CN110144472B - 一种锰铜减振合金的真空感应熔炼方法 - Google Patents
一种锰铜减振合金的真空感应熔炼方法 Download PDFInfo
- Publication number
- CN110144472B CN110144472B CN201910361654.XA CN201910361654A CN110144472B CN 110144472 B CN110144472 B CN 110144472B CN 201910361654 A CN201910361654 A CN 201910361654A CN 110144472 B CN110144472 B CN 110144472B
- Authority
- CN
- China
- Prior art keywords
- alloy
- melt
- furnace
- manganese
- pouring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 67
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 49
- HPDFFVBPXCTEDN-UHFFFAOYSA-N copper manganese Chemical compound [Mn].[Cu] HPDFFVBPXCTEDN-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000002844 melting Methods 0.000 title claims abstract description 16
- 230000008018 melting Effects 0.000 title claims abstract description 16
- 230000006698 induction Effects 0.000 title claims abstract description 13
- 238000013016 damping Methods 0.000 title description 23
- 230000008569 process Effects 0.000 claims abstract description 37
- 239000002994 raw material Substances 0.000 claims abstract description 25
- 238000003723 Smelting Methods 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 12
- 238000007670 refining Methods 0.000 claims abstract description 10
- 229910052786 argon Inorganic materials 0.000 claims abstract description 6
- 239000000155 melt Substances 0.000 claims description 28
- 239000002893 slag Substances 0.000 claims description 26
- 229910052748 manganese Inorganic materials 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 5
- 238000005275 alloying Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 229910000896 Manganin Inorganic materials 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 239000007769 metal material Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 238000005242 forging Methods 0.000 abstract description 7
- 150000004706 metal oxides Chemical class 0.000 abstract description 5
- 230000002829 reductive effect Effects 0.000 abstract description 5
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 13
- 230000006872 improvement Effects 0.000 description 10
- 238000005266 casting Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 210000000795 conjunctiva Anatomy 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/025—Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D43/00—Mechanical cleaning, e.g. skimming of molten metals
- B22D43/005—Removing slag from a molten metal surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D46/00—Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/06—Ingot moulds or their manufacture
- B22D7/10—Hot tops therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/04—Refining by applying a vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种锰铜合金的真空感应熔炼方法,步骤包括:选取金属原料及合金料,并布料装炉;抽真空,加电预热;炉内金属原料红热后充氩气保护,并继续加热至熔化熔清;静置精炼;造渣;扒渣;添加合金料;调温浇注。本发明的优点在于引入造渣工序,可有效清除锰铜合金熔炼过程中产生的大量金属氧化物夹杂,提高合金纯净度,改善合金的锻造性能和合金质量;补缩阶段采用反复浇注补缩工艺,可有效减小铸锭缩孔缩松,改善冒口锻造性能,提高铸锭利用率,降低生产成本。
Description
技术领域
本发明涉及特种合金的冶炼制备技术领域,具体涉及一种锰铜减振合金的真空感应熔炼方法。
背景技术
伴随着科技快速进步,人们对机械系统自身稳定性、精密度的要求日益提高。机械振动带来的危害,尤其是航空航天、精密机加工、精密测量等领域,微振动干扰带来的危害日益显现。因此,采用结构功能一体化的高阻尼合金,用来加工制备振源支撑构件,从而起到减振、隔振的效果,以便提升整体系统的精度、稳定性和寿命,受到社会的广泛重视。
相比于其它减振阻尼材料,锰铜基减振合金因其具有宽温区、高阻尼、高强度等综合优势。锰铜基减振合合金的成分一般为50-75%Mn,20-40%Cu以及少量Ni、Fe、Al等其它一些合金化元素。锰铜基阻尼合金优良的减振吸能特性来源于合金内部马氏体相内含有的大量微孪晶结构。大量的马氏体微孪晶在外力作用下发生的弛豫运动能够导致能量被迅速耗散,从而使得振源引起的机械振动被高效衰减。目前锰铜基减振合金已经取得了一定的商业应用,包括作为潜艇螺旋桨用材料,以及用于制造减振支架、基座、垫片和座脚等结构支撑部件,都取得了明显的效果。
关于锰铜基减振合金高阻尼产生的机制目前已有统一的认识,有关合金成分、组织与性能特点之间关系的研究等方面也有一些文献报道。但是,有关锰铜基减振合金熔炼、锻造和轧制等重要热加工工艺的研究尚未见有报道。这些制备过程不仅是决定材料化学成分、晶体组织与力学性能的关键过程,也是实际材料和产品生产过程中必不可少的工艺。
由于锰铜合金热导率差,结晶温区宽,导致其凝固过程时间较长。同时合金在固、液状态体积差别较大,不但在降温凝固过程中很容易发生宏观成分偏析,导致铸锭材料组织和性能均匀性、一致性较差,而且还容易导致浇铸合金锭缩孔缺陷明显。如果仍然按照常规浇注工艺,冒口深度可达整个铸锭长度一半左右,导致原料严重浪费,增加生产成本。因此,为了降低铸锭缺陷带来的损失,必须严格控制真空度、浇注温度、浇注速度、补缩制度等工艺参数。
另一方面,由于锰铜基减振合金熔炼原料中含有高达40-75%的电解锰片,锰元素具有化学性质活泼,真空蒸气压高的特点。在存放和熔炼过程中与熔炼环境(气氛、坩埚)之间可产生复杂的物理化学反应,锰元素具有很强的形成氧化物夹杂的倾向。即使真空熔炼,也会在熔体内部生成大量金属氧化物和非金属氧化物夹渣。产生的夹渣将严重影响合金的后期锻造和使用性能。因此,合金熔炼工艺涉及的坩埚、布料、真空度、熔炼温度、静置时间等参数也需要严格控制。
专利CN103556020B中公开了具有优良力学性能的高锰含量锰铜高阻尼合金,合金材料的化学成分包括:Cu为21.0-24.5wt.%,Ni为2.0%-7.0wt.%,Fe为1%-3wt.%,0<稀土元素含量<1.2wt.%,0<高熔点金属原料含量<3.0wt.%,其余为Mn,且C<0.1wt.%。其生产的合金材料阻尼性能良好,但该合金采用Ce、La稀土元素和高熔点金属元素,成本较高;且多种元素叠加引起密度差别增大和热导率的进一步下降,更容易引起合金锭成分的宏观偏析和严重的缩孔缺陷。此专利主要集中在合金成分方面,在具体的熔炼工艺方面并没有详细规范的说明。
专利CN201610776237公开了一种真空感应炉冶炼锰铜合金的方法,通过水冷铜锭模进行浇注减轻冒口缩孔缺陷;通过炉内底吹氩气进行搅拌,解决合金化渣困难及电解锰容易漂浮在渣层之上的问题。尤其是第一种措施,需要对真空感应熔炼炉所使用的传统锭模系统进行大规模改造。而且使用过程中,由于锭模需要反复在真空炉内外转移以便于浇注和脱模,其水循环系统将也必须反复拆卸。这不但增加成本,影响生产效率,也将对炉体的真空系统造成不利影响,存在安全隐患。
专利CN108559896A公开了一种铸造高阻尼锰铜合金材料及其制造方法,其原料先在真空感应熔炼炉内熔化,然后合金熔体直接在坩埚中凝固成铸件,而且合金熔体凝固界面前沿位置处施加强度不大于5T的横向静磁场。上述方案,不但使熔炼工艺复杂化,且大大降低了生产效率。
专利CN201410192802(CN103966493A)公开了一种高阻尼Mn-Cu基减振合金及其制备方法,其将原料置于真空感应炉内熔化,加热到1400-1500℃,形成合金液体;将合金液在该温度下充分搅拌10分钟后即可浇铸成相应的铸件。前面已经分析,这种高温浇注方法将加重合金铸锭成分不均匀性和缩孔缺陷,严重者甚至可以使缩孔深度达到整个铸锭长度的一半以上,严重降低铸锭质量和原材料利用率。
综上所述,目前来看,由于锰铜基高阻尼减振合金结晶温度范围宽,易形成氧化物夹杂,铸造性能差,导致其冶炼工艺并不成熟。合金熔炼作为锰铜基减振合金产品组织和性能的基本工艺过程,必须严格控制坩埚材质、熔炼气氛、熔炼温度、精炼及静置时间、浇注温度、浇注速度、补缩制度等工艺参数。必要情况下,还必须利用造渣剂清除熔体中存在的渣滓。因此优化并掌握锰铜合金熔炼的工艺参数,对于降低该材料生产成本和规模化生产,以及实现产品的高性能及可靠应用来说无疑是极其重要的。
发明内容
本发明要解决的技术问题就是克服现有锰铜减振合金熔炼工艺的不足,提供一套可规模化生产的真空感应熔炼工艺规范,提高原料利用率,降低生产成本。本发明设计了科学的熔炼、浇注工艺,通过对布料、真空度、熔炼温度、静置时间、除渣与浇注等过程的严格控制,可以使合金元素在铸锭中得到均匀固溶,金属氧化物夹渣得到有效清除,可以解决浇注合金锭缩孔缺陷严重的问题,提高了冶金质量和生产效率,可实现规模化生产。
本发明通过以下技术方案来实现上述目的:
一种锰铜合金的真空感应熔炼方法,包括以下操作步骤:
S1、选取工业纯以上金属原料,并分别布料装炉;
S2、炉内抽真空,对金属原料进行加电预热;
S3、炉内金属原料红热后充保护气体,并继续加热至熔化熔清;
S4、静置精炼;
S5、造渣:精炼后期,投入造渣剂,使其吸附熔体内部和表面的氧化物夹渣,造渣过程10-30min;
S6、扒渣:造渣结束后,使用扒渣设备将漂浮于熔体表面的渣料清除。
S7、添加合金料;
S8、静置:降低电源功率至合金熔体液面结膜;
S9、调温浇注:静置结束后,重新将电源功率调高至熔炼状态,使合金熔体温度再次升高,当熔体表面结膜开始熔化时开始浇注;当浇口杯中心孔位置处能看到熔体冒出时停止浇注,等待熔体补缩;5-20s后重新补浇至熔体再次从浇口杯孔位置处冒出,重复补缩过程,直到浇口位置熔体不再下降,浇注时间5-20min;
进一步改进在于,步骤S1中,所述金属原料包括纯锰和纯铜以及其他金属原料,布料装炉为先将电解純锰片覆盖于坩埚底部,然后将纯铜和其他金属原料置于电解锰片之上,再将合金料置于料仓。
进一步改进在于,步骤S2的具体操作为:关闭真空室,抽真空至20Pa以下时,逐级加大电源功率对金属原料预热;同时继续抽气,使真空度保持在10Pa以下。
进一步改进在于,步骤S3的具体操作为:观察到炉内金属原料红热后,停止抽真空,向真空室内充入高纯氩气(99.999%)使炉内压力达到0.05MPa附近,同时继续加大电源功率,使炉料快速熔清,熔化时间30-60min;同时始终关注电解锰片放气情况,始终保持炉内气压在0.05MPa附近。
进一步改进在于,步骤S4的具体操作为:炉料熔清后,将电源功率减小至熔体液面平静状态,静置20-50min进行精炼。
进一步改进在于,步骤S5的具体操作为:精炼结束后期,投入除渣剂进行造渣处理,造渣过程10-30min;
进一步改进在于,步骤S6的具体操作为:使用扒渣设备将漂浮于熔体表面的渣料清理收集存放。
进一步改进在于,步骤S7的具体操作为:降低功率至液面平静,投入料仓内的合金料,合金化过程5-20min。
进一步改进在于,步骤S9中,在多次补缩过程中,控制电源功率,使炉内剩余熔融合金始终保持熔融状态,以保证浇口杯孔不被堵塞,浇注时间5-20min。
本发明的有益效果在于:
1)引入造渣扒渣工序,有效清除熔体内部的大量金属氧化物和非金属氧化物夹渣,提高合金纯净度,改善了合金的锻造性能和合金质量;
2)通过对合金熔体温度的控制,浇注速度的控制,合金铸锭不同部位组织和成分均匀一致;
3)浇注后期,采用重复浇注补缩方法,减小铸锭缩孔缩松,使其完全停留在保温冒口内,合金锭原料收得率高;
4)熔炼工艺简单,操作方便,适应性强,不需要对现有真空熔炼设备进行大规模改造升级;熔炼工艺迁移性强,尤其适用于大吨位的真空感应炉,适合规模化生产。
附图说明
图1为锰铜合金微区金相图;
图2为热锻后铸锭不同部位力学性能结果图。
具体实施方式
下面结合实施例对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。
实施例:采用300kg真空感应熔炼炉熔炼锰铜合金200公斤。包括以下操作步骤:
S1、选取电解锰片150公斤,电解铜块40公斤,电解镍块6公斤,电解铝块4公斤,造渣剂2公斤。先将电解锰片加入坩埚,然后将电解纯铜、纯镍原料置于电解锰片之上,再将电解铝块和造渣剂分别置于料仓;
S2、关闭真空腔,抽真空至20Pa以下时,启动加热电源,逐级加大电源功率至180kW对金属原料预热;同时继续抽气,使真空度保持在10Pa以下。
S3、观察到炉内金属原料红热后,停止抽真空,向真空室内充入高纯氩气(99.999%)使炉内压力达到0.05MPa左右,同时继续加大电源功率至200kW,使炉料快速熔清,熔化时间50min;同时关注电解锰片放气情况,始终保持炉内气压在0.05MPa附近。
S4、炉料熔清后,将电源功率减小至160kW,此时熔体液面平静状态,不断有气泡冒出,静置25min进行精炼;
S5、精炼后期,熔体表面不再冒泡时,投入料仓内造渣剂,造渣过程15min;
S6、扒渣静置:造渣结束后,适用位于炉顶的扒渣设备将漂浮于熔体表面的渣料收集存放。
S7、扒渣结束后,投入料仓内的铝块,并将电源功率增大至180kW,合金化熔炼5min;
S8、静置:降低电源功率60kW至合金熔体液面结膜,时间15分钟;
S9、调温与浇注:静置结束后,重新将电源功率调高至200kW,使合金熔体温度再次升高,当熔体表面结膜开始熔化时开始浇注,此时浇铸起始温度稍大于合金熔点,当浇口杯中心孔位置处能看到熔体冒出时停止浇注,等待熔体补缩,10-30s后重新补浇至熔体再次从浇口杯孔位置处冒出,重复补缩过程3-8次,直到浇口位置熔体不再下降,浇注时间12min;在补缩过程后期,控制电源功率,使炉内剩余熔融合金始终保持熔融状态,以保证浇口杯孔不被堵塞。浇铸完成后,把坩埚内熔体全部浇入浇口杯,清空坩埚,等待10分钟;
S10、开炉脱模:充氩气至常压,开炉,行车吊出钢锭模,等待10分钟后脱模。同时清理坩埚,清渣为下一炉装炉做准备。
S11、成分化验:将圆柱形合金锭冒口和底端进行平整切割,以不出现宏观缺陷为准。分别从两端切割面上取样,进行成分和金相分析。表1和图1分别给出了浇铸锭两端的成分检测结果和微区金相分析。可以看出,通过对合金熔体浇铸温度、浇注速度的控制,合金铸锭不同部位组织和成分均匀一致得到了有效控制;夹杂物也明显降低。
表1:浇注锰铜合金铸锭成分表(wt%)
Mn | Cu | Ni | Al | |
顶部 | 73.16 | 21.93 | 3.05 | 1.86 |
底部 | 73.10 | 22.06 | 3.03 | 1.81 |
如图2所示,其给出了热锻后合金板材两端的力学性能,可以看出,经过上述熔炼工艺流程的严格控制,锰铜合金不同部位力学性能具有良好的一致性。由于内部夹杂物的含量降低,延展性得到明显提高。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (2)
1.一种锰铜合金的真空感应熔炼方法,其特征在于:包括以下操作步骤:
S1、选取工业纯以上金属原料,并分别布料装炉;
S2、关闭真空室,抽真空至20Pa以下时,逐级加大电源功率对金属原料预热;同时继续抽气,使真空度保持在10Pa以下;
S3、观察到炉内金属原料红热后,停止抽真空,向真空室内充入纯度为99.999%的氩气,使炉内压力达到0.05MPa附近,同时继续加大电源功率,使炉料快速熔清,熔化时间30-60min;同时始终关注电解锰片放气情况,始终保持炉内气压在0.05MPa附近;
S4、炉料熔清后,将电源功率减小至熔体液面平静状态,静置20-50min进行精炼;
S5、精炼后期,投入除渣剂进行造渣处理,造渣过程10-30min;
S6、扒渣:造渣结束后,使用扒渣设备将漂浮于熔体表面的渣料清除;
S7、降低功率至液面平静,投入料仓内的合金料,合金化过程5-20min;
S8、静置:降低电源功率至合金熔体液面结膜;
S9、调温浇注:静置结束后,重新将电源功率调高至熔炼状态,使合金熔体温度再次升高,当熔体表面结膜开始熔化时开始浇注;当浇口杯中心孔位置处能看到熔体冒出时停止浇注,等待熔体补缩;5-20s后重新补浇至熔体再次从浇口杯孔位置处冒出,重复补缩过程,直到浇口位置熔体不再下降,在多次补缩过程中,控制电源功率,使炉内剩余熔融合金始终保持熔融状态,以保证浇口杯孔不被堵塞,浇注时间5-20min。
2.根据权利要求1所述的一种锰铜合金的真空感应熔炼方法,其特征在于:步骤S1中,所述金属原料包括纯锰和纯铜以及其他金属原料,布料装炉为先将电解纯锰片覆盖于坩埚底部,然后将纯铜和其他金属原料置于电解锰片之上,再将合金料置于料仓。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910361654.XA CN110144472B (zh) | 2019-04-30 | 2019-04-30 | 一种锰铜减振合金的真空感应熔炼方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910361654.XA CN110144472B (zh) | 2019-04-30 | 2019-04-30 | 一种锰铜减振合金的真空感应熔炼方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110144472A CN110144472A (zh) | 2019-08-20 |
CN110144472B true CN110144472B (zh) | 2020-08-07 |
Family
ID=67594800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910361654.XA Active CN110144472B (zh) | 2019-04-30 | 2019-04-30 | 一种锰铜减振合金的真空感应熔炼方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110144472B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109382488A (zh) * | 2018-11-28 | 2019-02-26 | 爱发科电子材料(苏州)有限公司 | 铜硅铝合金真空铸锭控制缩孔位置的装置 |
CN110983081B (zh) * | 2019-12-19 | 2021-08-20 | 江苏隆达超合金股份有限公司 | 一种采用真空熔炼设备制备超低氧白铜的方法 |
CN110983080B (zh) * | 2019-12-19 | 2021-08-20 | 江苏隆达超合金股份有限公司 | 一种采用真空熔炼设备制备超低硫白铜的方法 |
CN111992693A (zh) * | 2020-03-09 | 2020-11-27 | 江苏大学 | 一种高锰阻尼合金熔模真空吸铸方法和装置 |
CN113174502B (zh) * | 2021-03-24 | 2022-07-12 | 上海大学 | 定向凝固制备超高阻尼锰铜合金及其制备方法 |
CN113755729B (zh) * | 2021-08-18 | 2022-09-06 | 上海大学 | 一种强磁场下定向凝固高阻尼锰铜合金材料及其制备方法 |
CN115109956B (zh) * | 2022-06-06 | 2023-12-19 | 陕西斯瑞扶风先进铜合金有限公司 | 一种性能优异的铸造铜合金的制备方法 |
CN115351245A (zh) * | 2022-07-27 | 2022-11-18 | 江苏远航精密合金科技股份有限公司 | 一种提高电子行业用高纯镍铸锭材料收得率的方法 |
CN115505769B (zh) * | 2022-10-21 | 2023-12-29 | 宁波微泰真空技术有限公司 | 一种超高纯铜合金铸锭的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4311522A (en) * | 1980-04-09 | 1982-01-19 | Amax Inc. | Copper alloys with small amounts of manganese and selenium |
CN1088994A (zh) * | 1992-12-26 | 1994-07-06 | 甘肃省机械科学研究院 | 高导电耐热铸造铜合金及其工艺 |
EP0717119A2 (en) * | 1994-10-25 | 1996-06-19 | NIPPON MINING & METALS COMPANY, LIMITED | Method of manufacturing copper alloy containing active metal |
CN101851706A (zh) * | 2009-03-25 | 2010-10-06 | 辽宁金力源新材料有限公司 | 一种去除真空熔炼铜铬合金夹杂物的方法 |
CN103742536A (zh) * | 2014-01-09 | 2014-04-23 | 常州雷克德合金材料有限公司 | 高铅青铜铜套的铸造方法 |
CN103966493A (zh) * | 2014-05-09 | 2014-08-06 | 曹帅 | 一种高阻尼Mn-Cu基减振合金及其制备方法 |
CN106148782A (zh) * | 2016-08-31 | 2016-11-23 | 河钢股份有限公司 | 一种真空感应炉冶炼锰铜合金的方法 |
CN108677059A (zh) * | 2018-05-28 | 2018-10-19 | 中色奥博特铜铝业有限公司 | Cu-15Ni-8Sn铜合金、铜合金棒及其制备方法 |
-
2019
- 2019-04-30 CN CN201910361654.XA patent/CN110144472B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4311522A (en) * | 1980-04-09 | 1982-01-19 | Amax Inc. | Copper alloys with small amounts of manganese and selenium |
CN1088994A (zh) * | 1992-12-26 | 1994-07-06 | 甘肃省机械科学研究院 | 高导电耐热铸造铜合金及其工艺 |
EP0717119A2 (en) * | 1994-10-25 | 1996-06-19 | NIPPON MINING & METALS COMPANY, LIMITED | Method of manufacturing copper alloy containing active metal |
CN101851706A (zh) * | 2009-03-25 | 2010-10-06 | 辽宁金力源新材料有限公司 | 一种去除真空熔炼铜铬合金夹杂物的方法 |
CN103742536A (zh) * | 2014-01-09 | 2014-04-23 | 常州雷克德合金材料有限公司 | 高铅青铜铜套的铸造方法 |
CN103966493A (zh) * | 2014-05-09 | 2014-08-06 | 曹帅 | 一种高阻尼Mn-Cu基减振合金及其制备方法 |
CN106148782A (zh) * | 2016-08-31 | 2016-11-23 | 河钢股份有限公司 | 一种真空感应炉冶炼锰铜合金的方法 |
CN108677059A (zh) * | 2018-05-28 | 2018-10-19 | 中色奥博特铜铝业有限公司 | Cu-15Ni-8Sn铜合金、铜合金棒及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110144472A (zh) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110144472B (zh) | 一种锰铜减振合金的真空感应熔炼方法 | |
KR102763513B1 (ko) | 구리-철 합금 슬라브 잉곳의 비진공 다운 드로잉 연속 주조 생산 공정 | |
CN101624671B (zh) | 一种大直径7005铝合金圆铸锭及其制备方法 | |
CN107030266A (zh) | 一种真空条件下熔炼加声磁耦合连续铸造一体化装置和方法 | |
CN102179493B (zh) | 一种高温合金真空连铸装置 | |
CN112157220B (zh) | 一种Al-Cu-Mg-Mn系铝合金铸件制备方法 | |
CN105970016B (zh) | 一种传输用高导电耐弯曲铜合金线及其制备方法 | |
CN213968961U (zh) | 一种外场作用下差压反重力充型凝固装置 | |
CN104388756B (zh) | 一种镍基合金及其制备方法 | |
CN107812903A (zh) | 一种铜合金真空连续熔炼铸造装置 | |
CN114540729A (zh) | 采用悬浮熔炼下引工艺制备铜铬触头用合金铸锭的方法 | |
CN113369453A (zh) | 一种基于真空离心铸造的铝合金板带材制备方法及真空离心铸造装置 | |
CN102343424A (zh) | 一种水平连续铸造高导高强铜合金圆棒的装置及方法 | |
CN112589073A (zh) | 一种外场作用下差压反重力充型凝固装置及工艺方法 | |
CN116237491A (zh) | 基于温度补偿的大型复杂结构件压铸方法 | |
CN1216707C (zh) | 镁合金电磁低温半连续铸造方法 | |
CN206828617U (zh) | 真空熔炼镍锭生产惰性气体保护装置 | |
CN108889915B (zh) | 一种基于熔渣保护的逐层浇注制备铸锭的方法 | |
CN219010411U (zh) | 一种全真空大尺寸电渣重熔装置 | |
CN202830133U (zh) | 一种新型铝合金熔体处理装置 | |
CN102873291B (zh) | 一种电磁流振镁合金半固态半连续铸造装置及方法 | |
CN112974740B (zh) | 一种gh4151合金的真空感应熔炼浇铸工艺和锭模装置 | |
CN110284016A (zh) | 一种低密度、中高强稀土铸造镁合金及其制备方法 | |
CN115852201A (zh) | 一种铜镍锡合金铸锭的生产方法 | |
CN108823356A (zh) | 一种脱氧用铝铁合金的生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |