WO2021017711A1 - 发光装置封装件和显示装置 - Google Patents

发光装置封装件和显示装置 Download PDF

Info

Publication number
WO2021017711A1
WO2021017711A1 PCT/CN2020/098501 CN2020098501W WO2021017711A1 WO 2021017711 A1 WO2021017711 A1 WO 2021017711A1 CN 2020098501 W CN2020098501 W CN 2020098501W WO 2021017711 A1 WO2021017711 A1 WO 2021017711A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting diode
light emitting
packaging
Prior art date
Application number
PCT/CN2020/098501
Other languages
English (en)
French (fr)
Inventor
林振端
廖燕秋
辛舒宁
黄永特
时军朋
曹爱华
余长治
廖启维
徐宸科
吴政
李佳恩
Original Assignee
泉州三安半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921553490.2U external-priority patent/CN210778585U/zh
Application filed by 泉州三安半导体科技有限公司 filed Critical 泉州三安半导体科技有限公司
Priority to JP2021556964A priority Critical patent/JP2022542736A/ja
Priority to EP20848315.6A priority patent/EP4006971A4/en
Priority to KR1020217035645A priority patent/KR20210145796A/ko
Publication of WO2021017711A1 publication Critical patent/WO2021017711A1/zh
Priority to US17/578,817 priority patent/US12080688B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to a light emitting device package and a light emitting device using the light emitting device to package devices.
  • LED Light-emitting diode
  • PDA Personal Digital Assistant
  • Reducing the size of the LED device can increase the resolution of the display, thereby expanding the application areas of the LED display, such as mobile phones, car panels, TVs, computers, video conferences, etc.
  • RGB LEDs In the display market, small-size RGB LEDs have grown rapidly, occupying an increasing market share. Small size RGB LED brings extremely high pixel experience to the display, but at the same time small size RGB LED has also brought great challenges in the production process.
  • the thick thickness of the LED limits the thickness and application area of the application product.
  • the prior art mainly solidifies RGB chips on the substrate.
  • the front-mounted chip needs to be wired or upside down with solder paste, the flip chip needs solder paste, and the vertical chip also needs to be wired, so the package thickness is determined by the substrate, solder paste or wire bonding, chip
  • the thickness determines that the package thickness is basically higher than 500 ⁇ m, which is not conducive to the thinning and integration of packaged devices.
  • the display screen has extremely high requirements for image quality and display effect, and the processing technology of the package surface is different, and there are also light color differences between pixels, which easily lead to inconsistent light mixing and high correction difficulties, which in turn affects the high-quality display effect.
  • the purpose of the present invention is to provide a light emitting diode package device that can overcome at least one of the disadvantages of the prior art.
  • a light emitting diode package device includes: a plurality of LED chips spaced apart from each other, the LED chip includes a first surface, a second surface opposite to the The side surface between the surfaces, the first surface is the light-emitting surface; the circuit layer is formed under the second surface of the LED chip, and has opposite upper and lower surfaces and side surfaces between the upper and lower surfaces , The upper surface is connected to the electrode of the LED chip; a first packaging layer, covering the side surface and the second surface of the LED chip; a second packaging layer covering the side surface of the circuit layer, and filling The gap inside the circuit layer; define the thickness of the LED chip as T A , the thickness of the first packaging layer as T B , and the thickness of the circuit layer as T C , then T A and T B satisfy the relationship : T B /T A ⁇ 1.
  • the thickness T A of the LED chip is 40-100 ⁇ m
  • the thickness T B of the first packaging layer is 120-200 ⁇ m
  • the thickness T C of the circuit layer is 20-200 ⁇ m.
  • the T A , T B and T C satisfy the relationship: (T B + T C )/T A ⁇ 10.
  • the T A , T B and T C satisfy the relationship: (T B + T C )/T A ⁇ 1.4.
  • the LED chip thickness T A is between 5 ⁇ 10 ⁇ m
  • the thickness T B of the first encapsulation layer is between 80 ⁇ 100 ⁇ m
  • a thickness of the circuit layer T C is between 20 ⁇ 200 ⁇ m.
  • the T A , T B and T C satisfy the relationship: (T B + T C )/T A ⁇ 10.
  • the T A , T B and T C satisfy the relationship: (T B + T C )/T A ⁇ 60.
  • the first packaging layer further includes a third packaging layer.
  • the second packaging layer further includes a fourth packaging layer.
  • the first packaging layer and the second packaging layer are made of the same material.
  • the LED chip is a Mini LED chip or a Micro LED chip.
  • the several LED chips include several LED chips with different wavelengths.
  • a pair of electrodes are provided on the second surface of the LED chip.
  • the first packaging layer of the aforementioned light-emitting diode packaging device fixes the LED chip, then forms a circuit connection, and then fills the second packaging layer to form a packaging body.
  • This method does not require soldering wires, which improves reliability and contrast; LED chips do not need solder paste soldering, which avoids chip soldering defects and secondary reflow soldering problems caused by solder paste soldering, while achieving a smaller and thinner package
  • the size can achieve a higher degree of integration.
  • a light emitting diode package device includes:
  • Each LED chip includes opposite first and second surfaces and side surfaces.
  • the first surfaces of the several LED chips are on the same side and serve as light-emitting surfaces.
  • the circuit layer is located on the second surface side of the LED chip and includes opposite first and second surfaces and side surfaces, and the first surface of the circuit layer is connected to a pair of electrodes of the plurality of LED chips;
  • the encapsulation layer covers the sides of the several LED chips and the sides of the circuit layer and fills the gaps between the sides of the several LED chips and the gaps between the sides of the circuit layer.
  • the encapsulation layer has opposite first and second surfaces Two surfaces, the first surface of the packaging layer and the first surfaces of the plurality of LED chips are located on the same side, and the second surface of the packaging layer is on the same side as the second surface of the circuit layer, characterized in that: At least two of the LED chips have different light radiation bands, the level difference between the first surfaces of the at least two LED chips is greater than 0 micrometers and less than or equal to 10 micrometers, the first surface of the packaging layer and the LED chip The first surface side is also covered with a light transmitting layer.
  • the encapsulation layer includes a light-absorbing component.
  • the encapsulation layer is at least two layers, and the encapsulation layer between the side surfaces of at least several chips has a light-absorbing component.
  • the packaging layer is at least two layers, wherein the light transmittance of the packaging layer between the side surfaces of several chips is not higher than that of other layers.
  • the packaging layer is a multilayer, wherein the light transmittance of the packaging layer covering the circuit layer is higher than that of the packaging layer covering the chip.
  • the circuit layer does not include a soldering layer or there is no soldering layer between the circuit layer and the LED chip.
  • each of the LED chips includes a transparent substrate, the transparent substrate includes a first surface side and a second surface side opposite, the first surface side is the light-emitting surface of the LED chip, and the second surface side includes a light-emitting semiconductor stack,
  • the level difference of the first surfaces of the at least two LED chips is greater than 0 and less than 5 microns.
  • the plurality of chips are three RGB chips, more preferably, based on the second surface of the packaging layer, wherein the light-emitting surface of the blue chip is lower than other chips; more preferably, the packaging layer The second surface is the reference, and the height of the light-emitting surface of the red light chip is lower than that of other chips.
  • the light penetrating layer includes a light dispersive material.
  • the light transmittance of the light penetrating layer is 40% to 80%.
  • the light transmittance of the light penetrating layer is above 80%.
  • the total thickness of the packaged device is between 100 and 500 microns.
  • the thickness of the light-transmitting layer is 5-20 microns.
  • the second surface of the encapsulation layer is on the same side as the second surface of the circuit layer.
  • it also includes at least two pads formed on the second surface of the packaging layer and connected to the second surface of the circuit layer.
  • the LED chip does not require solder paste soldering, which avoids the problem of poor chip soldering and secondary reflow soldering caused by solder paste soldering. At the same time, a smaller package size can be achieved. Degree of integration;
  • Chips with different radiation wavebands among several chips are set to different light-emitting surface height differences, and the thinner light penetrating layer of the light-emitting surface absorbs part of the brightness of the chips of different radiation wavebands to realize the fine adjustment of brightness.
  • the thinner light penetrating layer of the light-emitting surface absorbs part of the brightness of the chips of different radiation wavebands to realize the fine adjustment of brightness.
  • the first light-emitting surface of several chips is controlled to be less than 10 microns, and the packaging layer is beneficial to unify the light-emitting surface and reduce the influence of light crosstalk between the sides.
  • Figures 1 to 2 are perspective views illustrating the structures of LED packaging devices of some embodiments.
  • Fig. 3 is a side cross-sectional view illustrating the structure of the LED package device of some embodiments.
  • FIG. 4 is a side cross-sectional view illustrating a conventional flip-chip LED chip of the LED package device of some embodiments.
  • Fig. 5 is a perspective view illustrating a modified LED package device according to the present invention.
  • Fig. 6 is a partial side sectional view of the structure of Fig. 5.
  • Fig. 7 is a plan view illustrating a display panel of some embodiments.
  • Figures 8-9 and 11 are partial side cross-sectional views illustrating a step of manufacturing LED package devices in some embodiments.
  • Figures 10 and 12 are partial plan views illustrating a step of manufacturing LED package devices in some embodiments.
  • FIG. 13 is a perspective schematic diagram illustrating a step of manufacturing LED package devices in some embodiments.
  • FIG. 14 is a side cross-sectional view illustrating the structure of the LED package device of some embodiments.
  • 15 is a side cross-sectional view illustrating the structure of the LED package device of some embodiments.
  • FIG. 16 is a side cross-sectional view illustrating the structure of the LED package device of some embodiments.
  • the following embodiments disclose a substrate-less LED package device, in which several mutually isolated LED chips are directly fixed and packaged by the package layer, and a circuit layer is formed in the package layer.
  • the packaged device is very suitable for display panels.
  • the size of the packaged device can be reduced as much as possible, which is very important for improving the resolution of the display panel.
  • it can greatly reduce the LED light-emitting area.
  • the proportion is very conducive to improving the contrast of the display panel.
  • the area proportion is less than 30%, preferably less than 15%, or even less than 5%, such as 8.5%, or 2.8%, or 1.125%, or even lower .
  • FIGS. 1-3 are a perspective view and a longitudinal cross-sectional view of a light emitting diode (LED) package device 100, respectively, according to some example embodiments.
  • the LED packaging device 100 includes a plurality of LED chips 111, a packaging layer 120, a circuit layer 130 and a bonding pad 140 that are separated from each other.
  • Each LED chip 111 has a pair of electrodes 112 on the same side as shown in FIG. 4.
  • the circuit layer 130 has a first surface, a second surface, and side surfaces.
  • the first surface of the circuit layer is connected to the electrode 112 of each LED chip 111.
  • the packaging layer 120 fixes the plurality of LED chips 111 and covers the The sides of the LED chip and the side of the circuit layer 130, and fill the gaps between the sides of the LED chips 111 and the gaps between the sides of the circuit layer 130, and expose at least part of the second surface of the circuit layer 130, the pad 140 and the circuit layer 130 connections.
  • the function of the circuit layer 130 is to connect the electrodes of several LED chips 111 in series or parallel in the encapsulation layer, and provide at least part of the second surface exposed from the encapsulation layer 120 to provide external electrical connections or the second circuit layer 130 A pair of pads are made on the surface to provide external electrical connections.
  • the packaging layer 120 has a first surface S11 and a second surface S12 opposite to each other. As shown in FIG. 1, the first surface S11 of the packaging layer 120 is located on the same side as the first surfaces S21 of the plurality of LED chips. The packaging layer 120 The second surface S12 is flush with the second surface of the circuit layer 130.
  • the LED package device 100 may include three LED chips, for example, the first LED chip is a blue chip B, the second LED chip is a green chip G, and the third LED chip is a red chip R.
  • the LED package device 100 shown in FIGS. 1 and 2 includes three LED chips R, G, and B.
  • the three LED chips R, G, and B can emit light of different radiation wavebands, for example, can emit red light respectively. , Green and blue light.
  • the spacing between each LED chip is preferably less than 100 microns, for example, it can be 100-50 microns, or less than 50 microns.
  • the spacing between LED chips is preferably less than 50 microns, such as 50-40 microns, or 40-30 microns, or 30-20 microns, or 20-10 microns.
  • the LED chip 111 may be a general flip-chip structure LED chip, having a first surface S21, a second surface S22, and a side surface S24 opposite to each other.
  • the first surface S21 is the surface light
  • the second surface S22 is A pair of electrodes 112 are provided, and the electrode 112 includes a first electrode 1121 electrically connected to the first semiconductor layer 1111 and a second electrode 1122 electrically connected to the second semiconductor layer 1113.
  • the LED chip 111 includes a semiconductor light emitting stack.
  • the semiconductor light emitting stack includes a first semiconductor layer 1111, an active layer 1112, and a second semiconductor layer 1113.
  • the first semiconductor layer 1111 and the second semiconductor layer 1113 may be p-type semiconductor layers, respectively.
  • the first semiconductor layer and the second semiconductor layer of the blue LED chip and the green LED chip can be made by the chemical formula AlxInyGa(1-xy)N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1)
  • the first semiconductor layer and the second semiconductor layer of the red LED chip can be formed by the chemical formula AlzInwGa(1-xy)P (where 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ z+w ⁇ 1) express phosphide semiconductor formation.
  • the active layer 1112 of the blue LED chip and the green LED chip may have a multiple quantum well (MQW) structure in which quantum well layers and quantum barrier layers are alternately stacked.
  • MQW multiple quantum well
  • the active layer 1112 may have a nitride-based MQW, such as InGaN/GaN or InGaN/AlGaN, but is not limited to this.
  • the blue and green chips can be effectively adjusted by adjusting the relative content of In or Al or Ga in the active layer.
  • the active layer of red light can be composed of a multiple quantum well structure such as InGaP/GaP or GaP/AlGaP or AlGaInP/AlGaInP, and the light-emitting waveband can be adjusted by adjusting the relative content of Al or Ga or In.
  • a transparent rough surface may be provided on the light-emitting surface S21 of the LED chip to form diffuse reflection and reduce glare.
  • the rough surface may be a matte material.
  • the LED chip 111 may further include a transparent substrate 1110 located on the light-emitting surface.
  • the transparent substrate 1110 is located on the side of the first surface S21 of the LED chip 111 for emitting light, between the transparent substrate 1110 and the semiconductor light emitting stack.
  • the interface can also have graphics or bonding layers.
  • the circuit layer 130 is connected to the electrode 112 of the LED chip.
  • the circuit layer 130 connects the three LED chips in series and parallel according to requirements, and on the other hand, leads the electrodes 112 of the LED chip 111 to the area outside the LED chip to facilitate wiring.
  • the preferred circuit layer 130 may include multiple circuit layers, and each circuit layer may be isolated by an encapsulation layer.
  • the circuit layer 130 includes at least two circuit layers, and the at least two circuit layers 130 can be formed by electroplating or electroless plating, so that wiring can be performed inside the packaging layer.
  • the material of the circuit layer 130 can be Cu, CuxW or other conductive metal materials.
  • the circuit layer 130 is obtained by electroplating or electroless plating, and directly forms an electrical connection with the LED chip, eliminating the need for solder paste. Eutectic soldering or reflow soldering process, so there is no soldering layer between the circuit layer and a pair of electrodes of the LED chip.
  • the soldering layer includes the soldering layer formed between the flip chip and the pad of the package substrate by eutectic soldering or reflow soldering.
  • the material of the preferred circuit layer preferably has a melting point above 400° C., which is beneficial to improve the reliability of the circuit layer.
  • the bonding pad 140 is formed on the lower surface S12 of the packaging layer 120 to be connected to the circuit layer 130, and a large-size bonding pad 140 may be provided on the packaging device to be used for back-end mounting.
  • the pad 140 is not necessary.
  • the circuit layer 130 may be multiple layers, and one of the circuit layers 130 can be directly used as a pad of the packaged device 100 for connection with the circuit board. In this case, there is no need to additionally be on the package layer 120.
  • Another pad 140 is provided.
  • the number of the pads is not limited, and an appropriate number can be set according to the series-parallel connection relationship between the LED chips. For example, in this embodiment, three chips are designed in parallel, and the number of the pads is at least 4.
  • the encapsulation layer 120 is preferably opaque or low in light transmission, for example, the light transmittance is lower than 30%, for example, 5-20%.
  • the encapsulation layer 120 can select a better epoxy resin or silica gel and other commonly used encapsulation resins at the encapsulation end, and have no light transmission or low light transmission. It includes a light-absorbing component (not shown in the figure).
  • the light-absorbing component is arranged at least around the sides of the LED chip or between adjacent LED chips, or further at least around the LED semiconductor light-emitting stack or adjacent semiconductor light-emitting stacks.
  • the light-absorbing component can specifically be light-absorbing particles dispersed in epoxy resin or silica gel used in the encapsulation layer, such as black particles, carbon powder, or the light-absorbing component is black resin.
  • the light-absorbing component of the encapsulation layer is arranged at least around the side of the LED to prevent the side of the LED chip from emitting light, thereby realizing that the light from the LED chip is mainly concentrated on the light-emitting surface or all on the light-emitting surface, reducing the light between different LED chips in the side direction
  • the phenomenon of cross light or light mixing can increase the contrast of packaged devices.
  • the encapsulation layer 120 specifically includes multiple layers, specifically, it may be at least two layers, and the first layer encapsulation layer 121 has a light-absorbing component, specifically, it may be silicone or epoxy. Black particles, such as carbon powder, are dispersed in the resin, which are wrapped around the LED chip for sealing the LED chip, and at least around the semiconductor light-emitting stack.
  • the second encapsulation layer 122 is wrapped around the circuit layer 130 or The gap, or mainly covering the circumference or gap of the circuit layer, is used to seal the circuit layer 130.
  • the material of the second encapsulation layer 122 is the same as or different from the material of the first encapsulation layer 121.
  • the second encapsulation layer 122 may preferably not include light-absorbing components, such as carbon powder, and is preferably a light-transmitting layer.
  • light-absorbing components such as carbon powder
  • silica gel or epoxy resin can ensure the reliability of the second encapsulation layer 122 covering the circuit layer. Therefore, the light transmittance of the second encapsulation layer 122 is higher than that of the first encapsulation layer 121.
  • the above-mentioned LED package device 100 uses the integrated circuit layer 130 in the package layer 120.
  • the circuit layer can minimize the package device 100.
  • expand the pad to the area outside the LED chip on the packaged device increase the size of a single pad, reduce the circuit design of the back-end application, facilitate the back-end placement, and can simply and effectively shrink the packaged device size of.
  • the light from the side of the chip is absorbed by the black glue as much as possible to improve the contrast, so the three RGB LEDs
  • the height difference of the light-emitting surface S21 of the chip is as small as possible.
  • the surface of the encapsulation layer 120 further includes another light-transmitting layer 401, and the light-transmitting layer 401 is used to seal the first surface S21 of the three LED chips.
  • the light-transmitting layer 401 can be a light-transmitting material such as resin or silica gel, and the light transmittance is at least 40% or the light transmittance is between 40 ⁇ 80%, or the light transmittance of the light-transmitting layer 401 is higher than 80%. %.
  • the light penetrating layer 400 seals the first surface S21 of the three LED chips, on the one hand, it can protect the light-emitting surface of the LED chip, and on the other hand, it can be used as a light scattering lens to produce a light scattering effect, and finally the RGB package device is used for display When the panel is used, it can effectively reduce the feeling of vertigo.
  • the light penetrating layer 401 includes a light dispersive material, such as scattering particles.
  • the LED chips described in this embodiment are chips with different radiation wavebands, and specifically, chips with three different radiation wavebands: RGB. Further, according to the different color temperature requirements of the display application, the three chips need to be equipped with appropriate light output ratios. Generally, it is difficult for the RGB three colors to meet the absolute light output ratio requirements through the chip process. Therefore, the present invention adjusts the third color of the three RGB chips.
  • a light-emitting surface S21 is on different levels, that is, has a certain level difference, and the surface is combined with a light penetrating layer as an optical lens, which partially absorbs or scatters the light, and adjusts the light-emitting ratio of the chip of different radiation wavebands The effect of this, which meets the color temperature requirements of RGB display applications.
  • the height difference is less than 10 micrometers and greater than 0 micrometers.
  • An excessively high height difference may cause cross-light phenomenon on the side surfaces between adjacent chips.
  • the light emitting surface height of the blue light chip in the RGB three chips is lower than the surface height of the green light chip, and the surface height of the green light chip is lower than that of the red light chip. Surface height.
  • the height difference between the light-emitting surface of the red light chip and the light-emitting surface of the blue light chip is about 5 microns
  • the height difference of the light-emitting surface of the green light chip is about 5 microns from that of the blue chip.
  • the height difference of the light emitting surface is about 1 micron
  • the thickness of the light transmitting layer 401 should be greater than the height difference range of the light emitting surfaces of the three chips, and the light transmitting layer 401 completely covers the light emitting surfaces of the three chips.
  • the thickness of the light penetrating layer 401 is preferably 10 microns
  • the surface of the blue light chip is flush with the first surface of the packaging layer.
  • FIG. 7 simply illustrates a plan view of the display panel 10 having the LED package device 100 according to example embodiments.
  • the display panel 10 may include a circuit board 200 and a plurality of LED package devices 100 disposed on the circuit board, each of which selectively emits red light, green light, and blue light.
  • Each of the plurality of LED package devices 100 may construct a single pixel of the display panel, and the plurality of LED package devices 100 may be arranged on the circuit board 200 in multiple rows and multiple columns.
  • the three LED chips in the LED package device 100 correspond to the sub-pixels of the RGB light source.
  • the radiation band of the sub-pixels is not limited to RGB.
  • the packaging layer is preferably epoxy resin or silicone with black particles, so that the entire LED packaging device 100 is black except for the light-emitting surface S21 of the LED chip, which helps to improve the display
  • the contrast of the panel and the isolation between each LED chip by the black packaging material can reduce the optical interference of each LED chip.
  • the pixel pitch of the display panel can reach 1 mm or less.
  • the LED chip 100 has opposite first and second surfaces and side surfaces between the first surface S11 and the second surface S12. A pair of electrodes are distributed on the second surface S12. , The LED chips are arranged, and the electrodes 112 of all the LED chips are located on the same side, as shown in FIG. 8. In the embodiment shown in FIG. 8, the electrodes 112 of the LED chips are arranged upward, and the LED chips are RGB three-color chips.
  • the light-emitting surfaces of the three different RGB chips are uniformly fixed on the substrate 300, and the substrate 300 has an adhesive layer 301.
  • the first surface S11 of the chip faces the adhesive layer 301 to realize that the first surfaces S11 of the three LED chips are on the same side.
  • the three RGB chips produce different elastic changes on the surface of the adhesive layer 301.
  • the thickness of the adhesive layer 301 is less than or equal to 10 microns, so as to control the height difference of the light emitting surface of the three chips to 0 ⁇ 10 microns range.
  • the material of the adhesive layer 301 is a pyrolyzable glue or a photodegradable glue, and more preferably a double-sided tape.
  • an encapsulation layer 120 and a circuit layer 130 are formed on the sides of the three LED chips 111.
  • the encapsulation layer 120 fills the gaps between the sides of each LED chip and seals the circuit layer 130, so that the three The LED chips 111 are fixedly connected together, exposing a surface of the circuit layer 130.
  • the packaging layer 120 covers the side surfaces of the three LED chips 111, and the upper surface S13 thereof is flush with the upper surface S23 of the circuit layer of the LED chip.
  • the encapsulation layer 120 can be filled by thermocompression molding to cover the electrode surfaces of the three LED chips and exceed a certain thickness, and then the chip electrode surfaces and the connection channels can be exposed through a pattern opening process for making a circuit
  • the layer 130, the circuit layer 130 may be an electroplated metal layer or electroless plating.
  • the RGB three colors are connected in parallel.
  • the design of the circuit layer 130 is shown in FIG. 10, wherein the circuit layer 130 includes at least four parts 1311, 1312, 1313, and 1314.
  • the part 1311 of the circuit layer connects one electrode of the three LED chips, and the remaining three parts connect the remaining electrodes of the three chips respectively.
  • the circuit layer 130 includes two or more layers, and the patterns of each circuit layer are different.
  • the circuit layer 131 is composed of a plurality of sub-circuits, and each sub-circuit is connected to at least one electrode of the LED chip 111. It is connected and extends to the surface of the first encapsulation layer 121 other than the electrode of the LED chip.
  • a pad 140 is formed on the surface S12 of the packaging layer 122, and the pad 140 is electrically connected to the circuit layer 130. So far, the encapsulation layer seals the LED chip, and the integrated circuit layer 130 inside the encapsulation layer 120, and the bonding pad 140 is fabricated on the surface of the encapsulation layer 120, the size of which can be much larger than the electrode 1120 of the LED chip 111.
  • one side of the bonding pad is transferred to another temporary substrate through a transfer process, and the temporary substrate and the adhesive layer on the light-emitting surface side are removed to expose the light-emitting surface of the LED chip with an uneven level.
  • the light-emitting surface side of the three chips and the surface of the encapsulation layer can be covered with an additional light-transmitting layer 401, such as epoxy resin or silica gel.
  • the thickness of the light-transmitting resin layer is preferably between 5-20 microns.
  • the light-transmitting resin layer covers higher than the first surface of the three LED chips.
  • black glue is applied to the surface of at least one chip to reduce the brightness of the chip, reduce the dizziness effect of the light, and control the light output ratio of the RGB three colors.
  • FIG. 14 is a sidewall cross-sectional view of a light emitting diode (LED) package device according to some example embodiments.
  • the light-emitting diode package device includes: a plurality of LED chips 2101 separated from each other, the LED chip includes a first surface, a second surface opposite to the first surface and the second surface On the side surface, the first surface is the light-emitting surface; the circuit layer is formed under the second surface of the LED chip, and has opposite upper and lower surfaces and side surfaces between the upper and lower surfaces.
  • the LED chip 2101 can be a regular-sized LED chip (generally refers to a chip with a single side size of more than 200 ⁇ m), a Mini LED chip (generally refers to a chip size of 100 ⁇ 200 ⁇ m), or a Micro LED chip (generally refers to a chip The size does not exceed 100 ⁇ m), this embodiment is preferably a Mini LED chip.
  • the several LED chips include several LED chips with different wavelengths.
  • at least three LED chips emit red light (R), green light (G), and blue light (B), respectively.
  • a pair of electrodes 2102 are provided on the second surface of the LED chip 2101.
  • the LED chip 101 may also include a thickened electrode 2103, which can be formed by electroplating, electroless plating or printing.
  • the material can be Cu, CuW or other conductive metal materials.
  • the circuit layer includes a first sub-circuit layer 2301, a second sub-circuit layer 2302, and a pad 2303.
  • the first sub-circuit layer 2301 is used to electrically connect the plurality of LED chips 2101, which can be connected in series, Parallel connection or a mixture of the two;
  • the second sub-circuit layer 2302 can be used to simplify the wiring structure, that is, to reduce the number of electrical connection terminals;
  • the pad 2303 is connected to the second sub-circuit layer 2302.
  • the first encapsulation layer 2121 and the second encapsulation layer 2122 can be made of the same material or different materials. When the same material is used, the two layers are combined into one layer, which is difficult to distinguish.
  • the first and second packaging layers are made of epoxy resin or silica gel added with colorants, and the packaging layer fixes and seals the LED chip on the one hand. 2101, on the other hand, can suppress the optical interference of each LED chip 2101.
  • the thickness T A of the LED chip is between 40 and 100 ⁇ m
  • the thickness T B of the first packaging layer is between 120 and 200 ⁇ m
  • the thickness T C of the circuit layer is between 20 ⁇ m. 200 ⁇ m
  • the thickness T C of the circuit layer is between 40 and 180 ⁇ m
  • the T A , T B and T C satisfy the relationship: 1.4 ⁇ (T B + T C )/T A ⁇ 10.
  • the number of layers of the circuit layer can be at least 2 layers, or 4 layers, for example, each layer has a thickness of 30 ⁇ m.
  • the first packaging layer is used to fix the LED chip, then a circuit connection is formed, and the second packaging layer is filled to form a packaging body.
  • This method does not require soldering wires, which improves reliability and contrast; LED chips do not need solder paste soldering, which avoids chip soldering defects and secondary reflow soldering problems caused by solder paste soldering, while achieving a smaller and thinner package
  • the size can achieve a higher degree of integration.
  • FIG. 15 shows a sidewall cross-sectional view of a light emitting diode (LED) package device of some example embodiments.
  • the first package layer of this embodiment further includes: a third package layer 2203, which covers the LED chip 2101 and the second package layer Above, the LED chip can be prevented from being exposed.
  • the third packaging layer such as a transparent layer such as silica gel or resin, can reduce specular reflection and improve diffuse reflection, which is beneficial to improve the uneven surface color of the packaging structure.
  • the LED chip 2101 is preferably a Micro LED chip.
  • the thickness T A of the LED chip is between 5-10 ⁇ m
  • the thickness T B of the first packaging layer is between 80-100 ⁇ m
  • the thickness T C of the layer is between 20 and 200 ⁇ m, and more preferably the thickness T C of the circuit layer is between 40 and 180 ⁇ m
  • the T A , T B and T C satisfy the relationship: 10 ⁇ (T B + T C )/T A ⁇ 60, which can prevent the circuit layer from being too thick, stress, and thermal resistance. While ensuring the strength of the package structure, the total thickness of the package structure is reduced, and finally the application product is lighter and thinner.
  • FIG. 16 shows a sidewall cross-sectional view of a light emitting diode (LED) package device of some example embodiments.
  • the second packaging layer of this embodiment further includes a fourth packaging layer 2204, which is used to fill the gap between the bonding pads 2303.
  • the material can be an insulating layer or epoxy resin or solder mask ink or any combination of the foregoing.
  • the pads can also be regarded as a component of the circuit layer, that is, the thickness T C of the circuit layer includes the first sub-circuit layer 2301, The total thickness of the second sub-circuit layer 2302 and the pad 2303.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种发光二极管封装器件(100),包括:彼此分隔开的若干个LED芯片(2101),所述LED芯片(2101)包含相对的第一表面、第二表面和在第一表面和第二表面之间的侧面,所述第一表面为出光面;电路层,形成在所述LED芯片(2101)的第二表面之下,具有相对的上表面、下表面及在上表面和下表面之间的侧面,所述上表面与所述LED芯片(2101)的电极(2102)电连接;第一封装层(2201),包覆于所述LED芯片(2101)的侧面;第二封装层(2202),披覆于所述电路层的侧面,并填充所述电路层内部的间隙;定义所述LED芯片(2101)的厚度为T A,所述第一封装层(2201)的厚度为T B,所述电路层的厚度为T C,则T A、T B满足关系式:T B/T A≥1。

Description

发光装置封装件和显示装置
相关申请:本申请主张如下优先权:中国实用新型专利申请号201921553490.2,标题为“发光二极管封装器件和显示装置”,于 2019 年9 月 18日 提交;以及中国实用新型专利申请号201921192783.2,标题为“一种发光二极管封装器件”,于 2019 年 7月26日 提交,上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种发光装置封装件和一种利用该发光装置封装器件的发光装置。
背景技术
发光二极管(LED)是当今最热门的光源技术之一,可用于照明装置的光源,而且也用于各种电子产品的光源,如被广泛地用作于诸如TV、蜂窝电话、PC、笔记本PC、个人数字助理(PDA)等的各种显示装置的光源。缩小LED装置的尺寸可以提升显示的分辨率,从而扩大LED显示屏的应用领域,如手机,车载面板,电视,电脑,视频会议等。
在显示屏市场上,小尺寸RGB LED迅速壮大,占据越来越大的市场份额。小尺寸RGB LED给显示屏带来极高的像素体验,但同时小尺寸RGB LED在生产工艺方面也带来了极大挑战,存在厚度较厚,限制了应用产品的厚度及应用区域。现有技术主要在基板上进行固RGB芯片,正装芯片需要打线或者倒用焊锡膏、倒装芯片需要焊锡膏、垂直芯片也需要打线,如此封装厚度由基板、锡膏或打线、芯片厚度、决定了封装厚度基本会高于500μm,不利于封装器件的薄型化及集成化。同时,由于尺寸微缩化,封装端的锡膏等材料的选择和固晶的精度等效率、良率与成本息息相关,每一个环节都面临技术难题。进一步的,显示屏对画质和显示效果要求极高,而封装表面的处理工艺不同,像素间也存在光色差异,容易导致混光不一致,校正难度高等问题,进而影响高质量显示效果。
技术解决方案
本发明之目的,即在提供一种能够克服先前技术的至少一缺点的发光二极管封装器件。
根据本发明的第一个方面,一种发光二极管封装器件,包括:彼此分隔开的若干个LED芯片,所述LED芯片包含相对的第一表面、第二表面和在第一表面和第二表面之间的侧面,所述第一表面为出光面;电路层,形成在所述LED芯片的第二表面之下,具有相对的上表面、下表面及在上表面和下表面之间的侧面,所述上表面与所述LED芯片的电极连接;第一封装层,包覆于所述LED芯片的侧面、第二表面;第二封装层,披覆于所述电路层的侧面,并填充所述电路层内部的间隙;定义所述LED芯片的厚度为T A,所述第一封装层的厚度为T B,所述电路层的厚度为T C,则T A、T B满足关系式:T B/T A≥1。
优选地,所述LED芯片的厚度T A介于40~100μm,所述第一封装层的厚度T B介于120~200μm,所述电路层的厚度T C介于20~200μm。
优选地,所述T A、T B和T C满足关系式:(T B + T C)/T A≤10。
优选地,所述T A、T B和T C满足关系式:(T B + T C)/T A≥1.4。
优选地,所述LED芯片的厚度T A介于5~10μm,所述第一封装层的厚度T B介于80~100μm,所述电路层的厚度T C介于20~200μm。
优选地,所述T A、T B和T C满足关系式:(T B + T C)/T A≥10。
优选地,所述T A、T B和T C满足关系式:(T B + T C)/T A≤60。
优选地,所述第一封装层,还包括第三封装层。
优选地,所述第二封装层,还包括第四封装层。
优选地,所述第一封装层与第二封装层的材质相同。
优选地,所述LED芯片为Mini LED芯片或Micro LED芯片。
优选地,所述若干个LED芯片包括若干个不同波长的LED芯片。
优选地,所述LED芯片的第二表面上设有一对电极。
前述发光二极管封装器件 第一封装层固定该LED芯片,然后形成电路连接,再填充第二封装层形成封装体。该方式无需焊线,提升了可靠性以及对比度;LED芯片无需锡膏焊接,避免了用锡膏焊接带来的芯片焊接不良以及二次回流焊回熔的问题,同时实现更小更薄的封装尺寸,可以达到更高的集成度。
根据本发明的第二个方面,一种发光二极管封装器件,包括:
相互隔离的数个LED芯片,每一LED芯片包括相对的第一表面和第二表面以及侧面,数个LED芯片的第一表面在同一侧并作为出光面,所述第二表面上设有一对电极;
电路层,位于LED芯片的第二表面侧,包括相对的第一表面和第二表面以及侧面,电路层的第一表面与所述数个LED芯片的一对电极连接;
封装层,包覆所述数个LED芯片的侧面和电路层的侧面并填充所述数个LED芯片侧面之间的间隙以及电路层侧面之间的间隙,封装层具有相对的第一表面和第二表面,封装层的第一表面与所述数个LED芯片的第一表面位于同一面侧,封装层的第二表面与电路层的第二表面同一面侧,其特征在于:所述数个LED芯片中至少两个LED芯片具有不同光辐射波段,所述至少两个LED芯片的第一表面的水平高度差大于0微米小于等于10微米,所述的封装层的第一表面以及LED芯片的第一表面侧还覆盖有一光穿透层。
优选的,所述的封装层包括吸光成分。
优选的,所述的封装层为至少两层,其中至少数个芯片的侧面之间的封装层有吸光成分。
优选的,所述的封装层为至少两层,其中数个芯片的侧面之间的封装层的透光率不高于其它层。
优选的,所述的封装层为多层,其中包覆电路层的封装层的透光性高于包覆芯片的封装层。
优选的,所述的电路层不包括焊接层或电路层与LED芯片之间不具备焊接层。
优选的,所述的每一LED芯片包括透明基板,透明基板包括相对的第一表面侧和第二表面侧,第一表面侧为LED芯片的出光面,第二表面侧包括发光半导体叠层,发光半导体叠层第一半导体层、发光层和第二半导体层,所述的LED芯片还包括两个电极,两个电极位于发光半导体叠层的同侧。
优选的,所述至少两个LED芯片的第一表面的水平高度差大于0小于5微米。
优选的,所述的数个芯片为RGB三个芯片,更优选的,以封装层的第二表面为基准,其中蓝光芯片的出光面高度低于其它的芯片;更有选的,以封装层的第二表面为基准,其中红光芯片的出光面高度低于其它的芯片。
优选的,所述的光穿透层包括光散色材料。
优选的,所述的光穿透层的透光度为40%~80%。
优选的,所述的光穿透层的透光度为80%以上。
优选的,所述的封装器件的总厚度介于100~500微米。
优选的,所述的光穿透层的厚度介于5~20微米。
优选的,封装层的第二表面与电路层的第二表面同一面侧。
优选的,还包括至少两个焊盘形成在封装层的第二表面,与所述电路层的第二表面连接。
有益效果
在上述发光二极管封装器件至少具有以下有益效果:
(1)无基板的封装体,LED芯片无需锡膏焊接,避免了用锡膏焊接带来的芯片焊接不良以及二次回流焊回熔的问题,同时实现更小的封装尺寸,可以达到更高的集成度;
(2)数个芯片中的不同辐射波段的芯片设置为不同的出光面高度差,结合出光面的较薄的光穿透层对不同辐射波段的芯片光亮度的部分吸收,实现亮度的微调,以实现最终不同辐射波段LED的出光比例需求,满足RGB的显示应用的光色一致性;
(3)数个芯片的第一出光面控制在小于10微米,搭配封装层有利于统一出光面,减少侧面之间的光串扰的影响。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1~2是一个立体图,说明一些实施例的LED封装器件的结构。
图3是一个侧面剖视图,说明一些实施例的LED封装器件的结构。
图4是一个侧面剖视图,说明一些实施例的LED封装器件的常规的倒装LED芯片。
图5是一个立体图,说明根据本发明一个变形的LED封装器件。
图6是是图5的结构的局部侧面剖视图。
图7是一个平面图,示意一些实施例的显示面板。
图8~9、11是一个局部侧面剖视图,说明一些实施例的制作LED封装器件的一个步骤。
图10、12局部平面图,说明一些实施例的制作LED封装器件的一个步骤。
图13是一个立体示意图,说明一些实施例的制作LED封装器件的一个步骤。
图14为侧面剖视图,说明一些实施例的LED封装器件的结构。
图15为侧面剖视图,说明一些实施例的LED封装器件的结构。
图16为侧面剖视图,说明一些实施例的LED封装器件的结构。
本发明的实施方式
下面各实施例公开了一种无基板的LED封装器件,该封装器件的数个相互隔离的LED芯片直接由封装层固定并封装,并在封装层内形成电路层。
在一些实施例中,该封装器件非常适用于显示面板,此时一方面能够尽可能的减小封装器件的尺寸,对于提高显示面板的分辨率非常重要,另一方面可以大幅度减少LED发光面积占比,非常有利于提升显示面板的对比度,其面积占比为30%以下,优选可以达到15%以下,甚至5%以下,例如可以为8.5%,或者2.8%,或者1.125%,甚至更低。
图1-3是分别根据一些示例实施例的发光二极管(LED)封装器件100的立体图以及纵向截面图。该LED封装器件100包括数个彼此分隔开的LED芯片111、封装层120、电路层130和焊盘140,每个LED芯片111如图4所示具有一对位于同侧的电极112。
如图3所示,电路层130具有第一表面和第二表面以及侧面,电路层的第一表面与各个LED芯片111的电极112连接,封装层120固定该多个LED芯片111并包覆该LED芯片的侧面及电路层130的侧面,并填充各个LED芯片111之间侧面的间隙以及电路层130侧面之间的间隙,裸露出电路层130的至少部分第二表面,焊盘140与电路层130连接。电路层130的作用是将数个LED芯片111的电极在封装层内进行串联或并联连接,并提供至少部分第二表面从封装层120暴露,以提供外部电性连接或电路层130的第二表面制作一对焊盘用于提供外部电性连接。
封装层120,具有相对的第一表面S11和第二表面S12,如图1所示封装层120的第一表面S11与所述数个LED芯片的第一表面S21位于同一面侧,封装层120的第二表面S12与电路层130的第二表面齐平。
具体的,该LED封装器件100可包括三个LED芯片,例如,第一为LED芯片为蓝光芯片B、第二LED芯片为绿光芯片G,以及第三LED芯片为红光芯片R。尽管为了便于说明,图1和2所示LED封装器件100包括三个LED芯片R、G和B,该三个LED芯片R、G和B可发射不同辐射波段的光,例如可以分别发射红光、绿光和蓝光。为尽可能缩小封装器件的尺寸,每个LED芯片之间的间距优选为100微米以下,例如可以为100~50微米,或者50微米以下。在一些显示面板的应用中,LED芯片之间的间距优选为50微米以下,例如50~40微米,或者40~30微米,或者30~20微米,或者20~10微米,间距越小,越有利于缩小封装器件的尺寸,从而提升显示面板的分辨率。而在一些照明方面的应用时,缩小芯片之间的间距,可以达到提高芯片与封装器件的面积比。
如图4所示,该LED芯片111可以为一般的倒装结构LED芯片,具有相对的第一表面S21和第二表面S22和侧面S24,其中第一表面S21为出面光,第二表面S22上设置有一对电极112,电极112包括与第一半导体层1111电性连接的第一电极1121、与第二半导体层1113电性连接的第二电极1122。该LED芯片111包括半导体发光叠层,半导体发光叠层包括第一半导体层1111、有源层1112和第二半导体层1113,第一半导体层1111和第二半导体层1113可分别为p型半导体层和n型半导体层。例如,蓝光LED 芯片和绿光LED芯片的第一半导体层和第二半导体层可由通过化学式AlxInyGa(1-x-y)N(其中,0≤x≤1,0≤y≤1,0≤x+y≤1)表达的氮化物半导体形成,红光LED芯片的第一半导体层和第二半导体层可由通过化学式AlzInwGa(1-x-y)P(其中,0≤z≤1,0≤w≤1,0≤z+w≤1)表达的磷化物半导体形成。蓝光LED芯片和绿光LED芯片的有源层1112可具有其中量子阱层与量子势垒层交替地堆叠的多量子阱(MQW)结构。例如,有源层1112可具有基于氮化物的MQW,诸如InGaN/GaN或InGaN/AlGaN,但是不限于此,通过调整有源层的In或Al或Ga的相对含量可以有效调整蓝光和绿光芯片的发光波段。红光的有源层可以是诸如InGaP/GaP或GaP/AlGaP或AlGaInP/AlGaInP的多量子阱结构构成,通过调整Al或Ga或In的相对含量调整发光波段。
进一步的,还可以在LED芯片的出光面S21上设置透明粗糙面,形成漫反射、减少眩光,该粗糙面可以为亚光材料。
在一些实施例中,该LED芯片111还可以包括位于出光面的一透明基板1110,该透明基板1110位于LED芯片111的第一表面S21侧用于出光,透明基板1110与半导体发光叠层之间的界面还可具有图形或键合层。 
如图3所示,电路层130与LED芯片的电极112连接。该电路层130一方面根据需求将三个LED芯片进行串、并连接,另一方面将LED芯片111的电极112引至LED芯片以外的区域,方便进行布线。较佳的电路层130可以包括多层电路层,各个电路层之间可以通过封装层进行隔离。在一些较佳实施例中,该电路层130包括至少两个电路层,该至少两个电路层130可以通过电镀或者化镀的方法形成,如此可以在封装层内部进行布线。根据本发明的设计,电路层130的材料可以是Cu、CuxW或者其他导电金属材料,电路层130通过电镀或化镀工艺获得,直接与LED芯片形成电性连接,免去锡膏的使用,无需共晶焊或回流焊工艺,因此电路层与LED芯片的一对电极之间无焊接层,所述的焊接层包括倒装芯片与封装基板的焊盘之间通过共晶焊或回流焊形成的焊接层,具体的如共晶层AuSn或回流焊接层,较佳的电路层的材料的熔点优选400℃以上,有利于提升电路层的可靠性。
如图2-3所示,焊盘140形成在封装层120的下表面S12上与电路层130连接,可以通过在封装器件上外设大尺寸的焊盘140,用于后端进行贴片。但是应当提及的是,该焊盘140并不是必需要的。在一些实施例中,电路层130可以是多层,其中一层的电路层130可以直接作为封装器件100的焊盘使用,用于与电路板进行连接,此时不需要另外在封装层120上另设焊盘140。焊盘的数量不限,可以根据LED芯片之间的串并联连接关系而设置合适的数量,例如本实施例三个芯片进行并联设计,所述的焊盘的数量至少为4个。
在一些实施例中,其中封装层120优选不透光或者低透光,例如透光率低于30%,例如可以5~20%。
在一些实施例中,当该封装器件根据显示面板的应用需求,该封装层120可选择较佳的环氧树脂或硅胶等封装端常用的封装树脂,并且不透光或低透光,具体的包括吸光成分(图中未示意),吸光成分至少设置在LED芯片侧面周围或者相邻的LED芯片之间,或进一步的至少在LED半导体发光叠层周围或者相邻半导体发光叠层周围。吸光成分具体可以是封装层使用的环氧树脂或硅胶内分散的吸光颗粒,如黑色颗粒,碳粉,或者所述的吸光成分为黑色树脂。该封装层的吸光成分设置至少在LED侧面周围可以防止LED芯片的侧面出光,由此实现LED芯片的出光主要集中在出光面或全部集中在出光面,减少不同LED芯片之间的光在侧面方向的串光或混光现象,可以增加封装器件的对比度。
作为一个实施方式,如图5-6所示,所述的封装层120具体包括多层,具体的可以至少是两层,第一层封装层121具有吸光成分,具体的可以是硅胶或环氧树脂内分散有黑色颗粒,如碳粉,包覆在LED芯片的周围,用于密封LED芯片,并且至少在半导体发光叠层的周围,第二层封装层122包覆在电路层130的周围或间隙,或者主要包覆在电路层的周围或间隙,用于密封该电路层130。第二层封装层122与第一层材料相同或不同第一层封装层121,第二层封装层122较佳的可以不包括吸光成分,如碳粉,较佳的为一光穿透层,如硅胶或环氧树脂,可以保证第二层封装层122对电路层包覆的可靠性,因此第二层封装层122的透光率高于第一层封装层121的透光率。
上述LED封装器件100通过在封装层120内集成电路层130,一方面不用进行打线或覆晶,可以有效提升LED芯片与封装器件的面积比,另一方面通过电路层可以尽量减少封装器件100的焊盘数量,同时将焊盘外扩至封装器件上LED芯片以外的区域,增加单个焊盘的尺寸,减少后端应用的电路设计,利于后端进行贴片,可以简单有效的缩小封装器件的尺寸。
为了保证了芯片发光面的出光效率及出光尽量从LED芯片的出光面S21出光面射出,从而控制出光度减小,芯片的侧面出光尽量被黑胶吸收,提高对比度,因此将RGB的三个LED芯片的出光面S21高度差越小越好。
如图3所示,作为一个实施方式,所述封装层120的表面还包括另外一个光穿透层401,该光穿透层401用于密封三个LED芯片的第一表面S21。光穿透层401可以是树脂或硅胶等透光性的材料,透光率至少为40%或者透光率介于40~80%之间,或者光穿透层401的透光率高于80%。所述的光穿透层400密封三个LED芯片的第一表面S21,一方面可以保护LED芯片的出光表面,另一方面作为一个光散射透镜,产生光散射效果,最终RGB封装器件运用于显示面板时,可有效降低眩晕感,进一步的所示光穿透层401中包括光散色材料,如散射颗粒。
根据显示运用需求,本实施例中所述的LED芯片为不同辐射波段的芯片,具体的是可以RGB三种不同辐射波段的芯片。进一步的,根据显示应用不同色温需求,三个芯片需设置有合适的出光比例,通常RGB三色通过芯片工艺难以满足绝对的出光比例需求,因此本发明通过调整RGB三色的三个芯片的第一出光面S21在不同水平面上,即具有一定的水平高度差,并且表面结合一光穿透层作为一个光学透镜,将光部分吸收或散射,起到对不同辐射波段的芯片的出光比例进行调整的效果,由此满足RGB的显示应用的色温需求。优选的该高度差小于10微米,大于0微米,过高的高度差会导致相邻芯片之间侧面的串光现象。以封装层120的第二表面S21为基准,较佳的是RGB三颗芯片中的蓝光芯片的出光面高度低于绿光芯片的表面高度,绿光芯片的表面高度低于红光芯片的出光面高度。作为一个实施方式,以蓝光芯片的出光面的高度为基准,红光芯片的出光面的高度差与蓝光芯片的出光面的高度差大约5微米,绿光芯片的出光面的高度差与蓝光芯片的出光面的高度差大约为1微米左右,光穿透层401的厚度应大于三颗芯片出光面的高度差范围,并且光穿透层401完全覆盖三颗芯片的出光面,本实施方式中所述的光穿透层401的厚度优选为10微米,蓝光芯片的表面与封装层的第一表面齐平。
图7简单示意了具有根据示例实施例的LED封装器件100的显示面板10的平面图。
该显示面板10可包括电路板200和设置在电路板上的多个LED封装器件100,它们各自选择性地发射红色的光、绿色的光和蓝色的光。该多个LED封装器件100中的每一个可构造显示面板的单个像素,并且该多个LED封装器件100可按照多行多列排列在电路板200上。
LED封装器件100内的三个LED芯片对应于RGB光源的子像素。子像素的辐射波段不限于RGB。在该多个LED封装器件100中,封装层优选为加入黑色颗粒的环氧树脂或硅胶,如此整个LED封装器件100除了LED芯片的出光面S21,其余区域均为黑色,如此有助于提升显示面板的对比度,同时各个LED芯片之间通过该黑色封装材料进行隔离,可以减少各个LED芯片的光学干扰。当采用图1或图5所示的LED封装器件100作为单个像素,该显示面板的像素间距可以达到1mm以下。
下面结合图8~13进行详细一种制作LED封装器件的流程。
如图8所示,提供三个LED芯片RGB,该LED芯片100具有相对的第一、第二表面及位于第一表面S11、第二表面S12之间的侧面,第二表面S12分布有一对电极,将该LED芯片进行排列,所有LED芯片的电极112位于同侧,如图8所示。图8所示实施例中LED芯片的电极112朝上排列,LED芯片为RGB三色的芯片。RGB三颗不同的芯片的发光面被统一固定在基板300上,基板300上具有一粘着层301。芯片的第一表面S11朝向粘着层301,以实现三个LED芯片的第一表面S11在同一面侧。
通过施加合适的压力作用,RGB的三个芯片在粘着层301表面产生不同的弹性变化量,较佳的,粘着层301的厚度小于等于10微米,从而控制三个芯片出光面的高度差在0~10微米范围内。粘着层301的材料是可热解的胶或光分解的胶,更有选的是双面胶带。
如图9所示,在该三个LED芯片111的侧面形成封装层120以及电路层130,该封装层120填充各个LED芯片的侧面之间的间隙并且密封该电路层130,从而将该三个LED芯片111固定连接在一起,露出电路层130的一表面。
进一步地,该封装层120覆盖了该三个LED芯片111的侧面,其上表面S13与LED芯片的电路层的上表面S23齐平。在一些实施例中,可以通过先通过热压成型方式填充封装层120,覆盖三个LED芯片的电极表面,并超出一定的厚度,然后通过图形开口工艺露出芯片电极表面以及连接通道用于制作电路层130,电路层130可以是电镀金属层或化镀。
进一步的,本实施例,RGB三色为并联连接,该电路层130的设计如图10所示,其中电路层130至少包括四个部分1311、1312、1313、1314。其中电路层的部分1311将三个LED芯片的一个电极连接,其余的三个部分将三个芯片的剩余电极分别连接。在一些较佳的实施例中,该电路层130包含两层以上结构,各电路层的图案不一样,该电路层131由多个子电路构成,每次子电路至少与该LED芯片111的一个电极连接,并延伸到LED芯片的电极以外的第一封装层121的表面上。
如图11~13所示,封装层122的表面S12上制作焊盘140,该焊盘140与电路层130形成电连接。至此,封装层对LED芯片进行密封,并在封装层120内部集成电路层130,焊盘140制作在封装层120的表面上,其尺寸可以远大于LED芯片111的电极1120的尺寸。
制作焊盘140之后,通过转移工艺将焊盘一侧转移至另一个临时基板上,并去除出光面侧的临时基板和粘着层,露出LED芯片水平高度不齐平的出光面。
三个芯片的出光面侧以及封装层的表面可以覆盖一额外的光穿透层401,如环氧树脂或者硅胶等材料,该透光树脂层的厚度较佳的为介于5~20微米,并且透光树脂层覆盖高出该三个LED芯片的第一表面。或者在光穿透层401之前点黑胶在其中至少一个芯片表面以降低该芯片的亮度,降低出光的眩晕效果,控制RGB三色的出光比例。
图14是根据一些示例实施例的发光二极管(LED)封装器件的侧壁剖图。请参看图14,该发光二极管封装器件,包括:彼此分隔开的若干个LED芯片2101,所述LED芯片包含相对的第一表面、第二表面和在第一表面和第二表面之间的侧面,所述第一表面为出光面;电路层,形成在所述LED芯片的第二表面之下,具有相对的上表面、下表面及在上表面和下表面之间的侧面,所述上表面与所述LED芯片的电极连接;第一封装层2201,包覆于所述LED芯片的侧面、第二表面;第二封装层2202,披覆于所述电路层的侧面,并填充所述电路层内部的间隙,至少裸露出所述电路层的部分下表面;定义所述LED芯片2101的厚度为T A,所述第一封装层2201的厚度为T B,所述电路层的厚度为T C,则T A、T B满足关系式:T B/T A=1。
所述LED芯片2101可以是常规尺寸的LED芯片(一般指芯片单边尺寸超过200μm),也可以是Mini LED芯片(一般指芯片尺寸介于100~200μm),或是Micro LED芯片(一般指芯片尺寸不超过100μm),本实施例优选Mini LED芯片。
在本实施例,所述若干个LED芯片包括若干个不同波长的LED芯片,优选地,比如至少三颗LED芯片分别发射红光(R)、绿光(G)、蓝光(B),还可以是包括发出白光的LED芯片(含波长转换层),即形成RGBW组合,如此可以提升显屏的亮度,对于户外显示非常有利。
在本实施例,所述LED芯片2101的第二表面上设有一对电极2102,优选地,LED芯片101还可以包括加厚电极2103,该加厚电极可以通过电镀、化镀或印刷等方式形成,其材料可以是Cu、CuW或者其他导电金属材料。通过设置加厚电极,一方面可以增加LED芯片的侧面与第一封装层2201接触的面积,从而增加LED芯片与封装层之间的粘附力,另一方面加厚电极2103与第一封装层2201可以形成钉桩结构,使得LED芯片可以更好地被封装层120固定。
在本实施例,电路层包括第一子电路层2301、第二子电路层2302,以及焊盘2303,其中第一子电路层2301用于电连接所述若干个LED芯片2101,可以是串联、并联或者二者混合;第二子电路层2302可以用于简化布线结构,即减少电连接端子的个数;焊盘2303,与所述第二子电路层2302连接。
该第一封装层2121和第二封装层2122可以是相同的材质,也可以是不相同的材质。当采用相同的材质时,该两层合为一层,较难于进行区分。例如在一些将该LED封装器件用作于显示装置的实施例中,该第一、第二封装层均采用加入着色剂的环氧树脂或硅胶,此时封装层一方面固定、密封该LED芯片2101,另一方面可以抑制各个LED芯片2101的光学干扰。
在本实施例,优选地,所述LED芯片的厚度T A介于40~100μm,所述第一封装层的厚度T B介于120~200μm,所述电路层的厚度T C介于20~200μm,更优选地所述电路层的厚度T C介于40~180μm,所述T A、T B和T C满足关系式:1.4≤(T B + T C)/T A≤10。需要说明的是,该电路层的层数可以是至少2层,也可以是4层,比如每层厚度30μm。
本实施例采用第一封装层固定该LED芯片,然后形成电路连接,再填充第二封装层形成封装体。该方式无需焊线,提升了可靠性以及对比度;LED芯片无需锡膏焊接,避免了用锡膏焊接带来的芯片焊接不良以及二次回流焊回熔的问题,同时实现更小更薄的封装尺寸,可以达到更高的集成度。
图15显示了一些示例实施例的发光二极管(LED)封装器件的侧壁剖图。与图14所示的LED封装器件的区别在于,本实施例的第一封装层还包括:第三封装层2203,该第三封装层2203披覆于所述LED芯片2101以及第二封装层的上方,如此可以避免了LED芯片裸露,该第三封装层,比如选用硅胶,树脂等透明层,可以减少镜面反射,提高漫反射,有利于改善封装结构表面颜色不均的情况。此外,本实施例优选LED芯片2101采用Micro LED芯片,优选地,所述LED芯片的厚度 T A介于5~10μm,所述第一封装层的厚度T B介于80~100μm,所述电路层的厚度T C介于20~200μm,更优选地所述电路层的厚度T C介于40~180μm,所述T A、T B和T C满足关系式:10≤(T B + T C)/T A≤60,如此可以避免电路层太厚应力过大,热阻过大,在保证封装结构体强度的同时,使得封装结构体的总厚度减薄,最终使得应用产品更轻薄。
图16显示了一些示例实施例的发光二极管(LED)封装器件的侧壁剖图。与图15所示的LED封装器件的区别在于,本实施例的第二封装层还包括:第四封装层2204,该第四封装层2204用于填平所述焊盘2303之间的间隙,材质可以选用绝缘层或者环氧树脂或者阻焊油墨或者前述任意组合等。需要说明的是,当所述焊盘2303之间填充有第四封装层,则焊盘也可以视为电路层的组成部分,即所述电路层的厚度T C包括第一子电路层2301、第二子电路层2302以及焊盘2303的总厚度。
如以上所作的说明,根据参照附图的实施例,对本发明进行了具体说明,但所述实施例只是列举本发明的优选示例进行说明,因而不得理解为本发明只局限于所述实施例,本发明应理解为本发明的技术方案及其等价概念。

Claims (47)

  1. 一种发光二极管封装器件,包括:
    彼此分隔开的若干个LED芯片,所述LED芯片包含相对的第一表面、第二表面和在第一表面和第二表面之间的侧面,所述第一表面为出光面;
    电路层,形成在所述LED芯片的第二表面之下,具有相对的上表面、下表面及在上表面和下表面之间的侧面,所述上表面与所述LED芯片的电极连接;
    第一封装层,包覆于所述LED芯片的侧面、第二表面;
    第二封装层,披覆于所述电路层的侧面,并填充所述电路层内部的间隙;
    定义所述LED芯片的厚度为T A,所述第一封装层的厚度为T B,所述电路层的厚度为T C,则T A、T B满足关系式:T B/T A≥1。
  2. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述LED芯片的厚度T A介于40~100μm,所述第一封装层的厚度T B介于120~200μm,所述电路层的厚度T C介于20~200μm。
  3. 根据权利要求2所述的一种发光二极管封装器件,其特征在于:所述T A、T B和T C满足关系式:(T B + T C)/T A≤10。
  4. 根据权利要求2所述的一种发光二极管封装器件,其特征在于:所述T A、T B和T C满足关系式:(T B + T C)/T A≥1.4。
  5. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述LED芯片的厚度T A介于5~10μm,所述第一封装层的厚度T B介于80~100μm,所述电路层的厚度T C介于20~200μm。
  6. 根据权利要求5所述的一种发光二极管封装器件,其特征在于:所述T A、T B和T C满足关系式:(T B + T C)/T A≥10。
  7. 根据权利要求5所述的一种发光二极管封装器件,其特征在于:所述T A、T B和T C满足关系式:(T B + T C)/T A≤60。
  8. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述第一封装层,还包括第三封装层。
  9. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述第二封装层,还包括第四封装层。
  10. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述第一封装层与第二封装层的材质相同。
  11. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述LED芯片为Mini LED芯片或Micro LED芯片。
  12. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述若干个LED芯片包括若干个不同波长的LED芯片。
  13. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述LED芯片的第二表面上设有一对电极。
  14. 根据权利要求1所述的一种发光二极管封装器件,其特征在于:所述第一封装层具有相对的第一表面和第二表面,所述第一表面与所述数个LED芯片的第一表面位于同一面侧,所述数个LED芯片中至少两个LED芯片具有不同光辐射波段,所述至少两个LED芯片的第一表面的水平高度差大于0微米小于等于10微米,所述第一表面以及LED的第一表面侧还覆盖有一光穿透层,所述的封装层包括吸光成分。
  15. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述第一封装层有吸光成分。
  16. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述第一封装层的透光率不高于第二封装层的透光率。
  17. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述电路层不包括焊接层或电路层与LED芯片之间不具备焊接层。
  18. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述的每一LED芯片包括透明基板,透明基板包括相对的第一表面侧和第二表面侧,透明基板的第一表面侧为LED芯片的出光面,透明基板的第二表面侧包括发光半导体叠层,发光半导体叠层第一半导体层、发光层和第二半导体层,所述的LED芯片还包括两个电极,两个电极位于发光半导体叠层的同侧。
  19. 根据权利要求1或14所述的发光二极管封装器件,其特征在于:所述至少两个LED芯片的第一表面的水平高度差大于0小于5微米。
  20. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述的数个芯片为RGB三个芯片。
  21. 根据权利要求20所述的发光二极管封装器件,其特征在于:以封装层的第二表面为基准,其中蓝光芯片的出光面高度低于其它的芯片的出光面高度。
  22. 根据权利要求20所述的发光二极管封装器件,其特征在于:以封装层的第二表面为基准,其中红光芯片的出光面高度低于其它的芯片的出光面高度。
  23. 根据权利要求14所述的发光二极管封装器件,其特征在于:所述光穿透层包括光散色材料。
  24. 根据权利要求14所述的发光二极管封装器件,其特征在于:所述光穿透层的透光度为40%~80%。
  25. 根据权利要求14所述的发光二极管封装器件,其特征在于:所述光穿透层的透光度为80%以上。
  26. 根据权利要求14所述的发光二极管封装器件,其特征在于:所述光穿透层的厚度介于5~20微米。
  27. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:所述封装器件的总厚度介于100~500微米。
  28. 根据权利要求1或者14所述的发光二极管封装器件,其特征在于:还包括至少两个焊盘形成在所述第二封装层的表面之上,与所述电路层的第二表面连接。
  29. 发光二极管封装器件,包括:
    相互隔离的数个LED芯片,每一LED芯片包括相对的第一表面和第二表面以及侧面,数个LED芯片的第一表面在同一侧并作为出光面,所述第二表面上设有一对电极;
    电路层,位于LED芯片的第二表面侧,包括相对的第一表面和第二表面以及侧面,电路层的第一表面与所述数个LED芯片的一对电极连接;
    封装层,包覆所述数个LED芯片的侧面和电路层的侧面并填充所述数个LED芯片侧面之间的间隙以及电路层侧面之间的间隙,封装层具有相对的第一表面和第二表面,封装层的第一表面与所述数个LED芯片的第一表面位于同一面侧,封装层的第二表面与电路层的第二表面同一面侧,其特征在于:所述数个LED芯片中至少两个LED芯片具有不同光辐射波段,所述至少两个LED芯片的第一表面的水平高度差大于0微米小于等于10微米,所述的封装层的第一表面以及LED芯片的第一表面侧还覆盖有一光穿透层。
  30. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的封装层包括吸光成分。
  31. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的封装层为至少两层,其中至少数个芯片的侧面之间的封装层有吸光成分。
  32. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的封装层为至少两层,其中数个芯片的侧面之间的封装层的透光率不高于其它层。
  33. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的封装层为多层,其中包覆电路层的封装层的透光性高于包覆芯片的封装层。
  34. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的电路层不包括焊接层或电路层与LED芯片之间不具备焊接层。
  35. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的每一LED芯片包括透明基板,透明基板包括相对的第一表面侧和第二表面侧,透明基板的第一表面侧为LED芯片的出光面,透明基板的第二表面侧包括发光半导体叠层,发光半导体叠层第一半导体层、发光层和第二半导体层,所述的LED芯片还包括两个电极,两个电极位于发光半导体叠层的同侧。
  36. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述至少两个LED芯片的第一表面的水平高度差大于0小于5微米。
  37. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的数个芯片为RGB三个芯片。
  38. 根据权利要求37所述的发光二极管封装器件,其特征在于:以封装层的第二表面为基准,其中蓝光芯片的出光面高度低于其它的芯片的出光面高度。
  39. 根据权利要求37所述的发光二极管封装器件,其特征在于:以封装层的第二表面为基准,其中红光芯片的出光面高度低于其它的芯片的出光面高度。
  40. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的光穿透层包括光散色材料。
  41. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的光穿透层的透光度为40%~80%。
  42. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的光穿透层的透光度为80%以上。
  43. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的封装器件的总厚度介于100~500微米。
  44. 根据权利要求29所述的发光二极管封装器件,其特征在于:所述的光穿透层的厚度介于5~20微米。
  45. 根据权利要求29所述的发光二极管封装器件,其特征在于:还包括至少两个焊盘形成在封装层的第二表面,与所述电路层的第二表面连接。
  46. 根据权利要求29所述的发光二极管封装器件,其特征在于:封装层的第二表面与电路层的第二表面齐平。
  47. 一种显示装置,其特征在于:根据权利要求1~46任一项所述的发光二极管封装器件。
PCT/CN2020/098501 2019-07-26 2020-06-28 发光装置封装件和显示装置 WO2021017711A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021556964A JP2022542736A (ja) 2019-07-26 2020-06-28 発光装置パッケージデバイス及びディスプレイ装置
EP20848315.6A EP4006971A4 (en) 2019-07-26 2020-06-28 ELECTROLUMINESCENT DEVICE ENCAPSULATING ELEMENT AND DISPLAY DEVICE
KR1020217035645A KR20210145796A (ko) 2019-07-26 2020-06-28 발광장치 패키징 부재 및 디스플레이 장치
US17/578,817 US12080688B2 (en) 2019-07-26 2022-01-19 Light-emitting diode packaging module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921192783 2019-07-26
CN201921192783.2 2019-07-26
CN201921553490.2U CN210778585U (zh) 2019-09-18 2019-09-18 发光二极管封装器件和显示装置
CN201921553490.2 2019-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/578,817 Continuation-In-Part US12080688B2 (en) 2019-07-26 2022-01-19 Light-emitting diode packaging module

Publications (1)

Publication Number Publication Date
WO2021017711A1 true WO2021017711A1 (zh) 2021-02-04

Family

ID=74229128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098501 WO2021017711A1 (zh) 2019-07-26 2020-06-28 发光装置封装件和显示装置

Country Status (5)

Country Link
US (1) US12080688B2 (zh)
EP (1) EP4006971A4 (zh)
JP (1) JP2022542736A (zh)
KR (1) KR20210145796A (zh)
WO (1) WO2021017711A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035852A (zh) * 2021-03-22 2021-06-25 厦门大学 集成式MiniLED
EP4207279A1 (en) * 2021-12-31 2023-07-05 Leyard Optoelectronic Co., Ltd Led chip assembly, led display apparatus and processing method of led chip assembly
WO2023176291A1 (ja) * 2022-03-17 2023-09-21 ローム株式会社 半導体発光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848398B2 (en) * 2019-12-29 2023-12-19 Seoul Viosys Co., Ltd. Flat bonding method of light emitting device and flat bonder for light emitting device
TWI750897B (zh) * 2020-11-16 2021-12-21 錼創顯示科技股份有限公司 微型發光二極體顯示元件及其製造方法
CN115411032B (zh) * 2022-11-02 2023-01-13 季华实验室 Cmos集成电路基板、其制备方法及显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083193A (zh) * 2006-05-29 2007-12-05 乐金电子(南京)等离子有限公司 等离子显示器
CN102543980A (zh) * 2010-12-31 2012-07-04 矽品精密工业股份有限公司 发光二极管封装结构及其制造方法
US20140131748A1 (en) * 2012-11-14 2014-05-15 Samsung Electronics Co., Ltd. Light emitting device package and method of manufacturing the same
CN103996788A (zh) * 2014-05-21 2014-08-20 广东威创视讯科技股份有限公司 一种显示屏用led器件及其制作方法
CN109952641A (zh) * 2019-01-15 2019-06-28 泉州三安半导体科技有限公司 发光二极管封装器件及发光装置
CN210692534U (zh) * 2019-07-26 2020-06-05 厦门三安光电有限公司 一种发光二极管封装器件
CN210778585U (zh) * 2019-09-18 2020-06-16 厦门三安光电有限公司 发光二极管封装器件和显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099715A (ja) * 2007-10-16 2009-05-07 Fujikura Ltd 発光装置
US20160293811A1 (en) * 2015-03-31 2016-10-06 Cree, Inc. Light emitting diodes and methods with encapsulation
CN205028898U (zh) * 2015-10-15 2016-02-10 荆州市弘晟光电科技有限公司 直插式全彩发光二极管及其led支架
KR102455084B1 (ko) * 2016-02-23 2022-10-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지 및 이를 갖는 표시장치
JP6409818B2 (ja) * 2016-04-26 2018-10-24 日亜化学工業株式会社 発光装置およびその製造方法
KR102413330B1 (ko) * 2017-09-12 2022-06-27 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
JP6988460B2 (ja) * 2017-12-26 2022-01-05 セイコーエプソン株式会社 発光装置、発光装置の製造方法、およびプロジェクター
US10707377B2 (en) * 2018-04-19 2020-07-07 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same
CN208284479U (zh) * 2018-04-23 2018-12-25 茂邦电子有限公司 微发光二极管显示器的发光单元共平面结构
CN109326549B (zh) * 2018-09-19 2020-07-28 京东方科技集团股份有限公司 一种微发光二极管的转移方法、显示面板及其制备方法
KR20230022418A (ko) * 2020-07-03 2023-02-15 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083193A (zh) * 2006-05-29 2007-12-05 乐金电子(南京)等离子有限公司 等离子显示器
CN102543980A (zh) * 2010-12-31 2012-07-04 矽品精密工业股份有限公司 发光二极管封装结构及其制造方法
US20140131748A1 (en) * 2012-11-14 2014-05-15 Samsung Electronics Co., Ltd. Light emitting device package and method of manufacturing the same
CN103996788A (zh) * 2014-05-21 2014-08-20 广东威创视讯科技股份有限公司 一种显示屏用led器件及其制作方法
CN109952641A (zh) * 2019-01-15 2019-06-28 泉州三安半导体科技有限公司 发光二极管封装器件及发光装置
CN210692534U (zh) * 2019-07-26 2020-06-05 厦门三安光电有限公司 一种发光二极管封装器件
CN210778585U (zh) * 2019-09-18 2020-06-16 厦门三安光电有限公司 发光二极管封装器件和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006971A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035852A (zh) * 2021-03-22 2021-06-25 厦门大学 集成式MiniLED
EP4207279A1 (en) * 2021-12-31 2023-07-05 Leyard Optoelectronic Co., Ltd Led chip assembly, led display apparatus and processing method of led chip assembly
WO2023176291A1 (ja) * 2022-03-17 2023-09-21 ローム株式会社 半導体発光装置

Also Published As

Publication number Publication date
US20220139890A1 (en) 2022-05-05
EP4006971A1 (en) 2022-06-01
US12080688B2 (en) 2024-09-03
KR20210145796A (ko) 2021-12-02
EP4006971A4 (en) 2023-08-30
JP2022542736A (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
CN210778585U (zh) 发光二极管封装器件和显示装置
TWI692884B (zh) 發光二極體封裝元件及發光裝置
WO2021017711A1 (zh) 发光装置封装件和显示装置
TWI764404B (zh) 拼接式微型發光二極體顯示面板
WO2014087938A1 (ja) Ledモジュール
TW202118093A (zh) 發光模組及其製造方法
CN210403726U (zh) 发光二极管封装组件
JP2001298216A (ja) 表面実装型の半導体発光装置
CN210403768U (zh) 发光二极管封装组件
US20220199590A1 (en) Light-emitting diode packaging module
CN210403725U (zh) 发光二极管封装组件
WO2021051924A1 (zh) 发光二极管封装组件
US20070018189A1 (en) Light emitting diode
JP2005340494A (ja) 発光ダイオードランプ
CN210692534U (zh) 一种发光二极管封装器件
CN214956944U (zh) 发光封装模组
JP2019175892A (ja) 発光モジュール及びその製造方法
EP4016651A1 (en) Light-emitting encapsulation assembly, light-emitting module and display screen
TW202315045A (zh) 光源元件、光源元件的製備方法及顯示裝置
CN216213442U (zh) 一种led封装结构
CN216749940U (zh) 显示器件
CN214411240U (zh) Led封装结构、led模组及led显示屏
CN112103348B (zh) 受光芯片及其形成方法、光电耦合器及其形成方法
US20220293574A1 (en) Led chip module and method for manufacturing led chip module
CN217114435U (zh) 一种广角led器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556964

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848315

Country of ref document: EP

Effective date: 20220228