WO2021020233A1 - 車載電源システム及びそれを備えた車両 - Google Patents

車載電源システム及びそれを備えた車両 Download PDF

Info

Publication number
WO2021020233A1
WO2021020233A1 PCT/JP2020/028278 JP2020028278W WO2021020233A1 WO 2021020233 A1 WO2021020233 A1 WO 2021020233A1 JP 2020028278 W JP2020028278 W JP 2020028278W WO 2021020233 A1 WO2021020233 A1 WO 2021020233A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
electronic devices
power
vehicle
voltage
Prior art date
Application number
PCT/JP2020/028278
Other languages
English (en)
French (fr)
Inventor
禎久 山田
和市 藤阪
清水 雅昭
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP20847519.4A priority Critical patent/EP4001017A4/en
Priority to US17/630,918 priority patent/US11951918B2/en
Priority to CN202080054335.5A priority patent/CN114206679B/zh
Publication of WO2021020233A1 publication Critical patent/WO2021020233A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries

Definitions

  • the present invention relates to an in-vehicle power supply system and a vehicle provided with the in-vehicle power supply system.
  • an electric junction box such as a relay box equipped with a fuse or a relay is arranged near a battery, and the electric junction box is connected to a large number of electronic devices by a dedicated electric wire. It adopts a configuration that distributes power via.
  • each electronic device can be driven with a stable voltage.
  • the number of electronic devices and various sensors has increased remarkably due to the electrification and automation of vehicles, and the number of electric wires has increased accordingly, and the design of an in-vehicle power supply system has become extremely complicated.
  • this power distribution method a technique of providing a plurality of power control devices on the downstream side of the main power source and distributing the power supplied from the main power source to the terminal electronic devices and the like via the power control devices is being studied (hereinafter, this power distribution method). Is called "zone power distribution").
  • a large current flows through a specific electric wire (for example, the electric wire connecting the main power supply and the power control device on the downstream side of the main power supply), which causes a significant voltage drop in the electric wire.
  • a voltage drop occurs, the voltage applied to the electronic device mounted on the vehicle decreases, and the electronic device may not exhibit the desired performance.
  • a significant voltage drop may cause a situation in which the electronic device cannot function normally. Therefore, when performing zone power distribution, it is necessary to design the system so that no functional problem occurs even if a voltage drop occurs.
  • Patent Document 1 discloses an invention that limits the current required for driving a wiper when a large voltage drop is predicted in the power supply system of a vehicle.
  • the invention disclosed in Patent Document 1 is a technique relating to a single electronic device such as a wiper, and does not consider the system design of the entire vehicle.
  • an object of the present invention is to design an in-vehicle power supply system configured so that the electronic devices mounted on the vehicle exhibit at least the minimum functions even if the above voltage drop occurs.
  • the in-vehicle power supply system includes a main power supply unit for supplying power, one or more power supply hubs, a plurality of electronic devices, and the one or more power supply hubs.
  • a main power supply line connected to the main power supply unit, an auxiliary power supply line connecting each of the plurality of electronic devices to any one of the one or the plurality of power supply hubs, and each of the plurality of electronic devices.
  • a control unit for turning on / off the supply of electric power through a power hub connected to the electronic device is provided, and the plurality of electronic devices are defined with a minimum function holding voltage at which the electronic device holds a function. While power is being supplied to the plurality of electronic devices connected to the one or more power hubs, the minimum functional holding voltage of the electronic devices is ensured for at least one of the plurality of electronic devices. It has a structure that is characterized by being designed.
  • the plurality of electronic devices are defined with a minimum performance guarantee voltage that is higher than the minimum function holding voltage and guarantees the performance of the electronic device, and the one or more power supplies. It is characterized in that it is designed so that the minimum performance guarantee of the electronic device is ensured for at least one of the plurality of electronic devices in a state where power is supplied to the plurality of electronic devices connected to the hub. It may be configured as.
  • the plurality of electronic devices are further defined to have a rated voltage higher than the minimum performance guaranteed voltage, and the plurality of electronic devices connected to the one or a plurality of power hubs.
  • the configuration may be characterized in that it is designed so that the rated voltage of the electronic device is secured for at least one of the plurality of electronic devices while the electric power is supplied.
  • the in-vehicle power supply system includes a main power supply unit for supplying electric power, one or more power supply hubs, a plurality of electronic devices, and the one or more power supply hubs.
  • the main power supply line connected to the power supply unit, the sub power supply line connecting each of the plurality of electronic devices to any one of the one or the plurality of power hubs, and the electronic devices in each of the plurality of electronic devices. It is equipped with a control unit that turns on / off the supply of power through a power supply hub connected to the device, and the current flowing through the plurality of electronic devices is classified into continuous current, intermittent current, and inrush current.
  • the configuration may be characterized in that it is designed to be higher than the rated voltage specified for.
  • the voltage after the voltage drop due to the continuous current and the intermittent current flowing through the continuous load and the intermittent load, respectively is determined for at least one of the plurality of electronic devices.
  • the configuration may be characterized in that it is designed to be higher than the minimum performance guaranteed voltage.
  • any electronic device in the main power supply line of a vehicle equipped with an in-vehicle power supply system configured by zone distribution, even if a voltage drop occurs due to continuous current and intermittent current flowing through the continuous load and the intermittent load, respectively, any electronic device can be used. It is possible to construct an in-vehicle power supply system in which the voltage applied to the device does not fall below the minimum performance guaranteed voltage. As a result, the electronic device can operate with a predetermined performance.
  • the voltage after the voltage drop due to the continuous current and the inrush current flowing through the continuous load and the intermittent load, respectively is determined for at least one of the plurality of electronic devices.
  • the configuration may be characterized in that it is designed to be higher than the minimum function holding voltage.
  • the in-vehicle power supply system may further be configured such that at least one of the electronic devices is at least one of an electric power steering device and a braking device.
  • At least one of the electric power steering device and the braking device can be designed to operate without any problem even if a voltage drop occurs in the main feeder line.
  • the vehicle may be configured to include the above-mentioned in-vehicle power supply system.
  • the in-vehicle power supply system of the present invention it is possible to design an in-vehicle power supply system in which the in-vehicle equipment mounted on the vehicle operates at least the minimum functions even if a voltage drop occurs in the electric wire.
  • FIG. 1 shows a power supply configuration of an in-vehicle power supply system according to an embodiment.
  • FIG. 2 shows an example of an electronic device connected to a second power hub.
  • FIG. 3 schematically shows an example of a current flowing through a main feeder connected to the second power supply hub shown in FIG. 4 (A), (B), and (C) show an example of a schematic diagram of the electric wire configuration when there are two, four, and six main feeders connected to the main power supply, respectively.
  • FIG. 5 shows the wire diameter of the main feeder line, the voltage drop value, and the current value expected to flow in FIGS. 4 (A) to 4 (C).
  • FIG. 6 shows a flowchart of a method for designing an in-vehicle power supply system according to the present embodiment.
  • FIG. 1 shows the power supply configuration of the vehicle-mounted power supply system 100 mounted on the vehicle 1 according to the embodiment of the present invention.
  • the in-vehicle power supply system 100 includes a main power supply unit BAT1 and a main feeder line MPC1 to 3 [indicated by a thick solid line in the figure. ]
  • the auxiliary feeder lines SPC11, 21 to 23 [thin solid line in the figure Indicated by. ]
  • a plurality of electronic devices D11, 21, 21 to 23 connected via the above are provided.
  • the vehicle-mounted power supply system 100 of the embodiment includes a plurality of power supply hubs PDBs 1 to 3, but in the following description, "power supply hub PDB" is simply described unless otherwise specified.
  • main feeder line MPC1 to 3 The main feeder line MPC1 to 3, the subfeed line SPC11,21 to 23, the electronic devices D11,21 to 23, and the control units CU1 to 3 described below are also referred to as “main feeder line MPC” unless otherwise specified. It is described as “secondary feeder SPC”, “electronic device D”, and “control unit CU”, respectively.
  • the main power supply unit BAT1 is an arbitrary device having a function of supplying electric power such as a battery or an alternator (generator), for example. Although not shown, the power supply is distributed by connecting a part such as a fusible link including some fuse between the main power supply unit BAT1 and the main feeder line MPC connected to the main power supply unit BAT1. You may.
  • the power supply hub PDB has a function of supplying electric power to a plurality of electronic devices D connected downstream of the power supply hub PDB, and in detail, the on / off of energization can be controlled by a control unit CU described later. That is, the power hub PDB has a function of distributing power to each electronic device D by dividing the power supply system at a position close to the electronic device D.
  • the power hub PDB may include a fuse that cuts off the current by blowing when an overcurrent flows, or a relay that can control the presence or absence of continuity.
  • the "electronic device” includes any electrically operated device mounted on a vehicle such as an electronic device and an electric device.
  • the main feeder line MPC and the sub feeder line SPC may be any electric wire that can supply electric power, and are composed of, for example, a wire harness.
  • Each electric wire does not have to be one electric wire, and may be a form in which a plurality of electric wires are connected by a connecting means such as a connector.
  • vehicle power supplies There are multiple types of vehicle power supplies, which can be classified as, for example, + B power supply, ACC power supply, and IG power supply.
  • the power supply status of the vehicle corresponds to the above classification.
  • the power supply of the vehicle is turned off, only the electronic devices connected to the + B power supply are energized, and when the power supply of the vehicle is ACC, the + B power supply and the ACC Energize electronic devices connected to one of the power sources. If the power supply of the vehicle is IG, the electronic device connected to any of the + B power supply, the ACC power supply, and the IG power supply is energized.
  • the + B power supply is a power supply to which voltage is always applied.
  • electronic devices that need to be energized even when the vehicle is not in use such as various controllers and keyless devices for operating the door lock device that locks / unlocks the door wirelessly from outside the vehicle, are connected to the + B power supply. The door.
  • the ACC power supply is a power supply to which an electronic device that is supposed to be used even when the user is not operating the engine (the engine is stopped), such as a music playback device, is connected.
  • the IG power supply is basically an electronic device that is supposed to be used while the engine is starting, such as an electronic device used for operating the engine or a camera used in ADAS (advanced driver assistance system).
  • the power supply to be connected.
  • the electronic device if the power state of the vehicle is IG, it can be used even when the engine is stopped.
  • a plurality of power hub PDBs can be connected in a string via a main feeder line MPC.
  • Such a configuration is also called a daisy chain.
  • the downstream side of the + B power supply or a part thereof is divided into an ACC power supply and an IG power supply by, for example, a plurality of relays, and the downstream side is further divided into electronic devices.
  • the function of the electric junction box arranged near the battery of the vehicle can be provided at the position where the power hub is arranged (for example, near the rear seat occupant of the vehicle). ..
  • the connection using a daisy chain is referred to as a "daisy chain connection”
  • the conventional power supply configuration is referred to as a "centralized distribution connection”.
  • the vehicle-mounted power supply system 100 includes a control unit CU (for example, an ECU), and by giving an instruction to the corresponding power supply hub PDB through the control unit CU, the electronic device D downstream of the power supply hub PDB.
  • the energization of some power state (for example, + B power supply, ACC power supply, or IG power supply) is switched on / off, thereby controlling the start / stop of the electronic device connected to the downstream side of the power supply hub PDB. It is configured to be able to.
  • the control unit CU may be controlled by, for example, a control signal from a central processing unit that controls the control of the entire vehicle.
  • control unit CU is provided separately from the power supply hub PDB, but may be provided in the power supply hub PDB.
  • the range of electronic devices that can be supplied with power by a certain power hub PDB through control by the control unit CU is referred to as a “zone”.
  • a power supply configuration that distributes power from a power hub located at each position of the vehicle to each electronic device connected by a main feeder is called "zone distribution".
  • the downstream side of the power hub PDB is connected by the sub-feed line SPC for each electronic device, but the upstream side is combined into one common main feed line MPC. Therefore, the current that energizes the electronic device on the downstream side may flow simultaneously through the same main feeder.
  • a plurality of power hub PDBs for example, a first power hub PDB1, a second power hub PDB2, and a third power hub PDB3 are daisy-chained as shown in the embodiment of FIG.
  • the current flowing through the second power hub PDB2 and the third power hub PDB3 flows to the main power supply line MPC1 upstream of the first power hub PDB1.
  • the current flowing through the first power supply hub PDB1 on the upstream side may increase. Therefore, it is conceivable that a temporary voltage drop due to the simultaneous operation of the electronic device D frequently occurs, and as a result, the current flowing through the main feeder line MPC becomes large and the amount of the voltage drop there becomes large.
  • the current flowing through the electronic device D mounted on the vehicle can be classified into, for example, “continuous current”, “intermittent current”, and “inrush current”.
  • the continuous current is a current flowing through an electronic device in which the current always flows for a relatively long period of time.
  • the current flowing through the engine control module (PCM) that controls the engine after starting is classified as continuous current.
  • the current flowing through the headlamp (headlight) or audio operated by the driver's operation is also classified as a continuous current.
  • an electronic device to which a continuous current is supplied is referred to as a "continuous load”.
  • Intermittent current is a current whose energization time is functionally limited.
  • a current flowing through an electronic device such as a power wind motor (hereinafter, PW motor) that raises or lowers the window glass of a vehicle side door, or a door lock motor that locks / unlocks a door key via a signal of a door lock device.
  • PW motor power wind motor
  • a door lock motor that locks / unlocks a door key via a signal of a door lock device.
  • an intermittent current an electronic device to which an intermittent current is supplied is referred to as an "intermittent load”.
  • the inrush current is a large current that temporarily flows when the power is turned on to the electronic device, and is a large current that flows when the electronic device such as a headlamp, a PW motor, or a door lock motor is started. Even in electronic devices other than the above-mentioned electronic devices (for example, audio), a current larger than the normal current may flow at startup, but if the effect is minor, it should not be considered in the design of the power supply system. May be good.
  • FIG. 2 is a diagram showing an example of an electronic device included in a zone related to the second power supply hub PDB2 in the vehicle-mounted power supply system 100 shown in FIG.
  • FIG. 3 is a diagram schematically showing simultaneous energization of a plurality of electronic devices, and illustrates the current flowing through the second power supply hub PDB2.
  • the second power supply hub PDB2 is connected to the main power supply unit BAT1 via the main power supply line MPC2, the first power supply hub PDB1, and the main power supply line MPC1.
  • the second power hub PDB2 is connected to the meter D21, the audio D22, and the PW motor D23.
  • the meter D21 is an electronic device through which a continuous current flows, and is basically always energized while the engine is starting.
  • the audio D22 is also an electronic device through which a continuous current flows, and is automatically energized by the operation of the user or depending on the setting.
  • the PW motor D23 corresponds to an electronic device in which an intermittent current and an inrush current flow, and the inrush current flows when the motor is started, and then the current flows intermittently thereafter.
  • the current flowing through the main feeder line MPC2 via the second power supply hub PDB2 will be described.
  • the engine is started and a continuous current I1 flows through the meter D21.
  • a continuous current I2 flows through the audio D22.
  • a continuous current of I1 + I2 flows through the main feeder line MPC2 upstream of the second power supply hub PDB2.
  • a current flows through the PW motor D23.
  • a maximum I3 inrush current flows between the times t3 and t4 immediately after the operation.
  • FIG. 3 shows only two electronic devices, the meter D21 and the audio D22, a large number of electronic devices requiring continuous current may be used at the same time. Further, the voltage of the main power supply unit (including both the storage battery and the alternator) may temporarily decrease depending on the magnitude of the output current. Therefore, even if a plurality of electronic devices connected to a common main feeder MPC simultaneously request current, the system guarantees the minimum functions of the required electronic devices without causing an excessive voltage drop. Design is needed.
  • the performance guarantee voltage and the function holding voltage are set in the electronic device.
  • the performance-guaranteed voltage is a voltage that can be guaranteed to operate at a predetermined performance within the voltage range, and is, for example, 8V to 13V.
  • the function holding voltage cannot satisfy a predetermined performance, but at least the basic function is a voltage that can be operated, for example, 5V to 15V. The range of these voltage values depends on price, specifications, performance, and so on.
  • the in-vehicle power supply system of the embodiment guarantees the minimum functions of the necessary electronic devices even when the voltage drops due to a voltage drop or the like. Therefore, instead of assuming a situation in which all possible inrush currents are generated at the same time, all the electronic devices connected to the power supply hub are connected to the path from the main power supply unit to the electronic devices via the power supply hub. Even if continuous current and intermittent current are required, the electronic devices are supplied with power that does not fall below the minimum performance guaranteed voltage value, and even if inrush current is required in addition to these continuous currents, the minimum function holding voltage value is set. It is preferable to design the in-vehicle power supply system so that the power is not less than that.
  • the minimum performance guaranteed voltage value is the minimum voltage value at which the electronic device D is guaranteed to operate at a predetermined performance.
  • the minimum function holding voltage value is the minimum voltage value at which an electronic device can operate at least basic functions.
  • the voltage drop will be described, for example, by taking the meter D21 connected to the power supply hub PDB2 in FIG. 1 as an example.
  • the meter D21 for example, it is assumed that the rated voltage of 12V, the minimum performance guarantee voltage of 8V, and the minimum function holding voltage of 6V are set. Under this condition, when the battery terminal voltage is, for example, 13.5V, the meter D21 is rated even in a situation where continuous current is supplied from the power supply hub PDB2 to all continuous loads connected to the downstream side thereof. It is preferable that a voltage larger than the voltage of 12 V can be supplied.
  • the minimum performance guaranteed voltage is supplied to the meter D21. It is preferable that a voltage larger than 8 V can be supplied. Furthermore, in a situation where continuous current is supplied from the power hub PDB2 to all continuous loads connected to the downstream side, power is turned on to all the remaining electronic devices (loads) and an inrush current is generated. However, it is preferable that the meter D21 can be supplied with a voltage larger than the minimum function holding voltage of 6V.
  • the in-vehicle power supply system has the energization mode (continuous current, intermittent current, inrush current), current value, rated voltage, and minimum performance guaranteed voltage for all electronic devices connected to the power supply hub placed on the main power supply line.
  • the minimum function holding voltage the voltage drop value that can occur when the electronic device is started, and the voltage value when the battery terminal voltage is the lowest in normal use of the vehicle. ..
  • the voltage drop when a plurality of power hub PDBs are connected in series by a daisy chain connection, the voltage drop is taken into consideration for all the electric wires from the upstream main power supply unit BAT1 to the downstream electronic device D. Is preferable.
  • the diameter of the electric wire related to the electronic device D is increased, or the power hub to which the electronic device D is connected is increased. It is desirable to change the PDB.
  • the electric wire for example, wire harness
  • the electric wire resistance decreases as the electric wire diameter is increased.
  • problems in vehicle design such as a large space for wiring and difficulty in assembling occur.
  • the sub-feed line SPC becomes longer as the power hub PDB becomes farther, and the wire diameter of the sub-feed line SPC must be increased in order to reduce the voltage drop due to the sub-feed line SPC. New problems such as having to occur can occur.
  • the wiring becomes considerably complicated. Therefore, it is conceivable to deal with the voltage drop by changing the number of main feeder line MPCs directly connected to the main power supply unit BAT1.
  • FIG. 4 shows a plurality of electric wire configurations in which the number of main feeders connected to the main power supply unit is changed.
  • the configuration of FIG. 4A is the two main feeders A1 and A2
  • the configuration of FIG. 4B is the four main feeders B1 to B4.
  • six main feeder lines C1 to C6 are connected to the main power supply unit BAT2.
  • the power supply hubs e1 to e3 and power supply hubs e4 to e6 shown in FIG. 4 (A) and the power supply hubs e2 and e3 and the power supply hubs e5 and e6 shown in FIG. 4 (B) are relative to the main feeder line.
  • the power supply hubs e1 to e6 shown in FIG. 4C are each directly connected to the main power supply unit BAT2 via a main feeder.
  • the connection form shown in FIG. 4C is referred to as “star type connection”. Since the power supply hubs e1 and e2 shown in FIG. 4A and the power supply hubs e1, e2, e4, and e5 shown in FIG. 4B are star-type connections, respectively, FIG. 4A is shown. And FIG. 4B is a combination of a star type connection and a daisy chain connection.
  • each of the power supply hubs shown in FIGS. 4 (A) to 4 (C) has a plurality of electronic devices connected downstream via an auxiliary feeder.
  • a plurality of electronic devices connected downstream of the power hub e3 are shown as electronic device d3.
  • the numerical value written near each electronic device is the total amount of continuous current of the electronic device.
  • the continuous current supplied to the electronic devices d1, d2, and d3 flows through the main feeder line A1, and the total amount thereof is a maximum of 85A.
  • the wire diameter corresponding to a maximum current of 85 A is 40 sq.
  • the voltage drop value is determined by the wire resistance and the wire length per unit length, and is, for example, 0.3 V.
  • the maximum continuous current flowing through the main feeder line A2 is 67A, the corresponding wire diameter is 30sq, and the voltage drop value is 0.3V. If these voltage drop values are unacceptable, the voltage drop value is adjusted by increasing the wire diameter.
  • the voltage drop value may be adjusted by changing the route of the main feeder line or changing the power supply hub to be connected.
  • the position of the power supply hub, the wire diameter, and the like are determined in consideration of the total amount of continuous current, intermittent current, and inrush current, and the voltage drop accompanying the total amount.
  • FIG. 4 (A) If the diameter of the main feeder required in the configuration of FIG. 4 (A) becomes too large, the number of main feeders connected downstream of the main power supply unit BAT2 as shown in FIG. 4 (B) or FIG. 4 (C). May be changed.
  • the power supply hub e1 and the power supply hub e4 are not daisy-chained, they flow through the main feeder line A1 and the main feeder line A4 connected upstream of the power supply hub e1 and the power supply hub e4.
  • the total amount of continuous current is reduced, and the wire diameter can be reduced.
  • FIG. 4C is an example of a configuration in which the total amount of continuous current is further lower than that in FIG. 4B.
  • some electronic devices connected to the power hub use a large amount of current.
  • the current to such an electronic device is supplied / cut off via the main feeder, the voltage drop value generated in the main feeder changes significantly, and as a result, to other electronic devices connected to the downstream side.
  • the applied voltage changes.
  • a component related to the power of a vehicle such as a motor such as a generator or an electric motor, a PTC heater, or the like can be considered.
  • an electronic device related to the running or safety of a vehicle for example, an electric power steering device or a braking device related to "running / turning / stopping" can be considered.
  • the electric power steering device is connected to, for example, downstream of the power hub e4, or downstream of any power hub. It is preferable to connect directly to a power distribution device such as a fusible link, which is generally attached to the main power supply unit BAT2 or the like, via an electric wire.
  • a power distribution device such as a fusible link
  • the current flowing through each electronic device provided in the in-vehicle power supply system is classified into continuous current, intermittent current, and inrush current (S01).
  • the rated voltage, the minimum performance guarantee voltage, or the minimum function holding voltage that the electronic device can have is grasped and stored (S02).
  • the total amount of continuous current flowing through the main feeder is calculated, the wire diameter capable of energizing the total amount of the continuous current is selected, and the first is reduced by the continuous current flowing through the main feeder and the auxiliary feeder.
  • the voltage drop value is calculated (S03). Further, with respect to the first voltage drop value, a second voltage drop value that is further lowered by at least one intermittent current flowing through the main feeder is calculated (S04). Further, with respect to the first voltage drop value, a third voltage drop value that is further lowered by at least one inrush current flowing through the main feeder is calculated (S05).
  • a plurality of power hub PDBs are provided, but one power hub PDB may be provided, and the same effect can be obtained.
  • the electronic device in a vehicle equipped with an in-vehicle power supply system configured by zone distribution, even if power supply hubs for distributing power supply are arranged in various parts of the vehicle, the electronic device can be used. Since it can be designed so that the applied voltage does not fall below a predetermined value, it can be suitably used in the design of the power supply configuration of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

車載電源システムは、電力を供給する主電源部と、一つ又は複数の電源ハブと、複数の電子機器と、前記一つ又は複数の電源ハブを前記主電源部に接続する主給電線と、前記複数の電子機器のそれぞれを前記一つ又は複数の電源ハブのいずれか一つに接続する副給電線と、前記複数の電子機器のそれぞれに、該電子機器に接続された電源ハブを通じた電力の供給をオン・オフする制御ユニットを備える。前記複数の電子機器には、所定の電圧が定められており、前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の所定の電圧が確保されるように、設計されている。

Description

車載電源システム及びそれを備えた車両
 本発明は、車載電源システム及びその車載電源システムを備えた車両に関する。
 従来、例えば四輪自動車のような車両の配電システムは、ヒューズやリレーを備えたリレーボックスなどの電気接続箱をバッテリの近くに配置し、この電気接続箱から多数の電子機器にそれぞれの専用電線を介して配電する構成を採用している。
 このような配電システムによれば、各電子機器を安定した電圧で駆動できる。しかし、近年、車両の電動化、自動化のために電子機器や各種センサの数が著しく増加しており、それに伴って電線数が増え、車載電源システムの設計が非常に複雑になっている。
特開2008-296790号公報
 そこで、主電源の下流側に複数の電力制御機器を設け、主電源から供給される電力を電力制御機器を介して末端の電子機器等に分配する技術が検討されている(以下、この配電方式を「ゾーン配電」という。)。しかし、この技術を用いると、特定の電線(例えば、主電源とその下流側にある電力制御機器とを繋ぐ電線)に大きな電流が流れるようになるため、当該電線に著しい電圧降下を発生することがある。電圧降下が発生すると、車両に搭載されている電子機器に印加される電圧が低下して、電子機器が所期の性能を発揮できない可能性がある。また、著しい電圧低下によって、電子機器が正常に機能し得ない状況が発生する可能性もある。そのため、ゾーン配電を行うにあたっては、電圧降下が発生しても機能上の問題が生じないようにシステムを設計する必要がある。
 ところで、電圧降下の問題に関連して、例えば特許文献1には、車両の電源系統に大きな電圧降下が予測される場合、ワイパ駆動に必要な電流を制限する発明が開示されている。しかし、特許文献1に開示されている発明は、ワイパのような単一電子機器に関する技術であり、車両全体のシステム設計まで考慮されていない。
 そこで、本発明の目的は、上記のような電圧降下が発生しても車両に搭載された電子機器が少なくとも最低限の機能は発揮するように構成された車載電源システムを設計することである。
 前記課題を解決するために、本開示にかかる車載電源システムは、電力を供給する主電源部と、一つ又は複数の電源ハブと、複数の電子機器と、前記一つ又は複数の電源ハブを前記主電源部に接続する主給電線と、前記複数の電子機器のそれぞれを前記一つ又は複数の電源ハブのいずれか一つに接続する副給電線と、前記複数の電子機器のそれぞれに、該電子機器に接続された電源ハブを通じた電力の供給をオン・オフする制御ユニットを備え、前記複数の電子機器には、該電子機器が機能を保持する最低機能保持電圧が定められており、前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の最低機能保持電圧が確保されるように設計されている、ことを特徴とする構成となっている。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両において、最低機能保持電圧が確保される車載電源システムを構築することができる。その結果、当該電子機器は少なくとも最低限の機能を保持して動作することができる。
 また、車載電源システムはさらに、前記複数の電子機器には、前記最低機能保持電圧よりも高く、該電子機器の性能を保証する最低性能保証電圧が定められており、前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の最低性能保証が確保されるように設計されている、ことを特徴とする構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両において、最低性能保証電圧が確保される車載電源システムを構築することができる。その結果、当該電子機器は所定の性能で動作することができる。
 加えて、車載電源システムはさらに、前記複数の電子機器には、前記最低性能保証電圧よりも高い定格電圧が定められており、前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の定格電圧が確保されるように設計されている、ことを特徴とする構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両において、定格電圧が確保される車載電源システムを構築することができる。その結果、当該電子機器は想定されている性能を発揮することができる。
 また、前記課題を解決するために、車載電源システムは、電力を供給する主電源部と、一つ又は複数の電源ハブと、複数の電子機器と、前記一つ又は複数の電源ハブを前記主電源部に接続する主給電線と、前記複数の電子機器のそれぞれを前記一つ又は複数の電源ハブのいずれか一つに接続する副給電線と、前記複数の電子機器のそれぞれに、該電子機器に接続された電源ハブを通じた電力の供給をオン・オフする制御ユニットを備え、前記複数の電子機器に流れる電流は、連続電流、間欠電流、突入電流に分類され、前記複数の電子機器は、連続電流が流れる連続負荷と間欠電流が流れる間欠負荷のいずれかに分類され、前記連続負荷に前記連続電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている定格電圧よりも高くなるように設計されている、ことを特徴とする構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両の主給電線において、連続負荷に連続電流が流れることで電圧降下が発生しても、任意の電子機器に印加される電圧が、定格電圧を下回らない車載電源システムを構築することができる。その結果、当該電子機器は想定されている性能を発揮することができる。
 加えて、車載電源システムはさらに、前記連続負荷と前記間欠負荷にそれぞれ前記連続電流と前記間欠電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている最低性能保証電圧よりも高くなるように設計されている、ことを特徴とする構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両の主給電線において、連続負荷と間欠負荷にそれぞれ連続電流と間欠電流が流れることで電圧降下が発生しても、任意の電子機器に印加される電圧が最低性能保証電圧を下回らない車載電源システムを構築することができる。その結果、当該電子機器は所定の性能で動作することができる。
 その上、車載電源システムはさらに、前記連続負荷と前記間欠負荷にそれぞれ前記連続電流と前記突入電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている最低機能保持電圧よりも高くなるように設計されている、ことを特徴とする構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両の主給電線において、連続負荷と間欠負荷にそれぞれ連続電流と突入電流が流れることで電圧降下が発生しても、任意の電子機器に印加される電圧が最低機能保持電圧を下回らない車載電源システムを構築することができる。その結果、当該電子機器は少なくとも最低限の機能を保持して動作することができる。
 車載電源システムはさらに、前記電子機器の前記少なくとも一つは、電動パワーステアリング装置または制動装置の少なくともいずれかである、ことを特徴とする構成であってもよい。
 この構成によると、電動パワーステアリング装置または制動装置の少なくともいずれか一方は、主給電線において電圧降下が発生しても、問題なく動作するように設計することができる。
 そして、車両は、上記のような車載電源システムを備える構成であってもよい。
 この構成によると、ゾーン配電で構成された車載電源システムを備える車両において、電圧降下が発生しても電子機器が想定通りに動作する車両を実現することができる。
 本発明の車載電源システムによれば、電線において電圧降下が発生しても車両に搭載された車載機器が少なくとも最低限の機能は作動するような車載電源システムを設計することができる。
図1は、実施形態にかかる車載電源システムの電源構成を示している。 図2は、第2の電源ハブに接続された電子機器の一例を示している。 図3は、図2に示す第2の電源ハブに接続された主給電線に流れる電流の一例を概略的に示している。 図4(A),(B),(C)はそれぞれ、主電源部に接続される主給電線が2本、4本、6本の場合の電線構成の概略図の一例を示している。 図5は、図4(A)~図4(C)における主給電線の電線径、電圧降下値、および流れると想定される電流値を示している。 図6は、本実施形態における車載電源システムの設計方法のフローチャートを示している。
 以下、添付図面を参照して、本発明にかかる車載電源システムの実施形態を説明する。
 図1は、本発明の実施形態にかかる、車両1に搭載された車載電源システム100の電源構成を表している。
 図1に示されているように、車載電源システム100は、主電源部BAT1、主給電線MPC1~3[図中、太い実線で示す。]を介して主電源部BAT1に直接的又は間接的に接続されている複数の電源ハブPDB1~3、および複数の電源ハブPDBのそれぞれに副給電線SPC11,21~23[図中、細い実線で示す。]を介して接続された複数の電子機器D11,21~23を備える。実施形態の車載電源システム100は複数の電源ハブPDB1~3を備えているが、以下の説明では、特に区別しないときは単に「電源ハブPDB」を記載する。主給電線MPC1~3、副給電線SPC11,21~23、電子機器D11,21~23、および以下に説明する制御ユニットCU1~3についても、特に区別しないときは、「主給電線MPC」、「副給電線SPC」、「電子機器D」、および「制御ユニットCU」とそれぞれ記載する。
 主電源部BAT1は、例えば、バッテリ、またはオルタネータ(発電機)などの電力を供給する機能を備える任意の装置である。図示を省略しているが、主電源部BAT1と、主電源部BAT1に接続している主給電線MPCとの間に何らかのヒューズを含むヒュージブルリンク等の部品を接続して、電源を分配してもよい。
 電源ハブPDBは、該電源ハブPDBの下流に接続された複数の電子機器Dへ電力を供給する機能を有し、詳しくは後述する制御ユニットCUによって通電のオン・オフを制御することができる。すなわち、電源ハブPDBは、電子機器Dに近い位置で電源系統毎に分けて、各電子機器Dに配電する機能を有する。電源ハブPDBは、過電流が流れた際に溶断することで電流を遮断するヒューズまたは導通の有無を制御することができるリレーを備えてもよい。本明細書において、「電子機器」とは、電子機器、電気機器など車両に搭載された電気的に動作する任意の装置を含む。
 主給電線MPCおよび副給電線SPCは、電力が供給できる電線であればよく、例えばワイヤーハーネスで構成されている。各電線は、1本の電線である必要はなく、コネクタ等の連結手段によって複数の電線が連結された形態のものでもよい。
 車両の電源には、複数の種類があり、例えば、+B電源、ACC電源、IG電源のように分類することができる。車両の電源状態は、上記分類に対応しており、車両の電源が落ちている場合、+B電源に接続されている電子機器のみに通電し、車両の電源がACCであれば、+B電源とACC電源のいずれかに接続されている電子機器に通電する。また、車両の電源がIGであれば、+B電源と、ACC電源と、IG電源のいずれかに接続されている電子機器に通電する。
 +B電源は、常に電圧が印加されている電源である。例えば、各種のコントローラや、車両外から無線によってドアを施錠/解錠するドアロック装置を動作させるためのキーレス装置など、車両を使用しないときでも通電する必要がある電子機器が+B電源に接続される。
 ACC電源は、例えば音楽再生装置のように、使用者がエンジンを動作させていない状態(エンジン停止中)でも使用することを想定される電子機器が接続される電源である。
 IG電源は、例えば、エンジンの動作のために使用する電子機器、またはADAS(先進運転支援システム)で使用するカメラのように、基本的にはエンジン始動中に使用することを想定した電子機器が接続される電源である。ただし、電子機器によっては、車両の電源状態がIGになっていれば、エンジン停止中であっても使用することができる。
 実施形態では、図1に示されているように、複数の電源ハブPDBは、主給電線MPCを介して数珠つなぎに接続することができる。このような構成は、デイジーチェーンとも呼ばれる。
 図示しないが、従来の車載電源システムでは、バッテリ付近の電気接続箱において、+B電源の下流側又はその一部を、例えば複数のリレーによってACC電源、IG電源に分け、さらにその下流側を各電子機器にそれ専用の電線で接続することで、各電子機器に必要な電力を給電していた。しかし、図1の構成を採用することで、車両のバッテリ付近に配置していた電気接続箱の機能を、電源ハブを配置した位置(例えば車両の後席乗員の近く)に持たせることができる。以下、デイジーチェーンを用いた接続を「デイジーチェーン接続」といい、従来の電源構成を「集中配電接続」という。
 実施形態において、車載電源システム100は、制御ユニットCU(例えば、ECU)を備えており、制御ユニットCUを通じて対応する電源ハブPDBに対して指示を与えることで、電源ハブPDBの下流の電子機器Dに対して、何らかの電源状態(例えば+B電源、ACC電源、またはIG電源)の通電のオン・オフを切り替え、それによって、電源ハブPDBの下流側に接続された電子機器の起動/停止を制御することができるように構成されている。制御ユニットCUは、例えば車両全体の制御を統括する中央演算装置からの制御信号によって制御されてもよい。また、本実施形態では、制御ユニットCUは、電源ハブPDBとは別に設けられているが、電源ハブPDB内に設けられてもよい。以下、制御ユニットCUによる制御を通じて、ある電源ハブPDBによって給電することができる電子機器の範囲を「ゾーン」という。また、主給電線によって接続された、車両の各位置に配置されている電源ハブから各電子機器へと配電する電源構成を「ゾーン配電」という。
 実施形態のゾーン配電において、電源ハブPDBの下流側は、各電子機器用の副給電線SPCで接続されるが、上流側は1本の共通の主給電線MPCにまとめられる。そのため、下流側の電子機器に通電する電流が同じ主給電線を通じて同時に流れる可能性がある。例えば、図1の実施形態で示されているように複数の電源ハブPDB(例えば、第1の電源ハブPDB1、第2の電源ハブPDB2および第3の電源ハブPDB3)をデイジーチェーン接続した場合、第1の電源ハブPDB1の下流側の電子機器の電流に加えて、第2の電源ハブPDB2および第3の電源ハブPDB3に流れる電流が、第1の電源ハブPDB1の上流の主給電線MPC1に流れる。したがって、上流側の第1の電源ハブPDB1に流れる電流は大きくなることがある。そのため、電子機器Dの同時稼働に起因する一時的な電圧降下が頻発し、その結果、主給電線MPCに流れる電流が大きくなってそこでの電圧降下量も大きくなることが考えられる。
 したがって、電圧降下によって電子機器Dが動作不良に生じることがないように、電源システムを設計する必要がある。
 ところで、車両に搭載される電子機器Dに流れる電流は、例えば「連続電流」、「間欠電流」、「突入電流」に分類できる。連続電流は、比較的長時間にわたって常に電流が流れ続けるような電子機器に流される電流である。例えば、始動後のエンジンを制御するエンジンコントロールモジュール(PCM)に流れる電流が連続電流に分類される。また、運転手の操作によって動作されるヘッドランプ(前照灯)またはオーディオ等に流れる電流も連続電流に分類される。以下、連続電流が供給される電子機器を「連続負荷」という。
 間欠電流は、機能的に通電時間が限られている電流である。例えば、車両のサイドドアの窓ガラスを上下させるパワーウインドモータ(以下、PWモータ)、またはドアロック装置の信号を介してドアの鍵を施錠/解錠させるドアロックモータ等の電子機器に流れる電流が間欠電流に分類される。以下、間欠電流が供給される電子機器を「間欠負荷」という。
 突入電流は、電子機器に電源を投入したときに一時的に流れる大電流で、例えば、ヘッドランプ、PWモータ、ドアロックモータ等の電子機器の始動時に流れる大きな電流である。上記した電子機器以外の電子機器(例えばオーディオなど)であっても、通常流れる電流より大きな電流が始動時に流れる可能性もあるが、その影響が軽微な場合、電源システムの設計において考慮しなくてもよい。
 当然、これら連続電流、間欠電流、突入電流が一つの電子機器に同時に流れることはないが、複数の電子機器に対して電力を供給する電源ハブでは、これらの電流が同時に流れることがあり得る。このような事象の発生について説明する。
 図2は、図1に記載された車載電源システム100のうち、第2の電源ハブPDB2に関連するゾーンに含まれる電子機器の一例を示した図である。図3は、複数の電子機器の同時通電を概略的に示した図であり、第2の電源ハブPDB2に流れる電流を例示している。図2に記載されているように、第2の電源ハブPDB2は、主給電線MPC2、第1の電源ハブPDB1、および主給電線MPC1を介して、主電源部BAT1に接続されている。第2の電源ハブPDB2は、メータD21、オーディオD22、PWモータD23を接続されている。メータD21は連続電流が流れる電子機器で、エンジン始動中は基本的に常に通電される。オーディオD22も連続電流が流れる電子機器で、使用者の操作により、または設定によっては自動的に通電される。PWモータD23は、間欠電流と突入電流が流れる電子機器に該当し、モータ始動時に突入電流が流れ、その後は間欠的に電流が流れる。
 図3を参照して、第2の電源ハブPDB2を介して主給電線MPC2に流れる電流に関して説明する。まず、時刻t1において、エンジンが始動され、メータD21に連続電流I1が流れる。次に、時刻t2に使用者がオーディオD22のスイッチを入れると、オーディオD22に連続電流I2が流れる。このとき、第2の電源ハブPDB2の上流の主給電線MPC2にはI1+I2の連続電流が流れる。その後、時刻t3に使用者が窓ガラスの上昇スイッチを操作すると、PWモータD23に電流が流れる。このとき、操作直後の時刻t3~t4間は、最大I3の突入電流が流れる。モータの動作が安定すると、電流値は安定し、間欠電流I4で流れる。次に、時刻t5に上昇スイッチの操作を終了すると、PWモータD23への通電が終了する。PWモータD23が動作している間、第2の電源ハブPDB2の上流の主給電線MPC2には、時刻t3~t4の間最大I1+I2+I3の電流が流れ、時刻t4~t5の間I1+I2+I4の電流が流れる。
 このように、電源ハブPDBの上流の主給電線MPCには、連続電流と間欠電流が流れている間、それよりも遥かに大きな突入電流が一時的に流れ、そのとき大きな電圧降下が発生する。また、図3は、メータD21とオーディオD22の2つの電子機器しか示されていないが、連続電流を必要とする多数の電子機器が同時に使用されることがある。さらに、主電源部(蓄電池、オルタメータの両方を含む。)は、出力する電流の大きさに応じて、一時的に電圧が低下することがある。そのため、仮に共通の主給電線MPCに接続された複数の電子機器から同時に電流が要求された場合でも、過度の電圧降下を生じることなく、必要な電子機器について最低限の機能を保証するシステムの設計が必要である。
 ところで、電子機器には、定格電圧(一般的に12V程度)の他に、性能保証電圧、機能保持電圧が設定されている。性能保証電圧は、その電圧範囲内であれば、所定の性能で動作することを保証することができる電圧であり、例えば8V~13Vである。機能保持電圧は、所定の性能を満足することはできないが、少なくとも基本的な機能は動作させることができる電圧であり、例えば5V~15Vである。これらの電圧値の範囲は、価格、仕様、性能などによって異なる。
 実施形態の車載電源システムは、電圧降下等によって電圧が下がった状態でも必要な電子機器に最低限の機能を保証するものである。そのため、想定されるあらゆる突入電流が同時に発生した状況を想定するのではなく、主電源部から電源ハブを介して電子機器に至るまでの経路に、該電源ハブに接続されたすべての電子機器から連続電流と間欠電流が要求された場合でもそれら電子機器に最低性能保証電圧値を下回らない電力が供給されるとともに、これら連続電流に加えて突入電流が要求された場合でも最低機能保持電圧値を下回らない電力が供給されるように、車載電源システムを設計することが好ましい。最低性能保証電圧値とは、電子機器Dが所定の性能で動作することが保証される最低限の電圧値である。最低機能保持電圧値は、電子機器に、少なくとも基本的な機能は動作させることができるという最低限の電圧値である。
 このような目的で設計された車載電源システムについて説明する前に、電圧降下について、例えば、図1における電源ハブPDB2に接続されたメータD21を例に説明する。メータD21について、例えば定格電圧12V、最低性能保証電圧8V、最低機能保持電圧6Vが設定されているとする。この条件下で、バッテリ端子電圧が例えば13.5Vの場合、電源ハブPDB2からその下流側に接続されたすべての連続負荷に連続電流が供給されている状況にあっても、メータD21には定格電圧12Vよりも大きな電圧を供給できることが好ましい。また、電源ハブPDB2からその下流側に接続されたすべての連続負荷に連続電流が供給され且つすべての間欠負荷に間欠電流が供給されている状況にあっても、メータD21には最低性能保証電圧8Vより大きな電圧を供給できることが好ましい。さらに、電源ハブPDB2からその下流側に接続されたすべての連続負荷に連続電流が供給されている状況で残りのすべての電子機器(負荷)に電源が投入されて突入電流が発生した状況にあっても、メータD21には最低機能保持電圧6Vよりも大きな電圧を供給できることが好ましい。
 したがって、車載電源システムは、主給電線上に置かれた電源ハブに接続されているすべての電子機器について、通電形態(連続電流、間欠電流、突入電流)、電流値、定格電圧、最低性能保証電圧、最低機能保持電圧、該電子機器を起動したときの生じ得る電圧降下値、およびバッテリ端子電圧が車両を通常使用する上で最も低くなったときの電圧値を考慮して設計されることが望ましい。ここで、電圧降下は、複数の電源ハブPDBがデイジーチェーン接続によって直列接続されている場合、上流の主電源部BAT1から下流の電子機器Dに至るまでの全ての電線について電圧降下を考慮することが好ましい。具体的に、図2に示す構成の場合、主給電線MPC1、主給電線MPC2、および副給電線SPC21において発生する電圧降下を考慮することが好ましい。
 それぞれの電子機器Dについて、定格電圧、最低性能保証電圧、および最低機能保持電圧を満足するためには、電子機器Dに関連する電線の径を太くする、または当該電子機器Dが接続する電源ハブPDBを変更することが望まれる。
 一般的に、電線(例えばワイヤーハーネスなど)は、同種の電線であれば、電線径を大きくすると電線抵抗が減少する。しかし、電線径が大きくなると、配索にあたって大きな空間が必要になる、組付けが困難になるなど、車両設計上の問題が発生する。接続する電源ハブPDBを変更する場合、電源ハブPDBが遠くなることで副給電線SPCが長くなり、当該副給電線SPCによる電圧降下を小さくするために副給電線SPCの電線径を大きくしなければならない、といった新たな問題が発生し得る。当然、そのような電子機器が増えると配線が相当複雑になる。そこで、主電源部BAT1に直接接続される主給電線MPCの数を変えることによって電圧降下に対処する方法も考えられる。
 図4は、主電源部に接続される主給電線の本数を変えた複数の電線構成を示す。そこでは、6個の電源ハブe1~e6に対して、図4(A)の構成は2本の主給電線A1、A2、図4(B)の構成は4本の主給電線B1~B4、図4(C)の構成は6本の主給電線C1~C6が、主電源部BAT2に接続されている。図4(A)に記載されている電源ハブe1~e3および電源ハブe4~e6並びに図4(B)に記載されている電源ハブe2、e3および電源ハブe5、e6は、主給電線に対してデイジーチェーン接続されている。図4(C)に記載されている電源ハブe1~e6はそれぞれ、主給電線を介して主電源部BAT2に直接接続されている。以下、図4(C)に示す接続形態を、「スター型接続」という。図4(A)に記載されている電源ハブe1、e2、および図4(B)に記載されている電源ハブe1、e2、e4、e5はそれぞれスター型接続であるため、図4(A)および図4(B)は、スター型接続とデイジーチェーン接続を組み合わせた形態である。
 簡略化のため詳細は図示していないが、図4(A)から図4(C)に記載されている電源ハブはそれぞれ、下流に副給電線を介して複数の電子機器が接続されており、例えば電源ハブe3の下流に接続されている複数の電子機器は、電子機器d3として示されている。各電子機器の近くに記載されている数値は、当該電子機器の連続電流の総量である。
 図4(A)~(C)に示されたそれぞれの電線構成について、主給電線A1~A6、B1~B6、C1~C6に流れる連続電流の総量(A:アンペア)、連続電流による電圧降下(V:ボルト)、当該主給電線の電線径(電線サイズ)(sq:スケア)が、図5に示されている。図5において、No.欄のAからCはそれぞれ、図4(A)から図4(C)の構成を意味する。
 図5から明らかなように、図4(A)の電線構成の場合、例えば主給電線A1には電子機器d1、d2、d3に供給される連続電流が流れ、その総量は最大85Aである。最大85Aの電流に対応する電線径は40sqである。電圧降下値は、単位長さあたりの電線抵抗と電線長によって決まり、例えば0.3Vである。また、主給電線A2に流れる連続電流は最大67Aとなり、それに対応する電線径は30sq、電圧降下値は0.3Vである。これらの電圧降下値が許容できない場合、電線径を大きくすることで、電圧降下値を調整する。これに代えて、主給電線の配索経路を変更、または接続する電源ハブを変更することにより、電圧降下値を調整してもよい。このように、連続電流、間欠電流、および突入電流の総量、およびそれに伴う電圧降下を考慮して、電源ハブの位置、および電線径などを決定する。
 図4(A)の構成において必要な主給電線径が大きくなり過ぎた場合、図4(B)または図4(C)のように主電源部BAT2の下流に接続される主給電線の本数を変更してもよい。図4(B)の構成において、電源ハブe1と電源ハブe4は、デイジーチェーン接続ではないため、電源ハブe1と電源ハブe4の上流に接続されている主給電線A1と主給電線A4に流れる連続電流の総量が低くなり、電線径を小さくできる。また、このような変更を行うことにより、電源ハブe1と電源ハブe4の位置の自由度が向上し、より好ましい配索が行える。図4(C)は、図4(B)よりもさらに連続電流の総量が低くなる構成の例である。
 ところで、電源ハブに接続される電子機器には、使用する電流量が大きなものがある。このような電子機器に対する電流が主給電線を介して供給/遮断された場合、主給電線に生じる電圧降下値が著しく大きく変化し、その結果、下流側に接続されている他の電子機器に印加される電圧が変化する。このような電子機器として、例えば発電機または電動機などのモータのような車両の動力に関係する部品、またはPTCヒータなどが考えられる。
 また、電子機器には、印加電圧の変化によってその挙動が大きく変わってしまうものもあり、そのような電子機器に対しては、上述の電圧降下の変化の影響をできるだけ与えないようにする必要がある。このような電子機器として、例えば、「走る・曲がる・止まる」に関する、車両の走行または安全性に関係する電子機器(例えば、電動パワーステアリング装置、または制動装置など)が考えられる。
 したがって、図4(A)の構成において、例えば、電源ハブe1の下流にPTCヒータを配置した場合、電動パワーステアリング装置は、例えば電源ハブe4の下流に接続する、または、任意の電源ハブの下流に接続せず、主電源部BAT2等に一般的に取り付けられるヒュージブルリンクなどの電源分配装置に直接電線を介して接続することが好ましい。
 次に、実施形態における車載電源システムの設計プロセスについて、図6のフローチャートを参照しつつ説明する。
 まず、車載電源システムに設けられたそれぞれの電子機器に流れる電流を、連続電流、間欠電流、突入電流に分類する(S01)。
 また、電子機器が有し得る定格電圧、最低性能保証電圧、または最低機能保持電圧を把握し記憶する(S02)。
 次に、主給電線に流れる連続電流の総量を計算し、当該連続電流の総量を通電させることができる電線径を選択し、主給電線および副給電線に流れる連続電流によって低下する第1の電圧降下値を算出する(S03)。また、第1の電圧降下値に対して、主給電線を介して流れる少なくとも一つの間欠電流によってさらに下がる第2の電圧降下値を算出する(S04)。さらに、第1の電圧降下値に対して、主給電線を介して流れる少なくとも一つの突入電流によってさらに下がる第3の電圧降下値を算出する(S05)。
 各電子機器に印加される電圧が、第1の電圧降下値分の電圧が下がっても定格電圧を下回らないか、また、第2の電圧降下値分の電圧が下がっても最低性能保証電圧を下回らないか、さらに第3の電圧降下値分の電圧が下がっても最低機能保持電圧を下回らないか確認する(S06)。電圧が下回る場合、電線径を変更、電子機器が接続する電源ハブを変更、または電源ハブの主給電線の接続先を変更する(S07)。
 そして、各電子機器に印加される電圧が所定の電圧を下回らないようになるまで、上記(S03)から(S07)を繰り返す。
 本発明は、例示された実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能である。
 例えば、上記実施形態では、電源ハブPDBが複数設けられている例を示したが、電源ハブPDBが1つでもよく、同様の効果が得られる。
 以上のように、本発明による車載電源システムによれば、ゾーン配電で構成された車載電源システムを備える車両において、電源を分配するための電源ハブを車両の各所へ配置したとしても、電子機器に印加される電圧が所定の値を下回らないように設計することができるため、車両の電源構成の設計において好適に利用できる。
1    車両
100  車載電源システム
BAT1 主電源部
PDB  電源ハブ
MPC  主給電線
SPC  副給電線
CU   制御ユニット
D    電子機器

Claims (8)

  1.  電力を供給する主電源部と、
     一つ又は複数の電源ハブと、
     複数の電子機器と、
     前記一つ又は複数の電源ハブを前記主電源部に接続する主給電線と、
     前記複数の電子機器のそれぞれを前記一つ又は複数の電源ハブのいずれか一つに接続する副給電線と、
     前記複数の電子機器のそれぞれに、該電子機器に接続された電源ハブを通じた電力の供給をオン・オフする制御ユニットを備え、
     前記複数の電子機器には、該電子機器が機能を保持する最低機能保持電圧が定められており、
     前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の最低機能保持電圧が確保されるように、設計されていることを特徴とする、車載電源システム。
  2.  前記複数の電子機器には、前記最低機能保持電圧よりも高く、該電子機器の性能を保証する最低性能保証電圧が定められており、
     前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の最低性能保証が確保されるように、設計されていることを特徴とする、請求項1の車載電源システム。
  3.  前記複数の電子機器には、前記最低性能保証電圧よりも高い定格電圧が定められており、
     前記一つ又は複数の電源ハブに接続された複数の電子機器に電力が供給されている状態で、前記複数の電子機器の少なくとも一つについて該電子機器の定格電圧が確保されるように、設計されていることを特徴とする、請求項2の車載電源システム。
  4.  電力を供給する主電源部と、
     一つ又は複数の電源ハブと、
     複数の電子機器と、
     前記一つ又は複数の電源ハブを前記主電源部に接続する主給電線と、
     前記複数の電子機器のそれぞれを前記一つ又は複数の電源ハブのいずれか一つに接続する副給電線と、
     前記複数の電子機器のそれぞれに、該電子機器に接続された電源ハブを通じた電力の供給をオン・オフする制御ユニットを備え、
     前記複数の電子機器に流れる電流は、連続電流、間欠電流、突入電流に分類され、
     前記複数の電子機器は、連続電流が流れる連続負荷と間欠電流が流れる間欠負荷のいずれかに分類され、
     前記連続負荷に前記連続電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている定格電圧よりも高くなるように設計されていることを特徴とする、車載電源システム。
  5.  前記連続負荷と前記間欠負荷にそれぞれ前記連続電流と前記間欠電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている最低性能保証電圧よりも高くなるように設計されていることを特徴とする、請求項4の車載電源システム。
  6.  前記連続負荷と前記間欠負荷にそれぞれ前記連続電流と前記突入電流が流れることに起因する電圧降下後の電圧が、前記複数の電子機器の少なくとも一つについて定められている最低機能保持電圧よりも高くなるように設計されていることを特徴とする、請求項4又は5の車載電源システム。
  7.  前記電子機器の前記少なくとも一つは、電動パワーステアリング装置または制動装置の少なくともいずれかであることを特徴とする、請求項1~6のいずれかの車載電源システム。
  8.  請求項1~7のいずれかの車載電源システムを備えた車両。
PCT/JP2020/028278 2019-07-30 2020-07-21 車載電源システム及びそれを備えた車両 WO2021020233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20847519.4A EP4001017A4 (en) 2019-07-30 2020-07-21 POWER SUPPLY SYSTEM AND VEHICLE EQUIPPED THEREOF
US17/630,918 US11951918B2 (en) 2019-07-30 2020-07-21 In-vehicle power supply system and vehicle equipped with same
CN202080054335.5A CN114206679B (zh) 2019-07-30 2020-07-21 车载电源系统及具备该车载电源系统的车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139628A JP7346978B2 (ja) 2019-07-30 2019-07-30 車載電源システム
JP2019-139628 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020233A1 true WO2021020233A1 (ja) 2021-02-04

Family

ID=74230302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028278 WO2021020233A1 (ja) 2019-07-30 2020-07-21 車載電源システム及びそれを備えた車両

Country Status (5)

Country Link
US (1) US11951918B2 (ja)
EP (1) EP4001017A4 (ja)
JP (1) JP7346978B2 (ja)
CN (1) CN114206679B (ja)
WO (1) WO2021020233A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11745593B1 (en) * 2022-05-17 2023-09-05 Ford Global Technologies, Llc Testing of vehicle batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222122A (ja) * 2007-03-14 2008-09-25 Daihatsu Motor Co Ltd 車両用の給電構造
JP2008296790A (ja) 2007-05-31 2008-12-11 Toyota Motor Corp ワイパー装置
JP2010264818A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 電源制御装置、及び当該装置で用いられる方法
JP2016107734A (ja) * 2014-12-04 2016-06-20 マツダ株式会社 車両用電源制御装置
JP2017043342A (ja) * 2015-08-24 2017-03-02 株式会社デンソー 電源制御装置およびヘッドアップディスプレイ装置
JP2019038288A (ja) * 2017-08-22 2019-03-14 株式会社Subaru 電圧安定化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144186A4 (en) * 2014-05-12 2017-05-24 AutoNetworks Technologies, Ltd. Automobile power source device
FR3023992B1 (fr) * 2014-07-16 2016-08-26 Valeo Systemes De Controle Moteur Circuit electrique et procede de gestion associe
JP6298739B2 (ja) * 2014-08-26 2018-03-20 矢崎総業株式会社 車両用電力分配システム
US10407003B2 (en) * 2017-02-16 2019-09-10 Ford Global Technologies, Llc Short-circuit protection for vehicle redundant power architecture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222122A (ja) * 2007-03-14 2008-09-25 Daihatsu Motor Co Ltd 車両用の給電構造
JP2008296790A (ja) 2007-05-31 2008-12-11 Toyota Motor Corp ワイパー装置
JP2010264818A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 電源制御装置、及び当該装置で用いられる方法
JP2016107734A (ja) * 2014-12-04 2016-06-20 マツダ株式会社 車両用電源制御装置
JP2017043342A (ja) * 2015-08-24 2017-03-02 株式会社デンソー 電源制御装置およびヘッドアップディスプレイ装置
JP2019038288A (ja) * 2017-08-22 2019-03-14 株式会社Subaru 電圧安定化装置

Also Published As

Publication number Publication date
CN114206679A (zh) 2022-03-18
CN114206679B (zh) 2024-04-26
EP4001017A1 (en) 2022-05-25
EP4001017A4 (en) 2022-10-12
US20220266779A1 (en) 2022-08-25
JP7346978B2 (ja) 2023-09-20
JP2021020616A (ja) 2021-02-18
US11951918B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP7230949B2 (ja) 車両用制御装置
WO2017187984A1 (ja) 車載電源用のスイッチ装置および車載用電源システム
JP6738847B2 (ja) 車両用電源供給システム
JP2015020619A (ja) 車両用給電装置
JP2011520708A (ja) 電力供給ネットワークのスイッチモジュールおよび少なくとも一つのスイッチモジュールを包含する電力供給ネットワーク
JP2017537828A (ja) 搭載電源網
WO2021005974A1 (ja) 車載ネットワークシステム
WO2021020233A1 (ja) 車載電源システム及びそれを備えた車両
JP5128327B2 (ja) 車両電源システム
JP3373664B2 (ja) 車両用電源供給装置
US20050140209A1 (en) Power distribution web node and power management process
WO2021020180A1 (ja) 車載電源システム、およびその設計方法
WO2021020257A1 (ja) 車載電源システム
WO2020250518A1 (ja) 車載ネットワークシステム
CN114080338A (zh) 用于实施用于车辆的至少一个车辆功能的机构和方法
JP2007185048A (ja) 電力供給制御装置および電力供給制御方法
WO2020054380A1 (ja) 配線分岐箱
US20190161033A1 (en) Routing structure of wire harness
JP2010137748A (ja) 電源装置
JP2011093377A (ja) 電源制御システム及び電子装置
JP2000023358A (ja) 車両用電力供給装置
JP2007118656A (ja) 車両用電源装置
JP6251572B2 (ja) 車両用電気配線装置
JP7470546B2 (ja) 電源システム
DE19758709B4 (de) Vorrichtung zur Zufuhr elektrischer Energie zu elektrischen Lasten in einem Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847519

Country of ref document: EP

Effective date: 20220228