WO2021018203A1 - Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer - Google Patents

Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer Download PDF

Info

Publication number
WO2021018203A1
WO2021018203A1 PCT/CN2020/105554 CN2020105554W WO2021018203A1 WO 2021018203 A1 WO2021018203 A1 WO 2021018203A1 CN 2020105554 W CN2020105554 W CN 2020105554W WO 2021018203 A1 WO2021018203 A1 WO 2021018203A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
copper
furnace
vacuum
alloy
Prior art date
Application number
PCT/CN2020/105554
Other languages
English (en)
Chinese (zh)
Inventor
孙君鹏
周斌
王群
郭创立
杨红艳
王文斌
梁相博
梁建斌
张青队
耿社虎
武旭红
Original Assignee
西安斯瑞先进铜合金科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安斯瑞先进铜合金科技有限公司 filed Critical 西安斯瑞先进铜合金科技有限公司
Priority to JP2022502415A priority Critical patent/JP2022542014A/ja
Priority to KR1020227002939A priority patent/KR20220038072A/ko
Publication of WO2021018203A1 publication Critical patent/WO2021018203A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to the technical field of metal smelting, in particular to a production process for continuous casting of copper-iron alloy slabs under non-vacuum.
  • Copper-iron alloy exhibits unique and superior characteristics, such as electromagnetic wave shielding, due to its properties such as copper’s electrical conductivity, thermal conductivity, ductility, and elasticity, and iron’s wear resistance, strength, hardness, and magnetic properties.
  • Elasticity, conductivity, heat dissipation, wear resistance, antibacterial properties, etc., and copper-iron alloys can be processed into various physical forms such as rods, cables, plates, films, powders, tubes, etc., and can be used in various industrial fields , With unsurpassed competitiveness and market prospects.
  • Vacuum arc smelting method Put a certain proportion of copper and iron blocks into a vacuum induction furnace to melt them, and then pour them into a mold after they are completely melted.
  • induction melting and deformation aging are combined to improve the performance of copper-iron alloys. But this ordinary induction melting method is easy to cause segregation;
  • Deformation in-situ composite method The original structure of CuFe in-situ composites is generally uniformly distributed on the Cu matrix with dendritic (smelting method) or granular (powder metallurgy) Fe phase. After a large amount of deformation, the Fe phase becomes fibrous . In order to better improve the overall performance of the CuFe alloy, the deformation aging method is often used, and several heat treatments are added in the middle of the deformation. Currently, it is still in the research stage;
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a non-vacuum down-drawing continuous casting copper-iron alloy slab production process, which has the advantages of stable process, simple operation and low melting and casting production cost, and can realize the copper-iron alloy slab Industrialized production.
  • a non-vacuum down-drawing continuous casting copper-iron alloy slab production process includes the following steps:
  • S2 Load furnace, load raw materials into furnace, load flux, CuFe50 master alloy, electrolytic copper plate, and covering agent in sequence;
  • S3 Smelting, heating the smelting furnace temperature to 1420 ⁇ 1450°C to melt the copper-iron master alloy; heating for melting, during the heating and melting process, gas protection should be performed at the furnace mouth;
  • the CuFe50 master alloy is smelted according to the following method:
  • the first step the ingredients are loaded into the furnace, the Cu and Fe raw materials are weighed according to the content percentage of 1:1, mixed evenly, and put into the crucible and placed in the vacuum melting furnace;
  • Step 2 Vacuum induction melting, turn on the mechanical pump and low vacuum baffle valve to vacuum, turn on the Roots pump when P ⁇ 0.08MPa in the vacuum melting furnace; when the vacuum is pumped to P ⁇ 4Pa, the power of the heating device will increase To 20KW-30KW, keep the temperature for 5min-10min; increase the heating power of the heating device to 40KW-50KW, keep the temperature for 5min-10min; increase the heating power of the heating device to 60KW-70KW, after the raw materials in the crucible reach a uniform level, reduce the heating power to 20KW, Slowly fill the body of the vacuum melting furnace with argon; when the pressure in the furnace rises to 0.08Mpa, stop the argon flow, increase the power to 70KW ⁇ 5KW, and refine 1min-2min;
  • the third step casting out of the furnace, reduce the power of the vacuum melting furnace to 40KW ⁇ 5KW, hold for 0.5min to start casting into the casting mold, turn off the heating after casting is completed, and cool down for 60 minutes before leaving the furnace;
  • the CuFe alloy prepared by this method has a compact structure, few pores, inclusions, and no defects such as macroscopic or microscopic segregation, and ensures the quality of the final copper-iron slab.
  • the covering agent is quartz glass, and the usage amount is 0.25-0.50%wt of the alloy weight; the flux is a mixture of sodium silicate and fluorite, and the usage amount is 0.32-0.45%wt of the alloy weight.
  • a crucible is used to sample the Fe content during smelting, and then an appropriate amount of CuFe master alloy is added accordingly, and the melt composition is adjusted until the iron content reaches the target value.
  • the specific steps of degassing by the deoxidizer include aluminum wire deoxidation, CuMg alloy deoxidation, and addition of titanium wire before being discharged.
  • the drawing speed is slowly reduced until it stops. After the ingot is completely solidified, turn off the cooling water.
  • the cooling water flow rate is gradually increased to 6.0-8.0m3/h before casting. If the water flow rate is too high, the degree of cooling is too large, which is easy to cause stress concentration, forming a cold barrier and causing cracks; the water flow rate is too low , The cooling rate of the ingot is too slow, which may cause coarse structure, decreased performance, or other defects.
  • the present invention adopts a suitable manufacturing process for copper-iron alloy slabs, especially a series of key parameters of non-vacuum melting and casting are determined for different specifications through a large number of process explorations;
  • the present invention uses a built-in crystallizer to stir the copper-iron melt electromagnetically to increase the equiaxed crystal ratio, refine the crystal grains, reduce surface and subcutaneous pores and inclusions, and improve the looseness and segregation of the ingot center;
  • the copper-iron alloy slab manufactured by the present invention is used as the rolling blank of the copper-iron alloy strip, which reduces the material loss and reduces the production cost compared with the conventional round ingot;
  • the present invention adopts a non-vacuum down-draw continuous casting process. Compared with the traditional vacuum melting casting process, the equipment requirements are lower; at the same time, suitable measures such as inert gas protection and adjustment of iron content are adopted during the casting process, which effectively controls the alloy composition and Oxygen content, simple operation, stable and reliable.
  • Figure 1 is a process flow diagram of the present invention
  • Figure 2 is a physical diagram of embodiment 1 of the present invention.
  • Figure 3 is a metallographic diagram of Example 1 of the present invention.
  • the first step the ingredients are loaded into the furnace, the Cu and Fe raw materials are weighed according to the content percentage of 1:1, mixed evenly, and put into the crucible and placed in the vacuum melting furnace;
  • Step 2 Vacuum induction melting, turn on the mechanical pump and low vacuum baffle valve to vacuum, turn on the Roots pump when P ⁇ 0.08MPa in the vacuum melting furnace; when the vacuum is pumped to P ⁇ 4Pa, the power of the heating device will increase To 20KWKW, heat preservation for 5min; heating power of the heating device to 40KW, heat preservation for 5min; heating power of the heating device to 60KW, after the raw materials in the crucible reach a uniform level, reduce the heating power by 20KW, and slowly fill the vacuum melting furnace with argon gas ; When the pressure in the furnace rises to 0.08Mpa, stop the argon injection, increase the power to 65KW, and refine for 1min;
  • the third step casting out of the furnace, reduce the power of the vacuum melting furnace to 35KW, hold for 0.5 min to start casting into the casting mold, turn off the heating after casting is completed, and cool down for 60 minutes before taking out.
  • S2 Load furnace, load the raw materials into the furnace, and load the flux, CuFe50 master alloy, electrolytic copper plate, and covering agent in sequence.
  • the covering agent is quartz glass, and the flux is a mixture of sodium silicate and fluorite;
  • S3 Smelting, heat the temperature of the melting furnace to 1420°C to melt the copper-iron master alloy; heat up for melting. During the temperature up and melting process, gas protection should be performed at the furnace mouth, and the crucible sample is used to detect the Fe content during melting. Add an appropriate amount of CuFe50 master alloy, adjust the melt composition until the iron content reaches the target value;
  • the ingot is cooled by water cooling in the crystallizer.
  • the ingot drawn out after solidification is sprayed with water at a certain angle for secondary cooling.
  • the advantage of water cooling of the crystallizer is that it can realize "hot top casting" inside, which reduces the solidification rate of the upper melt, ensures timely feeding, and at the same time facilitates the floating and removal of slag and gas.
  • the cooling water flow rate is gradually increased to 6.0m 3 /h before the casting. If the water flow rate is too high, the cooling degree is too large, which is easy to cause stress concentration, forming a cold barrier and causing cracks; if the water flow rate is too low, the ingot cooling rate is too slow , May cause coarse organization, performance degradation, or other defects.
  • the amount of melt in the crucible of the smelting furnace is reduced to less than 10% of the original, slowly reduce the drawing speed until it stops. After the ingot is completely solidified, turn off the cooling water.
  • the first step the ingredients are loaded into the furnace, the Cu and Fe raw materials are weighed according to the content percentage of 1:1, mixed evenly, and put into the crucible and placed in the vacuum melting furnace;
  • Step 2 Vacuum induction melting, turn on the mechanical pump and low vacuum baffle valve to vacuum, turn on the Roots pump when P ⁇ 0.08MPa in the vacuum melting furnace; when the vacuum is pumped to P ⁇ 4Pa, the power of the heating device will increase To 30KW, keep for 10min; the heating power of the heating device is increased to 50KW, and the temperature is kept for 10min; the heating power of the heating device is increased to 70KW, after the raw materials in the crucible reach a uniform level, reduce the heating power to 20KW, and slowly fill the vacuum melting furnace with argon When the pressure in the furnace rises to 0.08Mpa, stop the argon injection, increase the power to 75KW, and refine for 2min;
  • the third step casting out of the furnace, reduce the power of the vacuum melting furnace to 45KW, hold for 0.5min to start casting into the casting mold, turn off the heating after the casting is completed, and cool down for 60 minutes and then leave the furnace.
  • S3 Smelting, heat the temperature of the melting furnace to 1450°C to melt the copper-iron master alloy; increase the temperature for melting, during the heating and melting process, gas protection is required at the furnace mouth, and the crucible sample is used to detect the Fe content during the smelting process. Add an appropriate amount of CuFe50 master alloy, adjust the melt composition until the iron content reaches the target value;
  • the ingot is cooled by water cooling in the crystallizer.
  • the ingot drawn out after solidification is sprayed with water at a certain angle for secondary cooling.
  • the advantage of water cooling of the crystallizer is that it can realize "hot top casting" inside, which reduces the solidification rate of the upper melt, ensures timely feeding, and at the same time facilitates the floating and removal of slag and gas.
  • the cooling water flow rate is gradually increased to 8.0m3/h before the casting. If the water flow rate is too high, the cooling degree is too large, which is easy to cause stress concentration, forming a cold barrier and causing cracks; if the water flow rate is too low, the cooling rate of the ingot is too slow. May cause coarse organization, performance degradation, or other defects.
  • the amount of melt in the crucible of the smelting furnace is reduced to less than 10% of the original value, slowly reduce the drawing speed until it stops. After the ingot is completely solidified, turn off the cooling water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

La présente invention concerne un procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer, les étapes principales comprenant : la fourniture d'un ingrédient, le chargement du four, la fusion, le raffinage et le dégazage, le déversement, la coulée et le refroidissement du lingot, une plaque de cuivre électrolytique et un alliage maître de CuFe50 étant utilisés en tant que matières premières pour la fusion, des brames d'alliage de cuivre-fer étant préparées avec succès au moyen d'un procédé de coulée continue sans vide et les exigences d'équipement étant inférieures aux procédés de coulée sous vide classiques ; des mesures appropriées telles qu'une protection de gaz inerte et un ajustement de la teneur en fer étant utilisées pendant le procédé de coulée, régulant efficacement la composition d'alliage et la teneur en oxygène. La présente invention a pour avantages le fait que le procédé est stable, les opérations sont simples et la production de la coulée est peu coûteuse et elle peut mettre en œuvre une production industrielle de brames d'alliage fde cuivre-fer.
PCT/CN2020/105554 2019-07-29 2020-07-29 Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer WO2021018203A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022502415A JP2022542014A (ja) 2019-07-29 2020-07-29 非真空引下げ連続鋳造による銅鉄合金スラブの生産プロセス
KR1020227002939A KR20220038072A (ko) 2019-07-29 2020-07-29 구리-철 합금 슬라브 잉곳의 비진공 다운 드로잉 연속 주조 생산 공정

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910691203.2A CN110453106A (zh) 2019-07-29 2019-07-29 一种非真空下引连铸铜铁合金扁锭的生产工艺
CN201910691203.2 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021018203A1 true WO2021018203A1 (fr) 2021-02-04

Family

ID=68483886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105554 WO2021018203A1 (fr) 2019-07-29 2020-07-29 Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer

Country Status (4)

Country Link
JP (1) JP2022542014A (fr)
KR (1) KR20220038072A (fr)
CN (1) CN110453106A (fr)
WO (1) WO2021018203A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444900A (zh) * 2021-06-25 2021-09-28 中铜华中铜业有限公司 一种铜基富铁合金板带箔材及其制备工艺
CN113564640A (zh) * 2021-07-26 2021-10-29 郑州大学 一种高通量铝合金高连铸连轧坯锭的组织细化和均匀化方法
CN114672638A (zh) * 2022-03-18 2022-06-28 西部超导材料科技股份有限公司 一种焊缝保护冷却装置及解决钛合金铸锭焊后易开裂的方法
CN114686747A (zh) * 2022-02-15 2022-07-01 陕西斯瑞新材料股份有限公司 采用真空自耗电弧熔炼制备铜不锈钢原位复合材料的方法
CN115069990A (zh) * 2022-07-29 2022-09-20 宁波金田电材有限公司 一种无氧紫铜杆的制备方法
CN115896499A (zh) * 2022-11-29 2023-04-04 江西宝顺昌特种合金制造有限公司 一种uns n10276合金及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110453106A (zh) * 2019-07-29 2019-11-15 西安斯瑞先进铜合金科技有限公司 一种非真空下引连铸铜铁合金扁锭的生产工艺
CN113718130B (zh) * 2020-05-26 2023-03-31 沈阳铸造研究所有限公司 一种铸态高强度锰铝青铜合金及其制备方法
CN111621664A (zh) * 2020-06-04 2020-09-04 西安斯瑞先进铜合金科技有限公司 一种放电等离子烧结制备铜铁合金的方法
CN111774539B (zh) * 2020-06-08 2021-10-29 西安斯瑞先进铜合金科技有限公司 一种非真空下引铜锆合金扁锭的制备方法
CN112080658A (zh) * 2020-08-28 2020-12-15 西安斯瑞先进铜合金科技有限公司 铜铁合金板带的制备方法
CN112575213A (zh) * 2020-10-14 2021-03-30 陕西斯瑞新材料股份有限公司 一种铜合金材料制备激光涂覆喷头的金属加工工艺
CN112091191B (zh) * 2020-11-11 2021-02-09 西安斯瑞先进铜合金科技有限公司 一种非真空下引半连铸铜锰合金扁锭的制备方法及其装置
CN113680980B (zh) * 2021-09-06 2022-12-09 西安斯瑞先进铜合金科技有限公司 一种采用水平连铸铜锰合金的生产工艺
CN115029610B (zh) * 2022-06-30 2023-05-30 宁波金田铜业(集团)股份有限公司 一种铁铜合金的制备方法
CN115365774B (zh) * 2022-08-17 2024-03-08 陕西斯瑞扶风先进铜合金有限公司 一种凿岩机用高强耐磨铜合金传动蜗轮的制备工艺
CN115369281A (zh) * 2022-09-26 2022-11-22 陕西斯瑞扶风先进铜合金有限公司 一种高强高导铬锆铜合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160699A (zh) * 2013-03-29 2013-06-19 石家庄金刚凯源动力科技有限公司 一种生产低合金灰铸铁缸套用的铜铁合金的工艺
CN104988350A (zh) * 2015-07-30 2015-10-21 张连仲 一种高延展性铜铁合金及其制备方法和铜铁合金丝材
US20160215357A1 (en) * 2013-09-06 2016-07-28 Kc Glass & Materials Co., Ltd. Copper ferrous alloy for shielding electromagnetic waves and method for preparing the same
CN108251684A (zh) * 2018-01-16 2018-07-06 中南大学 一种高导电高强铜铁合金及其制备方法
CN108339953A (zh) * 2018-02-09 2018-07-31 陕西斯瑞新材料股份有限公司 一种非真空下引连铸铬锆铜扁锭的生产工艺
CN109371271A (zh) * 2018-11-21 2019-02-22 西安斯瑞先进铜合金科技有限公司 铜铁合金的非真空熔炼及连铸工艺
CN109852822A (zh) * 2019-01-29 2019-06-07 常州和昶特种合金有限公司 一种制备铜铁复合功能材料的方法
CN110453106A (zh) * 2019-07-29 2019-11-15 西安斯瑞先进铜合金科技有限公司 一种非真空下引连铸铜铁合金扁锭的生产工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180862A (ja) * 1997-09-09 1999-03-26 Kobe Steel Ltd 耐熱性に優れたリードフレーム用Cu−Fe系合金材
CN108160963B (zh) * 2017-12-29 2020-06-23 安徽楚江高新电材有限公司 电气化铁道接触网承力索用高强度铜杆的生产方法
CN109371270B (zh) * 2018-11-07 2020-02-07 西安斯瑞先进铜合金科技有限公司 一种采用真空感应熔炼CuFe母合金材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160699A (zh) * 2013-03-29 2013-06-19 石家庄金刚凯源动力科技有限公司 一种生产低合金灰铸铁缸套用的铜铁合金的工艺
US20160215357A1 (en) * 2013-09-06 2016-07-28 Kc Glass & Materials Co., Ltd. Copper ferrous alloy for shielding electromagnetic waves and method for preparing the same
CN104988350A (zh) * 2015-07-30 2015-10-21 张连仲 一种高延展性铜铁合金及其制备方法和铜铁合金丝材
CN108251684A (zh) * 2018-01-16 2018-07-06 中南大学 一种高导电高强铜铁合金及其制备方法
CN108339953A (zh) * 2018-02-09 2018-07-31 陕西斯瑞新材料股份有限公司 一种非真空下引连铸铬锆铜扁锭的生产工艺
CN109371271A (zh) * 2018-11-21 2019-02-22 西安斯瑞先进铜合金科技有限公司 铜铁合金的非真空熔炼及连铸工艺
CN109852822A (zh) * 2019-01-29 2019-06-07 常州和昶特种合金有限公司 一种制备铜铁复合功能材料的方法
CN110453106A (zh) * 2019-07-29 2019-11-15 西安斯瑞先进铜合金科技有限公司 一种非真空下引连铸铜铁合金扁锭的生产工艺

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444900A (zh) * 2021-06-25 2021-09-28 中铜华中铜业有限公司 一种铜基富铁合金板带箔材及其制备工艺
CN113564640A (zh) * 2021-07-26 2021-10-29 郑州大学 一种高通量铝合金高连铸连轧坯锭的组织细化和均匀化方法
CN113564640B (zh) * 2021-07-26 2022-06-24 郑州大学 一种高通量铝合金高连铸连轧坯锭的组织细化和均匀化方法
CN114686747A (zh) * 2022-02-15 2022-07-01 陕西斯瑞新材料股份有限公司 采用真空自耗电弧熔炼制备铜不锈钢原位复合材料的方法
CN114672638A (zh) * 2022-03-18 2022-06-28 西部超导材料科技股份有限公司 一种焊缝保护冷却装置及解决钛合金铸锭焊后易开裂的方法
CN114672638B (zh) * 2022-03-18 2024-05-10 西部超导材料科技股份有限公司 一种焊缝保护冷却装置及解决钛合金铸锭焊后易开裂的方法
CN115069990A (zh) * 2022-07-29 2022-09-20 宁波金田电材有限公司 一种无氧紫铜杆的制备方法
CN115069990B (zh) * 2022-07-29 2024-05-14 宁波金田电材有限公司 一种无氧紫铜杆的制备方法
CN115896499A (zh) * 2022-11-29 2023-04-04 江西宝顺昌特种合金制造有限公司 一种uns n10276合金及其制备方法

Also Published As

Publication number Publication date
CN110453106A (zh) 2019-11-15
JP2022542014A (ja) 2022-09-29
KR20220038072A (ko) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021018203A1 (fr) Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer
CN109371271B (zh) 铜铁合金的非真空熔炼及连铸工艺
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
CN107008873B (zh) 多模式电磁场均质化金属连铸坯的制备方法及其装置
CN110144472B (zh) 一种锰铜减振合金的真空感应熔炼方法
CN114717435B (zh) 一种高强度电磁屏蔽铜合金及其制备方法
CN108546850A (zh) 一种高导电性6101铝合金板材的生产方法
CN109234552B (zh) 一种压力下凝固制备高Cu含量Al-Cu合金的方法
CN115094263B (zh) 铜铬锆系合金用变质剂合金、其制备方法及应用
CN103394826B (zh) 一种降低挤压棒缺陷的工艺方法
CN114540729A (zh) 采用悬浮熔炼下引工艺制备铜铬触头用合金铸锭的方法
US10094001B2 (en) Method for producing eutectic copper-iron alloy
CN112695219A (zh) 一种提高熔炼铸造Cu-Cr-Nb合金强度和导电率的方法
CN105803257B (zh) 一种提高TiAl‑Nb合金液态流动性的方法
CN109439955B (zh) 一种采用定向凝固制备高强度、高导电性超细丝合金材料的方法
CN108823464B (zh) 一种铜合金材料及其制备方法
CN106591635A (zh) 一种稀土Y变质AlSi9Cu2铸造铝合金的方法
CN113005315B (zh) 一种高效Al-10Sr中间合金的制备方法
KR101782394B1 (ko) Cu-Fe계 합금 잉곳 및 그 제조방법
CN110484792B (zh) 一种提高铝型材抗压强度的熔铸生产工艺
CN114000020A (zh) 一种大规格模锻件用铸锭及其制备方法
CN111334683A (zh) 一种提高Cu-Fe合金综合力学性能的微合金化方法
CN114752796B (zh) 一种适合超微细拉拔的铜银合金线用铸坯制备方法
CN105803252A (zh) 一种电子线缆用高强度高导电铜合金线的制造方法
CN115449675A (zh) 一种Al-Zn-Mg超高强度铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502415

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227002939

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848106

Country of ref document: EP

Kind code of ref document: A1