and may include road conditions.
  • information on an area driving by using the GPS of the vehicle 100 may be included as an environmental factor.
  • the external environment may include all environmental factors on which the vehicle is running, and although not all are shown, a configuration capable of measuring all such environmental factors may also be included in the vehicle 100.
  • Measurement values (environmental information) for environmental factors measured in real time are also transmitted to the host controller 106.
  • the host controller 106 transmits the battery cell information and environment information to the server 108 (S304).
  • the experiment center 110 conducts an experiment in various environmental conditions (temperature, region, weather, driving environment, time) and stores experimental data on the state of the battery cells under various environmental conditions. Is transmitted to (S306).
  • the battery condition prediction apparatus 108 receives the battery cell information and environment information measured from the vehicle 100 and the first communication unit 200 receives experimental data from the experiment center 110 (S308).
  • the state prediction unit 204 predicts the battery state by using the battery cell information and environment information received from the first communication unit 200 and the experimental data received from the second communication unit 202 (S310).
  • the state prediction unit 204 may predict the battery state of the vehicle by using experimental data identical or similar to the environmental information and battery information of the vehicle.
  • the battery state may include a battery cell charging state and a battery cell deterioration state.
  • the battery cell deterioration state can be predicted through an internal resistance value. That is, when predicting the state of the battery cell, the state prediction unit 204 predicts the state of charge of the corresponding battery cell (S312) and predicts the deterioration state of the corresponding battery cell (S314).
  • the driving distance predictor 206 receives the state of charge of the battery cell predicted by the state predictor 204.
  • the possible driving distance predictor 206 calculates the driving distance of the vehicle using the received battery cell charging state (S318).
  • the driable distance predictor 206 may calculate the driable distance of the vehicle by further considering the received experimental data and the received environmental information of the vehicle, as well as the received state of charge of the battery cell.
  • the fast charging predicting unit 208 receives the battery cell deterioration state predicted by the state predicting unit 204.
  • the fast charging prediction unit 208 calculates the fast charging current and time of the vehicle by using the received battery cell deterioration state (S320).
  • the fast charging predictor 208 may calculate the fast charging current and time of the vehicle by further considering the received experimental data and the received environmental information of the vehicle.
  • the battery cell ignition prediction unit 210 predicts the possibility of ignition of the battery cell using cell ignition data included in the experimental data, environmental information received from the vehicle, and battery cell information (S316).
  • the storage unit 211 stores the predicted driving distance of the vehicle, the fast charging current and time, and the possibility of cell ignition (S322).
  • the control unit 212 stores the predicted driving distance of the vehicle, the rapid charging current and time, and the possibility of cell ignition, and then whether the predicted values are measured for one period, and the environmental conditions of the vehicle are preset for one period. It is determined whether it has changed within the range (S324).
  • the controller 212 stores the predicted driving distance of the vehicle, the rapid charging current and time, and the cell ignition probability, and then measures each predicted value in units of one cycle. For example, if one cycle is a period that predicts a preset number of times, for example, five times at regular time intervals, the vehicle's driable distance, fast charging current and time, and the possibility of cell ignition are predicted during one cycle. .
  • vehicle environment information at the start of the cycle is set within a preset range, e.g. 20, while predicting a preset number of times at regular time intervals for the vehicle's mileage, fast charging current and time, and the possibility of cell firing. It is determined whether it is changed to% or more (S324).
  • the controller 212 transmits the predicted driving distance, fast charging current and time, and cell ignition possibility information of the vehicle to the vehicle (S326).
  • control unit 212 performs the step of predicting the state of the battery cell again using the battery information and environmental information received from the vehicle (S308). , S310).
  • the vehicle 100 displays the driving distance, the fast charging current and time, and the cell ignition possibility information received from the battery condition prediction apparatus 108 on the display (S328).
  • FIG. 4 is a flowchart of a method for predicting a battery state according to another embodiment of the present invention.
  • Vehicle 100 includes a battery management system 104 that monitors and controls battery cells 102.
  • the battery management system 104 measures the temperature, current, and voltage of the battery cell 102 (S400).
  • the battery management system 104 transmits battery cell information including temperature, current, and voltage values of the battery cells 102 measured in real time to the host controller 106.
  • various external environments are measured through various sensors mounted on the vehicle 100 (S402).
  • External environments may include temperature and humidity, and may include road conditions.
  • information on an area driving by using the GPS of the vehicle 100 may be included as an environmental factor.
  • the external environment may include all environmental factors on which the vehicle is running, and although not all are shown, a configuration capable of measuring all such environmental factors may also be included in the vehicle 100.
  • Measurement values (environmental information) for environmental factors measured in real time are also transmitted to the host controller 106.
  • the BMS of the vehicle 100 estimates the battery state using the received battery cell temperature, voltage, and current (S403). Since estimating the state of the battery cell in the vehicle can be easily derived by those skilled in the art, a detailed description will be omitted.
  • the host controller 106 transmits the battery cell information and environment information to the server 108 (S404).
  • the experiment center 110 performs an experiment in various environmental conditions (temperature, region, weather, driving environment, time) and transmits the experimental data on the state of the battery cell under various environmental conditions to the server 108 (S406). ).
  • the first communication unit 200 of the battery condition prediction apparatus 108 which is a server, receives battery cell information and environment information measured from the vehicle 100, and receives experimental data from the experiment center 110 (S408).
  • the state prediction unit 204 predicts the battery state by using the battery cell information and environment information received from the first communication unit 200 and the experimental data received from the second communication unit 202 (S410).
  • the state prediction unit 204 may predict the battery state of the vehicle by using experimental data identical or similar to the environmental information and battery information of the vehicle.
  • the battery state may include a battery cell charging state and a battery cell deterioration state.
  • the battery cell deterioration state can be predicted through an internal resistance value. That is, when predicting the state of the battery cell, the state predictor 204 predicts the state of charge of the corresponding battery cell (S412) and predicts the deterioration state of the corresponding battery cell (S414).
  • the driving distance predictor 206 receives the state of charge of the battery cell predicted by the state predictor 204.
  • the possible driving distance predictor 206 calculates the driving distance of the vehicle by using the received battery cell charging state (S418).
  • the driable distance predictor 206 may calculate the driable distance of the vehicle by further considering the received experimental data and the received environmental information of the vehicle, as well as the received state of charge of the battery cell.
  • the fast charging predicting unit 208 receives the battery cell deterioration state predicted by the state predicting unit 204.
  • the fast charging prediction unit 208 calculates the fast charging current and time of the vehicle by using the received battery cell deterioration state (S420).
  • the fast charging predictor 208 may calculate the fast charging current and time of the vehicle by further considering the received experimental data and the received environmental information of the vehicle.
  • the battery cell ignition prediction unit 210 predicts the possibility of ignition of the battery cell using cell ignition data included in the experimental data, environmental information received from the vehicle, and battery cell information (S416).
  • the storage unit 211 stores the predicted driving distance of the vehicle, the fast charging current and time, and the possibility of cell ignition (S422).
  • the first communication unit 200 transmits the predicted possible distance, fast charging current and time, and cell ignition possibility information to the vehicle (S424).
  • the vehicle's BMS 104 receives the predicted battery cell status, driving distance, fast charging current and time, and cell ignition probability from the energy state prediction device 108 in real time.
  • the BMS 104 determines whether the difference value between the battery cell state value received from the energy state prediction device 108 and the battery cell state value predicted by the BMS 104 is within a preset range, for example, 5%. (S425).
  • the vehicle's battery state prediction algorithm is broken (S428), and if it is determined that the vehicle external environment has changed, the measured environmental information of the vehicle and information of the battery cell are transmitted to the energy state prediction device 108. Thus, the battery cell state prediction is restarted (S400).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 개시는 배터리 팩에 포함된 배터리 관리 시스템에 있어서 측정된 복수의 배터리 셀의 온도, 전류, 전압 데이터를 수신하고, 해당 배터리 셀이 사용되는 차량으로부터 상기 차량이 주행 중인 제1 환경 정보를 수신하는 제1 통신부, 외부 서버로부터 수신된 다양한 환경에서의 배터리 셀 또는 팩의 상태에 대한 실험 데이터를 수신하는 제2 통신부 및 상기 수신된 복수의 배터리 셀 각각의 온도, 전류, 전압 및 상기 제1 환경 정보와 상기 상태 실험 데이터를 이용하여 배터리 상태를 예측하는 배터리 상태 예측부를 포함하고, 상기 배터리 상태는 배터리 셀 충전상태 및 배터리 셀 퇴화상태를 포함하는 배터리 상태 예측 장치를 포함한다.

Description

배터리 상태 예측 장치 및 배터리 상태 예측 방법
관련출원과의 상호인용
본 발명은 2019.7.31.에 출원된 한국 특허 출원 제10-2019-0093275호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
기술분야
본 발명은 배터리 정보뿐만 아니라 외부 환경 정보를 이용하여 배터리 상태를 예측하는 장치 및 방법에 관한 것이다.
최근 이차 전지에 대한 연구 개발이 활발히 이루어지고 있다. 여기서 이차 전지는 충방전이 가능한 전지로서, 종래의 Ni/Cd 전지, Ni/MH 전지 등과 최근의 리튬 이온 전지를 모두 포함하는 의미이다. 이차 전지 중 리튬 이온 전지는 종래의 Ni/Cd 전지, Ni/MH 전지 등에 비하여 에너지 밀도가 훨씬 높다는 장점이 있다, 또한, 리튬 이온 전지는 소형, 경량으로 제작할 수 있어서, 이동 기기의 전원으로 사용된다. 이러한 리튬 이온 전지는 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
이차 전지는 일반적으로 복수 개의 배터리 셀들이 직렬 및/또는 병렬로 연결된 배터리 모듈을 포함하는 배터리 팩으로 이용된다. 그리고 배터리 팩은 배터리 관리 시스템(Battery Management System, 이하 'BMS'라고도 함)에 의하여 상태 및 동작이 관리 및 제어된다.
특히, 전기 자동차 BMS에서 배터리 셀의 전압, 전류 및 온도를 측정하여 현재 배터리 상태(충전 상태, 퇴화 정도, 출력)를 추정한다. 다만, 이렇게 BMS에서 현재 측정값 기준으로 배터리 셀 상태를 추정하여 주행 가능거리, 출력 가능 전력을 산출하지만, 미래에 발생될 주행환경에 따라 변경되는 배터리 상태를 예측할 수 없으므로 주행 가능 거리 등의 정보의 정확한 산출이 어렵다.
본 발명은 전기 자동차의 외부 환경과 동일한 환경에서 실험된 배터리 정보에 대한 실험 데이터를 이용하여, 보다 정확한 배터리 상태를 예측하는 것을 목적으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치는, 배터리 팩에 포함된 배터리 관리 시스템에서 측정된 복수의 배터리 셀의 온도, 전류, 전압 데이터를 수신하고, 해당 배터리 셀이 사용되는 차량으로부터 상기 차량이 주행 중인 제1 환경 정보를 수신하는 제1 통신부; 외부로부터 수신된 다양한 환경에서의 배터리 셀 또는 팩의 상태에 대한 실험 데이터를 수신하는 제2 통신부; 및 상기 수신된 복수의 배터리 셀 각각의 온도, 전류, 전압 및 상기 제1 환경 정보와 상기 상태 실험 데이터를 이용하여 배터리 상태를 예측하는 배터리 상태 예측부를 포함하고, 상기 배터리 상태는 배터리 셀 충전상태 및 배터리 셀 퇴화상태를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치는, 상기 배터리 셀 충전 상태를 기초로 상기 차량의 주행거리를 예측하는 주행 가능 거리 예측부; 상기 배터리 셀 퇴화상태를 기초로 상기 배터리 셀이 포함된 배터리 팩의 급속 충전 전류 및 시간을 예측하는 급속 충전 예측부; 및 상기 실험 데이터에 포함된 셀 발화 데이터를 이용하여 배터리 셀 발화 가능성을 예측하는 배터리 셀 발화 예측부를 더 포함하고, 상기 제1 통신부는 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값 중 적어도 하나를 상기 배터리 관리 시스템으로 송신하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치는, 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부가 각각 제1 시간 간격으로 미리 설정된 횟수만큼 예측을 수행하는 것을 한 주기로 하여 예측을 수행하고, 한 주기 예측 동안 상기 차량이 주행하는 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하인지 여부를 판단하는 제어부를 더 포함하고, 상기 한 주기 예측 동안 상기 차량의 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하이면 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부의 상기 결과값을 상기 차량으로 전송하고, 상기 한 주기 예측 동안 상기 차량의 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치를 초과하면 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부는 변화된 환경 조건에서 다시 결과값을 예측하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치에서, 상기 한 주기는 0.7초 이내로 설정될 수 있고, 상기 미리 설정된 횟수는 상기 한 주기에 기초하여 결정되는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치에서, 상기 제1 통신부에 의하여 송신된 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성의 예측 결과값에 대하여 미리 설정된 오차 범위를 벗어나면, 상기 제1 통신부는 상기 차량으로부터 해당 오차 정보 및 상기 차량의 제2 환경 정보를 수신하고, 상기 제1 환경 정보와 상기 제2 환경 정보가 동일한 값이면 상기 차량의 알고리즘의 고장으로 진단하여 상기 제1 통신부로 하여금 상기 차량의 알고리즘 이상 신호를 송신하도록 하고, 상기 제1 환경 측정 데이터와 상기 제2 환경 측정 데이터가 동일하지 않으면 상기 배터리 셀 상태 예측부로 하여금 제2 환경 측정 데이터를 이용하여 다시 배터리 셀의 상태를 예측하도록 하는 제어부를 더 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치에서, 상기 미리 설정된 오차 범위는 5%인 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 장치에서, 상기 제1 통신부에 의하여 송신된 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성 예측 결과값이 미리 설정된 오차 범위를 벗어나지 않으면, 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 차량의 디스플레이 상에 디스플레이되는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법은 배터리 셀의 온도, 전류 및 전압과, 차량이 주행되는 환경 정보를 이용하여 배터리 셀의 상태를 예측하는 배터리 상태 예측 장치에 의하여 수행되는, 차량의 배터리 관리 시스템에서 측정된 배터리 셀의 온도, 전류 및 전압과, 상기 차량이 주행하는 환경 정보 및 실험 데이터를 이용하여 배터리 셀의 상태를 예측하는 제1 단계; 및 상기 예측된 배터리 셀의 상태를 이용하여 상기 차량의 주행 가능 거리, 상기 차량의 급속 충전 전류 및 시간을 예측하는 제2 단계를 포함하고, 상기 실험 데이터는 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 결과에 대한 것임을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법에서, 상기 배터리 셀의 상태는 배터리 셀의 충전 상태 및 배터리 셀의 퇴화 상태를 포함하고, 상기 차량의 주행 가능 거리는 상기 배터리 셀의 충전 상태를 이용하여 예측되고, 상기 차량의 급속 충전 전류 및 시간은 상기 배터리 셀의 퇴화 상태를 이용하여 예측되는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법에서, 상기 실험 데이터는 셀 발화 데이터를 더 포함하고, 상기 제2 단계는 예측된 상기 배터리 셀의 상태와 상기 셀 발화 데이터를 이용하여 상기 배터리 셀의 발화 가능성을 예측하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법은, 상기 제2 단계는 제1 시간 간격으로 미리 설정된 횟수만큼 수행되는 것을 한 주기로 하여 수행되고, 제2 단계가 한 주기 동안 수행되는 동안 상기 차량이 주행하는 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하인지 여부를 판단하는 단계를 더 포함하고, 상기 환경을 나타내는 데이터의 변화량이 상기 제1 수치 이하이면, 상기 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 상기 배터리 셀의 발화 가능성 정보를 상기 차량으로 전송하고, 상기 환경을 나타내는 데이터의 변화량이 상기 제1 수치를 초과하면 상기 제1 단계를 다시 수행하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법에서, 상기 한 주기는 0.7초 이내로 설정될 수 있고, 상기 미리 설정된 횟수는 상기 한 주기에 기초하여 결정되는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법에서, 예측된 상기 차량의 주행 가능 거리, 상기 급속 충전 전류 및 시간, 상기 셀 발화 가능성 정보와 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성 예측 결과값의 차이가 미리 설정된 오차 범위를 벗어나면, 상기 차량으로부터 새로운 배터리 셀의 온도, 전류 및 전압과, 차량이 주행되는 환경 정보를 수신하여 상기 제1 단계를 다시 수행하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 배터리 상태 예측 방법에서, 상기 미리 설정된 오차 범위는 5%인 것을 특징으로 한다.
본 발명은 전기 자동차의 외부 환경과 동일한 환경에서 실험된 배터리 정보에 대한 실험 데이터를 이용하여, 보다 정확한 배터리 상태를 예측할 수 있다는 효과를 달성할 수 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 상태 예측 시스템을 도시한다.
도 2는 본 발명의 일 실시예 또는 다른 실시예에 따른 배터리 상태 예측 장치의 구성도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 상태 예측 방법의 순서도이다.
도 4는 본 발명의 다른 실시예에 따른 배터리 상태 예측 방법의 순서도이다.
이하, 첨부한 도면을 참조하여 본 발명의 다양한 실시 예들에 대해 상세히 설명하고자 한다. 본 문서에서 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
본 문서에 개시되어 있는 본 발명의 다양한 실시 예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 다양한 실시 예들은 여러 가지 형태로 실시될 수 있으며 본 문서에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
다양한 실시 예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성 요소들을 한정하지 않는다. 예를 들면, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성 요소로 바꾸어 명명될 수 있다.
본 문서에서 사용된 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 일반적으로 사용되는 사전에 정의된 용어들은 관련 기술의 문맥 상 가지는 의미와 동일 또는 유사한 의미를 가지는 것으로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 발명의 실시 예들을 배제하도록 해석될 수 없다.
도 1은 본 발명의 일 실시예에 따른 배터리 상태 예측 시스템(1)을 도시한다.
배터리 상태 예측 시스템(1)은 차량(100), 배터리 상태 예측 장치(108)인 서버, 실험 센터(110)를 포함할 수 있다.
차량(100)에는 배터리 셀(102)을 모니터링하고 제어하는 배터리 관리 시스템(BMS, 104)이 포함된다. 배터리 관리 시스템(104)은 배터리 셀(102)의 온도, 전류 및 전압을 측정한다. 배터리 관리 시스템(104)은 실시간으로 측정한 배터리 셀(102)의 온도, 전류 및 전압값을 포함하는 배터리 셀 정보를 상위 제어기(106)로 전송한다.
또한, 차량(100)에는 각종 외부 환경을 측정할 수 있는 센서(105)가 있다. 외부 환경으로는 온도 및 습도가 있을 수 있고, 도로 상태도 포함할 수 있다. 또한 차량(100)의 GPS를 이용하여 주행하고 있는 지역 정보도 환경적인 요소로 포함될 수 있다. 또한, 외부 환경은 차량이 주행하고 있는 모든 환경적인 요소를 포함할 수 있고, 모두 도시되지는 않았지만 이러한 모든 환경적인 요소를 측정할 수 있는 구성 역시 차량(100)에 포함될 수 있다. 실시간으로 측정된 환경적인 요소에 대한 측정값(환경 정보)도 상위 제어기(106)로 전송된다.
상위 제어기(106)는 배터리 셀의 정보 및 환경 정보를 서버(108)로 전송한다.
한편, 실험 센터(110)에서는 다양한 환경 조건에서(온도, 지역, 날씨, 주행환경, 시간) 실험을 행하여 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 데이터를 서버(108)로 전송한다. 다양한 환경 조건은 예를 들어, 고온 다습한 지역+여름, 고온 다습한 지역+겨울, 사막 지역+여름, 사막 지역+겨울, 고속도로 환경, 도심환경-정체, 도심환경-원활 등이 포함될 수 있다. 실험 센터(110)는 이러한 환경에서의 배터리 셀의 상태 변화에 대해서 각각 실험한다. 또한, 실험 데이터의 다양한 환경 조건에서의 배터리 셀의 상태에는 배터리 셀이 발화될 수 있는 환경 및 상태 데이터에 관한 데이터인 셀 발화 데이터도 포함된다.
서버(108)에서는 배터리 셀의 정보, 환경 정보 및 실험 데이터를 수신한다.
서버(108)는 수신된 배터리 셀의 정보, 환경 정보 및 실험 데이터 상의 정보를 이용하여 해당 차량의 배터리 셀의 상태를 예측할 수 있다. 서버(108)는 배터리 상태 예측 장치의 기능을 수행하는 구성으로서, 이하에서는 '서버'와 '배터리 상태 예측 장치'를 혼용하여 기재한다.
환경 정보에 대응한 실험 데이터를 이용하여 예측된 배터리 셀의 상태는 단순히 배터리의 온도, 전류 및 전압만을 이용하여 예측된 배터리 셀의 상태보다 정확한 상태를 예측할 수 있다. 차량이 주행되는 환경에 배터리도 영향을 받기 때문이다.
다만, 여기서 서버(108)는 차량으로부터 환경 정보를 수신할 수도 있지만, 환경 정보를 따로 수신하지 않고, 차량으로부터 수신된 배터리 셀의 정보의 실시간 변화량과 실험 데이터를 이용하여 해당 차량이 주행하고 있는 환경 정보를 유추하여 배터리 셀의 상태를 예측할 수도 있다.
서버(108)는 배터리 셀의 상태에서 예측된 배터리 셀의 충전 상태를 이용하여 차량의 주행 가능 거리를 예측한다. 또한, 서버(108)는 배터리 셀의 상태에서 예측된 배터리 셀의 퇴화 상태를 이용하여 차량의 급속 충전 전류 및 시간을 예측한다.
또한, 서버(108)는 예측된 배터리 셀의 상태 및 셀 발화 데이터를 이용하여 배터리 셀 발화 가능성에 대해서 예측한다.
서버(108)는 예측된 차량의 주행 가능 거리, 차량의 급속 충전 전류 및 시간, 및 배터리 셀 발화 가능성에 대한 결과값을 저장한다.
또한 서버(108)는 실시간으로 수신되는 차량의 환경 정보, 배터리 셀의 정보 및 실험 데이터를 이용하여 배터리 상태를 예측하고, 차량의 주행 가능 거리, 차량의 급속 충전 전류 및 시간, 및 배터리 셀 발화 가능성에 대한 결과값을 예측할 수 있다. 이때, 이러한 예측은 미리 설정된 예측 주기로 수행되고, 예측 횟수가 미리 설정된 횟수(예를 들어 5회) 이상이 되면 예측된 정보를 차량으로 전송한다. 즉, 상술한 예측 주기로 미리 설정된 횟수만큼 예측이 반복 수행되는 것을 한 주기로 하여 해당 동작을 반복한다.
여기서, 미리 설정된 횟수는 한 주기가 미리 설정된 시간 이내가 되도록 결정된다. 예를 들어, 미리 설정된 시간은 약 0.5초 내지 0.7초 일 수 있다. 이러한 미리 설정된 시간은 배터리 셀에 문제가 발생하였을 때, 배터리를 시스템과 분리해야 하는 시간을 고려하여 결정될 수 있다. 예를 들어, 배터리 셀에 문제가 발생하였을 때 1초 이내에 배터리를 시스템과 분리해야 하는 경우라면, 미리 설정된 횟수만큼 예측을 반복하는 시간이 0.7초 이내가 되도록(나머지 0.3초 동안 배터리를 시스템에서 전기적으로 분리할 수 있도록), 상술한 예측 주기에 기초하여 미리 설정된 횟수를 결정할 수 있다. 앞서 설명한 횟수 및 시간 등은 설명을 위하여 예시한 것일 뿐 이에 한정되는 것은 아니며, 시스템의 사양, BMS(104)의 성능 등 다양한 조건에 따라서 변경 가능하다는 것을 통상의 기술자라면 알 수 있을 것이다.
또한 서버(108)는 실시간으로 수신되는 차량의 환경 정보를 이용하여 환경 정보가 변경되었는지 여부를 판단한다. 환경 정보가 실시간으로 변경되고 그 변화율이 한 주기 내에서 20% 이상이면 서버(108)는 예측된 차량의 주행 가능 거리, 차량의 급속 충전 전류 및 배터리 셀 발화 가능성에 대한 결과값을 차량으로 전송하지 않는다. 서버(108)는 다시 새롭게 차량으로부터 수신된 배터리 정보 및 환경 정보와, 실험 센터로부터 수신된 실험 데이터를 이용하여 배터리 셀 상태를 예측한다. 즉, 서버는 다시 예측 주기를 시작한다.
한편, 본 발명의 다른 실시예로서 차량이 예측한 배터리 셀의 상태와 서버가 예측한 배터리 셀의 상태를 비교하여 배터리 셀의 상태를 예측할 수 있다.
구체적으로, 차량 내의 BMS(104)는 배터리 상태를 종래의 방식으로 예측한다. BMS(104)가 예측한 배터리 상태를 이용하여 차량 주행 거리, 급속 충전 전류 및 시간 예측 및 셀 발화 가능성 예측을 수행한다. 이어서, BMS(104)는 실시간으로 서버(108)로부터 서버(108)에서 예측된 배터리 셀 상태, 주행 가능 거리, 급속 충전 전류 및 시간, 셀 발화 가능성을 수신하고, 이를 BMS(104)에서 예측한 값과 비교한다. 비교 결과 BMS(104)에서 예측한 값과 서버(108)에서 예측한 값의 차이가 미리 설정된 범위 내이면 서버(108)에서 수신된 주행 가능 거리, 급속 충전 전류 및 시간, 셀 발화 가능성 등을 차량 내의 디스플레이 상에 디스플레이한다.
비교 결과 BMS(104)에서 예측한 값과 서버(108)에서 예측한 값의 차이가 미리 설정된 범위를 넘어가면, 차량 주행 환경이 변화했는지 여부를 판단한다. 변화하지 않았다면 차량의 배터리 상태 예측 알고리즘이 고장인 것으로 판단하고, 차량 외부 환경이 변화했다고 판단되면, 다시 측정된 차량의 환경 정보 및 배터리 셀의 정보를 서버(108)로 전송하여 배터리 셀 상태 예측을 다시 시작한다.
도 2는 본 발명의 일 실시예 또는 다른 실시예에 따른 배터리 상태 예측 장치(108)의 구성도이다.
배터리 상태 예측 장치(108, 도 1의 서버와 대응)는 제1 통신부(200), 제2 통신부(202), 상태 예측부(204), 주행가능 거리 예측부(206), 급속 충전 예측부(208) 배터리 셀 발화 예측부(210), 저장부(211) 및 제어부(212)를 포함한다.
제1 통신부(200)는 차량으로부터 측정된 배터리 셀 정보와 환경 정보를 수신한다.
배터리 셀 정보는 배터리 셀의 전류, 온도 및 전압값을 포함한다. 또한, 환경 정보는 차량의 주행 환경에 대한 정보로서, 온도, 지역, 날씨, 주행환경, 시간 정보 등을 포함할 수 있다.
제2 통신부(202)는 실험 센터로부터 다양한 환경 조건에서(온도, 지역, 날씨, 주행환경, 시간) 실험을 행하여 획득한 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 데이터를 수신한다. 다양한 환경 조건은 예를 들어, 고온 다습한 지역+여름, 고온 다습한 지역+겨울, 사막 지역+여름, 사막 지역+겨울, 고속도로 환경, 도심환경-정체, 도심환경-원활 등이 포함될 수 있다. 실험 센터(110)는 이러한 환경에서의 배터리 셀의 상태 변화에 대해서 각각 실험한다. 또한, 실험 데이터의 다양한 환경 조건에서의 배터리 셀의 상태에는 배터리 셀이 발화될 수 있는 환경 및 상태 데이터에 관한 데이터인 셀 발화 데이터도 포함된다.
제1 통신부(200)와 제2 통신부(202)를 별도의 구성으로 도시하였으나 이에 한정되는 것은 아니며, 제1 통신부(200)와 제2 통신부(202)가 같은 통신 프로토콜을 사용하는 경우, 하나의 구성으로 차량 및 실험 센터와 통신을 수행할 수도 있을 것이다.
상태 예측부(204)는 제1 통신부(200)에서 수신한 배터리 셀 정보 및 환경 정보, 및 제2 통신부(202)에서 수신한 실험 데이터를 이용하여 배터리 상태를 예측할 수 있다. 이 때에, 상태 예측부(204)는 차량의 환경 정보 및 배터리 정보와 동일 또는 유사한 실험 데이터를 이용하여 해당 차량의 배터리 상태 예측을 할 수 있다. 배터리 상태로는 배터리 셀 충전 상태 및 배터리 셀 퇴화 상태를 포함할 수 있다. 배터리 셀 퇴화 상태는 내부 저항 값을 통해서 예측될 수 있다.
주행 가능 거리 예측부(206)는 상태 예측부(204)에서 예측된 배터리 셀 충전 상태를 수신한다. 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태를 이용하여 차량의 주행 가능 거리를 산출한다. 또한, 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태뿐만 아니라, 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 주행 가능 거리를 산출할 수도 있다.
급속 충전 예측부(208)는 상태 예측부(204)에서 예측된 배터리 셀 퇴화 상태를 수신한다. 급속 충전 예측부(208)는 수신한 배터리 셀 퇴화 상태를 이용하여 차량의 급속 충전 전류 및 시간을 산출한다. 또한, 급속 충전 예측부(208)는 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 급속 충전 전류 및 시간을 산출할 수 있다.
배터리 셀 발화 예측부(210)는 실험 데이터에 포함된 셀 발화 데이터, 차량으로부터 수신한 환경 정보 및 배터리 셀 정보를 이용하여 배터리 셀의 발화 가능성을 예측한다.
저장부(211)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장한다.
제어부(212)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장하고, 이러한 동작을 한 주기 단위로 반복한다. 예를 들어, 한 주기가 일정한 시간 간격(예측 주기)으로 미리 설정된 횟수, 예를 들어 5회 예측하는 기간이라고 했을 때, 한 주기 동안 차량의 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 예측한다. 한 주기 동안 차량의 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 일정한 시간 간격으로 미리 설정된 횟수를 예측하는 동안, 한 주기를 시작할 때의 차량 환경 정보가 미리 설정된 범위, 예를 들어 20% 이상으로 변경되는지 여부를 판단한다.
제어부(212)는 한 주기 동안 차량의 환경 정보가 미리 설정된 범위 내에서만 변경되면, 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 차량으로 전송한다.
반면에, 제어부(212)는 한 주기 동안 차량의 환경 정보가 미리 설정된 범위를 넘어서 변경되면 다시 차량으로부터 수신한 배터리 정보 및 환경 정보를 이용하여 배터리 셀의 상태를 예측한다.
한편, 차량으로부터 별도의 환경 정보를 수신하지 않고, 상태 예측부(204)는 차량으로부터 수신한 배터리 정보의 변화량과, 실험 데이터를 이용하여 차량의 환경 정보를 유추할 수 있다.
한편, 제어부(212)에서 한 주기 동안 차량의 환경 변화를 판단하지 않고, 차량 측에서 판단할 수 있다.
구체적으로, 제1 통신부(200)가 차량으로 예측된 배터리 셀의 상태, 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 전송한다.
차량에서 예측한 배터리 셀의 상태와 배터리 상태 예측 장치에서 예측한 배터리 셀의 상태 값의 오차 범위가 미리 설정된 범위 내이면 차량은 배터리 상태 예측 장치에서 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 디스플레이 상에 디스플레이한다.
도 3은 본 발명의 일 실시예에 따른 배터리 상태 예측 방법의 순서도이다.
차량(100)에는 배터리 셀(102)을 모니터링하고 제어하는 배터리 관리 시스템(104)이 포함된다. 배터리 관리 시스템(104)은 배터리 셀(102)의 온도, 전류 및 전압을 측정한다(S300). 배터리 관리 시스템(104)은 실시간으로 측정한 배터리 셀(102)의 온도, 전류 및 전압값을 포함하는 배터리 셀 정보를 상위 제어기(106)로 전송한다.
또한, 차량(100)에 장착된 각종 센서를 통하여 각종 외부 환경을 측정한다(S302). 외부 환경으로는 온도 및 습도가 있을 수 있고, 도로 상태도 포함할 수 있다. 또한 차량(100)의 GPS를 이용하여 주행하고 있는 지역 정보도 환경적인 요소로 포함시킬 수 있다. 또한, 외부 환경은 차량이 주행하고 있는 모든 환경적인 요소를 포함할 수 있고, 모두 도시되지는 않았지만 이러한 모든 환경적인 요소를 측정할 수 있는 구성 역시 차량(100)에 포함될 수 있다. 실시간으로 측정된 환경적인 요소에 대한 측정값(환경 정보)도 상위 제어기(106)로 전송된다.
상위 제어기(106)는 배터리 셀의 정보 및 환경 정보를 서버(108)로 전송한다(S304).
한편, 실험 센터(110)에서는 다양한 환경 조건에서(온도, 지역, 날씨, 주행환경, 시간) 실험을 행하여 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 데이터를 서버인 배터리 상태 예측 장치(108)로 전송한다(S306).
배터리 상태 예측 장치(108)는 제1 통신부(200)는 차량(100)으로부터 측정된 배터리 셀 정보와 환경 정보를 수신하고, 실험 센터(110)로부터 실험 데이터를 수신한다(S308).
상태 예측부(204)는 제1 통신부(200)에서 수신한 배터리 셀 정보 및 환경 정보, 및 제2 통신부(202)에서 수신한 실험 데이터를 이용하여 배터리 상태를 예측한다(S310).
이 때에, 상태 예측부(204)는 차량의 환경 정보 및 배터리 정보와 동일 또는 유사한 실험 데이터를 이용하여 해당 차량의 배터리 상태 예측을 할 수 있다. 배터리 상태로는 배터리 셀 충전 상태 및 배터리 셀 퇴화 상태를 포함할 수 있다. 배터리 셀 퇴화 상태는 내부 저항 값을 통해서 예측될 수 있다. 즉, 상태 예측부(204)는 배터리 셀의 상태를 예측할 때, 해당 배터리 셀의 충전 상태를 예측하고(S312), 해당 배터리 셀의 퇴화 상태를 예측한다(S314).
주행 가능 거리 예측부(206)는 상태 예측부(204)에서 예측된 배터리 셀 충전 상태를 수신한다. 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태를 이용하여 차량의 주행 가능 거리를 산출한다(S318). 또한, 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태뿐만 아니라, 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 주행 가능 거리를 산출할 수도 있다.
급속 충전 예측부(208)는 상태 예측부(204)에서 예측된 배터리 셀 퇴화 상태를 수신한다. 급속 충전 예측부(208)는 수신한 배터리 셀 퇴화 상태를 이용하여 차량의 급속 충전 전류 및 시간을 산출한다(S320). 또한, 급속 충전 예측부(208)는 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 급속 충전 전류 및 시간을 산출할 수 있다.
배터리 셀 발화 예측부(210)는 실험 데이터에 포함된 셀 발화 데이터, 차량으로부터 수신한 환경 정보 및 배터리 셀 정보를 이용하여 배터리 셀의 발화 가능성을 예측한다(S316).
저장부(211)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장한다(S322).
제어부(212)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장된 후, 각각 예측된 값이 한 주기동안 측정되었는지 여부, 및 한 주기 동안 차량의 환경 조건이 미리 설정된 범위 내로 변화했는지 여부를 판단한다(S324).
제어부(212)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장한 후, 각각 예측된 값을 한 주기 단위로 측정한다. 예를 들어, 한 주기가 일정한 시간 간격으로 미리 설정된 횟수, 예를 들어 5회만큼 예측하는 기간이라고 했을 때, 한 주기 동안 차량의 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 예측한다. 한 주기 동안 차량의 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 일정한 시간 간격으로 미리 설정된 횟수를 예측하는 동안, 해당 주기를 시작할 때의 차량 환경 정보가 미리 설정된 범위, 예를 들어 20% 이상으로 변경되는지 여부를 판단한다(S324).
제어부(212)는 한 주기 동안 차량의 환경 정보가 미리 설정된 범위 내에서 변경되면, 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 차량으로 전송한다(S326).
반면에, 제어부(212)는 한 주기 동안 차량의 환경 정보가 미리 설정된 범위를 넘어서 변경되면 다시 차량으로부터 수신한 배터리 정보 및 환경 정보를 이용하여 배터리 셀의 상태를 예측하는 단계를 다시 실시한다(S308, S310).
차량(100)은 배터리 상태 예측 장치(108)로부터 수신한 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 디스플레이 상에 디스플레이한다(S328).
도 4는 본 발명의 다른 실시예에 따른 배터리 상태 예측 방법의 순서도이다.
차량(100)에는 배터리 셀(102)을 모니터링하고 제어하는 배터리 관리 시스템(104)이 포함된다. 배터리 관리 시스템(104)은 배터리 셀(102)의 온도, 전류 및 전압을 측정한다(S400). 배터리 관리 시스템(104)은 실시간으로 측정한 배터리 셀(102)의 온도, 전류 및 전압값을 포함하는 배터리 셀 정보를 상위 제어기(106)로 전송한다.
또한, 차량(100)에 장착된 각종 센서를 통하여 각종 외부 환경을 측정한다(S402). 외부 환경으로는 온도 및 습도가 있을 수 있고, 도로 상태도 포함할 수 있다. 또한 차량(100)의 GPS를 이용하여 주행하고 있는 지역 정보도 환경적인 요소로 포함시킬 수 있다. 또한, 외부 환경은 차량이 주행하고 있는 모든 환경적인 요소를 포함할 수 있고, 모두 도시되지는 않았지만 이러한 모든 환경적인 요소를 측정할 수 있는 구성 역시 차량(100)에 포함될 수 있다. 실시간으로 측정된 환경적인 요소에 대한 측정값(환경 정보)도 상위 제어기(106)로 전송된다.
차량(100)의 BMS는 수신된 배터리 셀 온도, 전압 및 전류를 이용하여 배터리 상태를 추정한다(S403). 차량에서 배터리 셀의 상태를 추정하는 것은 당업자라면 용이하게 도출할 수 있으므로 자세한 설명은 생략하도록 한다.
상위 제어기(106)는 배터리 셀의 정보 및 환경 정보를 서버(108)로 전송한다(S404).
한편, 실험 센터(110)에서는 다양한 환경 조건에서(온도, 지역, 날씨, 주행환경, 시간) 실험을 행하여 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 데이터를 서버(108)로 전송한다(S406).
서버인 배터리 상태 예측 장치(108)의 제1 통신부(200)는 차량(100)으로부터 측정된 배터리 셀 정보와 환경 정보를 수신하고, 실험 센터(110)로부터 실험 데이터를 수신한다(S408).
상태 예측부(204)는 제1 통신부(200)에서 수신한 배터리 셀 정보 및 환경 정보, 및 제2 통신부(202)에서 수신한 실험 데이터를 이용하여 배터리 상태를 예측한다(S410).
이 때에, 상태 예측부(204)는 차량의 환경 정보 및 배터리 정보와 동일 또는 유사한 실험 데이터를 이용하여 해당 차량의 배터리 상태 예측을 할 수 있다. 배터리 상태로는 배터리 셀 충전 상태 및 배터리 셀 퇴화 상태를 포함할 수 있다. 배터리 셀 퇴화 상태는 내부 저항 값을 통해서 예측될 수 있다. 즉, 상태 예측부(204)는 배터리 셀의 상태를 예측할 때, 해당 배터리 셀의 충전 상태를 예측하고(S412), 해당 배터리 셀의 퇴화 상태를 예측한다(S414).
주행 가능 거리 예측부(206)는 상태 예측부(204)에서 예측된 배터리 셀 충전 상태를 수신한다. 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태를 이용하여 차량의 주행 가능 거리를 산출한다(S418). 또한, 주행 가능 거리 예측부(206)는 수신한 배터리 셀 충전 상태뿐만 아니라, 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 주행 가능 거리를 산출할 수도 있다.
급속 충전 예측부(208)는 상태 예측부(204)에서 예측된 배터리 셀 퇴화 상태를 수신한다. 급속 충전 예측부(208)는 수신한 배터리 셀 퇴화 상태를 이용하여 차량의 급속 충전 전류 및 시간을 산출한다(S420). 또한, 급속 충전 예측부(208)는 수신한 실험 데이터 및 수신한 차량의 환경 정보를 더 고려하여 차량의 급속 충전 전류 및 시간을 산출할 수 있다.
배터리 셀 발화 예측부(210)는 실험 데이터에 포함된 셀 발화 데이터, 차량으로부터 수신한 환경 정보 및 배터리 셀 정보를 이용하여 배터리 셀의 발화 가능성을 예측한다(S416).
저장부(211)는 차량의 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성을 저장한다(S422).
제1 통신부(200)는 예측된 행 가능 거리, 급속 충전 전류 및 시간, 및 셀 발화 가능성 정보를 차량으로 전송한다(S424).
차량의 BMS(104)는 실시간으로 에너지 상태 예측 장치(108)로부터 예측된 배터리 셀 상태, 주행 가능 거리, 급속 충전 전류 및 시간, 셀 발화 가능성을 수신한다. BMS(104)는 에너지 상태 예측 장치(108)로부터 수신한 배터리 셀 상태값과 BMS(104)에서 예측한 배터리 셀 상태값의 차이값이 미리 설정된 범위, 예를 들어 5% 내에 있는지 여부를 판단한다(S425).
비교 결과 BMS(104)에서 예측한 값과 에너지 상태 예측 장치(108)에서 예측한 값의 차이가 미리 설정된 범위 내이면 에너지 상태 예측 장치(108)에서 수신된 주행 가능 거리, 급속 충전 전류 및 시간, 셀 발화 가능성 등을 차량 내의 디스플레이 상에 디스플레이한다(S430).
비교 결과 BMS(104)에서 예측한 값과 에너지 상태 예측 장치(108)에서 예측한 값의 차이가 미리 설정된 범위를 넘어가면, 차량 주행 환경이 변화했는지 여부를 판단한다(S426).
변화하지 않았다면 차량의 배터리 상태 예측 알고리즘이 고장인 것으로 판단하고(S428), 차량 외부 환경이 변화했다고 판단되면, 다시 측정된 차량의 환경 정보 및 배터리 셀의 정보를 에너지 상태 예측 장치(108)로 전송하여 배터리 셀 상태 예측을 다시 시작한다(S400).
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 배터리 팩에 포함된 배터리 관리 시스템에서 측정된 복수의 배터리 셀의 온도, 전류, 전압 데이터를 수신하고, 해당 배터리 셀이 사용되는 차량으로부터 상기 차량이 주행 중인 제1 환경 정보를 수신하는 제1 통신부;
    외부로부터 다양한 환경에서의 배터리 셀 또는 팩의 상태에 대한 실험 데이터를 수신하는 제2 통신부; 및
    상기 수신된 복수의 배터리 셀 각각의 온도, 전류, 전압 및 상기 제1 환경 정보와 상기 상태 실험 데이터를 이용하여 배터리 상태를 예측하는 배터리 상태 예측부를 포함하고,
    상기 배터리 상태는 배터리 셀 충전상태 및 배터리 셀 퇴화상태를 포함하는 배터리 상태 예측 장치.
  2. 청구항 1에 있어서,
    상기 배터리 셀 충전 상태를 기초로 상기 차량의 주행거리를 예측하는 주행 가능 거리 예측부;
    상기 배터리 셀 퇴화상태를 기초로 상기 배터리 셀이 포함된 배터리 팩의 급속 충전 전류 및 시간을 예측하는 급속 충전 예측부; 및
    상기 실험 데이터에 포함된 셀 발화 데이터를 이용하여 배터리 셀 발화 가능성을 예측하는 배터리 셀 발화 예측부를 더 포함하고,
    상기 제1 통신부는 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값 중 적어도 하나를 상기 배터리 관리 시스템으로 송신하는 배터리 상태 예측 장치.
  3. 청구항 2에 있어서,
    상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부는 각각 제1 시간 간격으로 미리 설정된 횟수만큼 예측을 수행하는 것을 한 주기로 하여 예측을 수행하고, 한 주기 예측 동안 상기 차량이 주행하는 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하인지 여부를 판단하는 제어부를 더 포함하고,
    상기 한 주기 예측 동안 상기 차량의 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하이면 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부의 상기 결과값을 상기 차량으로 전송하고,
    상기 한 주기 예측 동안 상기 차량의 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치를 초과하면 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 및 상기 배터리 셀 발화 예측부는 변화된 환경 조건에서 다시 결과값을 예측하는 배터리 상태 예측 장치.
  4. 청구항 3에 있어서,
    상기 한 주기는 0.7초 이내로 설정되고, 상기 미리 설정된 횟수는 상기 한 주기에 기초하여 결정되는 배터리 상태 예측 장치.
  5. 청구항 2에 있어서,
    상기 제1 통신부에 의하여 송신된 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성의 예측 결과값에 대하여 미리 설정된 오차 범위를 벗어나면, 상기 제1 통신부는 상기 차량으로부터 해당 오차 정보 및 상기 차량의 제2 환경 정보를 수신하고,
    상기 제1 환경 정보와 상기 제2 환경 정보가 동일한 값이면 상기 차량의 알고리즘의 고장으로 진단하여 상기 제1 통신부로 하여금 상기 차량의 알고리즘 이상 신호를 송신하도록 하고, 상기 제1 환경 측정 데이터와 상기 제2 환경 측정 데이터가 동일하지 않으면 상기 배터리 셀 상태 예측부로 하여금 제2 환경 측정 데이터를 이용하여 다시 배터리 셀의 상태를 예측하도록 하는 제어부를 더 포함하는 배터리 상태 예측 장치.
  6. 청구항 5에 있어서,
    상기 미리 설정된 오차 범위는 5%인 배터리 상태 예측 방법.
  7. 청구항 2에 있어서,
    상기 제1 통신부에 의하여 송신된 상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성 예측 결과값이 미리 설정된 오차 범위를 벗어나지 않으면,
    상기 주행 가능 거리 예측부, 상기 급속 충전 예측부 또는 상기 배터리 셀 발화 예측부에서 예측된 결과값이 차량의 디스플레이 상에 디스플레이되는 배터리 상태 예측 장치.
  8. 배터리 셀의 온도, 전류 및 전압과, 차량이 주행되는 환경 정보를 이용하여 배터리 셀의 상태를 예측하는 배터리 상태 예측 장치에 의하여 수행되는 배터리 상태 예측 방법으로서,
    차량의 배터리 관리 시스템에서 측정된 배터리 셀의 온도, 전류 및 전압과, 상기 차량이 주행하는 환경 정보 및 실험 데이터를 이용하여 배터리 셀의 상태를 예측하는 제1 단계; 및
    상기 예측된 배터리 셀의 상태를 이용하여 상기 차량의 주행 가능 거리, 상기 차량의 급속 충전 전류 및 시간을 예측하는 제2 단계를 포함하고,
    상기 실험 데이터는 다양한 환경 조건에서의 배터리 셀의 상태에 대한 실험 결과에 대한 것인 배터리 상태 예측 방법.
  9. 청구항 8에 있어서,
    상기 배터리 셀의 상태는 배터리 셀의 충전 상태 및 배터리 셀의 퇴화 상태를 포함하고,
    상기 차량의 주행 가능 거리는 상기 배터리 셀의 충전 상태를 이용하여 예측되고, 상기 차량의 급속 충전 전류 및 시간은 상기 배터리 셀의 퇴화 상태를 이용하여 예측되는 배터리 상태 예측 방법.
  10. 청구항 8에 있어서,
    상기 실험 데이터는 셀 발화 데이터를 더 포함하고,
    상기 제2 단계는 예측된 상기 배터리 셀의 상태와 상기 셀 발화 데이터를 이용하여 상기 배터리 셀의 발화 가능성을 예측하는 단계를 포함하는 배터리 상태 예측 방법.
  11. 청구항 10에 있어서,
    상기 제2 단계는 제1 시간 간격으로 미리 설정된 횟수만큼 수행되는 것을 한 주기로 하여 수행되고, 제2 단계가 한 주기 동안 수행되는 동안 상기 차량이 주행하는 환경을 나타내는 데이터의 변화량이 미리 설정된 제1 수치 이하인지 여부를 판단하는 단계를 더 포함하고,
    상기 환경을 나타내는 데이터의 변화량이 상기 제1 수치 이하이면, 상기 예측된 주행 가능 거리, 급속 충전 전류 및 시간, 및 상기 배터리 셀의 발화 가능성 정보를 상기 차량으로 전송하고,
    상기 환경을 나타내는 데이터의 변화가 상기 제1 수치를 초과하면 상기 제1 단계를 다시 수행하는 배터리 상태 예측 방법.
  12. 청구항 10에 있어서,
    상기 한 주기는 0.7초 이내로 설정될 수 있고,
    상기 미리 설정된 횟수는 상기 한 주기에 기초하여 결정되는 배터리 상태 예측 방법.
  13. 청구항 10에 있어서,
    예측된 상기 차량의 주행 가능 거리, 상기 급속 충전 전류 및 시간, 상기 셀 발화 가능성 정보와 상기 차량의 알고리즘에 의하여 산출된 주행 가능 거리, 급속 충전 전류 및 시간, 또는 배터리 셀 발화 가능성 예측 결과값의 차이가 미리 설정된 오차 범위를 벗어나면, 상기 차량으로부터 새로운 배터리 셀의 온도, 전류 및 전압과, 차량이 주행되는 환경 정보를 수신하여 상기 제1 단계를 다시 수행하는 배터리 상태 예측 방법.
  14. 청구항 13에 있어서,
    상기 미리 설정된 오차 범위는 5%인 배터리 상태 예측 방법.
PCT/KR2020/009784 2019-07-31 2020-07-24 배터리 상태 예측 장치 및 배터리 상태 예측 방법 WO2021020817A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080048763.7A CN114072310B (zh) 2019-07-31 2020-07-24 用于预测电池状态的设备和方法
JP2022500509A JP7389217B2 (ja) 2019-07-31 2020-07-24 電池状態予測装置および電池状態予測方法
US17/628,731 US20220260641A1 (en) 2019-07-31 2020-07-24 Apparatus and Method for Predicting State of Battery
CN202410011241.XA CN117922375A (zh) 2019-07-31 2020-07-24 用于预测电池状态的设备和方法
EP20847019.5A EP3981642A4 (en) 2019-07-31 2020-07-24 BATTERY STATUS PREDICTION DEVICE AND BATTERY STATUS PREDICTION METHOD
JP2023195008A JP2024026100A (ja) 2019-07-31 2023-11-16 電池状態予測装置および電池状態予測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0093275 2019-07-31
KR1020190093275A KR20210016134A (ko) 2019-07-31 2019-07-31 배터리 상태 예측 장치 및 배터리 상태 예측 방법

Publications (1)

Publication Number Publication Date
WO2021020817A1 true WO2021020817A1 (ko) 2021-02-04

Family

ID=74230761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009784 WO2021020817A1 (ko) 2019-07-31 2020-07-24 배터리 상태 예측 장치 및 배터리 상태 예측 방법

Country Status (6)

Country Link
US (1) US20220260641A1 (ko)
EP (1) EP3981642A4 (ko)
JP (2) JP7389217B2 (ko)
KR (1) KR20210016134A (ko)
CN (2) CN114072310B (ko)
WO (1) WO2021020817A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059922A1 (ko) * 2020-09-21 2022-03-24 주식회사 엘지에너지솔루션 배터리 팩 내부에서 무선 통신 방법 및 그 방법을 제공하는 마스터 bms
CN113295697A (zh) * 2021-04-14 2021-08-24 蔚来汽车科技(安徽)有限公司 换电站的电池更换检测方法
KR20240039531A (ko) * 2022-09-19 2024-03-26 주식회사 엘지에너지솔루션 배터리 상태 정보 제공 장치 및 그것의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140042306A (ko) * 2012-09-28 2014-04-07 (주)진우소프트이노베이션 전기자동차의 배터리 소모량에 관련된 가중치 정보의 수집 및 그 가중치 정보를 이용한 주행효율 판단 장치와 그 방법
KR101449291B1 (ko) * 2013-05-30 2014-10-08 현대자동차주식회사 전기자동차의 배터리 충전시간예상 시스템
JP2015070722A (ja) * 2013-09-30 2015-04-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車のバッテリ冷却装置
KR101527136B1 (ko) * 2013-12-19 2015-06-09 현대오트론 주식회사 전기 자동차용 배터리 진단 장치 및 그 방법
KR101716460B1 (ko) * 2016-02-11 2017-03-15 주식회사 타오스 배터리 상태정보를 이용한 전기자동차 케어시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
CN100492751C (zh) * 2007-03-09 2009-05-27 清华大学 基于标准电池模型的镍氢动力电池荷电状态的估计方法
CN101093902A (zh) * 2007-07-12 2007-12-26 奇瑞汽车有限公司 用于混合动力汽车的分步式电池控制系统
JP5186287B2 (ja) * 2008-06-09 2013-04-17 プライムアースEvエナジー株式会社 車両運行制御システム
US8531154B2 (en) * 2009-06-18 2013-09-10 Toyota Jidosha Kabushiki Kaisha Battery system and battery system-equipped vehicle
US20150123595A1 (en) * 2013-11-04 2015-05-07 Xiam Technologies Limited Intelligent context based battery charging
US9878631B2 (en) * 2014-02-25 2018-01-30 Elwha Llc System and method for predictive control of an energy storage system for a vehicle
US10507730B2 (en) * 2017-10-19 2019-12-17 Ford Global Technologies, Llc Electric vehicle cloud-based charge estimation
CN108736079A (zh) * 2018-04-08 2018-11-02 江西优特汽车技术有限公司 一种动力电池热失控扩散预警系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140042306A (ko) * 2012-09-28 2014-04-07 (주)진우소프트이노베이션 전기자동차의 배터리 소모량에 관련된 가중치 정보의 수집 및 그 가중치 정보를 이용한 주행효율 판단 장치와 그 방법
KR101449291B1 (ko) * 2013-05-30 2014-10-08 현대자동차주식회사 전기자동차의 배터리 충전시간예상 시스템
JP2015070722A (ja) * 2013-09-30 2015-04-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車のバッテリ冷却装置
KR101527136B1 (ko) * 2013-12-19 2015-06-09 현대오트론 주식회사 전기 자동차용 배터리 진단 장치 및 그 방법
KR101716460B1 (ko) * 2016-02-11 2017-03-15 주식회사 타오스 배터리 상태정보를 이용한 전기자동차 케어시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3981642A4 *

Also Published As

Publication number Publication date
EP3981642A4 (en) 2022-08-24
CN114072310B (zh) 2024-01-23
JP7389217B2 (ja) 2023-11-29
US20220260641A1 (en) 2022-08-18
CN117922375A (zh) 2024-04-26
CN114072310A (zh) 2022-02-18
JP2022539800A (ja) 2022-09-13
EP3981642A1 (en) 2022-04-13
JP2024026100A (ja) 2024-02-28
KR20210016134A (ko) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2021020817A1 (ko) 배터리 상태 예측 장치 및 배터리 상태 예측 방법
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2012091287A1 (ko) 이차전지 셀의 퇴화 정도를 반영한 배터리 팩의 관리 장치와 방법 및 이를 구비한 배터리 팩
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2010053326A2 (ko) 2차 배터리 팩의 전류 전압 동기화 측정 장치 및 방법
WO2016122238A1 (ko) 배터리의 상태 추정 장치 및 방법
WO2019146928A1 (ko) Soh 분석 장치 및 방법
WO2020080881A1 (ko) 배터리 관리 장치
WO2016013720A1 (ko) 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2021157821A1 (ko) 리튬 플레이팅 검출 방법, 이를 이용한 배터리 관리 방법 및 장치
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2019124806A1 (ko) 통신 이상을 진단하기 위한 장치 및 방법
WO2022019612A1 (ko) 듀얼 배터리의 배터리 간 충/방전 제어 시스템 및 방법
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2022039505A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2019156403A1 (ko) 이차 전지 상태 추정 장치 및 방법
WO2021256864A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2021025295A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2022250332A1 (ko) 배터리 팩 온도 제어 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020847019

Country of ref document: EP

Effective date: 20220107

NENP Non-entry into the national phase

Ref country code: DE