WO2021018143A1 - 变焦镜头、相机模组及电子装置 - Google Patents
变焦镜头、相机模组及电子装置 Download PDFInfo
- Publication number
- WO2021018143A1 WO2021018143A1 PCT/CN2020/105208 CN2020105208W WO2021018143A1 WO 2021018143 A1 WO2021018143 A1 WO 2021018143A1 CN 2020105208 W CN2020105208 W CN 2020105208W WO 2021018143 A1 WO2021018143 A1 WO 2021018143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- zoom lens
- lens group
- zoom
- group
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims description 42
- 230000003287 optical effect Effects 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 21
- 230000004075 alteration Effects 0.000 description 18
- 230000008859 change Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/177—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/143—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
- G02B15/1435—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
- G02B15/143503—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/009—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
Definitions
- This application relates to optical imaging technology, in particular to a zoom lens, camera module and electronic device.
- embodiments of the present application provide a zoom lens, a camera module, and an electronic device.
- the zoom lens of the embodiment of the present application includes a first lens group, a second lens group, and a third lens group in order from the object side to the image side.
- the first lens group has negative refractive power.
- the second lens group has positive refractive power.
- the third lens group has negative refractive power, and both the second lens group and the third lens group can move relative to the first lens group when the first lens group remains fixed with respect to the imaging surface.
- the zoom lens satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group, the The focal length of the second lens group and the focal length of the third lens group.
- the camera module of the present application includes a photosensitive element and a zoom lens.
- the photosensitive element is arranged on the image side of the zoom lens.
- the zoom lens includes a first lens group, a second lens group, and a third lens group in order from the object side to the image side.
- the first lens group has negative refractive power.
- the second lens group has positive refractive power.
- the third lens group has negative refractive power, and both the second lens group and the third lens group can move relative to the first lens group when the first lens group remains fixed with respect to the imaging surface.
- the zoom lens satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group, the The focal length of the second lens group and the focal length of the third lens group.
- the electronic device of the present application includes a housing and a camera module.
- the camera module is installed on the housing.
- the camera module includes a photosensitive element and a zoom lens.
- the photosensitive element is arranged on the image side of the zoom lens.
- the zoom lens includes a first lens group, a second lens group, and a third lens group in order from the object side to the image side.
- the first lens group has negative refractive power.
- the second lens group has positive refractive power.
- the third lens group has negative refractive power, and both the second lens group and the third lens group can move relative to the first lens group when the first lens group remains fixed with respect to the imaging surface.
- the zoom lens satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group, the The focal length of the second lens group and the focal length of the third lens group.
- the zoom lens, camera module and electronic device of the present application change the focal length of the zoom lens through the movement of the second lens group and the third lens group that can move relative to the first lens group, which not only ensures the clarity of the shooting scene, but also does not require adjustment
- the lens can make the zoom lens switch between the short focal length and the long focal length.
- the zoom lens satisfies the relational expression -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1, making the overall layout of the zoom lens reasonable, and the movement of the second lens group and the third lens group when the focal length is switched The range is reasonable, which is conducive to the production and assembly of the zoom lens.
- FIG. 1 is a schematic structural diagram of a zoom lens according to some embodiments of the present application.
- FIG. 2 is a schematic structural diagram of a zoom lens in some embodiments of the present application in a short focus state
- FIG. 3 is a schematic structural diagram of a zoom lens in some embodiments of the present application in a telephoto state
- FIG. 4 is an aberration diagram of the zoom lens in some embodiments of the present application in a short focal state
- FIG. 5 is an aberration diagram of the zoom lens in some embodiments of the present application in a telephoto state
- Fig. 6 is a modulation transfer function diagram of a zoom lens in some embodiments of the present application in a short focus state
- FIG. 7 is a diagram of the modulation transfer function of the zoom lens in some embodiments of the present application in the telephoto state
- 8 and 9 are respectively a field curvature diagram and a distortion diagram of the zoom lens in some embodiments of the present application in a short focus state;
- 10 and 11 are respectively a field curvature diagram and a distortion diagram of a zoom lens in a telephoto state according to some embodiments of the present application;
- FIG. 12 is a vertical axis chromatic aberration diagram of the zoom lens of some embodiments of the present application in a short focal state;
- FIG. 13 is a vertical axis chromatic aberration diagram of the zoom lens in some embodiments of the present application in the telephoto state;
- FIG. 14 is a schematic structural diagram of a camera module according to some embodiments of the present application.
- FIG. 15 is a schematic structural diagram of an electronic device according to some embodiments of the present application from two different viewing angles.
- the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
- the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
- the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
- the zoom lens 10 includes a first lens group 11, a second lens group 12, and a third lens group 13 in order from the object side to the image side.
- the first lens group 11 has negative refractive power.
- the second lens group 12 has positive refractive power.
- the third lens group 13 has negative refractive power.
- the second lens group 12 and the third lens group 13 are both movable relative to the first lens group 11 when the first lens group 11 is kept fixed relative to the imaging surface S20.
- the zoom lens 10 satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group 11 and the second lens group, respectively The focal length of 12 and the focal length of the third lens group 13.
- the zoom lens 10 further includes a prism 14, the prism 14 is arranged on the side of the first lens group 11 opposite to the third lens group 13, and the incident surface of the prism 14 S1 is perpendicular to the exit surface S3 of the prism 14.
- the first lens group 11 includes a first lens 111 and a second lens 112 from the object side to the image side
- the second lens group 12 includes a first lens from the object side to the image side
- the three lenses 121, the fourth lens 122, and the fifth lens 123, and the third lens group 13 includes a sixth lens 131 and a seventh lens 132 from the object side to the image side.
- the zoom lens 10 further includes a diaphragm 15.
- the diaphragm 15 includes an aperture diaphragm 151 and three vignetting diaphragms 152.
- the aperture diaphragm 151 is arranged on the object side S8 of the third lens 121, and the three vignetting diaphragms 152 are respectively arranged On the object side surface S10 of the fourth lens 122, between the fifth lens 123 and the sixth lens 131, and the image side surface S15 of the sixth lens 131.
- the zoom lens 10 also satisfies the following conditional formula: 25 ⁇ f2/f1 ⁇ 35; -1.2 ⁇ f3/f1 ⁇ -0.2; 1 ⁇ f4/f1 ⁇ 2; -1.2 ⁇ f5/f1 ⁇ -0.2; -2 ⁇ f6/f1 ⁇ -0.5; 0.2 ⁇ f7/f1 ⁇ 1; where f1 to f7 are the focal lengths of the first lens 111 to the seventh lens 132, respectively.
- the zoom lens 10 satisfies the following conditional formula: TTL/FS ⁇ 2.5; TTL/FL ⁇ 1.5; where TTL is the object side surface S4 of the first lens 111 to the imaging surface The distance of S20 on the optical axis, FS is the focal length of the zoom lens 10 in the short-focus state, and FL is the focal length of the zoom lens 10 in the long-focus state.
- the zoom lens 10 satisfies the following relationship: TTL/H ⁇ 4; where TTL is the distance from the object side S4 of the first lens 111 to the imaging surface S20 on the optical axis The distance, H is the height of the imaging surface S20.
- the zoom lens 10 may further include an infrared filter 16, and the infrared filter 16 is used to filter infrared light.
- the infrared filter 16 is disposed between the imaging surface S20 and the seventh lens 132.
- the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131 and the seventh lens 132 are Plastic lens or glass lens.
- the camera module 100 of the embodiment of the present application includes a photosensitive element 20 and the zoom lens 10 of any of the above embodiments.
- the photosensitive element 20 is provided on the image side of the zoom lens 10.
- the zoom lens 10 includes a first lens group 11, a second lens group 12, and a third lens group 13 in order from the object side to the image side.
- the first lens group 11 has negative refractive power.
- the second lens group 12 has positive refractive power.
- the third lens group 13 has negative refractive power.
- the second lens group 12 and the third lens group 13 are both movable relative to the first lens group 11 when the first lens group 11 is kept fixed relative to the imaging surface S20.
- the zoom lens 10 satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group 11 and the second lens group, respectively The focal length of 12 and the focal length of the third lens group 13.
- the zoom lens 10 further includes a prism 14, the prism 14 is arranged on the side of the first lens group 11 opposite to the third lens group 13, and the incident surface of the prism 14 S1 is perpendicular to the exit surface S3 of the prism 14.
- the first lens group 11 includes a first lens 111 and a second lens 112 from the object side to the image side
- the second lens group 12 includes a first lens from the object side to the image side
- the three lenses 121, the fourth lens 122, and the fifth lens 123, and the third lens group 13 includes a sixth lens 131 and a seventh lens 132 from the object side to the image side.
- the zoom lens 10 further includes a diaphragm 15.
- the diaphragm 15 includes an aperture diaphragm 151 and three vignetting diaphragms 152.
- the aperture diaphragm 151 is arranged on the object side S8 of the third lens 121, and the three vignetting diaphragms 152 are respectively arranged On the object side surface S10 of the fourth lens 122, between the fifth lens 123 and the sixth lens 131, and the image side surface S15 of the sixth lens 131.
- the zoom lens 10 also satisfies the following conditional formula: 25 ⁇ f2/f1 ⁇ 35; -1.2 ⁇ f3/f1 ⁇ -0.2; 1 ⁇ f4/f1 ⁇ 2; -1.2 ⁇ f5/f1 ⁇ -0.2; -2 ⁇ f6/f1 ⁇ -0.5; 0.2 ⁇ f7/f1 ⁇ 1; where f1 to f7 are the focal lengths of the first lens 111 to the seventh lens 132, respectively.
- the zoom lens 10 satisfies the following conditional formula: TTL/FS ⁇ 2.5; TTL/FL ⁇ 1.5; where TTL is the object side surface S4 of the first lens 111 to the imaging surface The distance of S20 on the optical axis, FS is the focal length of the zoom lens 10 in the short-focus state, and FL is the focal length of the zoom lens 10 in the long-focus state.
- the zoom lens 10 satisfies the following relationship: TTL/H ⁇ 4; where TTL is the distance from the object side S4 of the first lens 111 to the imaging surface S20 on the optical axis The distance, H is the height of the imaging surface S20.
- the zoom lens 10 may further include an infrared filter 16, and the infrared filter 16 is used to filter infrared light.
- the infrared filter 16 is disposed between the imaging surface S20 and the seventh lens 132.
- the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131 and the seventh lens 132 are Plastic lens or glass lens.
- the electronic device 1000 of the embodiment of the present application includes a housing 200 and the camera module 100 of any of the above embodiments.
- the camera module 100 is installed on the housing 200.
- the zoom lens 10 of the embodiment of the present application includes a first lens group 11, a second lens group 12, and a third lens group 13 in order from the object side to the image side.
- the first lens group 11 has negative refractive power.
- the second lens group 12 has positive refractive power.
- the third lens group 13 has negative refractive power.
- the second lens group 12 and the third lens group 13 are both movable relative to the first lens group 11 when the first lens group 11 is kept fixed relative to the imaging surface S20.
- the zoom lens 10 satisfies the following relationship: -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1; where F1, F2, and F3 are the focal length of the first lens group 11 and the second lens group, respectively The focal length of 12 and the focal length of the third lens group 13.
- F1/F2 can be any value in the interval (-2.5, -1.5), for example, the value can be -2.405, -2.255, -2.055, -1.94, -1.525, etc.
- the zoom lens 10 of the present application changes the focal length of the zoom lens 10 through the movement of the second lens group 12 and the third lens group 13 that can move relative to the first lens group 11, which not only ensures the clarity of the shooting scene, but also enables the zoom lens 10 Switch between the two focal lengths of short focus and long focus, without using multiple lenses to achieve long focus shooting and short focus shooting.
- the zoom lens 10 satisfies the relationship -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1, so that the overall layout of the zoom lens 10 is reasonable, and the second lens group 12 and the third lens are switched when the focal length is switched.
- the moving range of the group 13 is reasonable, which is beneficial to the production and assembly of the zoom lens 10.
- the second lens group 12 and the third lens group 13 are fixed relative to the imaging surface S20, and the first lens group 11 can move relative to the second lens group 12 or the third lens group 13 to change the focal length of the zoom lens 10. .
- the zoom lens 10 further includes a prism 14.
- the prism 14 is arranged on the side of the first lens group 11 opposite to the third lens group 13.
- the incident surface S1 of the prism 14 and the exit surface S3 of the prism 14 vertical.
- the prism 14 includes an incident surface S1, a reflective surface S2, and an exit surface S3.
- the incident surface S1 is perpendicular to the exit surface S3.
- the prism 14 may be a triangular prism. Specifically, the cross section of the prism 14 is a right-angled triangle. The two right-angled sides of the right-angled triangle are the incident surface S1 and the output surface S3, respectively, and the hypotenuse of the right-angled triangle is the reflecting surface S2.
- the prism 14 is installed on the side of the first lens group 11 opposite to the third lens group 13, and the exit surface S3 of the prism 14 is opposite to the first lens group 11.
- the prism 14 can change the exit angle of the incident light.
- the incident light enters the incident surface S1 and is refracted by the prism 14, then is reflected by the reflective surface S2 and then exits the exit surface S3, and finally exits to the first lens group 11.
- one surface of the prism 14 (such as the reflective surface S2) may be coated with a reflective material such as cloth silver to reflect the incident light.
- the incident light may exit after being refracted by the prism 14 without being reflected by the reflective surface S2.
- the prism 14 can be made of a material with relatively good light permeability such as glass or plastic.
- the zoom lens 10 changes the exit angle of the incident light through the prism 14, and the entire zoom lens 10 can be designed as a periscope structure, which is beneficial to reduce the thickness of the electronic device 1000 (as shown in FIG. 15) on which the zoom lens 10 is installed.
- the first lens group 11 includes a first lens 111 and a second lens 112 from the object side to the image side
- the second lens group 12 includes a first lens from the object side to the image side
- the three lenses 121, the fourth lens 122, and the fifth lens 123, and the third lens group 13 includes a sixth lens 131 and a seventh lens 132 from the object side to the image side.
- the first lens 111 has an object side surface S4 and an image side surface S5.
- the second lens 112 has an object side surface S6 and an image side surface S7.
- the third lens 121 has an object side surface S8 and an image side surface S9.
- the fourth lens 122 has an object side surface S10 and an image side surface S11.
- the fifth lens 123 has an object side surface S12 and an image side surface S13.
- the sixth lens 131 has an object side surface S14 and an image side surface S15.
- the seventh lens 132 has an object side surface S16 and an image side surface S17.
- the zoom lens 10 further includes a diaphragm 15.
- the diaphragm 15 includes an aperture diaphragm 151 and three vignetting diaphragms 152.
- the aperture diaphragm 151 is arranged on the object side S8 of the third lens 121, and the three vignetting diaphragms 152 are respectively arranged On the object side surface S10 of the fourth lens 122, between the fifth lens 123 and the sixth lens 131, and the image side surface S15 of the sixth lens 131.
- the zoom lens 10 can better control the amount of light entering and improve the imaging effect through the reasonable setting of the aperture stop 151, and the reasonable setting of three vignetting stops 152 can effectively reduce the influence of stray light on the zoom lens 10 and improve The imaging quality of the off-axis point.
- the zoom lens 10 further satisfies the following conditional formula: 25 ⁇ f2/f1 ⁇ 35; -1.2 ⁇ f3/f1 ⁇ -0.2; 1 ⁇ f4/f1 ⁇ 2; -1.2 ⁇ f5/f1 ⁇ - 0.2; -2 ⁇ f6/f1 ⁇ -0.5; 0.2 ⁇ f7/f1 ⁇ 1; where f1 to f7 are the focal lengths of the first lens 111 to the seventh lens 132, respectively.
- f2/f1 can be any value between the interval (25, 35), for example, the value is 26.155, 27.544, 28.629, 30.565, 33.897, etc.;
- f3/f1 can be the interval (-1.2,- 0.2), for example, the value is -1.125, -1.089, -0.761, -0.545, -0.254, etc.;
- f4/f1 can be any value between the interval (1, 2), for example, the The value is 1.125, 1.326, 1.410, 1.822, 1.955, etc.;
- f5/f1 can be any value between the interval (-1.2, -0.2), for example, the value is -1.189, -0.988, -0.754, -0.660, -0.221, etc.;
- f6/f1 can be any value in the interval (-2, -0.5), for example, the value is -1.945, -1.456, -1.351, -1.112, -
- the zoom lens 10 satisfies the conditional formula 25 ⁇ f2/f1 ⁇ 35; -1.2 ⁇ f3/f1 ⁇ -0.2; 1 ⁇ f4/f1 ⁇ 2; -1.2 ⁇ f5/f1 ⁇ -0.2; -2 ⁇ f6/f1 ⁇ - 0.5; 0.2 ⁇ f7/f1 ⁇ 1, the first lens 111 to the seventh lens 132 of the zoom lens 10 have suitable focal lengths, which can meet the requirements of the focal length and field of view of the zoom lens 10, so that the zoom lens 10 has Better imaging quality.
- the zoom lens 10 satisfies the following conditional formula: TTL/FS ⁇ 2.5; TTL/FL ⁇ 1.5; where TTL is the distance from the object side S4 of the first lens 111 to the imaging surface S20 on the optical axis, FS is the focal length of the zoom lens 10 in the short focus state, and FL is the focal length of the zoom lens 10 in the telephoto state.
- TTL/FS can be any value less than 2.5, for example, the value is 0.852, 1.432, 1.854, 1.996, 2.185, etc.
- TTL/FL can be any value less than 1.5, for example, the value is 0.445 , 0.845, 1.145, 1.330, 1.491 and so on.
- the zoom lens 10 satisfies the relationship TTL/FS ⁇ 2.5; TTL/FL ⁇ 1.5, which can ensure that the zoom lens 10 has a shorter TTL while switching between the short focus state and the long focus state.
- the zoom lens 10 satisfies the following relationship: TTL/H ⁇ 4; where TTL is the distance from the object side surface S4 of the first lens 111 to the imaging surface S20 on the optical axis, and H is the distance of the imaging surface S20 height.
- the height of the imaging surface S20 is the length of the diagonal of the imaging surface S20.
- the zoom lens 10 satisfies the relational expression TTL/H ⁇ 4, and has a shorter TTL while ensuring a larger imaging surface S20 height.
- the zoom lens 10 can switch between the short focus state and the long focus state by moving the second lens group 12 and the third lens group 13.
- the angle of view of the zoom lens 10 can be switched between 20° and 30.5°, which is beneficial to realize the telephoto and wide-angle photography of the zoom lens 10.
- the zoom lens 10 may further include an infrared filter 16, and the infrared filter 16 is used to filter infrared light.
- the infrared filter 16 is arranged between the imaging surface S20 and the seventh lens 132. After the light emitted from the seventh lens 132 passes through the infrared filter 16, the infrared light in the light is filtered out, which can prevent the infrared light from affecting imaging. Improve the imaging effect of visible light imaging.
- the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131, and the seventh lens 132 are plastic lenses or glass lenses.
- the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131, and the seventh lens 132 are all plastic lenses. In this way, the zoom lens 10 can achieve ultra-thinness while correcting aberrations through reasonable configuration of lens materials, and the cost is low.
- At least one surface of the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131, and the seventh lens 132 in the zoom lens 10 is Aspherical.
- the object side surface and the image side surface of the first lens 111, the second lens 112, the third lens 121, the fourth lens 122, the fifth lens 123, the sixth lens 131, and the seventh lens 132 are aspherical.
- the shape of the aspheric surface is determined by the following formula: Among them, Z is the longitudinal distance between any point on the aspheric surface and the apex of the surface, r is the distance from any point on the aspheric surface to the optical axis, c is the vertex curvature (the reciprocal of the radius of curvature), k is the conic constant, and Ai is the i-th order of the aspheric surface Correction factor.
- the zoom lens 10 can effectively reduce the total length of the zoom lens 10 by adjusting the radius of curvature and the aspheric coefficient of each lens surface, and can effectively correct aberrations and improve the image quality.
- the first lens 111 has an object side surface S4 and an image side surface S5.
- the second lens 112 has an object side surface S6 and an image side surface S7.
- the third lens 121 has an object side surface S8 and an image side surface S9.
- the fourth lens 122 has an object side surface S10 and an image side surface S11.
- the fifth lens 123 has an object side surface S12 and an image side surface S13.
- the sixth lens 131 has an object side surface S14 and an image side surface S15.
- the seventh lens 132 has an object side surface S16 and an image side surface S17.
- the infrared filter 16 has an object side surface S18 and an image side surface S19.
- the thickness values in Table 1 indicate the distance on the optical axis from the current surface to the next surface.
- Table 2 lists the aspheric coefficients of each surface in Table 1.
- the second lens group 12 and the third lens group 13 are relative to the first lens group 11.
- the overall relative position is changed, so that the image side surface S7 of the second lens 112 and the object side surface S8 of the third lens 121, between the image side surface S13 of the fifth lens 123 and the object side surface S14 of the sixth lens 131, and the seventh lens
- the distance between the image side surface S17 of the lens 132 and the object side surface S18 of the infrared filter 16 changes.
- the aperture (F/#) is the ratio of the focal length of the zoom lens 10 to the diameter of the entrance pupil.
- the function of the aperture is to determine the amount of light entering the zoom lens 10 and to adjust the amount of light entering the zoom lens 10. The smaller the aperture value, the larger the aperture, and the more light input; on the contrary, the larger the aperture value, the aperture The smaller the amount, the smaller the amount of light.
- FIGS. 4 and 5 are the system aberration diagrams of the zoom lens 10 according to the embodiment of the present application in the short-focus and long-focus states, respectively.
- the aberrations refer to the results obtained from non-paraxial ray tracing in the actual optical system and close
- the results of the axial ray tracing are inconsistent and deviate from the ideal condition of Gaussian optics (first-order approximation theory or paraxial rays).
- Aberrations are mainly divided into spherical aberration, coma, curvature of field, astigmatism, distortion, chromatic aberration and wave aberration.
- the IMA in FIGS. 4 and 5 is the length of the diagonal of the imaging surface S20.
- optical transfer function value (MTF) diagrams of the zoom lens 10 of the embodiment of the present application in the short focus and the long focus state
- optical transfer function (Optical Transfer Function, OTF) refers to the spatial frequency as a variable , Which characterizes the relative change of modulation and lateral phase shift during imaging.
- the optical transfer function is the filtering transformation of the optical system to the spatial spectrum.
- the MTF value of the zoom lens 10 in the short focus state and the long focus state is close to the diffraction limit, and the imaging quality is good.
- 8 and 9 are field curvature diagrams and distortion diagrams of the zoom lens 10 of the embodiment of the present application in the short focus state.
- 10 and 11 are field curvature diagrams and distortion diagrams of the zoom lens 10 in the telephoto state of the embodiment of the present application.
- the lens has field curvature, the intersection of the entire beam does not coincide with the ideal image point. Although a clear image point can be obtained at each specific point, the entire image plane is a curved surface, so that it cannot be seen clearly at the same time during microscopic inspection The entire image plane makes it difficult to observe the picture and take a picture.
- Lens distortion is actually the general term for the inherent perspective distortion of optical lenses, that is, the distortion caused by perspective, which is very detrimental to the image quality of the photo.
- the curvature of field of the zoom lens 10 in the short focus state and the long focus state are both within 5 micrometers (um), and the distortion is less than 2.5%, which ensures that the image captured by the zoom lens 10 is curved and flat, without visible distortion.
- FIG. 12 and FIG. 13 are graphs of vertical axis chromatic aberration of the zoom lens 10 according to the embodiment of the present application in the short focus and long focus states, respectively.
- Chromatic aberration also known as chromatic aberration
- chromatic aberration is a serious defect of lens imaging.
- chromatic aberration is the difference in color.
- monochromatic light does not produce chromatic aberration.
- the chromatic aberration of the zoom lens 10 in both the short focus and the long focus state is less than 3.5 um, which ensures that there is no visible color difference in the entire image field of view.
- the camera module 100 of the embodiment of the present application includes a photosensitive element 20 and the zoom lens 10 of any of the above embodiments.
- the photosensitive element 20 is provided on the image side of the zoom lens 10.
- the photosensitive element 20 may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) photosensitive element or a charge-coupled device (Charge-coupled Device, CCD) photosensitive element.
- CMOS Complementary Metal Oxide Semiconductor
- CCD Charge-coupled Device
- the electronic device 1000 of the embodiment of the present application includes a housing 200 and the camera module 100 of the above embodiment.
- the camera module 100 is installed on the housing 200.
- the electronic device 1000 of the embodiment of the present application includes, but is not limited to, smart phones, access control systems, surveillance cameras, mobile phones, personal digital assistants (PDAs), game consoles, personal computers (PCs), cameras, Information terminal devices such as smart watches and tablet computers, or home appliances with camera functions, etc.
- PDAs personal digital assistants
- PCs personal computers
- Information terminal devices such as smart watches and tablet computers, or home appliances with camera functions, etc.
- the electronic device 1000 includes a front 901 and a back 902.
- the camera module 100 can be set on the front 901 as a front camera, and the camera module 100 can also be set on the back 902 as a rear camera. In the embodiment of the application, the camera module 100 is set On the back 902 as a rear camera.
- the camera module 100 and the electronic device 1000 of the present application change the focal length of the zoom lens 10 through the movement of the second lens group 12 and the third lens group 13 movable relative to the first lens group 11, which not only ensures the clarity of the shooting scene, but also There is no need to use multiple lenses to achieve telephoto and short-focus shooting.
- the zoom lens 10 satisfies the relationship -2.5 ⁇ F1/F2 ⁇ -1.5; -2 ⁇ F3/F2 ⁇ -1, so that the overall layout of the zoom lens 10 is reasonable, and the second lens group 12 and the third lens are switched when the focal length is switched.
- the moving range of the group 13 is reasonable, which is beneficial to the production and assembly of the zoom lens 10.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
- the features defined with “first” and “second” may explicitly or implicitly include at least one feature.
- a plurality of means at least two, such as two, three, etc., unless specifically defined otherwise.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
一种变焦镜头(10)、相机模组(100)和电子装置(1000)。变焦镜头(10)包括负光焦度的第一透镜组(11)、正光焦度的第二透镜组(12)和负光焦度的第三透镜组(13),第二透镜组(12)和第三透镜组(13)均可相对第一透镜组(11)移动;满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1。
Description
优先权信息
本申请请求2019年7月31日向中国国家知识产权局提交的、专利申请号为201910703072.5的专利申请的优先权和权益,并且通过参照将其全文并入此处。
本申请涉及光学成像技术,特别涉及一种变焦镜头、相机模组及电子装置。
现有变焦方式中,通过数码变焦方式拍摄图像,拍摄的景物会被放大,而通过混合变焦方式拍摄图像,图像质量会在一定范围内得到提升。
发明内容
有鉴于此,本申请实施方式提供一种变焦镜头、相机模组及电子装置。
本申请实施方式的变焦镜头从物侧至像侧依次包括第一透镜组、第二透镜组和第三透镜组。所述第一透镜组具有负光焦度。所述第二透镜组具有正光焦度。所述第三透镜组具有负光焦度,所述第二透镜组和所述第三透镜组均可在所述第一透镜组相对成像面保持固定时相对所述第一透镜组移动。所述变焦镜头满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为所述第一透镜组的焦距、所述第二透镜组的焦距、及所述第三透镜组的焦距。
本申请的相机模组包括感光元件和变焦镜头。所述感光元件设置在所述变焦镜头的像侧。所述变焦镜头从物侧至像侧依次包括第一透镜组、第二透镜组和第三透镜组。所述第一透镜组具有负光焦度。所述第二透镜组具有正光焦度。所述第三透镜组具有负光焦度,所述第二透镜组和所述第三透镜组均可在所述第一透镜组相对成像面保持固定时相对所述第一透镜组移动。所述变焦镜头满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为所述第一透镜组的焦距、所述第二透镜组的焦距、及所述第三透镜组的焦距。
本申请的电子装置包括壳体和相机模组。所述相机模组安装在所述壳体上。所述相机模组包括感光元件和变焦镜头。所述感光元件设置在所述变焦镜头的像侧。所述变焦镜头从物侧至像侧依次包括第一透镜组、第二透镜组和第三透镜组。所述第一透镜组具有负光焦度。所述第二透镜组具有正光焦度。所述第三透镜组具有负光焦度,所述第二透镜组和所述第三透镜组均可在所述第一透镜组相对成像面保持固定时相对所述第一透镜组移动。所述变焦镜头满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为所述第一透镜组的焦距、所述第二透镜组的焦距、及所述第三透镜组的焦距。
本申请的变焦镜头、相机模组和电子装置通过可相对第一透镜组移动的第二透镜组和第三透镜组 的移动改变变焦镜头的焦距,不仅保证了拍摄景物的清晰度,而且无需调整镜头即可使得变焦镜头在短焦和长焦两种焦距状态之间切换。而且,变焦镜头满足关系式-2.5<F1/F2<-1.5;-2<F3/F2<-1,使得变焦镜头整体布局合理,在焦距状态切换时第二透镜组和第三透镜组的移动范围合理,有利于变焦镜头的生产和组装。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的变焦镜头的结构示意图;
图2是本申请某些实施方式的变焦镜头在短焦状态下的结构示意图;
图3是本申请某些实施方式的变焦镜头在长焦状态下的结构示意图;
图4是本申请某些实施方式的变焦镜头在短焦状态下的像差图;
图5是本申请某些实施方式的变焦镜头在长焦状态下的像差图;
图6是本申请某些实施方式的变焦镜头在短焦状态下的调制传递函数图;
图7是本申请某些实施方式的变焦镜头在长焦状态下的调制传递函数图;
图8和图9分别是本申请某些实施方式的变焦镜头在短焦状态下的场曲图和畸变图;
图10和图11分别是本申请某些实施方式的变焦镜头在长焦状态下的场曲图和畸变图;
图12是本申请某些实施方式的变焦镜头在短焦状态下的垂轴色差图;
图13是本申请某些实施方式的变焦镜头在长焦状态下的垂轴色差图;
图14是本申请某些实施方式的相机模组的结构示意图;和
图15是本申请某些实施方式的电子装置的两个不同视角的结构示意图。
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
请参阅图1至图3,在某些实施方式中,变焦镜头10从物侧至像侧依次包括第一透镜组11、第二透镜组12和第三透镜组13。第一透镜组11具有负光焦度。第二透镜组12具有正光焦度。第三透镜组13具有负光焦度。第二透镜组12和第三透镜组13均在第一透镜组11相对成像面S20保持固定时可相对第一透镜组11移动。变焦镜头10满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为第一透镜组11的焦距、第二透镜组12的焦距及第三透镜组13的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10还包括棱镜14,棱镜14设置在第一透镜组11的与第三透镜组13相背的一侧,棱镜14的入射面S1与棱镜14的出射面S3垂直。
请参阅图2及图3,在某些实施方式中,第一透镜组11从物侧到像侧包括第一透镜111和第二透镜112,第二透镜组12从物侧到像侧包括第三透镜121、第四透镜122和第五透镜123,第三透镜组13从物侧到像侧包括第六透镜131和第七透镜132。变焦镜头10还包括光阑15,光阑15包括孔径光阑151和三个渐晕光阑152,孔径光阑151设置在第三透镜121的物侧面S8,三个渐晕光阑152分别设置在第四透镜122的物侧面S10、第五透镜123和第六透镜131之间、及第六透镜131的像侧面S15。
请参阅图2及图3,在某些实施方式中,变焦镜头10还满足以下条件式:25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1;其中,f1至f7分别是第一透镜111至第七透镜132的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10满足以下条件式:TTL/FS<2.5;TTL/FL<1.5;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,FS是变焦镜头10处于短焦状态下的焦距,FL是变焦镜头10是处于长焦状态下的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10满足以下关系式:TTL/H<4;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,H为成像面S20的高度。
请参阅图2及图3,在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,f=14mm;当变焦镜头10处于长焦状态下对焦时,f=23mm,其中,f为变焦镜头10的焦距。
请参阅图2及图3,在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,FOV=30.5°;当变焦镜头10处于长焦状态下对焦时,FOV=20°,其中,FOV为变焦镜头10的视场角。
请参阅图2及图3,在某些实施方式中,变焦镜头10还可包括红外滤光片16,红外滤光片16用于过滤红外光。红外滤光片16设置在成像面S20和第七透镜132之间.
请参阅图2及图3,在某些实施方式中,第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132为塑料透镜或玻璃透镜。
请参阅图1至图3、图14,本申请实施方式的相机模组100包括感光元件20和上述任一实施方式的变焦镜头10。感光元件20设置在变焦镜头10的像侧。变焦镜头10从物侧至像侧依次包括第一透镜 组11、第二透镜组12和第三透镜组13。第一透镜组11具有负光焦度。第二透镜组12具有正光焦度。第三透镜组13具有负光焦度。第二透镜组12和第三透镜组13均在第一透镜组11相对成像面S20保持固定时可相对第一透镜组11移动。变焦镜头10满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为第一透镜组11的焦距、第二透镜组12的焦距及第三透镜组13的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10还包括棱镜14,棱镜14设置在第一透镜组11的与第三透镜组13相背的一侧,棱镜14的入射面S1与棱镜14的出射面S3垂直。
请参阅图2及图3,在某些实施方式中,第一透镜组11从物侧到像侧包括第一透镜111和第二透镜112,第二透镜组12从物侧到像侧包括第三透镜121、第四透镜122和第五透镜123,第三透镜组13从物侧到像侧包括第六透镜131和第七透镜132。变焦镜头10还包括光阑15,光阑15包括孔径光阑151和三个渐晕光阑152,孔径光阑151设置在第三透镜121的物侧面S8,三个渐晕光阑152分别设置在第四透镜122的物侧面S10、第五透镜123和第六透镜131之间、及第六透镜131的像侧面S15。
请参阅图2及图3,在某些实施方式中,变焦镜头10还满足以下条件式:25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1;其中,f1至f7分别是第一透镜111至第七透镜132的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10满足以下条件式:TTL/FS<2.5;TTL/FL<1.5;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,FS是变焦镜头10处于短焦状态下的焦距,FL是变焦镜头10是处于长焦状态下的焦距。
请参阅图2及图3,在某些实施方式中,变焦镜头10满足以下关系式:TTL/H<4;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,H为成像面S20的高度。
请参阅图2及图3,在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,f=14mm;当变焦镜头10处于长焦状态下对焦时,f=23mm,其中,f为变焦镜头10的焦距。
请参阅图2及图3,在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,FOV=30.5°;当变焦镜头10处于长焦状态下对焦时,FOV=20°,其中,FOV为变焦镜头10的视场角。
请参阅图2及图3,在某些实施方式中,变焦镜头10还可包括红外滤光片16,红外滤光片16用于过滤红外光。红外滤光片16设置在成像面S20和第七透镜132之间.
请参阅图2及图3,在某些实施方式中,第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132为塑料透镜或玻璃透镜。
请参阅图1至图3、图15,本申请实施方式的电子装置1000包括壳体200和上述任一实施方式的相机模组100。相机模组100安装在壳体200上。
请一并参阅图1至图3,本申请实施方式的变焦镜头10从物侧至像侧依次包括第一透镜组11、第二透镜组12和第三透镜组13。
第一透镜组11具有负光焦度。第二透镜组12具有正光焦度。第三透镜组13具有负光焦度。第二 透镜组12和第三透镜组13均在第一透镜组11相对成像面S20保持固定时可相对第一透镜组11移动。
变焦镜头10满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为第一透镜组11的焦距、第二透镜组12的焦距及第三透镜组13的焦距。也就是说,F1/F2可以为区间(-2.5,-1.5)之间的任意数值,例如,该值可以为-2.405、-2.255、-2.055、-1.994、-1.525等等;F3/F2可以为区间(-2,-1)之间的任意数值,例如,该值可以为-1.998、-1.711、-1.684、-1.592、-1.515等等,本实施方式中,F1/F2=-1.994、F3/F2=-1.592。
目前的数码变焦虽然拍摄的景物变大,但它的清晰度会有一定程度的下降,所以数码变焦并没有太大的实际意义;而混合变焦虽然使得图像质量在一定范围内得到提升,但后续如果需要的调整焦距,则势必还需要调整镜头的参数或数量。
本申请的变焦镜头10通过可相对第一透镜组11移动的第二透镜组12和第三透镜组13的移动改变变焦镜头10的焦距,不仅保证了拍摄景物的清晰度,而且可使得变焦镜头10在短焦和长焦两种焦距状态之间切换,无需采用多个镜头实现长焦拍摄与短焦拍摄。而且,变焦镜头10满足关系式-2.5<F1/F2<-1.5;-2<F3/F2<-1,使得变焦镜头10整体布局合理,在焦距状态切换时第二透镜组12和第三透镜组13的移动范围合理,有利于变焦镜头10的生产和组装。
在某些实施方式中,第二透镜组12和第三透镜组13相对成像面S20固定,第一透镜组11可相对第二透镜组12或第三透镜组13移动以改变变焦镜头10的焦距。
在某些实施方式中,变焦镜头10还包括棱镜14,棱镜14设置在第一透镜组11的与第三透镜组13相背的一侧,棱镜14的入射面S1与棱镜14的出射面S3垂直。
棱镜14包括入射面S1、反射面S2和出射面S3。入射面S1与出射面S3垂直。棱镜14可以是三角棱镜,具体地,棱镜14的截面为直角三角形,直角三角形的两条直角边分别为入射面S1和出射面S3,直角三角形的斜边为反射面S2。棱镜14安装在第一透镜组11的与第三透镜组13相背的一侧,棱镜14的出射面S3与第一透镜组11相对。
可以理解,棱镜14可以改变入射光线的出射角度,入射光线从入射面S1入射后被棱镜14折射,然后被反射面S2反射后从出射面S3射出,最后出射向第一透镜组11。在一个实施方式中,可以在棱镜14的其中一个表面(如反射面S2)涂上布银等反光材料以反射入射光。当然,入射光线可以经过棱镜14折射后出射,而不经过反射面S2的反射。棱镜14可以采用玻璃、塑料等透光性比较好的材料制成。如此,变焦镜头10通过棱镜14改变入射光线的出射角度,可将变焦镜头10整体设计成潜望式结构,有利于降低安装变焦镜头10的电子装置1000(如图15)的厚度。
请参阅图2及图3,在某些实施方式中,第一透镜组11从物侧到像侧包括第一透镜111和第二透镜112,第二透镜组12从物侧到像侧包括第三透镜121、第四透镜122和第五透镜123,第三透镜组13从物侧到像侧包括第六透镜131和第七透镜132。第一透镜111具有物侧面S4和像侧面S5。第二透镜112具有物侧面S6和像侧面S7。第三透镜121具有物侧面S8和像侧面S9。第四透镜122具有物 侧面S10和像侧面S11。第五透镜123具有物侧面S12和像侧面S13。第六透镜131具有物侧面S14和像侧面S15。第七透镜132具有物侧面S16和像侧面S17。
变焦镜头10还包括光阑15,光阑15包括孔径光阑151和三个渐晕光阑152,孔径光阑151设置在第三透镜121的物侧面S8,三个渐晕光阑152分别设置在第四透镜122的物侧面S10、第五透镜123和第六透镜131之间、及第六透镜131的像侧面S15。如此,变焦镜头10通过合理的孔径光阑151设置,可更好地控制进光量,提升成像效果,通过合理设置三个渐晕光阑152,可有效降低杂散光对变焦镜头10的影响并提升轴外点的成像质量。
在某些实施方式中,变焦镜头10还满足以下条件式:25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1;其中,f1至f7分别是第一透镜111至第七透镜132的焦距。也即是说,f2/f1可以为区间(25,35)之间的任意数值,例如,该值为26.155、27.544、28.629、30.565、33.897等等;f3/f1可以为区间(-1.2,-0.2)之间的任意数值,例如,该值为-1.125、-1.089、-0.761、-0.545、-0.254等等;f4/f1可以为区间(1,2)之间的任意数值,例如,该值为1.125、1.326、1.410、1.822、1.955等等;f5/f1可以为区间(-1.2,-0.2)之间的任意数值,例如,该值为-1.189、-0.988、-0.754、-0.660、-0.221等等;f6/f1可以为区间(-2,-0.5)之间的任意数值,例如,该值为-1.945、-1.456、-1.351、-1.112、-0.554等等;f7/f1可以为区间(0.2,1)之间的任意数值,例如,该值为0.315、0.514、0.656、0.885、0.915等等。本实施方式中,f2/f1=28.629、f3/f1=-0.761、f4/f1=1.410、f5/f1=-0.660、f6/f1=-1.351、f7/f1=0.514。
变焦镜头10满足条件式25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1,变焦镜头10的第一透镜111至第七透镜132均具有合适的焦距,可满足变焦镜头10的焦距、视场角等参数的要求,使得变焦镜头10具有较好的成像质量。
在某些实施方式中,变焦镜头10满足以下条件式:TTL/FS<2.5;TTL/FL<1.5;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,FS是变焦镜头10处于短焦状态下的焦距,FL是变焦镜头10是处于长焦状态下的焦距。也即是说,TTL/FS可以为小于2.5的任意数值,例如,该值为0.852、1.432、1.854、1.996、2.185等等;TTL/FL可以为小于1.5的任意数值,例如,该值为0.445、0.845、1.145、1.330、1.491等等。本实施方式中,TTL/FS=2.185、TTL/FL=1.330。
变焦镜头10满足关系式TTL/FS<2.5;TTL/FL<1.5,可保证变焦镜头10在短焦状态和长焦状态之间切换的同时,具有较短的TTL。
在某些实施方式中,变焦镜头10满足以下关系式:TTL/H<4;其中,TTL为第一透镜111的物侧面S4至成像面S20于光轴上的距离,H为成像面S20的高度。其中,成像面S20的高度为成像面S20对角线的长度。也即是说,TTL/H可以为小于4的任意数值,例如,该值为1.456、2.515、3.614、3.825、3.916等等。本实施方式中,TTL/H=3.825。
变焦镜头10满足关系式TTL/H<4,在保证较大的成像面S20高度的同时,具有较短的TTL。
在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,f=14mm;当变焦镜头10处于长焦状态下对焦时,f=23mm,其中,f为变焦镜头10的焦距。
变焦镜头10通过移动第二透镜组12和第三透镜组13可实现短焦状态和长焦状态的切换。
在某些实施方式中,当变焦镜头10处于短焦状态下对焦时,FOV=30.5°;当变焦镜头10处于长焦状态下对焦时,FOV=20°,其中,FOV为变焦镜头10的视场角。
变焦镜头10的视场角可在20°和30.5°之间切换,有利于实现变焦镜头10的长焦摄像和广角摄像。
在某些实施方式中,变焦镜头10还可包括红外滤光片16,红外滤光片16用于过滤红外光。红外滤光片16设置在成像面S20和第七透镜132之间,从第七透镜132出射的光线经过红外滤光片16后,光线中的红外光被滤除,可防止红外光影响成像,提升可见光成像的成像效果。
在某些实施方式中,第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132为塑料透镜或玻璃透镜。例如:第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132均为塑料透镜。如此,变焦镜头10通过对透镜的材料的合理配置,在校正像差的同时可以实现超薄化,且成本较低。
在某些实施方式中,变焦镜头10中第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132中至少一个表面为非球面。本实施方式中,第一透镜111、第二透镜112、第三透镜121、第四透镜122、第五透镜123、第六透镜131和第七透镜132的物侧面和像侧面均为非球面。非球面的面型由以下公式决定:
其中,Z是非球面上任一点与表面顶点的纵向距离,r是非球面上任一点到光轴的距离,c是顶点曲率(曲率半径的倒数),k是圆锥常数,Ai是非球面第i-th阶的修正系数。
如此,变焦镜头10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小变焦镜头10的总长度,并可以有效地校正像差,提高成像质量。
下表1列出了变焦镜头10在短焦状态时各透镜的相关参数,包括表面类型、曲率半径、厚度、材料(折射率/阿贝数)。第一透镜111具有物侧面S4和像侧面S5。第二透镜112具有物侧面S6和像侧面S7。第三透镜121具有物侧面S8和像侧面S9。第四透镜122具有物侧面S10和像侧面S11。第五透镜123具有物侧面S12和像侧面S13。第六透镜131具有物侧面S14和像侧面S15。第七透镜132具有物侧面S16和像侧面S17。红外滤光片16具有物侧面S18和像侧面S19。表1中厚度值表示从当前表面到下一表面于光轴上的距离。另外,表2列出了表1中各表面的非球面系数。
表1
表2
面序号 | K | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
4 | -8.67E+02 | 8.49E-04 | 1.46E-04 | -1.23E-07 | -5.22E-07 | -3.48E-08 | 1.89E-09 | -2.85E-11 |
5 | 1.02E+00 | -1.81E-03 | 1.92E-04 | 1.18E-05 | 7.97E-07 | -1.12E-08 | -1.24E-08 | -2.24E-09 |
6 | 7.15E+01 | -2.90E-03 | 2.31E-04 | -3.54E-07 | -3.90E-08 | 1.91E-08 | -3.13E-09 | -1.61E-09 |
7 | -7.97E+01 | -5.49E-04 | 1.01E-04 | 1.03E-05 | -3.43E-06 | 7.33E-08 | 3.64E-09 | 5.74E-10 |
9 | -9.37E+00 | -1.17E-03 | 1.61E-04 | 2.28E-06 | -1.80E-07 | 2.93E-08 | 4.56E-09 | -1.06E-09 |
10 | 4.85E+01 | 3.06E-04 | 1.71E-04 | 1.47E-05 | -3.22E-06 | -1.72E-07 | 5.90E-08 | -3.63E-09 |
11 | 6.56E+00 | -8.43E-04 | 2.07E-04 | -2.27E-06 | 3.11E-07 | -3.81E-08 | 1.31E-09 | 5.61E-10 |
12 | -1.76E+02 | -1.50E-03 | 4.29E-05 | 3.05E-06 | 1.08E-06 | 5.84E-08 | 1.55E-09 | -4.69E-10 |
14 | -6.16E+00 | -3.79E-04 | -2.03E-05 | -2.51E-06 | -3.82E-07 | -3.05E-08 | -3.30E-09 | -9.57E-10 |
15 | -2.65E+02 | 8.27E-04 | -7.51E-05 | 9.63E-07 | -2.19E-07 | -7.66E-08 | -1.14E-08 | -6.76E-10 |
17 | 9.69E+00 | 5.63E-03 | -1.15E-04 | 4.82E-05 | -9.12E-07 | -2.83E-07 | -7.87E-09 | 1.24E-09 |
18 | 1.04E+00 | 7.84E-04 | 2.45E-04 | -1.50E-05 | 5.85E-07 | -1.18E-08 | -4.43E-09 | 2.37E-10 |
20 | -5.51E+00 | -1.07E-03 | -1.64E-04 | 3.94E-07 | 7.58E-07 | 4.03E-08 | -8.83E-09 | 3.00E-10 |
21 | -1.01E+03 | 9.12E-04 | -2.56E-04 | 7.82E-06 | 7.70E-07 | -1.85E-08 | -4.14E-09 | 1.85E-10 |
当变焦镜头10由短焦状态变化到长焦状态时,各透镜的材料、厚度、曲率、非球面系数均不发生改变,第二透镜组12和第三透镜组13相对于第一透镜组11整体相对位置改变,进而使得第二透镜112的像侧面S7与第三透镜121的物侧面S8之间、第五透镜123的像侧面S13与第六透镜131的物侧面S14之间、和第七透镜132的像侧面S17与红外滤光片16的物侧面S18之间的间距发生变化,具体地,当变焦镜头10由短焦状态变化到长焦状态时,第二透镜112的像侧面S7与第三透镜121的物侧面S8之间的间距减小、第五透镜123的像侧面S13与第六透镜131的物侧面S14之间和第七透镜132的像侧面S17与红外滤光片16的物侧面S18之间的间距均增大,具体间距变化量请参阅表1和表3。表3为变焦镜头10在长焦状态下各透镜的相关参数。
表3
上述短焦状态和长焦状态对应的两种透镜参数可以分别使变焦镜头10表现出焦距f=14mm、光圈(F/#)为3.2、视场角为30.5°和焦距f=23mm、光圈(F/#)为4.4、视场角为20°两种焦距状态。其中,光圈(F/#)为变焦镜头10的焦距与入瞳直径的比值。光圈的作用在于决定变焦镜头10的进光量,调节进入变焦镜头10里面的光线的多少,光圈的数值越小,光圈越大,而进光量也就越多;反之,光圈的数值越大,光圈越小,而进光量也就越少。
图4和图5分别是本申请实施方式的变焦镜头10在短焦及长焦状态下的系统像差图,像差是指实际光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。像差主要分为球差、彗差、场曲、像散、畸变、色差以及波像差。其中,图4和图5中的IMA为成像面S20的对角线的长度。
图6和图7分别是本申请实施方式的变焦镜头10在短焦及长焦状态下的光学传递函数值(MTF)图,光学传递函数(Optical Transfer Function,OTF)是指以空间频率为变量,表征成像过程中调制度和横向相移的相对变化的函数。光学传递函数是光学系统对空间频谱的滤波变换。变焦镜头10处于短 焦状态和长焦状态下的MTF值接近衍射极限,成像质量较好。
图8和图9是本申请实施方式的变焦镜头10在分别在短焦状态下的场曲图和畸变图。图10和图11是本申请实施方式的变焦镜头10在长焦状态下的场曲图和畸变图。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面,这样在镜检时不能同时看清整个像面,使得观察画面和摄像比较困难。镜头畸变实际上是光学透镜固有的透视失真的总称,也就是因为透视原因造成的失真,这种失真对于照片的成像质量是非常不利的。变焦镜头10处于短焦状态和长焦状态下的场曲均在5微米(um)以内,畸变均小于2.5%,保证了变焦镜头10拍摄的画面弯曲且画面平正,没有可视的畸变。
图12和图13分别是本申请实施方式的变焦镜头10在短焦及长焦状态下的垂轴色差图。色差又称色像差,是透镜成像的一个严重缺陷,色差简单来说就是颜色的差别,发生在以多色光为光源的情况下,单色光不产生色差。短焦和长焦状态下的变焦镜头10的色差均小于3.5um,保证了整个画面视场范围里没有可视的颜色差异。
请参阅图14,本申请实施方式的相机模组100包括感光元件20和上述任一实施方式的变焦镜头10。感光元件20设置在变焦镜头10的像侧。
感光元件20可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)感光元件或者电荷耦合元件(Charge-coupled Device,CCD)感光元件。
请参阅图15,本申请实施方式的电子装置1000包括壳体200和上述实施方式的相机模组100。相机模组100安装在壳体200上。
本申请实施方式的电子装置1000包括但不限于为智能电话、门禁系统、监控相机、移动电话、个人数字助理(Personal Digital Assistant,PDA)、游戏机、个人计算机(personal computer,PC)、相机、智能手表、平板电脑等信息终端设备或具有拍照功能的家电产品等。
电子装置1000包括正面901和背面902,相机模组100可设置在正面901作为前置摄像头,相机模组100还可设置在背面902作为后置摄像头,本申请实施方式中,相机模组100设置在背面902作为后置摄像头。
本申请的相机模组100和电子装置1000通过可相对第一透镜组11移动的第二透镜组12和第三透镜组13的移动改变变焦镜头10的焦距,不仅保证了拍摄景物的清晰度,无需采用多个镜头实现长焦拍摄与短焦拍摄。而且,变焦镜头10满足关系式-2.5<F1/F2<-1.5;-2<F3/F2<-1,使得变焦镜头10整体布局合理,在焦距状态切换时第二透镜组12和第三透镜组13的移动范围合理,有利于变焦镜头10的生产和组装。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性 表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (21)
- 一种变焦镜头,其特征在于,所述变焦镜头从物侧到像侧依次包括:第一透镜组,所述第一透镜组具有负光焦度;第二透镜组,所述第二透镜组具有正光焦度;和第三透镜组,所述第三透镜组具有负光焦度,所述第二透镜组和所述第三透镜组均可在所述第一透镜组相对成像面保持固定时相对所述第一透镜组移动;所述变焦镜头满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为所述第一透镜组的焦距、所述第二透镜组的焦距及所述第三透镜组的焦距。
- 根据权利要求1所述的变焦镜头,其特征在于,所述变焦镜头还包括棱镜,所述棱镜设置在所述第一透镜组的与所述第三透镜组相背的一侧,所述棱镜的入射面与所述棱镜的出射面垂直。
- 根据权利要求1所述的变焦镜头,其特征在于,所述第一透镜组从物侧到像侧包括第一透镜和第二透镜,所述第二透镜组从物侧到像侧包括第三透镜、第四透镜和第五透镜,所述第三透镜组从物侧到像侧包括第六透镜和第七透镜,所述变焦镜头还包括光阑,所述光阑包括孔径光阑和三个渐晕光阑,所述孔径光阑设置在所述第三透镜的物侧面,三个所述渐晕光阑分别设置在所述第四透镜的物侧面、所述第五透镜和所述第六透镜之间、及所述第六透镜的像侧面。
- 根据权利要求3所述的变焦镜头,其特征在于,所述变焦镜头满足以下关系式:25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1;其中,f1至f7分别是所述第一透镜至所述第七透镜的焦距。
- 根据权利要求3所述的变焦镜头,其特征在于,所述变焦镜头满足以下关系式:TTL/FS<2.5;TTL/FL<1.5;其中,TTL为所述第一透镜的物侧面至所述成像面于光轴上的距离,FS是所述变焦镜头处于短焦状态下的焦距,FL是所述变焦镜头是处于长焦状态下的焦距。
- 根据权利要求1所述的变焦镜头,其特征在于,所述变焦镜头满足以下关系式:TTL/H<4;其中,TTL为所述第一透镜的物侧面至所述成像面于光轴上的距离,H为所述成像面的高度。
- 根据权利要求1所述的变焦镜头,其特征在于,当所述变焦镜头处于短焦状态下对焦时,f=14mm;当所述变焦镜头处于长焦状态下对焦时,f=23mm,其中,f为所述变焦镜头的焦距。
- 根据权利要求1所述的变焦镜头,其特征在于,当所述变焦镜头处于短焦状态下对焦时,FOV=30.5°;当所述变焦镜头处于长焦状态下对焦时,FOV=20°,其中,FOV为所述变焦镜头的视场角。
- 根据权利要求3所述的变焦镜头,其特征在于,所述变焦镜头还包括红外滤光片,所述红外滤光片用于过滤红外光,所述红外滤光片设置在所述成像面和所述第七透镜之间。
- 根据权利要求3所述的变焦镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜为塑料透镜或玻璃透镜。
- 一种相机模组,其特征在于,所述相机模组包括:变焦镜头;和感光元件,所述感光元件设置在所述变焦镜头的像侧,所述变焦镜头从物侧到像侧依次包括:第一透镜组,所述第一透镜组具有负光焦度;第二透镜组,所述第二透镜组具有正光焦度;和第三透镜组,所述第三透镜组具有负光焦度,所述第二透镜组和所述第三透镜组均可在所述第一透镜组相对成像面保持固定时相对所述第一透镜组移动;所述变焦镜头满足以下关系式:-2.5<F1/F2<-1.5;-2<F3/F2<-1;其中,F1、F2、及F3分别为所述第一透镜组的焦距、所述第二透镜组的焦距及所述第三透镜组的焦距。。
- 根据权利要求11所述的相机模组,其特征在于,所述变焦镜头还包括棱镜,所述棱镜设置在所述第一透镜组的与所述第三透镜组相背的一侧,所述棱镜的入射面与所述棱镜的出射面垂直。
- 根据权利要求11所述的相机模组,其特征在于,所述第一透镜组从物侧到像侧包括第一透镜和第二透镜,所述第二透镜组从物侧到像侧包括第三透镜、第四透镜和第五透镜,所述第三透镜组从物侧到像侧包括第六透镜和第七透镜,所述变焦镜头还包括光阑,所述光阑包括孔径光阑和三个渐晕光阑,所述孔径光阑设置在所述第三透镜的物侧面,三个所述渐晕光阑分别设置在所述第四透镜的物侧面、所述第五透镜和所述第六透镜之间、及所述第六透镜的像侧面。
- 根据权利要求13所述的相机模组,其特征在于,所述变焦镜头满足以下关系式:25<f2/f1<35;-1.2<f3/f1<-0.2;1<f4/f1<2;-1.2<f5/f1<-0.2;-2<f6/f1<-0.5;0.2<f7/f1<1;其中,f1至f7分别是所述第一透镜至所述第七透镜的焦距。
- 根据权利要求13所述的相机模组,其特征在于,所述变焦镜头满足以下关系式:TTL/FS<2.5;TTL/FL<1.5;其中,TTL为所述第一透镜的物侧面至所述成像面于光轴上的距离,FS是所述变焦镜头处于短焦状态下的焦距,FL是所述变焦镜头是处于长焦状态下的焦距。
- 根据权利要求11所述的相机模组,其特征在于,所述变焦镜头满足以下关系式:TTL/H<4;其中,TTL为所述第一透镜的物侧面至所述成像面于光轴上的距离,H为所述成像面的高度。
- 根据权利要求11所述的相机模组,其特征在于,当所述变焦镜头处于短焦状态下对焦时,f=14mm;当所述变焦镜头处于长焦状态下对焦时,f=23mm,其中,f为所述变焦镜头的焦距。
- 根据权利要求11所述的相机模组,其特征在于,当所述变焦镜头处于短焦状态下对焦时,FOV=30.5°;当所述变焦镜头处于长焦状态下对焦时,FOV=20°,其中,FOV为所述变焦镜头的视场角。
- 根据权利要求13所述的相机模组,其特征在于,所述变焦镜头还包括红外滤光片,所述红外滤光片用于过滤红外光,所述红外滤光片设置在所述成像面和所述第七透镜之间。
- 根据权利要求13所述的相机模组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜为塑料透镜或玻璃透镜。
- 一种电子装置,其特征在于,所述电子装置包括:壳体;和权利要求11-20任一项所述的相机模组,所述相机模组安装在所述壳体上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20847669.7A EP4006612B1 (en) | 2019-07-31 | 2020-07-28 | Zoom lens, camera module and electronic device |
US17/588,337 US20220155570A1 (en) | 2019-07-31 | 2022-01-30 | Zoom lens, camera module, and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910703072.5 | 2019-07-31 | ||
CN201910703072.5A CN112305736B (zh) | 2019-07-31 | 2019-07-31 | 变焦镜头、相机模组及电子装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/588,337 Continuation US20220155570A1 (en) | 2019-07-31 | 2022-01-30 | Zoom lens, camera module, and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021018143A1 true WO2021018143A1 (zh) | 2021-02-04 |
Family
ID=74229476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/105208 WO2021018143A1 (zh) | 2019-07-31 | 2020-07-28 | 变焦镜头、相机模组及电子装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220155570A1 (zh) |
EP (1) | EP4006612B1 (zh) |
CN (1) | CN112305736B (zh) |
WO (1) | WO2021018143A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117572611A (zh) * | 2024-01-11 | 2024-02-20 | 杭州海康威视数字技术股份有限公司 | 变焦光学系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114966919B (zh) * | 2021-02-27 | 2023-04-28 | 华为技术有限公司 | 长焦镜头、摄像头模组及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6052234A (en) * | 1996-04-16 | 2000-04-18 | Minolta Co., Ltd. | Viewfinder optical system |
JP2000330024A (ja) * | 1999-05-20 | 2000-11-30 | Asahi Optical Co Ltd | 内視鏡対物変倍光学系 |
CN1685268A (zh) * | 2002-10-08 | 2005-10-19 | 索尼株式会社 | 摄像透镜 |
CN101029959A (zh) * | 2006-02-28 | 2007-09-05 | 卡西欧计算机株式会社 | 变焦透镜及利用该变焦透镜的照相机 |
CN101046551A (zh) * | 2006-03-29 | 2007-10-03 | 索尼株式会社 | 可变放大率光学系统 |
CN101855584A (zh) * | 2007-11-15 | 2010-10-06 | 柯尼卡美能达精密光学株式会社 | 变倍光学系统、摄像装置以及数码设备 |
CN106918900A (zh) * | 2015-12-28 | 2017-07-04 | 南宁富桂精密工业有限公司 | 变焦镜头及应用该变焦镜头的取像装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2780309B2 (ja) * | 1989-02-28 | 1998-07-30 | ミノルタ株式会社 | コンパクトなズームレンズ系 |
JP3074026B2 (ja) * | 1991-03-04 | 2000-08-07 | キヤノン株式会社 | 超広角型のズームレンズ |
US5867325A (en) * | 1995-01-05 | 1999-02-02 | Nikon Corporation | Zoom lens ranging to wide angles |
JPH09222562A (ja) * | 1995-12-13 | 1997-08-26 | Minolta Co Ltd | ズームレンズ |
JP2006003544A (ja) * | 2004-06-16 | 2006-01-05 | Olympus Corp | 変倍光学系及びそれを用いた電子機器 |
JP4681842B2 (ja) * | 2004-09-30 | 2011-05-11 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP2007072263A (ja) * | 2005-09-08 | 2007-03-22 | Konica Minolta Photo Imaging Inc | 変倍光学系 |
KR100800811B1 (ko) * | 2006-06-23 | 2008-02-01 | 삼성전자주식회사 | 줌 렌즈 시스템 |
CN200983034Y (zh) * | 2006-12-15 | 2007-11-28 | 浙江舜宇光学有限公司 | 超小型变焦镜头 |
JP5050700B2 (ja) * | 2007-07-17 | 2012-10-17 | コニカミノルタアドバンストレイヤー株式会社 | 変倍光学系、撮像装置およびデジタル機器 |
JP5029185B2 (ja) * | 2007-07-19 | 2012-09-19 | コニカミノルタアドバンストレイヤー株式会社 | 変倍光学系、撮像装置およびデジタル機器 |
JP2009098200A (ja) * | 2007-10-12 | 2009-05-07 | Olympus Imaging Corp | 3群ズームレンズ及びそれを備えた撮像装置 |
JP5300467B2 (ja) * | 2008-12-26 | 2013-09-25 | キヤノン株式会社 | 光学系及びそれを有する光学機器 |
TWI406005B (zh) * | 2009-02-24 | 2013-08-21 | Asia Optical Co Inc | 小型化變焦鏡頭及影像擷取裝置 |
JP2011043679A (ja) * | 2009-08-21 | 2011-03-03 | Fujifilm Corp | ズームレンズ及び撮像装置 |
JP6237106B2 (ja) * | 2013-10-18 | 2017-11-29 | コニカミノルタ株式会社 | ズームレンズ及び撮像装置 |
JP6414220B2 (ja) * | 2014-07-30 | 2018-10-31 | 株式会社ニコン | 変倍光学系、光学装置 |
JP6297476B2 (ja) * | 2014-11-17 | 2018-03-20 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
KR102449876B1 (ko) * | 2017-09-20 | 2022-09-30 | 삼성전자주식회사 | 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치 |
CN108873271A (zh) * | 2018-07-13 | 2018-11-23 | 南昌欧菲精密光学制品有限公司 | 长焦镜头、长焦相机模组及电子装置 |
CN109819149B (zh) * | 2019-02-13 | 2022-03-15 | Oppo广东移动通信有限公司 | 摄像模组及移动终端 |
-
2019
- 2019-07-31 CN CN201910703072.5A patent/CN112305736B/zh active Active
-
2020
- 2020-07-28 EP EP20847669.7A patent/EP4006612B1/en active Active
- 2020-07-28 WO PCT/CN2020/105208 patent/WO2021018143A1/zh unknown
-
2022
- 2022-01-30 US US17/588,337 patent/US20220155570A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6052234A (en) * | 1996-04-16 | 2000-04-18 | Minolta Co., Ltd. | Viewfinder optical system |
JP2000330024A (ja) * | 1999-05-20 | 2000-11-30 | Asahi Optical Co Ltd | 内視鏡対物変倍光学系 |
CN1685268A (zh) * | 2002-10-08 | 2005-10-19 | 索尼株式会社 | 摄像透镜 |
CN101029959A (zh) * | 2006-02-28 | 2007-09-05 | 卡西欧计算机株式会社 | 变焦透镜及利用该变焦透镜的照相机 |
CN101046551A (zh) * | 2006-03-29 | 2007-10-03 | 索尼株式会社 | 可变放大率光学系统 |
CN101855584A (zh) * | 2007-11-15 | 2010-10-06 | 柯尼卡美能达精密光学株式会社 | 变倍光学系统、摄像装置以及数码设备 |
CN106918900A (zh) * | 2015-12-28 | 2017-07-04 | 南宁富桂精密工业有限公司 | 变焦镜头及应用该变焦镜头的取像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4006612A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117572611A (zh) * | 2024-01-11 | 2024-02-20 | 杭州海康威视数字技术股份有限公司 | 变焦光学系统 |
CN117572611B (zh) * | 2024-01-11 | 2024-05-03 | 杭州海康威视数字技术股份有限公司 | 变焦光学系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112305736A (zh) | 2021-02-02 |
EP4006612B1 (en) | 2023-11-01 |
CN112305736B (zh) | 2022-05-17 |
US20220155570A1 (en) | 2022-05-19 |
EP4006612A4 (en) | 2022-11-30 |
EP4006612A1 (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110471168B (zh) | 摄像光学镜头 | |
CN111596446B (zh) | 摄像光学镜头 | |
JP5041924B2 (ja) | ズームレンズ | |
TWI421534B (zh) | 可變焦距成像鏡頭 | |
CN111736310B (zh) | 摄像光学镜头 | |
CN111538136B (zh) | 摄像光学镜头 | |
WO2021018143A1 (zh) | 变焦镜头、相机模组及电子装置 | |
CN111538138B (zh) | 摄像光学镜头 | |
US20210072501A1 (en) | Optical Image Capturing Module | |
CN213023743U (zh) | 光学成像系统以及具有其的取像装置 | |
JP2023538269A (ja) | 光学系 | |
CN111722378B (zh) | 一种大像面高分辨率的鱼眼镜头 | |
CN112034593A (zh) | 光学成像系统、取像模组及电子装置 | |
CN112817120A (zh) | 鱼眼镜头系统 | |
CN115616750A (zh) | 变焦镜头 | |
CN212540866U (zh) | 光学成像系统、取像模组及电子装置 | |
CN213482554U (zh) | 光学系统、摄像模组和电子设备 | |
CN213633972U (zh) | 一种定焦镜头 | |
KR20160063915A (ko) | 텔레포토 단초점 렌즈계 및 이를 포함한 촬영 장치 | |
WO2021253229A1 (zh) | 光学系统、镜头模组及终端设备 | |
WO2021168742A1 (zh) | 变焦光学系统、变焦模组及电子设备 | |
CN112034594A (zh) | 光学成像系统以及具有其的取像装置 | |
CN215895095U (zh) | 鱼眼镜头系统 | |
CN117572612B (zh) | 变焦透镜系统和摄像机 | |
TWI857898B (zh) | 魚眼鏡頭 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20847669 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020847669 Country of ref document: EP Effective date: 20220228 |