WO2016013720A1 - 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템 - Google Patents

공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템 Download PDF

Info

Publication number
WO2016013720A1
WO2016013720A1 PCT/KR2014/010369 KR2014010369W WO2016013720A1 WO 2016013720 A1 WO2016013720 A1 WO 2016013720A1 KR 2014010369 W KR2014010369 W KR 2014010369W WO 2016013720 A1 WO2016013720 A1 WO 2016013720A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
battery pack
cooled cooling
cooling
battery
Prior art date
Application number
PCT/KR2014/010369
Other languages
English (en)
French (fr)
Inventor
김수훈
Original Assignee
티에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티에스 주식회사 filed Critical 티에스 주식회사
Priority to CN201480001182.2A priority Critical patent/CN105392674B/zh
Publication of WO2016013720A1 publication Critical patent/WO2016013720A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle driving system having an air-cooled cooling-based hermetic battery pack, and more particularly, to a vehicle in a state in which the vehicle can be operated using a hermetic battery pack having a Peltier element that is switched from a conventional water-cooling to an air-cooled cooling.
  • a vehicle drive system having an air-cooled cooling-based hermetic battery pack for driving is performed.
  • Representative vehicles include hybrid cars, electric motor cars, plug-in cars and fuel cell cars that use electricity as a driving source.
  • the vehicles using electricity as a driving source are all equipped with batteries, and are provided in the floor panel or tire well of the vehicle. Such a battery must cool the heat generated when the vehicle is driven.
  • FIG. 1 is a view showing a commercial vehicle equipped with a battery pack in a commercial vehicle in general.
  • a commercial vehicle including a battery pack 1 other than a traction motor a2 and a motor drive a1
  • the battery pack 1 is located under the vehicle, so a watertight structure is required. do. That is, in the case of a commercial vehicle, it is often driven in a situation where the unpaved roads and driving conditions are worse than that of a passenger vehicle.
  • the battery pack 1 is mounted in the trunk, but the battery pack is located in the lower part of the vehicle. Since (1) is located, it is required to develop a watertight structure and technology to prevent heat generation.
  • the present invention is to solve the above problems, the air-cooled cooling-based hermetic battery to provide a new concept air-cooled heat dissipation method using a Peltier element to switch from the conventional water-cooled to air-cooled cooling method, to enable heat dissipation in a closed space
  • Vehicle drive system equipped with air-cooled cooling-based sealed battery packs to monitor the temperature, voltage, current, etc. of the packs at all times to provide data, so that the vehicle can be driven while maintaining the optimized state for the battery packs. It is to provide.
  • Air-cooled cooling-based sealed battery packs are designed to constantly monitor cell balancing and battery level for air-cooled sealed battery packs with the back off. It is to provide a vehicle drive system provided.
  • a vehicle driving system having an air-cooled cooling-based hermetic battery pack includes a battery module assembly (BMA) 10, a battery management system 2 and a BDU (BDU).
  • BMA battery module assembly
  • BDU BDU
  • the BMS 2 includes a temperature, voltage, cell balancing for each battery cell 11 constituting the BMA 10, At least one monitoring unit for detecting open wires: and CAN communication via current measurement, SOC calculation, and control of CAN transceiver 16 for air-cooled cooling-based sealed battery packs 1 And control through the relay control module 13a.
  • a CPU 13 which controls the power relay 3c of the BMS 2 placed on the movement path of the (+) power source of the BMA 10 and stores log data in the log memory 14; do.
  • the CPU 13 confirms real-time temperature information measured from a temperature sensor (not shown) attached to the cell cartridge 11a of the battery cell 11, and measures the real-time voltage measured from the voltage sensor (not shown). By checking the information, it is desirable to monitor the voltage of the lithium ion battery system for a commercial vehicle using the air-cooled cooling-based sealed battery pack (1).
  • the CPU 13 maintains an even voltage level between each battery cell 11, which is a lithium ion battery cell, and measures the temperature inside the sealed battery pack 1 based on an air-cooled cooling system. It is preferable to control the operation of the device 50 and to perform overcharge and overdischarge prevention, battery remaining amount measurement, current consumption measurement, and short prevention function.
  • the internal connector 15 is connected to the relay control module 13a and the CAN transceiver 16 inside the air-cooled cooling-based hermetic battery pack 1, and externally signals that are components of the BDU 3. It is preferably formed in a structure connected to the connector 3a, the power connector 3b, the power relay 3c, and the shunt resistor 3d.
  • the signal connector 3a corresponds to an I / O interface for receiving a control signal from the internal connector 15 of the BMS 2
  • the power connector 3b includes an air-cooled cooling-based sealed battery pack 1.
  • the shunt resistor 3d is formed between the power supply connector 3b and the line of the negative power supply of the sealed battery pack 1 of the air-cooled cooling base, and according to the control of the CPU 13, the shunt resistor 3d is provided. It is preferable to perform the function to block the power to be transmitted to the MCU (5).
  • the power supply relay 3c is formed between the power supply connector 3b and the line of the negative power supply of the sealed battery pack 1 based on the air-cooled cooling, and relay control module 13a according to the control of the CPU 13. It is preferable to form a relay for the power delivered to the MCU (5) by receiving a signal from the).
  • the air-cooled cooling-based hermetic battery pack 1 is, in addition to the BMA 10 including the plurality of battery cells 11, inside the housing 61 for cooling fins in which the first cooling fins 60 are formed.
  • a Peltier element 50 inserted into the insertion groove 62 and formed in a sealed structure by the housing 61 for cooling fins; It is preferable to further include.
  • the air-cooled cooling-based sealed battery pack 1 supports the lower surfaces of the plurality of battery cells 11 to directly contact the plurality of battery cells 11 and thus the temperature of the plurality of battery cells 11.
  • Primary heat sink 20 is formed in a plate shape to provide an effect of lowering; And a lower surface of the primary heat sink 20 and formed in a hexahedral shape in which the upper surface, the front surface, and the rear surface are open, thereby lowering the temperature to the second through heat generation for the plurality of battery cells 11.
  • the Peltier element 50 is preferably located in a plurality of hermetic structures by the primary hermetic housing 20a and the secondary hermetic housing 30a formed inside the housing 61 for the cooling fins.
  • Vehicle driving system having an air-cooled cooling-based hermetic battery pack according to an embodiment of the present invention, a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to radiate heat in an enclosed space
  • a new concept air-cooled heat dissipation method using a Peltier element to switch from the existing water-cooled to air-cooled cooling method, and to radiate heat in an enclosed space
  • the vehicle driving system having an air-cooled cooling-based hermetic battery pack according to another embodiment of the present invention
  • a harsh environment such as vibration, temperature, humidity of the vehicle for the battery management system (BMS) and the battery cell (cell)
  • BMS battery management system
  • cell battery cell
  • BMS battery management system
  • cell balance and battery level are always monitored for air-cooled cooling-based sealed battery packs that are protected from heat and dust by sealed and insulated structures.
  • FIG. 1 is a view showing a commercial vehicle equipped with a general battery pack.
  • FIG. 2 is a view showing the components of a vehicle drive system 100 having an air-cooled cooling-based hermetic battery pack according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating specific components of a vehicle driving system 100 having an air-cooled cooling-based hermetic battery pack of FIG. 2.
  • FIG. 4 is an air-cooled cooling-based hermetic battery pack 1, an MCU (motor controller unit) 5 and a driving motor (of the vehicle driving system 100 having the air-cooled cooling-based hermetic battery pack of FIG. 2). It is a block diagram which shows the connection relationship with 6).
  • FIG. 5 is a configuration centering on a peltier (peltier) 50 formed inside the air-cooled cooling-based hermetic battery pack 1 of the vehicle driving system 100 having the air-cooled cooling-based hermetic battery pack of FIG. 2. It is a figure which shows the coupling relationship between elements.
  • FIG. 6 is a view showing the structure of the battery cell 11 and the second cooling fin 11b of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 of FIG. 5.
  • FIG. 7 is a view for explaining a configuration relationship between a battery module assembly (BMA) 10 and a secondary cold sink constituting the airtight cooling-based hermetic battery pack 1 of FIG. 5.
  • BMA battery module assembly
  • FIG. 8 is a perspective view illustrating a hermetic structure of the hermetic battery pack 1 based on the air-cooled cooling of FIG. 5.
  • FIG. 9 is a view showing an embodiment in which an attachment member for attaching the airtight cooling-based hermetic battery pack 1 of FIG. 5 to the vehicle is formed.
  • FIG. 10 is an exploded perspective view showing all the components of the airtight cooling-based hermetic battery pack 1 of FIG. 5.
  • the component when one component 'transmits' data or a signal to another component, the component may directly transmit the data or signal to another component, and through at least one other component. This means that data or signals can be transmitted to other components.
  • FIG. 2 is a view showing the components of a vehicle drive system 100 having an air-cooled cooling-based hermetic battery pack according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating specific components of a vehicle driving system 100 having an air-cooled cooling-based hermetic battery pack of FIG. 2.
  • FIG. 4 is an air-cooled cooling-based hermetic battery pack 1, an MCU (motor controller unit) 5 and a driving motor (of the vehicle driving system 100 having the air-cooled cooling-based hermetic battery pack of FIG. 2). It is a block diagram which shows the connection relationship with 6).
  • a vehicle driving system 100 having an air-cooled cooling-based hermetic battery pack includes an air-cooled cooling-based hermetic battery pack 1, a MCU (motor controller unit) 5, and a drive motor (motor) 6.
  • the airtight cooling-based sealed battery pack 1 includes a BMA 10, a BMS 2 and a BDU 3, and a power and control plug 4 (see FIG. 8).
  • the BMS 2 includes a first monitoring unit 12a, a second monitoring unit 12b, a CPU 13, a relay control module 13a, a log memory 14, an internal connector 15, and a CAN transceiver 16. It includes.
  • first monitoring unit 12a and the second monitoring unit 12b are illustrated in two for convenience of description, the temperature, voltage, and cell of the battery cell 11 constituting the battery module assembly (BMA) 10 are illustrated. Cell balancing and detection of open wires are performed and transmitted to the CPU 13.
  • the CPU 13 performs CAN communication through current measurement, SOC calculation, and control of the CAN transceiver 16 for the air-cooled cooling-based sealed battery pack 1, and through the control for the relay control module 13a.
  • the control of the power supply relay 3c of the BMS 2 placed on the moving path of the (+) power source of the BMA 10 is performed, and log data is stored in the log memory 14.
  • the CPU 13 measures a voltage using a current sensor (not shown) for the battery cell 11 when calculating a state of charge (SOC), and then applies a moving average to the measured voltage. An average of several samples before and after the sample point of the voltage measurement is calculated to perform filtering to smooth out the portion of the distortion of the actual value. Thereafter, the CPU 13 calculates an initial state of charge (SOC) for the battery cell 11 measured based on the Open Circuit Voltage (OCV) table.
  • SOC Open Circuit Voltage
  • the CPU 13 of the BMS 2 is formed to monitor the state of the battery cells 11 and the temperature sensing of the battery cells 11 constituting the air-cooled cooling-based sealed battery pack 1, thereby BMS (2) not only checks real-time temperature information measured from a temperature sensor (not shown) attached to the cell cartridge 11a of the battery cell 11, but also air-cooled through real-time voltage information measured from a voltage sensor (not shown).
  • the voltage of a lithium ion battery system for a commercial vehicle is monitored using a sealed battery pack based on cooling.
  • the CPU 13 of the BMS 2 maintains the voltage level evenly between the battery cells 11, which are lithium ion battery cells, as described above (cell balancing), air-cooled cooling-based sealed battery pack (1)
  • the internal temperature is measured to control the operation of the Peltier element 50 as well as to prevent overcharge and overdischarge, to measure the remaining battery capacity, to measure the current consumption, and to prevent the short circuit.
  • the internal connector 15 is connected to the relay control module 13a and the CAN transceiver 16 inside the sealed battery pack 1 of the air-cooled cooling base, and the signal connector 3a, which is a component of the BDU 3, to the outside. ), A power connector 3b, a power relay 3c, and a shunt resistor 3d.
  • the BMS (2) is connected to the BMA (10), and enables the controller to communicate with the MCU (5) corresponding to the microcontroller or the device (CAN) without the host computer in the vehicle. Board).
  • the BDU 3 includes a signal connector 3a, a power supply connector 3b, a power supply relay 3c, and a shunt register 3d.
  • the signal connector 3a corresponds to an I / O interface for receiving a control signal from the internal connector 15 of the BMS 2, and the power connector 3b is inside the sealed battery pack 1 of the air-cooled cooling base. It is connected to the (+) power source and (-) power source from the BMA (10), and has a structure connected to the MCU (5) to the outside of the air-cooled cooling-based sealed battery pack (1).
  • a shunt resistor 3d is formed between the power connector 3b and the (-) power supply line of the air-cooled cooling-based sealed battery pack 1, whereby the shunt resistor 3d is controlled under the control of the CPU 13. Cuts off the power to the MCU 5.
  • the power relay 3c is formed between the power connector 3b and the line of the negative power supply of the sealed battery pack 1 based on the air-cooled cooling, and thus, from the relay control module 13a under the control of the CPU 13. Receives the signal of the to form a relay for the power delivered to the MCU (5).
  • FIG. 5 is a configuration centering on a peltier (peltier) 50 formed inside the air-cooled cooling-based hermetic battery pack 1 of the vehicle driving system 100 having the air-cooled cooling-based hermetic battery pack of FIG. 2. It is a figure which shows the coupling relationship between elements.
  • FIG. 6 is a view showing the structure of the battery cell 11 and the second cooling fin 11b of the battery module assembly (BMA) 10 constituting the air-cooled cooling-based hermetic battery pack 1 of FIG. 5.
  • FIG. 7 is a view for explaining a configuration relationship between a battery module assembly (BMA) 10 and a secondary cold sink constituting the airtight cooling-based hermetic battery pack 1 of FIG. 5.
  • FIG. 8 is a perspective view illustrating a sealed structure of the sealed battery pack 1 based on the air-cooled cooling of FIG. 5.
  • FIG. 9 is a view showing an embodiment in which an attachment member for attaching the airtight cooling-based hermetic battery pack 1 of FIG. 5 to the vehicle is formed.
  • FIG. 10 is an exploded perspective view showing all the components of the airtight cooling-based hermetic battery pack 1 of FIG. 5.
  • the BMS 2 and the BDU 3 are each designed to be small to be mounted together as a second insertion end 61b of the housing 61 for cooling fins.
  • the airtight cooling-based hermetic battery pack 1 includes an outer case 70 for covering an upper portion of the first insertion end 61 a of the cooling fin housing 61, a BMS 2, a BDU 3, and a power and control plug.
  • the air-cooled cooling-based hermetic battery pack 1 includes a BMA 10 including a plurality of battery cells 11 and a primary heat sink.
  • heatsink 20
  • secondary coldsink (30)
  • secondary hermetic housing (30a)
  • cold block 40 cold block 40
  • peltier pellettier: 50
  • first cooling Pin 60 first cooling Pin 60
  • the BMA 10 including the plurality of battery cells 11 is formed in a shape supported by the primary heat sink 20 and the secondary cold sink 30 at the bottom thereof.
  • the primary heat sink 20 directly contacts the plurality of battery cells 11 in a structure supporting the lower surfaces of the plurality of battery cells 11, thereby providing an effect of lowering the temperatures of the plurality of battery cells 11 firstly. In order to form a plate.
  • the secondary cold sink 30 is formed in a hexahedral shape that supports the lower surface of the primary heat sink 20 and has an upper surface, a front surface, and a rear surface open, thereby heating the temperature of the plurality of battery cells 11. It acts as a second lowering.
  • the primary hermetic housing 20a has a hexahedron shape having an open upper surface as an upper object and a lower object, such that a plurality of battery cells 11 are in contact with the primary heat sink 20 and the secondary cold sink 30. Is formed for primary sealing.
  • the secondary sealed housing (30a) is formed by the upper body and the lower object is formed in the upper body and the upper surface surrounding the outer circumferential surface of the primary closed housing (20a), the primary heat sink 20 and the secondary cold sink It is formed for secondary sealing of the plurality of battery cells 11 in contact with 30.
  • the cold concentrating cold block 40 is formed in a rectangular plate shape in contact with the secondary hermetic housing 30a, and has a structure in contact with the Peltier element 50 in the lower portion thereof.
  • the Peltier element 50 is inserted into the insertion groove 62 inside the cooling fin housing 61 in which the first cooling fin 60 is formed, and contacts the cold concentrating cold block 40 on the upper surface.
  • the cooling fin housing 61 is formed of an upper object and a lower object, and each of the upper object and the lower object includes a first insertion end 61a for inserting the secondary sealed housing 30a up to a predetermined height therein.
  • the second insertion end 61b for mounting the BMS 2, the BDU 3 and the power supply and the control plug 4 to be described later is formed, and the upper surface is formed in an open hexahedral shape.
  • the preset height is a Peltier element inserted into the insertion groove 62 of the first insertion end 61a when the first height is inserted into the first insertion end 61a on the cooling fin housing 61 of the secondary hermetic housing 30a. 50) and a position in contact with the upper surface of the laminated structure of the cold concentrating cold block 40 thereon.
  • the battery cell 11 composed of a HEV vehicle lithium ion battery cell generates heat due to instantaneous use of high current, and the battery cell 11 Since the life of is most affected by heat, the heat dissipation structure prevents the inflow of high heat from the outside and contacts the secondary hermetic housing 30a to maintain the internal temperature cooled by the Peltier element 50. It provides a thermal insulation design by the housing 61 for cooling fins. As a result, the first cooling fins 60 and the second cooling fins corresponding to the heat sink and the position of the Peltier element 50 inside the sealed battery pack 1 of the air-cooled cooling-based sealed structure for satisfying the dust and water resistance grades. Provide an optimal shape structure for 11b.
  • Air-cooled cooling-based sealed battery pack (1) has the effect of utilizing the thermoelectric effect to increase the temperature inside.
  • the first cooling fins 60 are formed on the lower surface of the housing 61 for cooling fins such that a plurality of plate-shaped heat dissipation fins face downward with uniform spacing.
  • the first cooling fin 60 is in contact with the outside air during vehicle operation and is formed for heat exchange.
  • Each of the plurality of battery modules 11u constituting the BMA 10 forms second cooling fins 11b on both sides of the cell cartridge 11a that divides the plurality of battery cells 11.
  • the second cooling fin 11b is formed to face in a direction orthogonal to both sides of the battery module 11u at a position in direct contact with all of the plurality of battery cells 11 in one battery module 11u.
  • a plurality of plate-shaped heat sink fins are formed at even intervals.
  • the plurality of battery modules 11u form a battery module assembly (BMA) 10 on a sealed battery pack 1 based on air-cooled cooling using six series connections as lithium ion battery modules.
  • BMA battery module assembly
  • BMS battery management system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 관한 것이다. 본 발명은, BMA(battery module assembly)(10), BMS(battery management system(2) 및 BDU(battery disconnect unit)(3), 그 밖에 전원 및 제어 플러그(4)를 구비한 공냉식 냉각 기반의 밀폐형 배터리팩(1) 외에 MCU(motor controller unit)(5) 및 구동 모터(motor)(6)를 포함하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 있어서, BMS(2)는, BMA(10)를 구성하는 각 배터리 셀(11)에 대한 온도, 전압, 셀 발란스(cell balancing), 개방 선로(open wire)에 대한 탐지를 수행하는 적어도 하나 이상의 모니터링부: 및 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 대한 전류 측정, SOC 연산, CAN 트랜시버(16)에 대한 제어를 통한 CAN 통신을 수행하며, 릴레이 제어모듈(13a)에 대한 제어를 통해 BMA(10)의 (+)전원의 이동 경로에 놓여진 BMS(2)의 전원릴레이(3c)에 대한 제어를 수행하며, 로그메모리(14)로 로그 데이터 저장을 수행하는 CPU(13); 를 포함하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템을 제공한다.

Description

공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
본 발명은 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 관한 것으로, 보다 구체적으로는, 기존 수냉식에서 공냉식의 냉각방식으로 전환된 펠티어 소자를 구비한 밀폐형 배터리팩을 이용해 운전 가능한 상태에서 차량 구동이 수행되도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 관한 것이다.
최근 이산화탄소 증가 및 지구온난화 등 환경문제가 대두되면서 친환경 차량에 대한 관심이 높아져 각종 친환경차량이 개발되며 양산되고 있다. 대표적인 차량으로 전기를 구동원으로 사용하는 하이브리드 자동차, 전기모터 자동차, 플러그 인 자동차 및 연료전지 자동차 등을 들 수 있다.
이러한, 전기를 구동원으로 사용하는 차량들은 모두 배터리가 탑재되어 있으며, 차량의 플로워 패널 또는 타이어웰에 마련된다. 이러한, 배터리는 차량의 구동시 발생되는 열을 냉각시켜야 한다.
한편, 도 1은 일반적으로 상용차량에서 배터리팩이 장착된 상용차량을 나타내는 도면이다. 도 1을 참조하면, 트랙션모터(traction motor: a2), 모터 드라이브(motor drive: a1) 외의 배터리팩(1)을 포함하는 상용차량에서 배터리팩(1)은 차량 하부에 위치하므로 수밀구조가 요구된다. 즉, 상용차량의 경우, 승용차량보다 비포장의 도로 및 운행조건이 더욱 열악한 상황에서 주행을 할 경우가 많으며, 승용차량의 경우, 배터리팩(1)은 트렁크에 장착되어 있지만, 차량 하부에 배터리팩(1)을 위치하게 되므로 수밀구조 그리고 그에 따른 발열을 방지하기 위한 기술개발이 요구된다.
또한, 발열을 방지하기 위한 구조뿐만이 아니라, 배터리팩(1)을 이용한 구동력 제공시 배터리팩(1)에 대한 온도 및 전압, 전류 등을 상시로 모니터링하여 데이터를 제공함으로써, 배터리팩(1)에 대한 최적화된 상태를 유지하도록 하면서 차량을 구동시키기 위한 기술개발이 요구되고 있다.
[관련기술문헌]
1. 차량 구동 시스템용 유체 냉각 배터리 팩(A fluid cooled battery pack for a vehicle drive system) (특허출원번호 제10-2004-7003613호)
2. 차량용 배터리팩의 전원 차단 장치(Apparatus for shutting off power of battery pack in vehicle) (특허출원번호 제10-2012-0157705호)
본 발명은 상기의 문제점을 해결하기 위한 것으로, 기존 수냉식에서 공냉식의 냉각방식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자를 이용한 신개념 공냉식 방열 방식을 제공하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩에 대한 온도 및 전압, 전류 등을 상시로 모니터링하여 데이터를 제공함으로써, 최종적으로 배터리팩에 대한 최적화된 상태가 유지되면서 차량이 구동되도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템을 제공하기 위한 것이다.
또한, 본 발명은 BMS(battery management system)와 배터리 셀(cell)에 대한 차량의 진동, 온도, 습도 등 가혹한 환경에서 작동되어야 하기 때문에 방열뿐만 아니라, 밀폐 및 단열된 구조에 의해 외부의 열기 및 먼지 등을 차단한 상태의 공냉식 냉각 기반의 밀폐형 배터리팩에 대한 셀 발란스(cell balancing) 및 배터리 잔량을 상시로 모니터링하여 이상이 생기는 경우 차량 구동이 정지 또는 중단되도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템을 제공하기 위한 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위해 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템은, BMA(battery module assembly)(10), BMS(battery management system(2) 및 BDU(battery disconnect unit)(3), 그 밖에 전원 및 제어 플러그(4)를 구비한 공냉식 냉각 기반의 밀폐형 배터리팩(1) 외에 MCU(motor controller unit)(5) 및 구동 모터(motor)(6)를 포함하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 있어서, BMS(2)는, BMA(10)를 구성하는 각 배터리 셀(11)에 대한 온도, 전압, 셀 발란스(cell balancing), 개방 선로(open wire)에 대한 탐지를 수행하는 적어도 하나 이상의 모니터링부: 및 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 대한 전류 측정, SOC 연산, CAN 트랜시버(16)에 대한 제어를 통한 CAN 통신을 수행하며, 릴레이 제어모듈(13a)에 대한 제어를 통해 BMA(10)의 (+)전원의 이동 경로에 놓여진 BMS(2)의 전원릴레이(3c)에 대한 제어를 수행하며, 로그메모리(14)로 로그 데이터 저장을 수행하는 CPU(13); 를 포함한다.
*이때, CPU(13)는, 배터리 셀(11)의 셀 카트리지(11a)에 부착된 온도센서(미도시)로부터 측정된 실시간 온도 정보를 확인하며, 전압센서(미도시)로부터 측정된 실시간 전압 정보를 확인을 통해 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 전압을 모니터링하는 것이 바람직하다.
또한, CPU(13)는, 리튬 이온 배터리 셀인 각 배터리 셀(11) 간의 전압레벨을 균등하게 유지하도록 하며(cell balancing), 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 측정하여, 펠티어 소자(50)의 동작 유무를 제어하며, 과충전 및 과방전 방지, 배터리 잔량 측정, 소비 전류 측정, 쇼트 방지 기능을 수행하는 것이 바람직하다.
또한, 내부 커넥터(15)는, 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 릴레이 제어모듈(13a) 및 CAN 트랜시버(16)와 연결되며, 외부로는 BDU(3)의 각 구성요소인 시그널 커넥터(3a), 전원 커넥터(3b), 전원릴레이(3c) 및 션트 레지스터(3d)와 연결된 구조로 형성되는 것이 바람직하다.
또한, 시그널 커넥터(3a)는, BMS(2)의 내부 커넥터(15)로부터 제어 신호를 수신하기 위한 I/O 인터페이스에 해당하며, 전원 커넥터(3b)는, 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부로는 BMA(10)로부터 (+)전원 및 (-)전원과 연결되며, 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 외부로는 MCU(5)와 연결된 구조를 갖는 것이 바람직하다.
또한, 션트 레지스터(3d)는, 전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에 형성되어, CPU(13)의 제어에 따라 션트 레지스터(3d)가 MCU(5)로 전달되는 전원을 차단하는 기능을 수행하는 것이 바람직하다.
또한, 전원릴레이(3c)는, 전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에 형성되어 CPU(13)의 제어에 따른 릴레이 제어모듈(13a)로부터의 신호를 전달받아 MCU(5)로 전달되는 전원에 대한 릴레이를 형성하는 것이 바람직하다.
또한, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은, 다수의 배터리 셀(11)을 포함하는 BMA(10) 외에, 하부면으로 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 냉각핀용 하우징(61)에 의한 밀폐된 구조 내에 형성되는 펠티어 소자(50); 를 더 포함하는 것이 바람직하다.
또한, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은, 다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉하여 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 판 형상으로 형성되는 1차 히트싱크(20); 및 1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성되어 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행하는 2차 콜드싱크(30); 를 더 포함하며, 펠티어 소자(50)는, 냉각핀용 하우징(61) 내부의 형성된 1차 밀폐하우징(20a) 및 2차 밀폐하우징(30a)에 의해 다중의 밀폐 구조 내에 위치하는 것이 바람직하다.
본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템은, 기존 수냉식에서 공냉식의 냉각방식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자를 이용한 신개념 공냉식 방열 방식을 제공하도록 하기 위한 공냉식 냉각 기반의 밀폐형 배터리팩에 대한 온도 및 전압, 전류 등을 상시로 모니터링하여 데이터를 제공함으로써, 최종적으로 배터리팩에 대한 최적화된 상태가 유지되면서 차량이 구동되도록 하는 효과를 제공한다.
뿐만 아니라, 본 발명의 다른 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템은, BMS(battery management system)와 배터리 셀(cell)에 대한 차량의 진동, 온도, 습도 등 가혹한 환경에서 작동되어야 하기 때문에 방열뿐만 아니라, 밀폐 및 단열된 구조에 의해 외부의 열기 및 먼지 등을 차단한 상태의 공냉식 냉각 기반의 밀폐형 배터리팩에 대한 셀 발란스(cell balancing) 및 배터리 잔량을 상시로 모니터링하여 이상이 생기는 경우 차량 구동이 정지 또는 중단되도록 하는 효과를 제공한다.
도 1은 일반적인 배터리팩이 장착된 상용차량을 나타내는 도면이다.
도 2는 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100)의 구성요소를 나타내는 도면이다.
도 3은 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100)에 대한 구체적인 구성요소를 나타내는 도면이다.
도 4는 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100) 중 공냉식 냉각 기반의 밀폐형 배터리팩(1)과 MCU(motor controller unit)(5) 및 구동 모터(motor)(6)와의 연결 관계를 나타내는 블록도이다.
도 5는 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100) 중 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 내부에 형성되는 펠티어 소자(peltier: 50)를 중심으로 한 구성요소 간의 결합관계를 나타내는 도면이다.
도 6은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10) 중 배터리 셀(11)과 제 2 냉각핀(11b)의 구조를 나타내는 도면이다.
도 7은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10)과 2차 콜드싱크(coldsink)의 구성 관계를 설명하기 위한 도면이다.
도 8은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 밀폐형 구조를 설명하기 위한 사시도이다.
도 9는 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 차량으로의 부착을 위한 부착 부재가 형성된 실시예를 나타내는 도면이다.
도 10은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 구성요소를 모두 표시한 분해 사시도이다.
이하, 본 발명의 바람직한 실시예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 명세서에 있어서는 어느 하나의 구성요소가 다른 구성요소로 데이터 또는 신호를 '전송'하는 경우에는 구성요소는 다른 구성요소로 직접 상기 데이터 또는 신호를 전송할 수 있고, 적어도 하나의 또 다른 구성요소를 통하여 데이터 또는 신호를 다른 구성요소로 전송할 수 있음을 의미한다.
도 2는 본 발명의 실시예에 따른 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100)의 구성요소를 나타내는 도면이다.
도 3은 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100)에 대한 구체적인 구성요소를 나타내는 도면이다.
도 4는 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100) 중 공냉식 냉각 기반의 밀폐형 배터리팩(1)과 MCU(motor controller unit)(5) 및 구동 모터(motor)(6)와의 연결 관계를 나타내는 블록도이다.
도 2 내지 도 4를 참조하면, 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100)은 공냉식 냉각 기반의 밀폐형 배터리팩(1), MCU(motor controller unit)(5) 및 구동 모터(motor)(6)를 포함한다.
그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)은 BMA(10), BMS(2) 및 BDU(3), 그 밖에 전원 및 제어 플러그(power&control plug)(4, 도 8 참조)를 포함한다.
BMS(2)는 제 1 모니터링부(12a), 제 2 모니터링부(12b), CPU(13), 릴레이 제어모듈(13a), 로그메모리(14), 내부 커넥터(15) 및 CAN 트랜시버(16)를 포함한다.
제 1 모니터링부(12a) 및 제 2 모니터링부(12b)는 설명의 편의를 위해 2개로 도시되었지만, BMA(battery module assembly)(10)를 구성하는 배터리 셀(11)에 대한 온도, 전압, 셀 발란스(cell balancing), 개방 선로(open wire)에 대한 탐지를 수행하여, CPU(13)로 전송한다.
CPU(13)는 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 대한 전류 측정, SOC 연산, CAN 트랜시버(16)에 대한 제어를 통한 CAN 통신을 수행하며, 릴레이 제어모듈(13a)에 대한 제어를 통해 BMA(10)의 (+)전원의 이동 경로에 놓여진 BMS(2)의 전원릴레이(3c)에 대한 제어를 수행하며, 로그메모리(14)로 로그 데이터 저장을 수행한다. 여기서 CPU(13)는 SOC(State Of Charge) 산정시, 배터리 셀(11)에 대한 전류 센서(미도시)를 이용해 전압을 측정한 뒤, 측정된 전압에 대해 이동 평균법(Moving average)을 적용함으로써 전압 측정의 샘플 포인트의 전후 몇 개의 샘플에 대한 평균을 계산하여, 실제 값의 왜곡에 대한 부분을 완만하도록 하는 필터링을 수행한다. 이후, CPU(13)는 OCV(Open Circuit Voltage) 테이블을 기준으로 측정되는 배터리 셀(11)에 대한 초기 SOC(State Of Charge)을 산정한다.
즉, BMS(2)의 CPU(13)는 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 배터리 셀(11)에 대한 온도 센싱과 배터리 셀(11)의 상태를 모니터링 하기 위해 형성됨으로써, BMS(2)는 배터리 셀(11)의 셀 카트리지(11a)에 부착된 온도센서(미도시)로부터 측정된 실시간 온도 정보를 확인할 뿐만 아니라, 전압센서(미도시)로부터 측정된 실시간 전압 정보를 통해 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 전압을 모니터링한다.
뿐만 아니라, BMS(2)의 CPU(13)는 상술한 바와 같이 리튬 이온 배터리 셀인 각 배터리 셀(11) 간의 전압레벨을 균등하게 유지하도록 하며(cell balancing), 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 측정하여, 펠티어 소자(50)의 동작 유무를 제어할 뿐만 아니라, 과충전 및 과방전 방지, 배터리 잔량 측정, 소비 전류 측정, 쇼트 방지 기능을 수행한다.
내부 커넥터(15)는 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 릴레이 제어모듈(13a) 및 CAN 트랜시버(16) 등과 연결되며, 외부로는 BDU(3)의 각 구성요소인 시그널 커넥터(3a), 전원 커넥터(3b), 전원릴레이(3c) 및 션트 레지스터(3d)와 연결된 구조로 형성된다.
이러한 구성을 통해 BMS(2)는 BMA(10)와 연결된 구조로, 차량 내에서 호스트 컴퓨터 없이 마이크로 콘트롤러나 장치에 해당하는 MCU(5)와 서로 CAN(Controller Area Network) 통신이 가능한 온 보드(On Board) 형태로 제공된다.
다음으로, BDU(3)는 시그널 커넥터(3a), 전원 커넥터(3b), 전원릴레이(3c) 및 션트 레지스터(3d)를 포함한다.
시그널 커넥터(3a)는 BMS(2)의 내부 커넥터(15)로부터 제어 신호를 수신하기 위한 I/O 인터페이스에 해당하며, 전원 커넥터(3b)는 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부로는 BMA(10)로부터 (+)전원 및 (-)전원과 연결되며, 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 외부로는 MCU(5)와 연결된 구조를 갖는다.
한편, 전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에는 션트 레지스터(3d)가 형성됨으로써, CPU(13)의 제어에 따라 션트 레지스터(3d)가 MCU(5)로 전달되는 전원을 차단하는 기능을 수행한다.
전원릴레이(3c)는 전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에 형성됨으로써, CPU(13)의 제어에 따른 릴레이 제어모듈(13a)로부터의 신호를 전달받아 MCU(5)로 전달되는 전원에 대한 릴레이를 형성한다.
도 5는 도 2의 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템(100) 중 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 내부에 형성되는 펠티어 소자(peltier: 50)를 중심으로 한 구성요소 간의 결합관계를 나타내는 도면이다. 도 6은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10) 중 배터리 셀(11)과 제 2 냉각핀(11b)의 구조를 나타내는 도면이다. 도 7은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 구성하는 BMA(battery module assembly)(10)과 2차 콜드싱크(coldsink)의 구성 관계를 설명하기 위한 도면이다.
그리고, 도 8은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 밀폐형 구조를 설명하기 위한 사시도이다. 도 9는 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 차량으로의 부착을 위한 부착 부재가 형성된 실시예를 나타내는 도면이다. 도 10은 도 5의 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 구성요소를 모두 표시한 분해 사시도이다.
도 5 내지 도 10을 참조하면, BMS(2) 및 BDU(3)는 함께 냉각핀용 하우징(61)의 제 2 삽입단(61b)으로 장착되도록 각각 소형으로 설계된다.
즉, 냉각핀용 하우징(61)의 제 1 삽입단(61a)에 형성된 공냉식 냉각 기반의 밀폐형 배터리팩(1)와 연결되어 형성된 BMS(2)의 전단, 그리고 전원 및 제어 플러그(4)의 후단에 형성된다.
공냉식 냉각 기반의 밀폐형 배터리팩(1)은 냉각핀용 하우징(61)의 제 1 삽입단(61a) 상부를 덮기 위한 외장케이스(70)와, BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b) 상부를 덮기 위한 1차 밀폐하우징(20a) 및 2차 밀폐하우징(30a)의 각 상부 객체를 구비함으로써, 차량에 장착이 가능할 뿐만 아니라, 먼지로부터 완벽하게 보호 및 모든 방향에서 분사되는 낮은 압력의 물에 대한 완벽한 수밀구조의 배터리 케이스를 제공한다.
한편, 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 구조에 대해서 구체적으로 살펴보면, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은 다수의 배터리 셀(11)을 포함하는 BMA(10), 1차 히트싱크(heatsink: 20), 2차 콜드싱크(coldsink: 30), 1차 밀폐하우징(20a), 2차 밀폐하우징(30a), 콜드블록(40), 펠티어 소자(peltier: 50), 그리고 제 1 냉각핀(60)을 포함한다.
다수의 배터리 셀(11)을 포함하는 BMA(10)는 하부에 1차 히트싱크(20) 및 2차 콜드싱크(30)에 의해 받쳐지는 형태로 형성된다.
1차 히트싱크(20)는 다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉함으로써, 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 위해 판 형상으로 형성된다.
2차 콜드싱크(30)는 1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성됨으로써, 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행한다.
여기서 1차 밀폐하우징(20a)은 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성됨으로써, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 1차적인 밀폐를 위해 형성된다.
한편, 2차 밀폐하우징(30a)은 1차 밀폐하우징(20a)의 외주면을 감싸는 상부면이 개방된 육면체 형상이 상부 객체 및 하부 객체로 형성됨으로써, 1차 히트싱크(20) 및 2차 콜드싱크(30)와 접촉된 다수의 배터리 셀(11)에 대한 2차적인 밀폐를 위해 형성된다.
냉각집중용 콜드블록(40)은 2차 밀폐하우징(30a)과 맞닿는 사각의 판 형상으로 형성되며, 그 하부에는 펠티어 소자(50)와 맞닿는 구조를 갖는다.
펠티어 소자(50)는 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 상부면에는 냉각집중용 콜드블록(40)과 맞닿는다. 이를 위해 냉각핀용 하우징(61)은 상부 객체와 하부 객체로 이루어지며, 상부 객체 및 하부 객체 각각은 2차 밀폐하우징(30a)을 내부의 미리 설정된 높이까지 삽입하기 위한 제 1 삽입단(61a)과, 후술하는 BMS(2), BDU(3) 및 전원 및 제어 플러그(4)를 실장하기 위한 제 2 삽입단(61b)으로 구분되며, 상부면이 개방된 육면체 형상으로 형성된다. 여기서 미리 설정된 높이는 2차 밀폐하우징(30a)의 냉각핀용 하우징(61) 상에서 제 1 삽입단(61a)으로 삽입시, 제 1 삽입단(61a)의 삽입홈(62) 내부에 삽입된 펠티어 소자(50) 및 그 상부의 냉각집중용 콜드블록(40)의 적층 구조의 상부면과 맞닿는 위치를 의미한다.
이러한 펠티어 소자(50)를 이용한 공냉식 냉각 기반의 밀폐형 배터리팩(1)에 있어서, HEV 차량용 리튬 이온 배터리 셀로 이루어지는 배터리 셀(11)은 순간적인 고전류의 사용으로 인한 발열이 심하고, 배터리 셀(11)의 수명은 열에 영향을 가장 많이 받기 때문에 상술한 방열 구조를 통해 외부로부터의 고열의 유입을 막고, 펠티어 소자(50)에 의해 냉각된 내부의 온도를 유지하기 위해 2차 밀폐하우징(30a)과 맞닿는 냉각핀용 하우징(61)에 의한 단열 구조 설계를 제공한다. 결과적으로, 방진 및 방수의 등급 만족을 위한 밀폐 구조의 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 펠티어 소자(50)의 위치 및 방열판에 해당하는 제 1 냉각핀(60) 및 제 2 냉각핀(11b)에 대한 최적 형상 구조를 제공한다.
또한, 상술한 바와 같이 냉각을 위해 기존의 수냉식에서 공냉식으로 전환하고, 밀폐된 공간에서 방열이 가능하도록 펠티어 소자(50)를 적용한 신개념 공냉식 방열 방식을 제공함과 동시에 펠티어 소자(50)를 이용해 겨울철에는 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 올리기 위한 열전효과 활용할 수 있는 효과가 있다.
제 1 냉각핀(60)은 냉각핀용 하우징(61)의 하부면에 다수의 판 형상의 방열핀이 각각 균일한 이격 간격을 갖고 하부로 향하도록 형성된다. 제 1 냉각핀(60)은 차량운행시 외부 공기와 접촉하며 열교환을 위해 형성된다.
그리고, BMA(10)를 구성하는 다수의 배터리 모듈(11u) 각각은 다수의 배터리 셀(11)을 구분하는 셀 카트리지(11a)의 양측면에 제 2 냉각핀(11b)을 형성한다. 여기서 제 2 냉각핀(11b)은 하나의 배터리 모듈(11u) 내에서의 다수의 배터리 셀(11) 모두와 직접적으로 접촉하는 위치에 배터리 모듈(11u)의 양 측면에서 직교하는 방향을 향하도록 형성된 다수의 판 형상의 방열핀이 균일한 이격 간격을 두고 형성된다.
다수의 배터리 모듈(11u)은 리튬 이온 배터리 모듈로 6개의 직렬 연결을 공냉식 냉각 기반의 밀폐형 배터리팩(1) 상에서 BMA(battery module assembly)(10)을 형성한다.
이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
부호의 설명
1: 공냉식 냉각 기반의 밀폐형 배터리팩
2: BMS(battery management system)
3: BDU(battery disconnect unit)
3a: 시그널 커넥터
3b: 전원 커넥터
3c: 전원릴레이
3d: 션트 레지스터
4: 전원 및 제어 플러그
5: MCU(motor controller unit)
6: 구동모터
10: BMA(battery module assembly)
11: 배터리 셀
11a: 셀 카트리지
11b: 제 2 냉각핀
12a: 제 1 모니터링부
12b: 제 2 모니터링부
13: CPU
13a: 릴레이 제어모듈
14: 로그메모리
15: 내부 커넥터
16: CAN 트랜시버
20: 1차 히트싱크(heatsink)
20a: 1차 밀폐하우징
30: 2차 콜드싱크(coldsink)
30a: 2차 밀폐하우징
40: 콜드블록
50: 펠티어 소자(peltier)
60: 제 1 냉각핀
시그널 커넥터(3a)
전원 커넥터(3b)
전원릴레이(3c)
션트 레지스터(3d)

Claims (9)

  1. BMA(battery module assembly)(10), BMS(battery management system(2) 및 BDU(battery disconnect unit)(3), 그 밖에 전원 및 제어 플러그(4)를 구비한 공냉식 냉각 기반의 밀폐형 배터리팩(1) 외에 MCU(motor controller unit)(5) 및 구동 모터(motor)(6)를 포함하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템에 있어서, BMS(2)는,
    BMA(10)를 구성하는 각 배터리 셀(11)에 대한 온도, 전압, 셀 발란스(cell balancing), 개방 선로(open wire)에 대한 탐지를 수행하는 적어도 하나 이상의 모니터링부: 및
    공냉식 냉각 기반의 밀폐형 배터리팩(1)에 대한 전류 측정, SOC 연산, CAN 트랜시버(16)에 대한 제어를 통한 CAN 통신을 수행하며, 릴레이 제어모듈(13a)에 대한 제어를 통해 BMA(10)의 (+)전원의 이동 경로에 놓여진 BMS(2)의 전원릴레이(3c)에 대한 제어를 수행하며, 로그메모리(14)로 로그 데이터 저장을 수행하는 CPU(13); 를 포함하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  2. 청구항 1에 있어서, CPU(13)는,
    배터리 셀(11)의 셀 카트리지(11a)에 부착된 온도센서(미도시)로부터 측정된 실시간 온도 정보를 확인하며, 전압센서(미도시)로부터 측정된 실시간 전압 정보를 확인을 통해 공냉식 냉각 기반의 밀폐형 배터리팩(1)을 이용한 상용차량용 리튬 이온 배터리 시스템의 전압을 모니터링하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  3. 청구항 2에 있어서, CPU(13)는,
    리튬 이온 배터리 셀인 각 배터리 셀(11) 간의 전압레벨을 균등하게 유지하도록 하며(cell balancing), 공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 온도를 측정하여, 펠티어 소자(50)의 동작 유무를 제어하며, 과충전 및 과방전 방지, 배터리 잔량 측정, 소비 전류 측정, 쇼트 방지 기능을 수행하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  4. 청구항 1에 있어서, 내부 커넥터(15)는,
    공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부의 릴레이 제어모듈(13a) 및 CAN 트랜시버(16)와 연결되며, 외부로는 BDU(3)의 각 구성요소인 시그널 커넥터(3a), 전원 커넥터(3b), 전원릴레이(3c) 및 션트 레지스터(3d)와 연결된 구조로 형성되는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  5. 청구항 4에 있어서, 시그널 커넥터(3a)는,
    BMS(2)의 내부 커넥터(15)로부터 제어 신호를 수신하기 위한 I/O 인터페이스에 해당하며,
    전원 커넥터(3b)는,
    공냉식 냉각 기반의 밀폐형 배터리팩(1) 내부로는 BMA(10)로부터 (+)전원 및 (-)전원과 연결되며, 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 외부로는 MCU(5)와 연결된 구조를 갖는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  6. 청구항 4에 있어서, 션트 레지스터(3d)는,
    전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에 형성되어, CPU(13)의 제어에 따라 션트 레지스터(3d)가 MCU(5)로 전달되는 전원을 차단하는 기능을 수행하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  7. 청구항 4에 있어서, 전원릴레이(3c)는,
    전원 커넥터(3b), 그리고 공냉식 냉각 기반의 밀폐형 배터리팩(1)의 (-)전원의 선로 사이에 형성되어 CPU(13)의 제어에 따른 릴레이 제어모듈(13a)로부터의 신호를 전달받아 MCU(5)로 전달되는 전원에 대한 릴레이를 형성하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  8. 청구항 1에 있어서, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은,
    다수의 배터리 셀(11)을 포함하는 BMA(10) 외에,
    하부면으로 제 1 냉각핀(60)이 형성된 냉각핀용 하우징(61) 내부의 삽입홈(62)으로 삽입되며, 냉각핀용 하우징(61)에 의한 밀폐된 구조 내에 형성되는 펠티어 소자(50); 를 더 포함하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
  9. 청구항 8에 있어서, 공냉식 냉각 기반의 밀폐형 배터리팩(1)은,
    다수의 배터리 셀(11)의 하부면을 받치는 구조로 다수의 배터리 셀(11)과 직접 접촉하여 1차로 다수의 배터리 셀(11)의 온도를 낮추는 효과를 제공하기 판 형상으로 형성되는 1차 히트싱크(20); 및
    1차 히트싱크(20)의 하부면을 받치며 상부면과 전면 및 후면이 개방된 육면체 형상으로 형성되어 다수의 배터리 셀(11)에 대한 발열을 통해 온도를 2차로 낮추는 역할을 수행하는 2차 콜드싱크(30); 를 더 포함하며,
    펠티어 소자(50)는, 냉각핀용 하우징(61) 내부의 형성된 1차 밀폐하우징(20a) 및 2차 밀폐하우징(30a)에 의해 다중의 밀폐 구조 내에 위치하는 것을 특징으로 하는 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템.
PCT/KR2014/010369 2014-07-23 2014-10-31 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템 WO2016013720A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480001182.2A CN105392674B (zh) 2014-07-23 2014-10-31 具备空气冷却式密闭型电池包的车辆驱动系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140092975A KR101584322B1 (ko) 2014-07-23 2014-07-23 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
KR10-2014-0092975 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013720A1 true WO2016013720A1 (ko) 2016-01-28

Family

ID=55163237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010369 WO2016013720A1 (ko) 2014-07-23 2014-10-31 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템

Country Status (3)

Country Link
KR (1) KR101584322B1 (ko)
CN (1) CN105392674B (ko)
WO (1) WO2016013720A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585400A (zh) * 2016-11-28 2017-04-26 芜湖市吉安汽车电子销售有限公司 一种新能源汽车动力电池管理系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102145651B1 (ko) * 2016-08-26 2020-08-18 주식회사 엘지화학 배터리 관리 시스템
KR102192188B1 (ko) * 2017-04-17 2020-12-16 주식회사 엘지화학 과충전 방지 장치 및 방법
CN108237994B (zh) * 2018-02-09 2020-02-14 北京车和家信息技术有限公司 日志信息处理方法、日志信息处理单元及微控制单元mcu
DE102020210454A1 (de) 2019-08-27 2021-05-12 Motional AD LLC (n.d.Ges.d. Staates Delaware) Kühllösungen für autonome Fahrzeuge
DE102020121532A1 (de) 2019-08-29 2021-03-04 Motional AD LLC (n.d.Ges.d. Staates Delaware) Sensorgehäuse
CN113488709A (zh) * 2021-06-04 2021-10-08 天津市捷威动力工业有限公司 一种动力电池包hev系统总成
DE202022106939U1 (de) 2022-12-12 2024-03-19 Hofer Powertrain Innovation Gmbh Sicherheitsvorrichtung mit einer Trenneinheit für die Batterie eines elektrisch angetriebenen Kraftfahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001975A (ko) * 2002-06-29 2004-01-07 현대자동차주식회사 전기자동차의 보조 배터리 전압 보상장치
KR20110128639A (ko) * 2010-05-24 2011-11-30 에스비리모티브 주식회사 배터리 팩
US20110300420A1 (en) * 2010-06-02 2011-12-08 Eaton Corporation Temperature controlled battery pack assembly and methods for using the same
KR20120079674A (ko) * 2011-01-05 2012-07-13 주식회사 엘지화학 차등적 soc 추정의 배터리 관리 장치와 방법 및 배터리 팩
KR20140029800A (ko) * 2012-08-30 2014-03-11 삼성에스디아이 주식회사 배터리 관리 시스템
US20140079977A1 (en) * 2011-05-17 2014-03-20 Nissan Motor Co., Ltd. Battery pack structure for electric vehicles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299473B (zh) * 2010-09-02 2016-12-21 普罗特拉公司 用于电池管理的系统和方法
CN102004222B (zh) * 2010-09-26 2013-03-06 奇瑞汽车股份有限公司 一种车载电池管理系统中继电器状态监测方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001975A (ko) * 2002-06-29 2004-01-07 현대자동차주식회사 전기자동차의 보조 배터리 전압 보상장치
KR20110128639A (ko) * 2010-05-24 2011-11-30 에스비리모티브 주식회사 배터리 팩
US20110300420A1 (en) * 2010-06-02 2011-12-08 Eaton Corporation Temperature controlled battery pack assembly and methods for using the same
KR20120079674A (ko) * 2011-01-05 2012-07-13 주식회사 엘지화학 차등적 soc 추정의 배터리 관리 장치와 방법 및 배터리 팩
US20140079977A1 (en) * 2011-05-17 2014-03-20 Nissan Motor Co., Ltd. Battery pack structure for electric vehicles
KR20140029800A (ko) * 2012-08-30 2014-03-11 삼성에스디아이 주식회사 배터리 관리 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585400A (zh) * 2016-11-28 2017-04-26 芜湖市吉安汽车电子销售有限公司 一种新能源汽车动力电池管理系统

Also Published As

Publication number Publication date
KR101584322B1 (ko) 2016-01-13
CN105392674B (zh) 2018-01-05
CN105392674A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2016013720A1 (ko) 공냉식 냉각 기반의 밀폐형 배터리팩을 구비한 차량 구동 시스템
US6472098B1 (en) Battery device for loading on a mobile system
CN102386448B (zh) 车载用蓄电装置
WO2011126314A2 (ko) 전지모듈용 전압 검출 어셈블리 및 이를 포함하는 전지모듈
WO2011034324A2 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2020055005A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2014014303A1 (ko) 전지모듈 어셈블리
WO2015170920A1 (ko) 노이즈 저감 부재를 포함하는 전지팩
WO2012023732A2 (ko) 콤팩트한 구조의 전지팩
WO2015005612A1 (ko) 전지 어셈블리
US20150023392A1 (en) Battery pack
WO2018174406A1 (ko) 배터리 팩
WO2021096034A1 (ko) 배터리 랙 및 전력 저장 장치
WO2018038348A1 (ko) 배터리 관리 시스템
WO2018199521A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019004553A1 (ko) 배터리 모듈
WO2015163526A1 (ko) 전열 히터 장치
WO2015174714A1 (ko) 스페이서를 포함하는 전지팩
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2019074247A1 (ko) 양방향 냉각구조를 가진 배터리 팩
WO2015046934A1 (ko) 전압 센싱 어셈블리 및 이를 함하는 전지모듈
WO2021020817A1 (ko) 배터리 상태 예측 장치 및 배터리 상태 예측 방법
WO2012148211A2 (ko) 배터리 모듈
JP3339252B2 (ja) 組電池の監視装置
WO2021215571A1 (ko) 배터리 모듈용 모니터링 장치와 이를 구비하는 전기자동차용 배터리 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480001182.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897893

Country of ref document: EP

Kind code of ref document: A1