WO2018131874A1 - 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법 - Google Patents

에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법 Download PDF

Info

Publication number
WO2018131874A1
WO2018131874A1 PCT/KR2018/000439 KR2018000439W WO2018131874A1 WO 2018131874 A1 WO2018131874 A1 WO 2018131874A1 KR 2018000439 W KR2018000439 W KR 2018000439W WO 2018131874 A1 WO2018131874 A1 WO 2018131874A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
battery cells
charging
battery
nth
Prior art date
Application number
PCT/KR2018/000439
Other languages
English (en)
French (fr)
Inventor
김원곤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180002508A external-priority patent/KR102123048B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018559708A priority Critical patent/JP6636654B2/ja
Priority to US16/094,162 priority patent/US10811886B2/en
Priority to PL18739083T priority patent/PL3444921T3/pl
Priority to CN201880001984.1A priority patent/CN109874360B/zh
Priority to EP18739083.6A priority patent/EP3444921B1/en
Publication of WO2018131874A1 publication Critical patent/WO2018131874A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a charging control device and method that can expect energy saving and fast balancing effect in the cell balancing process when charging a high voltage battery consisting of a plurality of battery cells to a full charge state.
  • Batteries are rapidly spreading not only to mobile devices such as mobile phones, laptop computers, smart phones, smart pads, but also to fields such as electric vehicles (EVs, HEVs, PHEVs) and mass storage devices (ESSs). have.
  • EVs electric vehicles
  • HEVs HEVs
  • PHEVs mass storage devices
  • ESSs mass storage devices
  • the high voltage battery mounted in the electric vehicle includes a plurality of battery cells connected in series.
  • each battery cell may include a plurality of unit cells connected in parallel.
  • the battery cell may include one unit cell or a plurality of unit cells connected in parallel.
  • the unit cell refers to one independent cell having a negative terminal and a positive terminal, and physically separable.
  • one pouch type lithium polymer cell may be regarded as a unit cell.
  • the battery cells constituting the high voltage battery do not have the same electrochemical characteristics.
  • the degree of degeneration varies for each battery cell, and thus the performance variation of the battery cells becomes larger.
  • the charge state of each battery cell rises at a different speed.
  • the state of charge is a parameter representing the relative ratio of the capacity charged to date based on the full charge capacity of the battery cell.
  • the state of charge is expressed in% or in numbers between 0-1.
  • the full charge capacity gradually decreases as the number of charge / discharge cycles of the battery cell increases.
  • the deteriorated battery cell When charging is progressed to a full charge state for a high voltage battery, the deteriorated battery cell has a rapid increase rate of charge compared to a battery cell having a relatively small capacity deterioration. This is because the deteriorated battery cells are in a state where the full charge capacity is reduced than that of the undegenerated battery cells. Therefore, while the high voltage battery is being charged, the state of charge of each battery cell is different from each other.
  • Conventional high voltage battery charging techniques include suspending charging and performing cell balancing to eliminate charge state variations between battery cells.
  • buck balancing has a problem that energy is wasted in the cell balancing process.
  • buck balancing is performed, since the state of charge of all battery cells is lowered, there is a problem in that the charging time required for full charge becomes long.
  • FIG. 1 is a conceptual diagram illustrating a problem of a conventional buck balancing technique.
  • n battery cells are connected in series to form a high voltage battery.
  • the high voltage battery is connected to the charging power supply unit 10 for charging.
  • Discharge circuits including switches S 1 -S n and discharge resistors R 1 -R n are individually connected to each battery cell. When a switch of one of the discharge circuits is turned on, the battery cell connected to the corresponding discharge circuit is discharged, thereby lowering the state of charge.
  • Fig. 1 the numerical value displayed on the right side of each battery cell indicates the state of charge.
  • Cells 1 and n are 100% charged, cell 2 is 90% charged, and cell n-1 is 80% charged.
  • the state of charge is the lowest in the n-1 th battery cell.
  • the height of the hatching area displayed on each battery cell represents the magnitude of the state of charge, which is also the same below.
  • Buck balancing is performed until the state of charge of cells 1 and n with 100% state of charge and cell 2 with 90% state of charge becomes the lowest state of charge of cell n-1.
  • the switches S 1 , S 2 , and S n included in the discharge circuits connected to cells 1 , 2 , and n are kept turned on, and the state of charge of each cell is Lowered to 80%
  • the present invention has been made under the background of the prior art as described above, while reducing the energy waste in the process of balancing the state of charge of each battery cell through a forced discharge while charging a high voltage battery to a full charge time, the time required for full charge It is an object of the present invention to provide an improved charging control device and method that can shorten the time.
  • the high voltage battery charge control device for achieving the above technical problem is a device for controlling the charge of the high voltage battery consisting of the first to n-th battery cells connected in series.
  • the charging control device includes: first to nth discharge circuits respectively connected to the first to nth battery cells; A high voltage charging line applying a high voltage charging power to the first battery cell and the nth battery cell and including a high voltage charging switch unit; An auxiliary charging line to which low voltage charging power is applied; First to nth auxiliary charging switch circuits respectively connected to the first to nth battery cells to selectively connect the auxiliary charging line with at least one of the first to nth battery cells; And a control unit electrically coupled to the high voltage charge switch unit, the first to nth discharge circuits, and the first to nth auxiliary charge switch circuits.
  • the control unit (a) calculates the state of charge of the first to n-th battery cells, (b) while the charging of the first to n-th battery cells is in progress, the first to n-th When at least one of the battery cells reaches the full charge state, the high voltage charge switch unit is turned off, and (c) at least one battery cell having the lowest state of charge among the first to nth battery cells is determined as an auxiliary charging target. And determining the remaining battery cells as the forced discharge target, and (d) operating a discharge circuit connected to each of the battery cells determined as the forced discharge target to force discharge the corresponding battery cells, and at the same time, connected to the battery cells determined as the secondary charging target.
  • the auxiliary charging switch circuit is operated to connect the corresponding battery cell to the auxiliary charging line for auxiliary charging, and (e) during the forced discharge of the battery cells.
  • the secondary battery cell is charged and the charge appears the same battery cell, stop the operation of the discharge circuit is associated with the battery cells and is configured to operate the secondary charge switch circuit associated with the battery cell.
  • each of the first to nth discharge circuits may include a discharge switch and a discharge resistor
  • each of the first to nth auxiliary charge switch circuits may include a charge switch
  • control unit (f) stops the operation of all the discharge circuit and all the auxiliary charging switch circuit, if the number of battery cells of the same state of charge in the process of the forced discharge and the auxiliary charging is more than the reference number. And turn on the high voltage charge switch unit.
  • control unit may be configured to repeat the control logic of (a) to (f) until the state of charge of the first to nth battery cells becomes a full charge state.
  • control unit may be configured to increase the reference number as the number of battery cells subject to auxiliary charging increases.
  • the control device for measuring the voltage for the first to nth battery cells; A current measuring unit measuring a magnitude of a charge current or a discharge current for the first to nth battery cells; And a temperature measuring unit measuring a temperature of the first to nth battery cells, wherein the control unit uses a voltage measurement value, a current measurement value, and a temperature measurement value for each of the first to nth battery cells. It may be configured to calculate and monitor the state of charge of the battery cell.
  • the charging control device further includes a connector unit coupled to a charging power supply unit and connected to the high voltage charging line and the auxiliary charging line, wherein the auxiliary charging line is configured to step down the charging voltage applied through the connector unit. It may include a transformer.
  • the transformer is not limited to being included inside the connector portion.
  • the connector unit includes an input terminal to which a high voltage charging cable extending from the charging power supply unit is connected, a first output terminal to which the high voltage charging line is connected, and a second output terminal to which the auxiliary charging line is connected.
  • a high voltage charging cable extending from the charging power supply unit is connected
  • a first output terminal to which the high voltage charging line is connected
  • a second output terminal to which the auxiliary charging line is connected.
  • a method for controlling charge of a high voltage battery including first to nth battery cells connected in series.
  • a discharge circuit connected to each of the battery cells determined as the forced discharge targets is operated to forcibly discharge the corresponding battery cells, and at the same time, a protection charge switch circuit connected to each of the battery cells determined as the secondary charging targets is operated to connect the corresponding battery cells to the auxiliary charging line.
  • a fifth step of auxiliary charging Identifying a battery cell having the same state of charge as a battery cell that is auxiliary charged from among the battery cells forcibly discharged; And a seventh step of stopping the operation of the discharge circuit connected to the identified battery cell and operating the auxiliary charging switch circuit connected to the corresponding battery cell.
  • the operation of all the discharge circuit and all the auxiliary charging switch circuit An eighth step of stopping; And a ninth step of resuming application of the high voltage charging power.
  • the first to the ninth step may be repeated until the state of charge of the first to nth battery cells becomes a full charge state.
  • the charging control method according to the present invention may further include increasing the reference number as the number of battery cells subject to auxiliary charging increases.
  • FIG. 1 is a conceptual diagram illustrating a problem of a conventional buck balancing technique.
  • FIG. 2 is a block diagram illustrating an embodiment of an apparatus for controlling charge of a high voltage battery according to an embodiment of the present invention.
  • FIG. 3 is a flowchart specifically illustrating a method in which a control unit controls charging of a high voltage battery according to an embodiment of the present invention.
  • the battery cell refers to a lithium secondary battery.
  • the lithium secondary battery is a generic term for a secondary battery in which lithium ions act as operating ions during charging and discharging to induce an electrochemical reaction in the positive electrode and the negative electrode.
  • the lithium ion is used as the working ion. All secondary batteries should be interpreted as being included in the category of the lithium secondary battery.
  • the present invention is also applicable to secondary batteries other than the lithium secondary battery. Therefore, even if the operating ion is not a lithium ion, any secondary battery to which the technical idea of the present invention can be applied should be construed as being included in the scope of the present invention regardless of its type.
  • the battery cell may refer to one unit cell or a plurality of unit cells connected in parallel.
  • FIG. 2 is a block diagram illustrating an embodiment of an apparatus for controlling charge of a high voltage battery according to an embodiment of the present invention.
  • the charging control device 20 may include a high voltage including first to nth battery cells B 1 , B 2 ,..., B n-1 , B n connected in series. It is a device that controls the charging of the battery 21.
  • the charge control device 20 includes a connector portion 30.
  • the connector unit 30 may be detachable from the external charging power supply unit 31.
  • the connector unit 30 may be a charging connector provided in the electric vehicle.
  • the charging power supply unit 31 may be a charger for an electric vehicle.
  • the connector unit 30 includes an input terminal 32 to which high voltage charging power output from the charging power supply unit 31 is applied.
  • the connector unit 30 outputs high voltage charging power capable of simultaneously charging the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n when the high voltage battery 21 is being charged. It includes a first output terminal 33.
  • the connector unit 30 outputs auxiliary charging power capable of auxiliary charging of at least one battery cell that is not forcedly discharged when cell balancing is performed in the process of charging the high voltage battery 21 to a full charge state.
  • auxiliary charging power capable of auxiliary charging of at least one battery cell that is not forcedly discharged when cell balancing is performed in the process of charging the high voltage battery 21 to a full charge state.
  • the high voltage charging line 23 is connected to the first output terminal 33, and the auxiliary charging line 24 is connected to the second output terminal 34.
  • the charging power output from the first output terminal 33 and the second output terminal 24 may have the same magnitude.
  • the auxiliary charging line 24 may further include a transformer 35 to reduce the charging power to a level capable of auxiliary charging of at least one battery cell.
  • the power conversion ratio of the transformer 35 may be predetermined according to the number of battery cells to be auxiliary charged through the auxiliary charging line 24.
  • the number of battery cells capable of auxiliary charging may be selected in the range of 1 to n-1. Where n is the total number of battery cells.
  • the transformer 35 may be included in the connector unit 30, unlike in the figure.
  • the transformer 35 may be electrically connected between the input terminal 32 and the second output terminal 34, and may convert charging power supplied through the input terminal 32 into auxiliary charging power.
  • the charge control device 20 includes first to nth discharge circuits D 1 , D 2 ,..., Respectively connected to the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n . , D n-1 , D n ).
  • the first discharge circuit D 1 includes a discharge switch S 1 and a discharge resistor R 1 .
  • the first discharge circuit D 2 includes a discharge switch S 2 and a discharge resistor R 2 .
  • the n-th discharge circuit D n-1 includes a discharge switch S n-1 and a discharge resistor R n-1 .
  • the n discharge circuit (D n) comprises a discharge switch (S n) and a discharge resistance (R n).
  • the third discharge circuit D 3 to the n-th discharge circuit D n-2 have the same configuration.
  • the charge control device 20 applies a high voltage charging power to the first battery cell B 1 and the nth battery cell B n , and includes a high voltage charging switch unit 22. ).
  • the high voltage charging line 23 is electrically coupled with the first output terminal 33 of the connector unit 30.
  • the charging control device 20 includes an auxiliary charging line 24 that can auxiliaryly charge at least one battery cell that is not forced discharged while cell balancing is performed in a forced discharge method.
  • the auxiliary charging line 24 is electrically coupled with the second output terminal 34 of the connector portion 30.
  • the charging control device 20 may connect the auxiliary charging line 24 to one or a plurality of battery cells selected from the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n . s) and to selectively connect the first to the n battery cells (B 1, B 2, ... , B n-1, B n) associated with the first to n-th auxiliary charging switch circuit (C 1, C 2, respectively ,..., C n-1 , C n ).
  • the first auxiliary charging switch circuit C 1 includes a first switch C 1 , 1 and a second switch C 1,2 connected to the positive electrode and the negative electrode of the first battery cell B 1 , respectively. do.
  • the second auxiliary charging switch circuit C 2 comprises a first switch C 2 , 1 and a second switch C 2 , 2 .
  • the n-1th auxiliary charging switch circuit C n-1 includes a first switch C n-1,1 and a second switch C n-1,2 .
  • the n th auxiliary charging switch circuit C n includes a first switch C n, 1 and a second switch C n, 2 .
  • the third auxiliary charging switch circuit C 3 to the n-2th auxiliary charging switch circuit C n-2 also have the same configuration.
  • the charge control device 20 may include the high voltage charge switch unit 22, the first to nth discharge circuits D 1 , D 2 ,..., D n-1 , D n , and the first to nth auxiliary charges. And a control unit 25 electrically coupled with the switch circuits C 1 , C 2 ,..., C n-1 , C n .
  • the electrical coupling is a control unit 25, a high voltage charge switch 22, the first to the n discharge circuit (D 1, D 2, ..., D n-1, D n) and the first through the The high voltage charging switch unit 22 and the first to nth discharge circuits D 1 to actively control the operations of the n auxiliary charging switch circuits C 1 , C 2 ,..., C n-1 , C n . , D 2 ,..., D n-1 , D n ) and the first to n th auxiliary charging switch circuits C 1 , C 2 ,..., C n-1 , C n .
  • the control unit 25 outputs a signal for controlling the turn on or turn off of the high voltage charge switch unit 22.
  • the control unit 25 includes the discharge switches S 1 , S 2 ,..., S n-1 included in the first to nth discharge circuits D 1 , D 2 ,..., D n-1 , D n . , S n ) outputs a signal for individually controlling the turn on or turn off.
  • the control unit 25 has the first through the n auxiliary charging switch circuit of the first switch included in the (C 1, C 2, ...
  • C n-1, C n (C 1,1, C 2,1, ..., C n-1,1 , C n, 1 ) and the second switch (C 1,2 , C 2,2 , ..., C n-1,2 , C n, 2 ) to turn on or off Outputs a signal that can be controlled individually.
  • the charge control device 20 may include a storage 29.
  • the storage unit 29 is not particularly limited as long as it is a storage medium capable of recording and erasing information.
  • the storage unit 29 may be a RAM, a ROM, an EEPROM, a register, a flash memory, a hard disk, an optical recording medium, or a magnetic recording medium.
  • the storage unit 29 may also be electrically connected to the control unit 25, for example via a data bus or the like, to be accessible by the control unit 25.
  • the storage unit 29 also stores and / or updates and / or erases and / or transmits a program comprising various control logics performed by the control unit 25 and / or data generated when the control logic is executed.
  • the storage unit 29 can be logically divided into two or more, and does not limit the inclusion in the control unit 25.
  • the charge control device 20 is a voltage measuring unit 26 for measuring the voltage for the first to n-th battery cells B 1 , B 2 ,..., B n-1 , B n .
  • Current measuring unit 27 for measuring the magnitude of the charge current or the discharge current for the n- th battery cells (B 1 , B 2 ,..., B n-1 , B n ) and the first to nth battery cells B 1. , B 2 ,..., B n -1 , B n ) includes a temperature measuring unit 28.
  • the voltage measuring unit 26 is electrically coupled with the control unit 25 to transmit and receive electrical signals.
  • the voltage measuring unit 26 controls the voltage applied between the positive electrode and the negative electrode of each battery cell B 1 , B 2 ,..., B n-1 , B n at intervals of time under the control of the control unit 25.
  • the signal is measured and output to the control unit 25 indicating the magnitude of the measured voltage.
  • the control unit 25 determines the voltage of each battery cell B 1 , B 2 ,..., B n-1 , B n from the signal output from the voltage measuring unit 26 and stores the determined voltage value. ).
  • the voltage measuring unit 26 may be configured as a voltage measuring circuit generally used in the art, for example, a differential amplifier. Since the circuit configuration of the voltage measuring unit 26 for measuring the voltage of each battery cell B 1 , B 2 ..., B n-1 , B n will be apparent to those skilled in the art, a detailed description thereof will be omitted.
  • the current measuring unit 27 is electrically coupled with the control unit 25 to transmit and receive electrical signals.
  • the current measuring unit 27 repeatedly measures the magnitude of the charge current or the discharge current of each battery cell B 1 , B 2 ,..., B n-1 , B n at a time interval under the control of the control unit 25. And outputs a signal indicating the magnitude of the measured current to the control unit 25.
  • the control unit 25 determines the magnitude of the current from the signal output from the current measuring unit 27 and stores the determined current value in the storage unit 29.
  • the current measuring unit 27 may be configured of a hall sensor or a sense resistor generally used in the art.
  • the hall sensor or sense resistor may be installed in a line through which a current flows, for example, the high voltage charging line 23. Since the battery cells B 1 , B 2 ,..., B n-1 , B n are connected in series, the control unit 25 uses the current measuring unit 27 to charge current flowing through the high voltage measuring line 23 or By measuring the discharge current, the measured current value can be determined as the charge current or discharge current of the battery cells B 1 , B 2 ,..., B n-1 , B n .
  • the current measuring unit 27 is a circuit configuration of the current measuring unit 27 for measuring the magnitude of the charge current or discharge current of each battery cell (B 1 , B 2 , ..., B n-1 , B n ) As it is obvious to, the detailed description thereof will be omitted.
  • the temperature measuring unit 28 is electrically coupled with the control unit 25 to transmit and receive electrical signals.
  • the temperature measuring unit 28 repeatedly measures the temperature of each of the battery cells B 1 , B 2 ,..., B n-1 , B n at time intervals, and outputs a signal indicating the magnitude of the measured temperature.
  • the control unit 25 determines the temperature of each battery cell B 1 , B 2 ,..., B n-1 , B n from the signal output from the temperature measuring unit 28 and stores the determined temperature value. ).
  • the temperature measuring unit 28 may be formed of a thermocouple generally used in the art. Since the circuit configuration of the temperature measuring unit 28 for measuring the temperature of each battery cell B 1 , B 2 ,..., B n-1 , B n will be apparent to those skilled in the art, a detailed description thereof will be omitted.
  • control unit 25 calculates each state of charge SOC while the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n are charged or discharged. Can be monitored.
  • control unit 25 integrates the charge current and the discharge current of each of the battery cells B 1 , B 2 ,..., B n-1 , B n stored in the storage unit 29 to store each battery cell ( The state of charge of B 1 , B 2 ,..., B n-1 , B n ) can be estimated.
  • the initial value of the state of charge is measured for each battery cell B 1 , B measured before charging or discharging is started. 2 , ..., B n-1 , B n ) can be determined using.
  • the voltage measured before charging or discharging starts corresponds to the open circuit voltage.
  • the storage unit 29 includes an open voltage-charge state lookup table that defines a state of charge for each open voltage, and the control unit 25 stores each battery cell B 1 , B 2 ,..., B n from the lookup table.
  • the charging state corresponding to the open voltage of ⁇ 1 , B n ) may be mapped.
  • the mapped state of charge may be set as an initial value for the state of charge of each battery cell B 1 , B 2 ,..., B n-1 , B n .
  • control unit 25 may calculate the state of charge of each battery cell B 1 , B 2 ,..., B n-1 , B n using an extended Kalman filter.
  • Extended Kalman filter refers to a mathematical algorithm that adaptively estimates the state of charge of a battery cell using the voltage, current and temperature of the battery cell.
  • the state of charge of each battery cell B 1 , B 2 ,..., B n-1 , B n is based on the charge state by selectively utilizing the voltage, temperature, and current of each battery cell, in addition to the current integration method or the expansion Kalman filter. It can also be determined by other known methods that can be estimated.
  • the storage unit 29 may store data regarding the full charge capacity of each battery cell B 1 , B 2 ,..., B n-1 , B n .
  • Full charge capacity is used to calculate the state of charge.
  • the full charge capacity may be calculated by the control unit 25 and stored in the storage unit 29 while the high voltage battery is charged from the fully discharged state to the fully charged state.
  • the full charge capacity can be determined by the current integration method.
  • the full charge capacity can be determined by other methods known in the art. Specifically, the control unit 25 determines the current integration amount through the current measuring unit 27 while the state of charge changes by a predetermined reference percentage (%). The control unit 25 may convert the determined current integration amount based on when the state of charge change is 100% and then determine the converted current integration amount as a full charge capacity.
  • control unit 25 starts the charging of the high voltage battery 21 and performs the cell balancing described below in the process of charging the battery to the full charge state. Parallel together.
  • control unit 25 controls the charging of the high voltage battery according to an embodiment of the present invention.
  • step S10 when charging starts, the control unit 25 turns on the high voltage charging switch unit 22 installed in the high voltage charging line 23 (S10). Then, the charging current flows through the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n , and the first to nth battery cells B 1 , B 2 ,..., B n -1 , B n ) charging starts.
  • the start of charging can be made according to the charge start request signal transmitted from the charging power supply unit 31.
  • the connector unit 30 may include a communication interface (36 in FIG. 2), and the control unit 25 may be electrically connected to transmit or receive an electrical signal through the communication interface 36. Can be combined.
  • the start of charging may be made by the control unit 25 recognizing that the connector portion 30 is coupled to the charging power supply 31.
  • the control unit 25 calculates the state of charge of the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n while the high voltage battery 21 is being charged in step S20. Monitor.
  • the state of charge can be calculated using either current integration or an extended Kalman filter.
  • the control unit 25 controls the voltage measuring unit 26, the current measuring unit 27, and the temperature measuring unit 28 to control the first to nth battery cells B 1 at regular time intervals. , B 2 ,..., B n-1 , B n ) can acquire voltage, current, and temperature data and periodically record the result in the storage unit 29. Then, the control unit 25 uses the acquired data to calculate the state of charge of the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n using a current integration method or an extended Kalman filter. May be calculated and recorded in the storage unit 29.
  • step S30 the control unit 25 performs the first to nth battery cells B while the charging of the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n is in progress.
  • B 2, ... refer to the state of charge of the B n-1, B n) to the first to the n battery cells (B 1, B 2, ... , at least one full charge of the B n-1, B n) Determine if the previous state (100%) has been reached.
  • step S30 determines whether the determination result in step S30 is YES or not. If the determination result in step S30 is YES, the control unit 25 turns off the high voltage charge switch unit 22 in step S40 to suspend charging. On the other hand, if the determination result in step S30 is NO, the control unit 25 proceeds to step S50 to maintain the state of charge of the high voltage battery 21.
  • the control unit 25 compares the state of charge of the first to nth battery cells B 1 , B 2 ,..., B n-1 , B n in step S60 with each other to determine the state of charge. Determines the lowest battery cell as the secondary charging target and determines the remaining battery cells as the forced discharge target.
  • the state of charge of the first battery cell B 1 , the second battery cell B 2 , the n-th battery cell B n-1 , and the n - th battery cell B n Assuming that is 100%, 90%, 80%, and 100%, respectively, the n-th battery cell B n-1 is a secondary charging target, and the remaining first battery cell B 1 and the second battery cell ( B 2 ) and the nth battery cell B n may be determined to be a forced discharge target.
  • control unit 25 operates the discharge circuit connected to the battery cell determined as the forced discharge object in step S70 to force discharge the corresponding battery cell.
  • control unit 25 turns on the discharge switch included in the discharge circuit.
  • control unit 25 operates the auxiliary charging switch circuit connected to the battery cell determined as the auxiliary charging target in step S80 to connect the corresponding battery cell to the auxiliary charging line 24 to perform auxiliary charging.
  • control unit 25 turns on the charging switch included in the protective charging switch circuit.
  • step S70 and S80 when the forced discharge and the auxiliary charging proceed simultaneously, the charged state of the forcibly discharged battery cells is lowered, and the charged state of the battery cell being auxiliary charged is increased.
  • step S90 the control unit 25 counts the time in step S90 to determine whether the predetermined time has elapsed. If the determination result of step S90 is YES, the next process proceeds. If the determination result of step S90 is NO, the process progress is held.
  • the predetermined time may correspond to a period in which the control unit 25 repeatedly calculates the state of charge, and may be set to several to several tens of msec.
  • the control unit 25 When it is determined as YES in step S90, the control unit 25 performs the first to nth battery cells B 1 , through the voltage measuring unit 26, the current measuring unit 27, and the temperature measuring unit 28 in step S100.
  • the voltage, current, and temperature data of B 2 ,..., B n-1 , B n are acquired and recorded in the storage unit 29, and the first to nth battery cells ( Calculate and monitor the state of charge of B 1 , B 2 ,..., B n-1 , B n ).
  • control unit 25 determines whether there is a battery cell having the same state of charge as the battery cell that is auxiliary charged from among the battery cells forcibly discharged in step S110.
  • step S110 If it is determined YES in step S110, the control unit 25 proceeds to step S120. Conversely, if NO is determined in step S110, the process proceeds to step S90 to continue forced discharge and auxiliary charging.
  • the control unit 25 determines in step S120 whether the number of battery cells having the same state of charge is equal to or greater than the reference number.
  • the number of battery cells with the same state of charge is two.
  • One is a battery cell initially determined as an auxiliary charging target, and the other is a battery cell whose charging state becomes the same as the battery cell charged in the secondary during a forced discharge process.
  • the reference number is selected in the range of 2 to n-1 in consideration of the performance of the transformer 35. Where n is the total number of battery cells.
  • the reference number may be fixed, or may be set to increase as the number of battery cells to be charged auxiliary determined in step S60 increases.
  • the reference number may be set to be at least one greater than the number of battery cells that are subject to auxiliary charging.
  • the reference number may increase gradually as the balancing process proceeds.
  • the reference number can be varied by the control unit 250.
  • step S120 determines whether the determination result of step S120 is NO, the control unit 25 calculates the state of charge of all the battery cells in step S140 and proceeds to step S60. On the other hand, if the determination result of step S120 is YES, step S130 proceeds. In operation S140, the above-described method may be used to calculate the state of charge. On the other hand, if the time at which the steps S110 and S120 are performed is shorter than the repetition counting cycle of the charged state, the state of charge of all the battery cells calculated at step S140 may be set as the state of charge of all the battery cells calculated at step S100. have.
  • step S120 when the reference number is 2, the control unit 25 performs the process when the state of charge of the battery cell to be the auxiliary charging target and the state of charge of any one of the battery cells to be the forced discharge are equal to each other. Immediately proceed to
  • the control unit 25 again determines the forced discharge target and the auxiliary charging target in step S60 after step S140. Therefore, in step S110, among the battery cells that are forcibly discharged, battery cells whose charging state is the same as those of the auxiliary charging are additionally designated as auxiliary charging targets.
  • the reference number may increase to three. This reference number is one greater than two, the number of battery cells that are subject to auxiliary charging.
  • the n ⁇ 1 th battery cell B n ⁇ 1 is auxiliary charged, and the first battery cell B 1 , the second battery cell B 2 , and the first battery are charged.
  • n battery cell B n is forcibly discharged.
  • the state of charge of the second battery cell B 2 becomes equal to the state of charge of the n-th battery cell B n-1 that is auxiliary-charged first. Therefore, when the step S60 is performed again, the second battery cell B 2 and the n-th battery cell B n-1 are determined as auxiliary charging targets, and the first battery cell B 1 and the n-th battery are determined.
  • the cell B n is determined to be a forced discharge object.
  • control unit 25 performs forced discharge and auxiliary charging substantially in the same manner as described above (S70 and S80).
  • the control unit 25 calculates and monitors a charging state of all battery cells at a predetermined time interval (S100).
  • control unit 25 determines whether any of the battery cells that are subject to the forced discharge is the same as the battery cell (s) that are the auxiliary charging target (S110).
  • control unit 25 determines whether the number of battery cells having the same state of charge is equal to or greater than the reference number (S120). If the determination result of step S120 is NO, the process proceeds to step S60.
  • the reference number may be fixed to one value or may be changed to a value obtained by adding 1 to the number of battery cells to be subcharged as determined in step S60.
  • step S120 determines whether the state of charge of all the battery cells is 100% in step S130.
  • step S130 determines that the high voltage battery has reached the full charge state and ends the charging process. On the other hand, if the determination result of step S130 is NO, the control unit 25 advances the process to step S10 to turn on the high voltage charge switch unit 22 to restart charging of all battery cells. Therefore, when any one of the battery cells has reached the full charge state, the cell balancing is performed again with the forced discharge and the auxiliary charging according to the present invention.
  • the state of charge of the battery cells at 100%, 90%, 80%, and 85%, respectively, at a specific time point.
  • the conventional cell balancing scheme forcibly discharges all the cells 100%, 90%, and 85% of the state of charge to match the state of charge of all the battery cells to 80%.
  • this process involves 35% of the total amount of change in state of charge. The energy consumed is converted to heat in the discharge circuit.
  • the state of charge of all the battery cells is lowered to 80%, the gap between the state of full charge increases on average and the time required for full charge is longer.
  • the battery cells with the state of charge of 80% are auxiliary charged, and the battery cells with the states of charge of 100%, 90% and 85% are forcibly discharged.
  • the corresponding battery cell stops the forced discharge and the auxiliary charging is performed.
  • battery cells having the same state of charge as the battery cells being auxiliary charged again reappear and the forced discharge is stopped for the battery cells and auxiliary charging is performed.
  • the number of battery cells having the same state of charge reaches the reference number through this process, forced discharge and auxiliary charging are stopped and charging of all battery cells is restarted. This process is repeated each time a battery cell is reached that reaches a full charge state during charging, and as a result, the state of charge of all battery cells converges to 100%.
  • control unit 25 includes a processor, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, registers, communication modems, data processing devices, and the like, which are known in the art for executing the various control logics described above. It may optionally include.
  • control logic when the control logic is implemented in software, the controller 25 may be implemented as a set of program modules.
  • the program module may be stored in a memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor through various well known computer components.
  • the memory may be included in the storage unit 29 of the present invention.
  • the memory refers to a device that stores information regardless of the type of device, and does not refer to a specific memory device.
  • control logics of the control unit 25 may be combined with at least one, and the combined control logics may be written in a computer readable code system and stored in a computer readable recording medium.
  • the recording medium is not particularly limited as long as it is accessible by a processor included in the computer.
  • the recording medium includes at least one selected from the group consisting of a ROM, a RAM, a register, a CD-ROM, a magnetic tape, a hard disk, a floppy disk, and an optical data recording device.
  • the code system may be distributed and stored and executed in a networked computer.
  • functional programs, code and code segments for implementing the combined control logics can be easily inferred by programmers in the art to which the present invention pertains.
  • the charge control device according to the present invention described above may be included in a battery management system.
  • the battery management system which controls the overall operation associated with charging and discharging of a battery, is a computing system called a battery management system in the art.
  • the charging control device may be included in a battery pack.
  • the battery pack includes at least a plurality of battery cells connected in series, a housing accommodating them, and a frame in which the charge control device is installed.
  • the plurality of battery cells included in the battery pack may be effectively balanced in the charging state by the charge control device according to the present invention to the full charge state.
  • each component may be selectively integrated with other components or each component may be divided into subcomponents for efficient execution of control logic (s).
  • control logic control logic

Abstract

본 발명은, 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법을 개시한다. 본 발명에 따르면, 복수의 배터리 셀들 중 어느 하나가 만충전 상태에 도달되면 충전이 일시 중지된다. 또한, 충전 상태가 가장 낮은 배터리 셀이 보조 충전 대상으로, 나머지 배터리 셀들이 강제 방전 대상으로 결정된다. 이어서, 보조 충전 및 강제 방전을 포함하는 셀 밸런싱이 이루어진다. 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀의 수가 기준 넘버 이상이 되면, 셀 밸런싱이 중단되고 충전이 재개된다. 이러한 셀 밸런싱 과정은 복수의 배터리 셀들 중 어느 하나가 만충전 상태에 도달될 때마다 반복된다. 본 발명은, 강제 방전을 통한 셀 밸런싱 과정에서 에너지 낭비를 줄이고 만충전 상태까지 충전하는데 소요되는 시간을 줄일 수 있다.

Description

에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
본 발명은 복수의 배터리 셀로 이루어진 고전압 배터리를 만충전 상태까지 충전할 때 수반되는 셀 밸런싱 과정에서 에너지 절약 및 빠른 밸런싱 효과를 기대할 수 있는 충전 제어 장치 및 방법에 관한 것이다.
본 출원은 대한민국에 2017년 1월 10일자에 출원된 특허출원 제10-2017-0003759호와 2018년 1월 8일자에 출원된 특허출원 제10-2018-0002508호에 대해 우선권을 주장하며, 상기 특허출원들의 내용은 본 명세서의 일부로서 합체될 수 있다.
배터리는 휴대폰, 랩탑 컴퓨터, 스마트 폰, 스마트 패드 등의 모바일 디바이스뿐만 아니라 전기로 구동되는 자동차(EV, HEV, PHEV)나 대용량 전력 저장 장치(ESS) 등의 분야로까지 그 용도가 급속도로 확산되고 있다.
전기 자동차에 탑재되는 고전압 배터리는 직렬로 연결된 복수의 배터리 셀을 포함한다. 경우에 따라, 각 배터리 셀은 병렬로 연결된 복수의 단위 셀로 구성될 수 있다.
본 명세서에서, 배터리 셀은 단위 셀 하나 또는 병렬 연결된 복수의 단위 셀을 포함할 수 있다. 단위 셀은, 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 파우치형 리튬 폴리머 셀 하나가 단위 셀로 간주될 수 있다.
고전압 배터리를 구성하는 배터리 셀들은 전기화학적 특성이 동일하지 않다. 또한, 고전압 배터리의 충방전 사이클 수가 증가하면 각 배터리 셀마다 퇴화 정도가 달라지므로 배터리 셀들의 성능 편차는 더 커진다. 따라서, 고전압 배터리가 만충전 상태까지 충전되는 동안 각 배터리 셀의 충전상태는 서로 다른 속도로 상승한다.
여기서, 충전 상태는 배터리 셀의 만충전 용량을 기준으로 현재까지 충전된 용량의 상대 비율을 수치로 나타낸 파라미터이다. 상기 충전 상태는 %로 나타내거나 0-1 사이의 수로 나타낸다. 만충전 용량은 배터리 셀의 충방전 사이클 수가 증가할수록 서서히 감소한다.
고전압 배터리에 대해 만충전 상태까지 충전이 진행될 때, 퇴화된 배터리 셀은 용량 퇴화가 상대적으로 적은 배터리 셀에 비해 충전상태의 증가 속도가 빠르다. 퇴화된 배터리 셀은 만충전 용량이 퇴화되지 않은 배터리 셀보다 감소된 상태에 있기 때문이다. 따라서, 고전압 배터리가 충전되는 동안 각 배터리 셀의 충전 상태는 서로 차이를 나타내게 된다.
종래의 고전압 배터리 충전 기술은, 배터리 셀들 상호 간의 충전 상태 편차를 해소하기 위해, 충전을 일시 중단하고 셀 밸런싱을 수행하는 과정을 포함한다.
셀 밸런싱 기술에는 여러 가지가 있지만, 회로 구성이 간단하다는 이점 때문에 충전 상태가 상대적으로 높은 배터리 셀을 강제 방전시키는 벅(BUCK) 밸런싱이 주로 사용된다.
그런데, 벅 밸런싱은 셀 밸런싱 과정에서 에너지가 낭비되는 문제가 있다. 또한, 벅 밸런싱을 진행하면, 전체 배터리 셀들의 충전 상태가 낮아지므로 만충전까지 소요되는 충전 시간이 그 만큼 길어지는 문제가 있다.
도 1은 종래의 벅 밸런싱 기술이 가지는 문제점을 설명하기 위한 개념도이다.
도 1을 참조하면, n개의 배터리 셀들이 고전압 배터리를 구성하기 위해 직렬로 연결되어 있다. 고전압 배터리는 충전을 위해 충전 전원부(10)에 연결되어 있다.
각 배터리 셀에는 스위치(S1-Sn)와 방전저항(R1-Rn)을 포함하는 방전 회로가 개별적으로 연결되어 있다. 어느 한 방전 회로의 스위치가 턴 온 되면, 해당 방전 회로와 연결된 배터리 셀이 방전되면서 충전 상태가 낮아진다.
도 1에 있어서, 각 배터리 셀의 우측에 표시된 수치는 충전 상태를 나타낸다. 1번 셀과 n번 셀은 충전 상태가 100%이고, 2번 셀은 충전 상태가 90%, n-1번 셀은 충전 상태가 80%이다. n개의 배터리 셀들 중 충전 상태는 n-1번째 배터리 셀이 가장 낮다. 각 배터리 셀에 표시된 해칭 영역의 높이는 충전 상태의 크기를 나타내고, 이하에서도 동일하다.
고전압 배터리가 충전되는 동안 도 1에 도시된 것과 같이 1번 셀과 n번 셀의 충전 상태가 100%가 되면 충전이 일시 중단되고 강제 방전을 통한 벅 밸런싱 과정이 진행된다. 충전이 계속되면, 1번 셀과 n번 셀이 과 충전(over-charge)되기 때문이다.
벅 밸런싱은 충전 상태가 100%인 1번 셀 및 n번 셀과 충전 상태가 90%인 2번 셀의 충전 상태가 n-1번 셀의 최저 충전 상태가 될 때까지 이루어진다.
벅 밸런싱이 진행되는 동안, 1번 셀, 2번 셀 및 n번 셀과 연결된 방전 회로에 포함된 스위치(S1, S2, Sn)가 턴 온 상태를 유지하며, 각 셀의 충전 상태는 80%까지 낮아진다.
이러한 과정에서, 1번 셀과 n번 셀에 대해서는 20%의 충전 상태에 해당하는 에너지가 낭비되고, 2번 셀에 대해서는 10%의 충전 상태에 해당하는 에너지가 낭비된다. 또한, 전체 배터리 셀들의 충전 상태가 80%로 낮아졌으므로 모든 배터리 셀들이 만 충전될 때까지 소요되는 시간이 그 만큼 길어진다. 모든 배터리 셀의 충전 상태가 80%로 낮아졌으므로 1번 셀, 2번 셀 및 n번 셀의 충전상태와 만충전 상태(100%) 사이의 차이가 벅 밸런싱이 진행되기 전보다 증가하였기 때문이다.
한편, 모든 배터리 셀들의 충전 상태가 80%가 되면, 다시 충전이 재개된다. 하지만 충전이 재개된 이후에도 특정 배터리 셀의 충전 상태가 100%에 먼저 도달하는 상황이 다시 재현된다.
따라서 충전 상태가 가장 낮은 셀을 제외한 나머지 셀들을 다시 방전시켜 충전 상태를 하향 평준화시키는 벅 밸런싱 하는 과정이 다시 반복된다. 이 과정에서 전술한 문제점이 또 다시 발생하게 된다.
본 발명은 위와 같은 종래 기술의 배경하에 창안된 것으로서, 고전압 배터리를 만충전 상태까지 충전하는 동안 강제 방전을 통해 각 배터리 셀의 충전 상태를 밸런싱하는 과정에서 에너지 낭비를 줄이고 만충전 시까지 소요되는 시간을 단축시킬 수 있는 개선된 충전 제어 장치와 방법을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 고전압 배터리 충전 제어 장치는, 직렬 연결된 제1 내지 제n 배터리 셀로 구성된 고전압 배터리의 충전을 제어하는 장치이다.
본 발명에 따른 충전 제어 장치는, 상기 제1 내지 제n 배터리 셀에 각각 연결된 제1 내지 제n 방전 회로; 제1 배터리 셀과 상기 제n 배터리 셀에 고전압 충전 전원을 인가하고 고전압 충전 스위치부를 포함하는 고전압 충전 라인; 저전압 충전 전원이 인가되는 보조 충전 라인; 상기 보조 충전 라인을 상기 제1 내지 제n 배터리 셀 중 적어도 하나와 선택적으로 연결할 수 있도록 상기 제1 내지 제n배터리 셀과 각각 연결된 제1 내지 제n 보조 충전 스위치 회로; 및 상기 고전압 충전 스위치부, 상기 제1 내지 제n 방전 회로, 및 상기 제1 내지 제n보조 충전 스위치 회로와 전기적으로 결합된 제어 유닛을 포함한다.
바람직하게, 상기 제어 유닛은, (a) 상기 제1 내지 제n 배터리 셀의 충전 상태를 계산하고, (b) 상기 제1 내지 제n 배터리 셀의 충전이 진행되는 동안, 상기 제1 내지 제n 배터리 셀 중 적어도 하나가 만충전 상태에 도달되면 상기 고전압 충전 스위치부를 턴오프시키고, (c) 상기 제1 내지 제n 배터리 셀 중에서 충전 상태가 가장 낮은 적어도 하나의 배터리 셀을 보조 충전 대상으로 결정하고, 나머지 배터리 셀들을 강제 방전 대상으로 결정하고, (d) 상기 강제 방전 대상으로 결정된 각 배터리 셀과 연결된 방전 회로를 동작시켜 해당 배터리 셀을 강제 방전시키고, 동시에 상기 보조 충전 대상으로 결정된 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시켜 해당 배터리 셀을 보조 충전 라인에 연결하여 보조 충전시키고, (e) 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀이 나타나면, 해당 배터리 셀과 연결된 방전 회로의 동작을 중단시키고 해당 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시키도록 구성된다.
일 예에서, 상기 제1 내지 제n 방전 회로의 각각은 방전 스위치와 방전 저항을 포함하고, 상기 제1 내지 제n보조 충전 스위치 회로의 각각은 충전 스위치를 포함할 수 있다.
다른 측면에 따르면, 상기 제어 유닛은, (f) 강제 방전 및 보조 충전을 진행하는 과정에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상이 되면, 모든 방전 회로 및 모든 보조 충전 스위치 회로의 동작을 중단시키고, 상기 고전압 충전 스위치부를 턴 온 시키도록 구성될 수 있다.
또 다른 측면에 따르면, 상기 제어 유닛은, 상기 제1 내지 제n 배터리 셀들의 충전 상태가 만충전 상태가 될 때까지 상기 (a) 내지 상기 (f)의 제어 로직을 반복하도록 구성될 수 있다.
바람직하게, 상기 제어 유닛은, 보조 충전의 대상이 되는 배터리 셀들의 수가 증가함에 따라 상기 기준 넘버를 증가시키도록 구성될 수 있다.
바람직하게, 본 발명에 따른 제어 장치는, 상기 제1 내지 제n 배터리 셀에 대한 전압을 측정하는 전압 측정부; 상기 제1 내지 제n 배터리 셀에 대한 충전 전류 또는 방전 전류의 크기를 측정하는 전류 측정부; 및 상기 제1 내지 제n 배터리 셀의 온도를 측정하는 온도 측정부를 포함하고, 상기 제어 유닛은, 상기 제1 내지 제n 배터리 셀에 대한 전압 측정값, 전류 측정값 및 온도 측정값을 이용하여 각 배터리 셀의 충전 상태를 계산하여 모니터링 하도록 구성될 수 있다.
바람직하게, 본 발명에 따른 충전 제어 장치는, 충전 전원부와 결합되고 상기 고전압 충전 라인과 상기 보조 충전 라인이 연결된 커넥터부를 더 포함하고, 상기 보조 충전 라인은 상기 커넥터부를 통해 인가되는 충전 전압을 강압하는 변압기를 포함할 수 있다.
상기 변압기는 상기 커넥터부 내부에 포함되는 것을 제한하지 않는다.
바람직하게, 상기 커넥터부는, 상기 충전 전원부로부터 연장된 고전압 충전 케이블이 접속되는 입력 단자와, 상기 고전압 충전 라인이 접속되는 제1출력 단자와, 상기 보조 충전 라인이 접속되는 제2출력 단자를 포함할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 고전압 배터리 충전 제어 방법은, 직렬 연결된 제1 내지 제n 배터리 셀을 포함하는 고전압 배터리의 충전을 제어하는 방법으로서, 상기 제1 배터리 셀과 상기 제n 배터리 셀에 고전압 충전 전원을 인가하여 고전압 배터리를 충전하는 제1단계; 상기 제1 내지 제n 배터리 셀의 충전 상태를 계산하여 모니터하는 제2단계; 상기 제1 내지 제n 배터리 셀의 충전이 진행되는 동안 상기 제1 내지 제n 배터리 셀 중 적어도 하나가 만충전 상태에 도달되면 상기 고전압 충전 전원의 인가를 중지하는 제3단계; 상기 제1 내지 제n 배터리 셀 중에서 충전 상태가 가장 낮은 적어도 하나의 배터리 셀을 보조 충전 대상으로 결정하고, 나머지 배터리 셀들을 강제 방전 대상으로 결정하는 제4단계; 상기 강제 방전 대상으로 결정된 각 배터리 셀과 연결된 방전 회로를 동작시켜 해당 배터리 셀을 강제 방전시키고, 동시에 상기 보조 충전 대상으로 결정된 각 배터리 셀과 연결된 보호 충전 스위치 회로를 동작시켜 해당 배터리 셀을 보조 충전 라인에 연결하여 보조 충전시키는 제5단계; 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀을 식별하는 제6단계; 및 상기 식별된 배터리 셀과 연결된 방전 회로의 동작을 중단시키고 해당 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시키는 제7단계;를 포함할 수 있다.
다른 측면에 따르면, 본 발명에 따른 충전 제어 방법은, 강제 방전 및 보조 충전을 동시에 진행하는 과정에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상이 되면, 모든 방전 회로 및 모든 보조 충전 스위치 회로의 동작을 중단시키는 제8단계; 및 상기 고전압 충전 전원의 인가를 재개하는 제9단계를 더 포함할 수 있다.
바람직하게, 본 발명에 따른 충전 제어 방법은, 상기 제1 내지 제n 배터리 셀들의 충전 상태가 만충전 상태가 될 때까지 상기 제1단계 내지 상기 제9단계를 반복할 수 있다.
또 다른 측면에서, 본 발명에 따른 충전 제어 방법은, 보조 충전의 대상이 되는 배터리 셀들의 수가 증가함에 따라 상기 기준 넘버를 증가시키는 단계를 더 포함할 수 있다.
본 발명의 기술적 과제는 본 발명에 따른 충전 제어 장치를 포함하는 배터리 팩과 배터리 관리 시스템에 의해서도 달성될 수 있다.
본 발명에 따르면, 시간이 경과됨에 따라 보조 충전의 대상이 되는 배터리 셀들이 증가하는 반면, 강제 방전의 대상이 되는 배터리 셀들은 감소한다. 그리고 결국에는 모든 배터리 셀들의 충전 상태가 100%에 수렴하게 된다. 또한, 셀 밸런싱이 수행되는 과정에서 강제 방전과 보조 충전이 동시에 진행되므로 전체 배터리 셀들의 충전 상태가 평균적으로 증가되면서 셀 밸런싱이 진행된다. 따라서, 셀 밸런싱 과정에서 강제 방전을 통해 소모되는 에너지 량을 감소시킬 수 있고, 만충전까지 소요되는 시간 또한 단축시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래의 벅 밸런싱 기술이 가지는 문제점을 설명하기 위한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 고전압 배터리의 충전 제어 장치의 일 실시예를 도시한 블록 다이어그램이다.
도 3은 본 발명의 실시예에 따라 제어 유닛이 고전압 배터리의 충전을 제어하는 방법을 구체적으로 나타낸 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하에서 설명되는 실시 예에 있어서, 배터리 셀은 리튬 이차 전지를 일컫는다. 여기서, 리튬 이차 전지라 함은 충전과 방전이 이루어지는 동안 리튬 이온이 작동 이온으로 작용하여 양극과 음극에서 전기화학적 반응을 유발하는 이차 전지를 총칭한다.
한편, 리튬 이차 전지에 사용된 전해질이나 분리막의 종류, 이차 전지를 포장하는데 사용된 포장재의 종류, 리튬 이차 전지의 내부 또는 외부의 구조 등에 따라 이차 전지의 명칭이 변경되더라도 리튬 이온이 작동 이온으로 사용되는 이차 전지라면 모두 상기 리튬 이차 전지의 범주에 포함되는 것으로 해석하여야 한다.
본 발명은 리튬 이차 전지 이외의 다른 이차 전지에도 적용이 가능하다. 따라서 작동 이온이 리튬 이온이 아니더라도 본 발명의 기술적 사상이 적용될 수 있는 이차 전지라면 그 종류에 상관 없이 모두 본 발명의 범주에 포함되는 것으로 해석하여야 한다.
또한, 배터리 셀은 하나의 단위 셀 또는 병렬 연결된 복수의 단위 셀을 지칭할 수 있음을 미리 밝혀둔다.
도 2는 본 발명의 일 실시예에 따른 고전압 배터리의 충전 제어 장치의 일 실시예를 도시한 블록 다이어그램이다.
도 2를 참조하면, 본 발명의 실시예에 따른 충전 제어 장치(20)는, 직렬 연결된 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)로 구성된 고전압 배터리(21)의 충전을 제어하는 장치이다.
일 측면에서, 충전 제어 장치(20)는 커넥터부(30)를 포함한다. 커넥터부(30)는 외부의 충전 전원부(31)에 탈착될 수 있다.
일 예에서, 고전압 배터리(21)가 전기 자동차에 탑재된 배터리인 경우, 커넥터부(30)는 전기 자동차에 구비된 충전용 커넥터일 수 있다. 그리고, 충전 전원부(31)는 전기 자동차용 충전기일 수 있다.
바람직하게, 커넥터부(30)는 충전 전원부(31)로부터 출력되는 고전압 충전 전력이 인가되는 입력 단자(32)를 포함한다.
또한 커넥터부(30)는 고전압 배터리(21)의 충전 시 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)을 동시에 충전할 수 있는 고전압 충전 전력을 출력하는 제1출력 단자(33)를 포함한다.
또한, 커넥터부(30)는 고전압 배터리(21)를 만충전 상태까지 충전하는 과정에서 셀 밸런싱이 이루어질 때 강제 방전이 이루어지지 않는 적어도 하나의 배터리 셀을 보조적으로 충전할 수 있는 보조 충전 전력을 출력하는 제2출력 단자(34)를 포함한다. 상기 제1출력 단자(33)에는 고전압 충전 라인(23)이 접속되고, 상기 제2출력 단자(34)에는 보조 충전 라인(24)이 접속된다.
일 측면에서, 제1출력 단자(33)과 제2출력 단자(24)에서 출력되는 충전 전력은 그 크기가 동일할 수 있다. 이 경우, 보조 충전 라인(24)은 적어도 하나의 배터리 셀을 보조적으로 충전할 수 있는 수준으로 충전 전력을 감소시키는 변압기(35)를 선택적으로 더 포함할 수 있다. 변압기(35)의 전력 변환 비는 보조 충전 라인(24)을 통해 보조 충전시키고자 하는 배터리 셀의 수에 따라서 미리 결정될 수 있다. 보조 충전이 가능한 배터리 셀의 수는 1 내지 n-1의 범위에서 선택할 수 있다. 여기서, n은 배터리 셀들의 총 수이다.
상기 변압기(35)는 도면에 도시된 것과 달리 커넥터부(30) 내부에 포함될 수 있다. 이 경우, 변압기(35)는 입력 단자(32)와 제2출력 단자(34) 사이에 전기적으로 접속되고, 입력 단자(32)를 통해 공급되는 충전 전력을 보조 충전 전력으로 변환시킬 수 있다.
충전 제어 장치(20)는, 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)에 각각 연결된 제1 내지 제n 방전 회로(D1, D2,…, Dn-1, Dn)를 포함한다.
바람직하게, 제1방전 회로(D1)는 방전 스위치(S1)와 방전 저항(R1)을 포함한다. 유사하게, 제1방전 회로(D2)는 방전 스위치(S2)와 방전 저항(R2)을 포함한다. 유사하게, 제n-1 방전 회로(Dn-1)는 방전 스위치(Sn-1)과 방전 저항(Rn-1)을 포함한다. 유사하게, 제n 방전 회로(Dn)는 방전 스위치(Sn)과 방전 저항(Rn)을 포함한다. 도시하지는 않았지만, 제3방전 회로(D3) 내지 제n-2 방전 회로(Dn-2)도 동일한 구성을 가진다.
또한, 충전 제어 장치(20)는, 제1 배터리 셀(B1)과 상기 제n 배터리 셀(Bn)에 고전압 충전 전원을 인가하고 고전압 충전 스위치부(22)를 포함하는 고전압 충전 라인(23)을 포함한다. 고전압 충전 라인(23)은 커넥터부(30)의 제1출력 단자(33)와 전기적으로 결합된다.
또한, 충전 제어 장치(20)는 강제 방전 방식으로 셀 밸런싱이 진행되는 과정에서 강제 방전이 이루어지지 않는 적어도 하나의 배터리 셀을 보조적으로 충전할 수 있는 보조 충전 라인(24)을 포함한다. 보조 충전 라인(24)은 커넥터부(30)의 제2출력 단자(34)와 전기적으로 결합된다.
또한, 충전 제어 장치(20)는 보조 충전 라인(24)을 상기 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn) 중에서 선택된 하나 또는 복수의 배터리 셀(들)과 선택적으로 연결할 수 있도록 제1 내지 제n배터리 셀(B1, B2,…, Bn-1, Bn)과 각각 연결된 제1 내지 제n 보조 충전 스위치 회로(C1, C2,…, Cn-1, Cn)를 포함한다.
바람직하게, 제1 보조 충전 스위치 회로(C1)는 제1 배터리 셀(B1)의 양극 및 음극에 각각 연결된 제1스위치(C1,1) 및 제2스위치(C1,2)를 포함한다. 유사하게, 제2 보조 충전 스위치 회로(C2)는 제1스위치(C2,1) 및 제2스위치(C2,2)를 포함한다. 유사하게, 제n-1 보조 충전 스위치 회로(Cn-1)는 제1스위치(Cn-1,1)과 제2스위치(Cn-1,2)를 포함한다. 유사하게, 제n 보조 충전 스위치 회로(Cn)는 제1스위치(Cn,1)과 제2스위치(Cn,2)를 포함한다. 도시하지는 않았지만, 제3 보조 충전 스위치 회로(C3) 내지 제n-2 보조 충전 스위치 회로(Cn-2)도 동일한 구성을 가진다.
또한, 충전 제어 장치(20)는 고전압 충전 스위치부(22), 제1 내지 제n 방전 회로(D1, D2,…, Dn-1, Dn), 및 제1 내지 제n 보조 충전 스위치 회로(C1, C2,…, Cn-1, Cn)와 전기적으로 결합된 제어 유닛(25)을 포함한다.
여기서, 전기적 결합이라 함은 제어 유닛(25)이 고전압 충전 스위치부(22), 제1 내지 제n 방전 회로(D1, D2,…, Dn-1, Dn) 및 제1 내지 제n 보조 충전 스위치 회로(C1, C2,…, Cn-1, Cn)의 동작을 능동적으로 제어할 수 있도록 상기 고전압 충전 스위치부(22), 제1 내지 제n 방전 회로(D1, D2,…, Dn-1, Dn) 및 제1 내지 제n 보조 충전 스위치 회로(C1, C2,…, Cn-1, Cn)와 전기적으로 결합된 경우를 말한다.
바람직하게, 제어 유닛(25)은 고전압 충전 스위치부(22)의 턴 온 또는 턴 오프를 제어하는 신호를 출력한다. 또한, 제어 유닛(25)은 제1 내지 제n 방전 회로(D1, D2,…, Dn-1, Dn)에 포함된 방전 스위치(S1, S2,…, Sn-1, Sn)의 턴 온 또는 턴 오프를 개별적으로 제어할 수 있는 신호를 출력한다. 또한 제어 유닛(25)은 제1 내지 제n 보조 충전 스위치 회로(C1, C2,…, Cn-1, Cn)에 포함된 제1스위치(C1,1, C2,1,…, Cn-1,1, Cn,1) 및 제2스위치(C1,2, C2,2,…, Cn-1,2, Cn,2)의 턴 온 또는 턴 오프를 개별적으로 제어할 수 있는 신호를 출력한다.
바람직하게, 충전 제어 장치(20)는 저장부(29)를 포함할 수 있다. 저장부(29)는 정보를 기록하고 소거할 수 있는 저장 매체라면 그 종류에 특별한 제한이 없다.
일 예시로서, 저장부(29)은 RAM, ROM, EEPROM, 레지스터, 플래쉬 메모리,하드디스크, 광기록 매체 또는 자기기록 매체일 수 있다.
저장부(29)는 또한 제어 유닛(25)에 의해 접근이 가능하도록 예컨대 데이터 버스 등을 통해 제어 유닛(25)과 전기적으로 연결될 수 있다.
저장부(29)는 또한 제어 유닛(25)이 수행하는 각종 제어 로직을 포함하는 프로그램, 및/또는 제어 로직이 실행될 때 발생되는 데이터를 저장 및/또는 갱신 및/또는 소거 및/또는 전송한다.
저장부(29)는 논리적으로 2개 이상으로 분할 가능하고, 제어 유닛(25) 내에 포함되는 것을 제한하지 않는다.
바람직하게, 충전 제어 장치(20)는 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn) 에 대한 전압을 측정하는 전압 측정부(26), 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)에 대한 충전 전류 또는 방전 전류의 크기를 측정하는 전류 측정부(27) 및 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 온도를 측정하는 온도 측정부(28)를 포함한다.
전압 측정부(26)는 전기적 신호를 주고 받을 수 있도록 제어 유닛(25)과 전기적으로 결합된다. 전압 측정부(26)는 제어 유닛(25)의 통제 하에, 시간 간격을 두고 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 양극과 음극 사이에 인가되는 전압을 측정하고 측정된 전압의 크기를 나타내는 신호를 제어 유닛(25)으로 출력한다. 제어 유닛(25)은 전압 측정부(26)로부터 출력되는 신호로부터 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 전압을 결정하고 결정된 전압 값을 저장부(29)에 저장한다.
전압 측정부(26)는 당업계에서 일반적으로 사용되는 전압 측정 회로, 예를 들어 차동증폭기(differential amplifier)로 구성될 수 있다. 각 배터리 셀(B1, B2 …, Bn-1, Bn)의 전압을 측정하기 위한 전압 측정부(26)의 회로 구성은 당업자에게 자명하므로 자세한 설명은 생략하기로 한다.
전류 측정부(27)는 전기적 신호를 주고 받을 수 있도록 제어 유닛(25)과 전기적으로 결합된다. 전류 측정부(27)는 제어 유닛(25)의 통제하에 시간 간격을 두고 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 전류 또는 방전 전류의 크기를 반복 측정하고 측정된 전류의 크기를 나타내는 신호를 제어 유닛(25)으로 출력한다. 제어 유닛(25)은 전류 측정부(27)로부터 출력되는 신호로부터 전류의 크기를 결정하고 결정된 전류 값을 저장부(29)에 저장한다.
전류 측정부(27)는 당업계에서 일반적으로 사용되는 홀 센서 또는 센스 저항으로 구성될 수 있다. 홀 센서 또는 센스 저항은 전류가 흐르는 선로, 예를 들어 고전압 충전라인(23)에 설치될 수 있다. 배터리 셀(B1, B2,…, Bn-1, Bn)들이 직렬 연결되어 있으므로 제어 유닛(25)은 전류 측정부(27)를 이용하여 고전압 측정라인(23)에 흐르는 충전 전류 또는 방전 전류를 측정함으로써, 측정된 전류 값을 배터리 셀(B1, B2,…, Bn-1, Bn)들의 충전 전류 또는 방전 전류로서 결정할 수 있다. 전류 측정부(27)는 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 전류 또는 방전 전류의 크기를 측정하기 위한 전류 측정부(27)의 회로 구성은 당업자에게 자명하므로 자세한 설명은 생략하기로 한다.
온도 측정부(28)는 전기적 신호를 주고 받을 수 있도록 제어 유닛(25)과전기적으로 결합된다. 온도 측정부(28)는 시간 간격을 두고 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 온도를 반복 측정하고 측정된 온도의 크기를 나타내는 신호를 제어 유닛(25)으로 출력한다. 제어 유닛(25)은 온도 측정부(28)로부터 출력되는 신호로부터 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 온도를 결정하고 결정된 온도 값을 저장부(29)에 저장한다.
온도 측정부(28)는 당업계에서 일반적으로 사용되는 열전대(thermocouple)로 구성될 수 있다. 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 온도를 측정하기 위한 온도 측정부(28)의 회로 구성은 당업자에게 자명하므로 자세한 설명은 생략하기로 한다.
바람직하게, 제어 유닛(25)은, 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)이 충전 또는 방전되는 동안 각각의 충전 상태(SOC)를 계산하여 모니터링할 수 있다.
일 측면에서, 제어 유닛(25)는 저장부(29)에 저장된 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 전류 및 방전 전류를 적산하여 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 추정할 수 있다.
각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 또는 방전이 시작될 때 충전 상태의 초기값은 충전 또는 방전이 시작되기 전에 측정한 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 전압을 이용하여 결정할 수 있다. 충전 또는 방전이 시작되기 전에 측정한 전압은 개방 전압(Open Circuit Voltage)에 해당한다.
이를 위해, 저장부(29)는 개방 전압 별로 충전 상태를 정의한 개방전압-충전상태 룩업 테이블을 포함하고, 제어 유닛(25)은 룩업 테이블로부터 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 개방 전압에 대응되는 충전 상태를 맵핑할 수 있다. 매핑된 충전 상태는 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태에 대한 초기값으로 설정될 수 있다.
다른 측면에서, 제어 유닛(25)은 확장 칼만 필터를 이용하여 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 산출할 수 있다. 확장 칼만 필터는 배터리 셀의 전압, 전류 및 온도를 이용하여 배터리 셀의 충전 상태를 적응적으로 추정하는 수학적 알고리즘을 일컫는다.
확장 칼만 필터를 이용한 충전 상태의 추정은, 일 예로서 그레고리 엘 플레트(Gregory L. Plett)씨의 논문 "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3" (Journal of Power Source 134, 2004, 252-261)를 참조 가능하고, 본 명세서의 일부로서 위 논문이 합체될 수 있다.
각 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태는 전술한 전류 적산법 또는 확장 칼만 필터 이외에도 각 배터리 셀의 전압, 온도 및 전류를 선택적으로 활용하여 충전 상태를 추정할 수 있는 다른 공지의 방법에 의해서도 결정할 수 있다.
저장부(29)에는 각 배터리 셀(B1, B2,…, Bn-1, Bn)의 만충전 용량에 관한 데이터가 저장되어 있을 수 있다. 만충전 용량은 충전 상태의 계산에 사용된다. 만충전 용량은 고전압 배터리가 완전 방전 상태에서 만충전 상태까지 충전되는 과정에서 제어 유닛(25)에 의해 계산되어 저장부(29)에 저장될 수 있다. 만충전 용량은 전류 적산법에 의해 결정할 수 있다.
대안으로서, 만충전 용량은 본 발명이 속한 기술분야에서 공지된 다른 방법으로 결정될 수 있다. 구체적으로, 제어 유닛(25)은 충전 상태가 미리 설정한 기준 퍼센트(%)만큼 변화하는 동안 전류 측정부(27)를 통해 전류 적산량을 결정한다. 그리고, 제어 유닛(25)은 결정된 전류 적산량을 충전 상태 변화량이 100%일 때를 기준으로 환산한 다음 환산된 전류 적산량을 만충전 용량으로 결정할 수 있다.
제어 유닛(25)은, 커넥터부(30)가 충전 전원부(31)에 결합되면, 고전압 배터리(21)의 충전을 시작하고, 만충전 상태까지 충전을 진행하는 과정에서 이하에서 설명되는 셀 밸런싱을 함께 병행한다.
도 3은 본 발명의 실시예에 따라 제어 유닛(25)이 고전압 배터리의 충전을 제어하는 방법을 구체적으로 나타낸 순서도이다.
도 3에 도시된 바와 같이, 단계 S10에서, 제어 유닛(25)은 충전이 시작되면 고전압 충전 라인(23)에 설치된 고전압 충전 스위치부(22)를 턴 온 시킨다(S10). 그러면, 충전 전류가 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)을 통해 흘러 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전이 시작된다.
충전의 시작은, 충전 전원부(31)로부터 전송되는 충전 개시 요구 신호에 따라 이루어질 수 있다. 충전 개시 요구 신호의 수신을 위해, 커넥터부(30)는 통신 인터페이스(도 2의 36)를 포함할 수 있고, 제어 유닛(25)은 통신 인터페이스(36)를 통해 전기적 신호를 송수신할 수 있도록 전기적으로 결합될 수 있다. 대안적으로, 충전의 시작은 제어 유닛(25)이 커넥터부(30)가 충전 전원부(31)에 결합된 것을 인식하는 것에 의해 이루어질 수도 있다.
제어 유닛(25)은 단계 S20에서 고전압 배터리(21)의 충전이 진행되는 동안 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 계산하여 모니터링 한다. 충전 상태는 전류 적산법 또는 확장 칼만 필터를 이용하여 계산이 가능하다.
충전 상태의 계산을 위해, 제어 유닛(25)은 전압 측정부(26), 전류 측정부(27) 및 온도 측정부(28)를 제어하여 일정한 시간 간격으로 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 전압, 전류 및 온도 데이터를 취득하여 저장부(29)에 주기적으로 기록할 수 있다. 그리고, 제어 유닛(25)은 취득된 데이터를 이용하여 전류 적산법 또는 확장 칼만 필터를 이용하여 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 계산하여 저장부(29)에 기록할 수 있다.
제어 유닛(25)은, 단계 S30에서, 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전이 진행되는 동안 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 참조하여 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn) 중 적어도 하나가 만충전 상태(100%)에 도달되었는지 판별한다.
만약, 단계 S30의 판단 결과가 YES이면, 제어 유닛(25)은 단계 S40에서 고전압 충전 스위치부(22)를 턴 오프 시켜 충전을 일시 중단한다. 반면, 단계 S30의 판단 결과가 NO 이면, 제어 유닛(25)은 단계 S50으로 이행하여 고전압 배터리(21)의 충전 상태를 계속 유지한다.
제어 유닛(25)은 단계 S40에서 충전이 일시 중단되면 단계 S60에서 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 서로 비교하여 충전 상태가 가장 낮은 배터리 셀을 보조 충전 대상으로 결정하고, 나머지 배터리 셀들을 강제 방전 대상으로 결정한다.
도 2에 도시된 예에서, 제1 배터리 셀(B1), 제2 배터리 셀(B2), 제n-1 배터리 셀(Bn-1) 및 제n 배터리 셀(Bn)의 충전 상태가 각각 100%, 90%, 80% 및 100%라고 가정하면, 제n-1 배터리 셀(Bn-1)이 보조 충전 대상으로, 나머지 제1 배터리 셀(B1), 제2 배터리 셀(B2) 및 제n 배터리 셀(Bn)이 강제 방전 대상으로 결정될 수 있다.
이어서, 제어 유닛(25)은 단계 S70에서 강제 방전 대상으로 결정된 배터리 셀과 연결된 방전 회로를 동작시켜 해당 배터리 셀을 강제 방전시킨다. 방전 회로의 동작을 위해, 제어 유닛(25)은 방전 회로에 포함된 방전 스위치를 턴 온 시킨다.
동시에, 제어 유닛(25)은 단계 S80에서 보조 충전 대상으로 결정된 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시켜 해당 배터리 셀을 보조 충전 라인(24)에 연결하여 보조 충전을 진행한다. 보조 충전 스위치 회로의 동작을 위해, 제어 유닛(25)은 보호 충전 스위치 회로에 포함된 충전 스위치를 턴 온 시킨다.
단계 S70 및 S80에서, 강제 방전과 보조 충전이 동시에 진행되면, 강제 방전되는 배터리 셀들의 충전 상태는 낮아지고, 보조 충전되는 배터리 셀의 충전 상태는 증가한다.
단계 S70 및 S80 이후에, 제어 유닛(25)은 단계 S90에서 시간을 계수하여 미리 결정된 시간이 경과되었는지 판별한다. 단계 S90의 판단 결과가 YES이면 다음 프로세스를 진행하고, 단계 S90의 판단결과가 NO이면 프로세스 진행을 홀딩한다. 여기서, 상기 미리 결정된 시간은 제어 유닛(25)이 충전 상태를 반복적으로 계산하는 주기에 해당할 수 있고, 수 내지 수십 msec로 설정될 수 있다.
단계 S90에서 YES로 판별되면, 제어 유닛(25)은 단계 S100에서 전압 측정부(26), 전류 측정부(27) 및 온도 측정부(28)를 통해 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 전압, 전류 및 온도 데이터를 취득하여 저장부(29)에 기록하고, 전류 적산법, 확장 칼만 필터 등을 이용하여 제1 내지 제n 배터리 셀(B1, B2,…, Bn-1, Bn)의 충전 상태를 계산하여 모니터링 한다.
이어서, 제어 유닛(25)은 단계 S110에서 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀이 있는지 판별한다.
만약, 단계 S110에서 YES로 판별되면, 제어 유닛(25)은 프로세스를 단계 S120으로 이행한다. 반대로, 단계 S110에서 NO로 판별되면 프로세스를 단계 S90으로 이행하여 강제 방전과 보조 충전을 계속 진행한다.
단계 S110에서 YES로 판별되면, 제어 유닛(25)은 단계 S120에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상인지 여부를 판별한다. 현 단계에서, 충전 상태가 동일한 배터리 셀들의 수는 2이다. 하나는 처음에 보조 충전 대상으로 결정된 배터리 셀이고 다른 하나는 강제 방전 과정에서 충전 상태가 보조 충전된 배터리 셀과 동일해 진 배터리 셀이다. 기준 넘버는 변압기(35)의 성능을 고려하여 2 내지 n-1의 범위에서 선택된다. 여기서, n은 전체 배터리 셀들의 수량이다. 바람직하게, 기준 넘버는 고정될 수도 있고, 단계 S60에서 결정되는 보조 충전 대상이 되는 배터리 셀의 수가 증가함에 따라서 함께 증가하도록 설정할 수도 있다. 일 예로, 기준 넘버는 보조 충전 대상이 되는 배터리 셀의 수보다 적어도 1이 크도록 설정될 수 있다. 기준 넘버가 가변되는 경우, 기준 넘버는 밸런싱 과정이 진행될수록 점차 증가할 수 있다. 기준 넘버는 제어 유닛(250에 의해 가변될 수 있다.
만약, 단계 S120의 판단 결과가 NO이면, 제어 유닛(25)은 단계 S140에서 모든 배터리 셀들의 충전 상태를 계산하고 프로세스를 단계 S60으로 이행한다. 반면, 단계 S120의 판단 결과가 YES이면, 단계 S130이 진행된다. 단계 S140에서, 충전 상태 계산은 앞서 설명한 방식이 사용될 수 있다. 한편, 단계 S110 및 단계 S120이 수행되는 시간이 충전 상태의 반복 계산 주기보다 짧다면, 단계 S140에서 계산되는 모든 배터리 셀들의 충전 상태는 단계 S100에서 계산되는 모든 배터리 셀들의 충전 상태로 그대로 설정될 수 있다.
단계 S120에서, 기준 넘버가 2라면, 제어 유닛(25)은 보조 충전 대상이 되는 배터리 셀의 충전 상태와 강제 방전 대상이 되는 배터리 셀들 중에서 어느 하나의 충전 상태가 서로 동일해 지면, 프로세스를 S130 단계로 바로 이행한다.
제어 유닛(25)은 단계 S140 이후에 단계 S60에서 강제 방전 대상과 보조 충전 대상을 다시 결정한다. 따라서, 단계 S110에서, 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일해진 배터리 셀이 보조 충전 대상으로 추가 지정된다. 이 경우, 기준 넘버는 3으로 증가할 수 있다. 이 기준 넘버는 보조 충전 대상이 되는 배터리 셀들의 수인 2보다 1이 더 크다.
도 2에 도시된 예의 경우, 단계 S70 및 S80에서, 제n-1 배터리 셀(Bn-1)이 보조 충전되고, 제1 배터리 셀(B1), 제2 배터리 셀(B2) 및 제n 배터리 셀(Bn)이 강제 방전된다. 이 때, 제2 배터리 셀(B2)의 충전 상태가 가장 먼저 보조 충전되는 제n-1 배터리 셀(Bn-1)의 충전 상태와 동일해 진다. 따라서, 단계 S60이 다시 진행되면, 제2 배터리 셀(B2)과 제n-1 배터리 셀(Bn-1)이 보조 충전 대상으로 결정되고, 제1 배터리 셀(B1) 및 제n 배터리 셀(Bn)이 강제 방전 대상으로 결정된다.
이어서, 제어 유닛(25)은 전술한 바와 실질적으로 동일하게 강제 방전과 보조 충전을 진행한다(S70, S80). 또한, 제어 유닛(25)은 일정 시간 간격을 두고 모든 배터리 셀들의 충전 상태를 계산하여 모니터링 한다(S100). 또한, 제어 유닛(25)은 강제 방전 대상이 되는 배터리 셀들 중 충전 상태가 보조 충전 대상이 되는 배터리 셀(들)과 동일한 셀이 있는지 판별한다(S110). 또한, 제어 유닛(25)은 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상인지 여부를 판별한다(S120). 만약, 단계 S120의 판단 결과가 NO 이면 프로세스가 단계 S60으로 이행된다. 따라서, 강제 방전 및 보조 충전을 진행하는 과정에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버에 도달할 때까지 앞서 설명된 단계들이 반복된다. 기준 넘버는 하나의 값으로 고정되거나, 단계 S60에서 결정되는 보조 충전 대상이 되는 배터리 셀들의 수에 1을 더한 값으로 가변시킬 수 있다.
한편, 단계 S120의 판단 결과가 YES 이면, 제어 유닛(25)은 단계 S130에서 모든 배터리 셀들의 충전 상태가 100%인지 판별한다.
만약, 단계 S130의 판단 결과가 YES이면, 제어 유닛(25)은 고전압 배터리가 만충전 상태에 도달되었다고 판단하여 충전 프로세스를 종료한다. 반면, 단계 S130의 판단 결과가 NO이면, 제어 유닛(25)은 프로세스를 단계 S10으로 이행하여 고전압 충전 스위치부(22)를 턴 온시켜 전체 배터리 셀들의 충전을 다시 시작한다. 따라서, 어느 하나의 배터리 셀이 만충전 상태에 도달되었을 때, 본 발명에 따른 강제 방전 및 보조 충전을 병행한 셀 밸런싱이 또 다시 이루어진다.
본 발명에 따르면, 시간이 경과됨에 따라 보조 충전의 대상이 되는 배터리 셀들이 증가하는 반면, 강제 방전의 대상이 되는 배터리 셀들은 감소한다. 그리고 결국에는 모든 배터리 셀들의 충전 상태가 100%에 수렴하게 된다.
또한, 셀 밸런싱이 수행되는 과정에서 강제 방전과 보조 충전이 동시에 진행되므로 전체 배터리 셀들의 충전 상태가 평균적으로 증가되면서 셀 밸런싱이 진행된다. 따라서, 셀 밸런싱 과정에서 강제 방전을 통해 소모되는 에너지 량을 감소시킬 수 있고, 만충전까지 소요되는 시간 또한 단축시킬 수 있다.
구체적인 예로서, 4개의 배터리 셀들을 충전시킬 때 특정 시점에서 배터리 셀들의 충전 상태가 각각 100%, 90%, 80% 및 85%인 상황을 가정해 보자.
이 경우, 종래의 셀 밸런싱 방식은 모든 배터리 셀들의 충전 상태를 80%에 맞추기 위해 충전 상태가 100%, 90% 및 85%인 셀들을 모두 강제 방전시킨다. 따라서, 이 과정에서 충전 상태의 총 변화량 35%에 해당하는 에너지 낭비가 수반된다. 소모되는 에너지는 방전회로에서 열로 전환된다. 또한, 전체 배터리 셀들의 충전 상태가 80%로 낮아졌으므로 만충전 상태와의 격차가 평균적으로 증가하여 만충전까지 소요되는 시간이 그 만큼 길어진다.
반면, 본 발명의 실시예에 따르면, 충전 상태가 80%인 배터리 셀은 보조 충전되고, 충전 상태가 100%, 90% 및 85%인 배터리 셀들은 강제 방전된다. 그리고, 보조 충전되는 배터리 셀의 충전 상태와 충전 상태가 동일한 배터리 셀이 나타나면 해당 배터리 셀도 강제 방전을 중단하고 보조 충전이 이루어진다. 또한, 시간이 흐르면 보조 충전되는 배터리 셀들과 충전 상태가 동일한 배터리 셀이 다시 나타나고 해당 배터리 셀에 대해서도 강제 방전을 중단하고 보조 충전이 이루어진다. 이러한 과정을 통해 충전 상태가 동일해진 배터리 셀들의 수가 기준 넘버에 도달되면, 강제 방전 및 보조 충전이 중단되고 전체 배터리 셀들에 대한 충전이 다시 시작된다. 이러한 과정은, 충전 중에 만충전 상태에 도달되는 배터리 셀이 생길 때마다 반복되고, 결과적으로 모든 배터리 셀들의 충전 상태가 100%에 수렴하게 된다.
본 발명에 있어서, 제어 유닛(25)은 상술한 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 제어부(25)는 프로그램 모듈의 집합으로 구현될 수 있다. 이 때, 프로그램 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 상기 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 컴퓨터 부품으로 프로세서와 연결될 수 있다. 또한, 상기 메모리는 본 발명의 저장부(29)에 포함될 수 있다. 또한, 상기 메모리는 디바이스의 종류에 상관 없이 정보가 저장되는 디바이스를 총칭하는 것으로서 특정 메모리 디바이스를 지칭하는 것은 아니다.
또한, 제어 유닛(25)의 다양한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 기록매체에 수록될 수 있다. 상기 기록매체는 컴퓨터에 포함된 프로세서에 의해 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 기록매체는 ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다. 또한, 상기 코드 체계는 네트워크로 연결된 컴퓨터에 분산되어 저장되고 실행될 수 있다. 또한, 상기 조합된 제어 로직들을 구현하기 위한 기능적인 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
상술한 본 발명에 따른 충전 제어 장치는 배터리 관리 시스템에 포함될 수 있다. 배터리 관리 시스템은, 배터리의 충방전과 관련된 전반적인 동작을 제어하는 것으로서, 당업계에서 Battery Management System으로 불리는 컴퓨팅 시스템이다.
또한, 본 발명에 따른 충전 제어 장치는, 배터리 팩에 포함될 수 있다. 배터리 팩은 적어도 직렬 연결되어 있는 복수의 배터리 셀들과 이들을 내부에 수납하는 하우징과 상기 충전 제어 장치가 설치되는 프레임을 포함한다. 상기 배터리 팩에 포함된 복수의 배터리 셀들은 본 발명에 따른 충전 제어 장치에 의해 만충전 상태까지 충전되는 과정에서 충전 상태가 효과적으로 밸런싱될 수 있다.
본 발명의 다양한 실시 양태를 설명함에 있어서, '~부' 또는 '~유닛'이라고 명명된 구성 요소들은 물리적으로 구분되는 요소들이라고 하기 보다 기능적으로 구분되는 요소들로 이해되어야 한다. 따라서 각각의 구성요소는 다른 구성요소와 선택적으로 통합되거나 각각의 구성요소가 제어 로직(들)의 효율적인 실행을 위해 서브 구성요소들로 분할될 수 있다. 하지만 구성요소들이 통합 또는 분할되더라도 기능의 동일성이 인정될 수 있다면 통합 또는 분할된 구성요소들도 본 발명의 범위 내에 있다고 해석되어야 함은 당업자에게 자명하다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명에 따르면, 시간이 경과됨에 따라 보조 충전의 대상이 되는 배터리 셀들이 증가하는 반면, 강제 방전의 대상이 되는 배터리 셀들은 감소한다. 그리고 결국에는 모든 배터리 셀들의 충전 상태가 100%에 수렴하게 된다. 또한, 셀 밸런싱이 수행되는 과정에서 강제 방전과 보조 충전이 동시에 진행되므로 전체 배터리 셀들의 충전 상태가 평균적으로 증가되면서 셀 밸런싱이 진행된다. 따라서, 셀 밸런싱 과정에서 강제 방전을 통해 소모되는 에너지 량을 감소시킬 수 있고, 만충전까지 소요되는 시간 또한 단축시킬 수 있다.

Claims (14)

  1. 직렬 연결된 제1 내지 제n 배터리 셀로 구성된 고전압 배터리의 충전을 제어하는 충전 제어 장치에 있어서,
    상기 제1 내지 제n 배터리 셀에 각각 연결된 제1 내지 제n 방전 회로;
    상기 제1 배터리 셀과 상기 제n 배터리 셀에 고전압 충전 전원을 인가하고 고전압 충전 스위치부를 포함하는 고전압 충전 라인;
    저전압 충전 전원이 인가되는 보조 충전 라인;
    상기 보조 충전 라인을 상기 제1 내지 제n 배터리 셀 중 적어도 하나와 선택적으로 연결할 수 있도록 상기 제1 내지 제n배터리 셀과 각각 연결된 제1 내지 제n 보조 충전 스위치 회로; 및
    상기 고전압 충전 스위치부, 상기 제1 내지 제n 방전 회로, 및 상기 제1 내지 제n보조 충전 스위치 회로와 전기적으로 결합된 제어 유닛을 포함하고,
    상기 제어 유닛은,
    (a) 상기 제1 내지 제n 배터리 셀의 충전 상태를 계산하고,
    (b) 상기 제1 내지 제n 배터리 셀의 충전이 진행되는 동안, 상기 제1 내지 제n 배터리 셀 중 적어도 하나가 만충전 상태에 도달되면 상기 고전압 충전 스위치부를 턴오프시키고,
    (c) 상기 제1 내지 제n 배터리 셀 중에서 충전 상태가 가장 낮은 적어도 하나의 배터리 셀을 보조 충전 대상으로 결정하고, 나머지 배터리 셀들을 강제 방전 대상으로 결정하고,
    (d) 상기 강제 방전 대상으로 결정된 각 배터리 셀과 연결된 방전 회로를 동작시켜 해당 배터리 셀을 강제 방전시키고, 동시에 상기 보조 충전 대상으로 결정된 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시켜 해당 배터리 셀을 보조 충전 라인에 연결하여 보조 충전시키고,
    (e) 강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀이 나타나면, 해당 배터리 셀과 연결된 방전 회로의 동작을 중단시키고 해당 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시키도록 구성된 것을 특징으로 하는 충전 제어 장치.
  2. 제1항에 있어서,
    상기 제1 내지 제n 방전 회로의 각각은 방전 스위치와 방전 저항을 포함하고,
    상기 제1 내지 제n보조 충전 스위치 회로의 각각은 충전 스위치를 포함하는 것을 특징으로 하는 충전 제어 장치.
  3. 제1항에 있어서,
    상기 제어 유닛은, (f) 강제 방전 및 보조 충전을 진행하는 과정에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상이 되면, 모든 방전 회로 및 모든 보조 충전 스위치 회로의 동작을 중단시키고, 상기 고전압 충전 스위치부를 턴 온 시키도록 구성된 것을 특징으로 하는 충전 제어 장치.
  4. 제3항에 있어서,
    상기 제어 유닛은, 상기 제1 내지 제n 배터리 셀들의 충전 상태가 만충전 상태가 될 때까지 상기 (a) 내지 상기 (f)의 제어 로직을 반복하도록 구성된 것을 특징으로 하는 충전 제어 장치.
  5. 제3항에 있어서,
    상기 제어 유닛은, 보조 충전의 대상이 되는 배터리 셀들의 수가 증가함에 따라 상기 기준 넘버를 증가시키도록 구성된 것을 특징으로 하는 충전 제어 장치.
  6. 제1항에 있어서,
    상기 제1 내지 제n 배터리 셀에 대한 전압을 측정하는 전압 측정부; 상기 제1 내지 제n 배터리 셀에 대한 충전 전류 또는 방전 전류의 크기를 측정하는 전류 측정부; 및 상기 제1 내지 제n 배터리 셀의 온도를 측정하는 온도 측정부를 포함하고,
    상기 제어 유닛은, 상기 제1 내지 제n 배터리 셀에 대한 전압 측정값, 전류 측정값 및 온도 측정값을 이용하여 각 배터리 셀의 충전 상태를 계산하여 모니터하도록 구성된 것을 특징으로 하는 충전 제어 장치.
  7. 제1항에 있어서,
    충전 전원부와 결합되고 상기 고전압 충전 라인과 상기 보조 충전 라인이 연결된 커넥터부를 더 포함하고,
    상기 보조 충전 라인은 상기 커넥터부를 통해 인가되는 충전 전압을 강압하는 변압기를 포함하는 것을 특징으로 하는 충전 제어 장치.
  8. 제7항에 있어서,
    상기 커넥터부는, 상기 충전 전원부로부터 연장된 고전압 충전 케이블이 접속되는 입력 단자와, 상기 고전압 충전 라인이 접속되는 제1출력 단자와, 상기 보조 충전 라인이 접속되는 제2출력 단자를 포함하는 것을 특징으로 하는 충전 제어 장치.
  9. 제1항에 따른 충전 제어 장치를 포함하는 배터리 관리 시스템.
  10. 제1항에 따른 충전 제어 장치를 포함하는 배터리 팩.
  11. 직렬 연결된 제1 내지 제n 배터리 셀을 포함하는 고전압 배터리의 충전을 제어하는 방법에 있어서,
    상기 제1 배터리 셀과 상기 제n 배터리 셀에 고전압 충전 전원을 인가하여 고전압 배터리를 충전하는 제1단계;
    상기 제1 내지 제n 배터리 셀의 충전 상태를 계산하여 모니터하는 제2단계;
    상기 제1 내지 제n 배터리 셀의 충전이 진행되는 동안 상기 제1 내지 제n 배터리 셀 중 적어도 하나가 만충전 상태에 도달되면 상기 고전압 충전 전원의 인가를 중지하는 제3단계;
    상기 제1 내지 제n 배터리 셀 중에서 충전 상태가 가장 낮은 적어도 하나의 배터리 셀을 보조 충전 대상으로 결정하고, 나머지 배터리 셀들을 강제 방전 대상으로 결정하는 제4단계;
    상기 강제 방전 대상으로 결정된 각 배터리 셀과 연결된 방전 회로를 동작시켜 해당 배터리 셀을 강제 방전시키고, 동시에 상기 보조 충전 대상으로 결정된 각 배터리 셀과 연결된 보호 충전 스위치 회로를 동작시켜 해당 배터리 셀을 보조 충전 라인에 연결하여 보조 충전시키는 제5단계;
    강제 방전되는 배터리 셀들 중에서 보조 충전되는 배터리 셀과 충전 상태가 동일한 배터리 셀을 식별하는 제6단계; 및
    상기 식별된 배터리 셀과 연결된 방전 회로의 동작을 중단시키고 해당 배터리 셀과 연결된 보조 충전 스위치 회로를 동작시키는 제7단계;를 포함하는 것을 특징으로 하는 충전 제어 방법.
  12. 제11항에 있어서,
    강제 방전 및 보조 충전을 동시에 진행하는 과정에서 충전 상태가 동일한 배터리 셀들의 수가 기준 넘버 이상이 되면, 모든 방전 회로 및 모든 보조 충전 스위치 회로의 동작을 중단시키는 제8단계; 및
    상기 고전압 충전 전원의 인가를 재개하는 제9단계를 더 포함하는 것을 특징으로 하는 충전 제어 방법.
  13. 제12항에 있어서,
    상기 제1 내지 제n 배터리 셀들의 충전 상태가 만충전 상태가 될 때까지 상기 제1단계 내지 상기 제9단계를 반복하는 것을 특징으로 하는 충전 제어 방법.
  14. 제12항에 있어서,
    보조 충전의 대상이 되는 배터리 셀들의 수가 증가함에 따라 상기 기준 넘버를 증가시키는 단계를 더 포함하는 것을 특징으로 하는 충전 제어 방법.
PCT/KR2018/000439 2017-01-10 2018-01-09 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법 WO2018131874A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018559708A JP6636654B2 (ja) 2017-01-10 2018-01-09 省エネルギー及び速いセルバランシングが可能な充電制御装置及び方法
US16/094,162 US10811886B2 (en) 2017-01-10 2018-01-09 Charge control apparatus capable of high speed cell balancing and energy saving and method thereof
PL18739083T PL3444921T3 (pl) 2017-01-10 2018-01-09 Urządzenie sterujące ładowaniem i sposób pozwalający na oszczędzanie energii i szybkie równoważenie ogniw
CN201880001984.1A CN109874360B (zh) 2017-01-10 2018-01-09 能够进行高速单体平衡和节能的充电控制装置及其方法
EP18739083.6A EP3444921B1 (en) 2017-01-10 2018-01-09 Charging control apparatus and method capable of energy saving and quick cell balancing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0003759 2017-01-10
KR20170003759 2017-01-10
KR10-2018-0002508 2018-01-08
KR1020180002508A KR102123048B1 (ko) 2017-01-10 2018-01-08 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2018131874A1 true WO2018131874A1 (ko) 2018-07-19

Family

ID=62839856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000439 WO2018131874A1 (ko) 2017-01-10 2018-01-09 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법

Country Status (1)

Country Link
WO (1) WO2018131874A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021262979A1 (en) * 2020-06-25 2021-12-30 Milwaukee Electric Tool Corporation Charge balancing for a multi-bay power supply
CN115360798A (zh) * 2022-10-19 2022-11-18 中安芯界控股集团有限公司 一种电池储能系统中的电池簇在线平衡方法
WO2023056000A1 (en) * 2021-09-30 2023-04-06 Milwaukee Electric Tool Corporation Charger including multiple adjustable power sources

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008373A (ja) * 1999-06-17 2001-01-12 Sony Corp バッテリー装置及びバッテリーの充電方法
US20090096419A1 (en) * 2007-10-15 2009-04-16 Black & Decker Inc. Bottom based balancing in lithium ion system
US20120293129A1 (en) * 2011-05-20 2012-11-22 Ford Global Technologies, Llc Active Battery Cell Balancing Methods with Variable Duration Discharge
KR20150115281A (ko) * 2014-04-03 2015-10-14 주식회사 아모센스 충전 셀의 셀 밸런싱 장치 및 방법
KR101602277B1 (ko) * 2014-12-05 2016-03-10 현대오트론 주식회사 배터리 셀 밸런싱 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008373A (ja) * 1999-06-17 2001-01-12 Sony Corp バッテリー装置及びバッテリーの充電方法
US20090096419A1 (en) * 2007-10-15 2009-04-16 Black & Decker Inc. Bottom based balancing in lithium ion system
US20120293129A1 (en) * 2011-05-20 2012-11-22 Ford Global Technologies, Llc Active Battery Cell Balancing Methods with Variable Duration Discharge
KR20150115281A (ko) * 2014-04-03 2015-10-14 주식회사 아모센스 충전 셀의 셀 밸런싱 장치 및 방법
KR101602277B1 (ko) * 2014-12-05 2016-03-10 현대오트론 주식회사 배터리 셀 밸런싱 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444921A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021262979A1 (en) * 2020-06-25 2021-12-30 Milwaukee Electric Tool Corporation Charge balancing for a multi-bay power supply
WO2023056000A1 (en) * 2021-09-30 2023-04-06 Milwaukee Electric Tool Corporation Charger including multiple adjustable power sources
CN115360798A (zh) * 2022-10-19 2022-11-18 中安芯界控股集团有限公司 一种电池储能系统中的电池簇在线平衡方法
CN115360798B (zh) * 2022-10-19 2023-02-28 中安芯界控股集团有限公司 一种电池储能系统中的电池簇在线平衡方法

Similar Documents

Publication Publication Date Title
WO2019172527A1 (ko) Soc-ocv 프로파일 추정 방법 및 장치
KR102123048B1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2017034275A1 (ko) 이차 전지의 충전 조건 조정 장치 및 방법
WO2018030704A1 (ko) 배터리 팩을 위한 온도 모니터링 장치 및 방법
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2019124738A1 (ko) 배터리 충전관리 장치 및 방법
WO2021080358A1 (ko) 병렬 연결된 배터리 팩의 밸런싱 장치 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2021080247A1 (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2016122238A1 (ko) 배터리의 상태 추정 장치 및 방법
WO2019146928A1 (ko) Soh 분석 장치 및 방법
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2020080802A1 (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2016032131A1 (ko) Dc-dc 전압 변환기의 입력 파워 한도를 조절하기 위한 파워 제어 시스템 및 방법
WO2022039505A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018739083

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018739083

Country of ref document: EP

Effective date: 20181114

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE