WO2023176291A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2023176291A1
WO2023176291A1 PCT/JP2023/005472 JP2023005472W WO2023176291A1 WO 2023176291 A1 WO2023176291 A1 WO 2023176291A1 JP 2023005472 W JP2023005472 W JP 2023005472W WO 2023176291 A1 WO2023176291 A1 WO 2023176291A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
light emitting
emitting device
resin
main surface
Prior art date
Application number
PCT/JP2023/005472
Other languages
English (en)
French (fr)
Inventor
ともみ 相
一哉 増山
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023176291A1 publication Critical patent/WO2023176291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • a semiconductor light emitting device includes a semiconductor light emitting element (LED: Light Emitting Diode) as a light source.
  • LED LED: Light Emitting Diode
  • Patent Document 1 discloses an example of a conventional semiconductor light emitting device (LED module).
  • the LED module disclosed in the document includes a substrate, a pair of electrodes, an LED chip, a bonding wire, and a resin package.
  • the substrate is an insulating substrate made of glass epoxy resin, for example.
  • Each of the pair of electrodes is electrically connected to the LED chip. Part of each pair of electrodes is used as a mounting terminal for mounting the LED module.
  • the LED chip is the light source of the LED module.
  • the LED chip is joined to one of the pair of electrodes by, for example, silver paste, and is electrically connected to one of the pair of electrodes via the silver paste. Further, the LED chip is electrically connected to the other of the pair of electrodes via a bonding wire.
  • the resin package is for protecting the LED chip and bonding wires. The resin package is transparent to light from the LED chip.
  • the resin package is molded using, for example, epoxy resin.
  • Stray light may occur in semiconductor light emitting devices. Stray light is a phenomenon in which light is generated outside the originally expected optical path. Stray light is generated by, for example, the diffusion of light from the LED chip and diffuse reflection at the interface of the resin package. Stray light impairs the appearance of the semiconductor light emitting device, leading to a decline in the marketability of the semiconductor light emitting device. Further, when a semiconductor light emitting device is used in an optical sensor, stray light may cause a decrease in performance such as detection accuracy and detection distance.
  • An object of the present disclosure is to provide a semiconductor light emitting device that is improved over conventional ones.
  • an object of the present disclosure is to provide a semiconductor light emitting device that can reduce stray light.
  • a semiconductor light emitting device includes a semiconductor light emitting element, a conduction support member that supports the semiconductor light emitting element, and a first resin part that covers the semiconductor light emitting element, and the first resin part contains a translucent resin material and a light-absorbing powder.
  • the semiconductor light emitting device can reduce stray light.
  • FIG. 1 is a perspective view showing a semiconductor light emitting device according to a first embodiment.
  • FIG. 2 is a plan view showing the semiconductor light emitting device according to the first embodiment, and shows the first resin part and the case with imaginary lines.
  • FIG. 3 is a front view showing the semiconductor light emitting device according to the first embodiment.
  • FIG. 4 is a bottom view showing the semiconductor light emitting device according to the first embodiment.
  • FIG. 5 is a left side view showing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6 is a right side view showing the semiconductor light emitting device according to the first embodiment.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a plan view showing a semiconductor light emitting device according to a modification of the first embodiment.
  • FIG. 1 is a perspective view showing a semiconductor light emitting device according to a first embodiment.
  • FIG. 2 is a plan view showing the semiconductor light emitting device according to the first embodiment, and shows
  • FIG. 9 is a sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a plan view showing a semiconductor light emitting device according to the second embodiment.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10.
  • FIG. 12 is a sectional view showing a semiconductor light emitting device according to a first modification of the second embodiment.
  • FIG. 13 is a sectional view showing a semiconductor light emitting device according to a second modification of the second embodiment.
  • FIG. 14 is a plan view showing a semiconductor light emitting device according to a third modification of the second embodiment.
  • FIG. 15 is a sectional view taken along line XV-XV in FIG. 14.
  • FIG. 16 is a cross-sectional view showing another modification of the semiconductor light emitting device of the present disclosure.
  • FIG. 17 is a cross-sectional view showing another modification of the semiconductor light emitting device of the present disclosure.
  • FIG. 18 is a cross-sectional view showing another modification of the semiconductor light emitting device of the present disclosure.
  • a thing A is formed on a thing B" and "a thing A is formed on a thing B” mean “a thing A is formed on a thing B" unless otherwise specified.
  • A is formed directly on something B
  • a thing A is formed on something B, with another thing interposed between them.” including.
  • "a certain thing A is placed on a certain thing B” and "a certain thing A is placed on a certain thing B” are used as "a certain thing A is placed on a certain thing B” unless otherwise specified.
  • ⁇ It is placed directly on something B,'' and ⁇ A thing A is placed on something B, with another thing interposed between them.'' include.
  • an object A is located on an object B
  • an object A is in contact with an object B, and an object A is located on an object B.
  • an object A overlaps an object B when viewed in a certain direction means, unless otherwise specified, “an object A overlaps all of an object B" and "a certain object A overlaps an object B".
  • a certain thing A (the material of the thing) includes a certain material C” means "a case where the thing A (the material of the thing A) consists of a certain material C" and "the main component of the thing A (the material of the thing)”. "is a certain material C”.
  • the semiconductor light emitting device A1 includes a conductive support member 1, a semiconductor light emitting element 4, a wire 5, a first resin portion 61, and a case 7.
  • the thickness direction of the semiconductor light emitting device A1 will be referred to as the "thickness direction z".
  • one side of the thickness direction z may be referred to as upper side, and the other side may be referred to as lower side.
  • descriptions such as “upper”, “lower”, “upper”, “lower”, “upper surface”, and “lower surface” indicate the relative positional relationship of each component etc. in the thickness direction z, and do not necessarily mean It is not a term that defines the relationship with the direction of gravity.
  • plane view refers to when viewed in the thickness direction z.
  • a direction perpendicular to the thickness direction z is referred to as a "first direction x.”
  • the first direction x is the left-right direction in the plan view of the semiconductor light emitting device A1 (see FIG. 2).
  • a direction perpendicular to the thickness direction z and the first direction x is referred to as a "second direction y.”
  • the second direction y is the vertical direction in the plan view of the semiconductor light emitting device A1 (see FIG. 2).
  • the conduction support member 1 serves as the base of the semiconductor light emitting device A1. As shown in FIGS. 2 and 7, a semiconductor light emitting element 4 is mounted on the conductive support member 1. As shown in FIG. The conduction support member 1 supports the semiconductor light emitting device 4 and forms a conduction path for supplying power to the semiconductor light emitting device 4.
  • the conductive support member 1 has a rectangular shape in plan view, as shown in FIGS. 2 and 4.
  • the conductive support member 1 includes a base material 2 and a wiring section 3.
  • the base material 2 includes, for example, an insulating material.
  • the insulating material for example, glass epoxy resin, ceramic, single crystal semiconductor, or the like is used.
  • the base material 2 has a rectangular shape in plan view.
  • the shape of the base material 2 in plan view is not limited to a rectangle, but may be a polygon.
  • the base material 2 has the first direction x as the longitudinal direction when viewed from above, but may have the second direction y as the longitudinal direction.
  • the thickness (dimension in the thickness direction z) of the base material 2 is, for example, 0.10 mm or more and 0.50 mm or less.
  • the dimension of the base material 2 in the first direction x is, for example, 1.8 mm or more and 2.2 mm or less, and the dimension of the base material 2 in the second direction y is, for example, 1.05 mm or more and 1.45 mm or less.
  • the base material 2 has a base material main surface 201, a base material back surface 202, and a plurality of base material side surfaces 203 to 206.
  • the base material main surface 201 and the base material back surface 202 are spaced apart from each other in the thickness direction z.
  • the main surface 201 of the base material faces upward in the thickness direction z, and the back surface 202 of the base material faces downward in the thickness direction z.
  • Each of the plurality of base material side surfaces 203 to 206 is sandwiched between the base material main surface 201 and the base material back surface 202 in the thickness direction z, and is connected to these.
  • the pair of base material side surfaces 203 and 204 are spaced apart from each other in the first direction x, and face opposite sides to each other in the first direction x.
  • the pair of base material side surfaces 205 and 206 are spaced apart from each other in the second direction y, and face opposite sides to each other in the second direction y.
  • a through-hole portion 203a is formed on the side surface 203 of the base material, and a through-hole portion 204a is formed on the side surface 204 of the base material.
  • the through-hole portion 203a is a portion depressed inward of the base material 2 from the base material side surface 203 in plan view.
  • the through-hole portion 204a is a portion depressed inward of the base material 2 from the base material side surface 203 in plan view.
  • Each through-hole portion 203a, 204a penetrates from the main surface 201 of the base material to the back surface 202 of the base material in the thickness direction z. As shown in FIGS. 2 and 4, each through-hole portion 203a, 204a has, for example, a semicircular shape in plan view.
  • the wiring section 3 is formed on the base material 2 and constitutes a conduction path to the semiconductor light emitting element 4.
  • the wiring portion 3 includes a conductive material.
  • the conductive material is, for example, copper or a copper alloy, but is not either copper or a copper alloy, but nickel or a nickel alloy, gold or a gold alloy, iron or an iron alloy, or aluminum or an aluminum alloy.
  • the wiring portion 3 is formed, for example, by plating.
  • the wiring portion 3 includes a pair of main surface electrode portions 31 and 32, a pair of side portions 33 and 34, and a pair of back surface electrode portions 35 and 36.
  • a pair of main surface electrode parts 31 and 32 are each formed on the main surface 201 of the base material.
  • the pair of main surface electrode parts 31 and 32 are spaced apart from each other in the first direction x.
  • the main surface electrode section 31 includes a die bonding section 311, a first edge section 312, and a first connecting section 313.
  • the die bonding portion 311, the first edge portion 312, and the first edge portion 312 are integrally formed.
  • the semiconductor light emitting device 4 is mounted on the die bonding section 311.
  • the die bonding portion 311 is electrically connected to the semiconductor light emitting element 4 (back electrode 42 described later).
  • the die bonding section 311 has a rectangular shape in plan view.
  • the shape of the die bonding portion 311 in plan view is not limited to a rectangle, but may be a circle, an ellipse, a polygon, or the like.
  • the die bonding portion 311 is formed in a region including the center of the main surface 201 of the base material in plan view.
  • the first edge portion 312 covers the vicinity of the portion of the main surface 201 of the base material that is connected to the through-hole portion 203a.
  • the first end portion 312 has a semicircular shape that is concentric with the through hole portion 203a in plan view.
  • the first connecting portion 313 connects the die bonding portion 311 and the first edge portion 312.
  • the first connecting portion 313 has a band shape extending in the first direction x when viewed from above.
  • the main surface electrode section 32 includes a wire bonding section 321, a second edge section 322, and a second connecting section 323.
  • the wire bonding portion 321, the second edge portion 322, and the second connecting portion 323 are integrally formed.
  • the wire 5 is bonded to the wire bonding portion 321.
  • the wire bonding portion 321 is electrically connected to the semiconductor light emitting element 4 (main surface electrode 41 described below) via the wire 5.
  • the wire bonding section 321 is arranged apart from the die bonding section 311 on one side (the left side in FIG. 2) in the first direction x.
  • the wire bonding portion 321 has a rectangular shape in plan view.
  • the shape of the wire bonding portion 321 in plan view is not limited to a rectangle, but may be a circle, an ellipse, a polygon, or the like.
  • the second edge portion 322 covers the vicinity of the portion of the main surface 201 of the base material that is connected to the through-hole portion 204a. In the illustrated example, the second edge portion 322 has a semicircular shape concentric with the through-hole portion 204a in plan view.
  • the second connecting portion 323 connects the wire bonding portion 321 and the second edge portion 322.
  • the second connecting portion 323 has a band shape extending in the first direction x when viewed from above.
  • the side portion 33 covers the through-hole portion 203a formed in the base material side surface 203, as shown in FIGS. 2 and 7.
  • the side portion 33 is connected to the main surface electrode portion 31 (first edge portion 312) and the back surface electrode portion 35.
  • the main surface electrode section 31 and the back surface electrode section 35 are electrically connected via the side section 33 .
  • the side portion 34 covers the through-hole portion 204a formed in the base material side surface 204, as shown in FIGS. 2 and 7.
  • the side portion 34 is connected to the main surface electrode portion 32 (second edge portion 322) and the back surface electrode portion 36.
  • the main surface electrode section 32 and the back surface electrode section 36 are electrically connected via the side section 34 .
  • a pair of back electrode portions 35 and 36 are formed on the back surface 202 of the base material, respectively, as shown in FIGS. 4 and 7.
  • the pair of back electrode parts 35 and 36 are spaced apart from each other in the first direction x.
  • the back electrode part 35 is connected to the side part 33.
  • the back electrode section 35 is electrically connected to the semiconductor light emitting element 4 (back electrode 42 to be described later) via the side section 33 and the main surface electrode section 31.
  • the back electrode part 36 is connected to the side part 34.
  • the back electrode portion 36 is electrically connected to the semiconductor light emitting element 4 (main surface electrode 41 described below) via the side portion 34, the main surface electrode portion 32, and the wire 5.
  • the pair of back electrode portions 35 and 36 are bonded to the circuit board using a conductive bonding material such as solder.
  • the pair of back electrode portions 35 and 36 are terminals in the semiconductor light emitting device A1.
  • the semiconductor light emitting element 4 is a light source of the semiconductor light emitting device A1.
  • the semiconductor light emitting device 4 is, for example, an LED.
  • the semiconductor light emitting device 4 emits, for example, red light or infrared light.
  • the wavelength of the light emitted by the semiconductor light emitting element 4 is, for example, 610 nm or more and 780 nm or less (red light) or 780 nm or more and 1000 ⁇ m or less (infrared light). Note that the wavelength of light emitted by the semiconductor light emitting device 4 is not limited to these numerical examples. That is, the light emitted from the semiconductor light emitting element 4 is not limited to red light or infrared light. As shown in FIG.
  • the semiconductor light emitting device 4 is mounted on the main surface 201 of the base material.
  • the semiconductor light emitting device 4 is bonded to the die bonding portion 311 of the main surface electrode portion 31 via a conductive bonding material 49 .
  • the conductive bonding material 49 is, for example, solder, sintered metal, metal paste material, or the like.
  • the size of the semiconductor light emitting device 4 is not limited at all, an example is as follows.
  • the thickness of the semiconductor light emitting element 4 is, for example, 130 ⁇ m or more and 220 ⁇ m or less.
  • the dimension of the semiconductor light emitting device 4 in the first direction x is, for example, 320 ⁇ m or more and 520 ⁇ m or less.
  • the dimension of the semiconductor light emitting device 4 in the second direction y is, for example, 320 ⁇ m or more and 520 ⁇ m or less.
  • the semiconductor light emitting device 4 has a device main surface 401, a device back surface 402, and a plurality of device side surfaces 403 to 406.
  • the element main surface 401 and the element back surface 402 are spaced apart from each other in the thickness direction z.
  • the element main surface 401 faces upward in the thickness direction z, and the element back surface 402 faces downward in the thickness direction z. That is, the element main surface 401 faces the same direction as the base material main surface 201, and the element back surface 402 faces the same direction as the base material back surface 202.
  • the element back surface 402 faces the conductive support member 1 .
  • Each of the plurality of element side surfaces 403 to 406 is sandwiched between and connected to the element main surface 401 and the element rear surface 402 in the thickness direction z.
  • a pair of element side surfaces 403 and 404 are spaced apart from each other in the first direction x, and face opposite sides to each other in the first direction x.
  • the pair of element side surfaces 405 and 406 are spaced apart from each other in the second direction y, and face opposite sides to each other in the second direction y.
  • the semiconductor light emitting device 4 has, for example, a vertical structure.
  • the semiconductor light emitting device 4 has a main surface electrode 41 and a back surface electrode 42.
  • the semiconductor light emitting device 4 emits light due to the current flowing between the main surface electrode 41 and the back surface electrode 42 .
  • the main surface electrode 41 is formed on the element main surface 401.
  • the wire 5 is joined to the main surface electrode 41 .
  • the main surface electrode 41 is electrically connected to the wire bonding part 321 via the wire 5.
  • the back electrode 42 is formed on the back surface 402 of the element.
  • the back electrode 42 is electrically connected to the die bonding part 311 via the conductive bonding material 49 .
  • Wire 5 electrically connects two parts separated from each other.
  • Wire 5 is a bonding wire.
  • Wire 5 contains, for example, gold, aluminum or copper.
  • the wire 5 includes a pair of joint parts 51 and 52 and a connecting part 53.
  • the joint portion 51 is a portion of the wire 5 that is joined to the main surface electrode 41.
  • the bonding portion 52 is a portion of the wire 5 that is bonded to the wire bonding portion 321 .
  • the connecting portion 53 is a portion of the wire 5 that connects the pair of joint portions 51 and 52.
  • the loop shape of the wire 5 is triangular, but it may also be trapezoidal.
  • the first resin part 61 is supported by the conduction support member 1.
  • the first resin portion 61 covers the semiconductor light emitting device 4 and the wire 5 .
  • the first resin part 61 includes a translucent resin material and light-absorbing powder.
  • the first resin part 61 is made by mixing a light-transmitting resin material with light-absorbing powder, and in the first resin part 61, the light-absorbing powder is dispersed in the light-transmitting resin material.
  • the translucent resin material includes, for example, epoxy resin or silicone resin.
  • the translucent resin material is transparent, but may be translucent.
  • the translucent resin material may contain a fluorescent material.
  • the fluorescent material is excited by the light from the semiconductor light emitting element 4, so that the semiconductor light emitting device A1 emits light in a wavelength range different from that of the light from the semiconductor light emitting element 4.
  • the light-absorbing powder absorbs light from the semiconductor light emitting device 4.
  • the content ratio of the light-absorbing powder in the first resin part 61 is, for example, 0.1% or more and 10% or less (preferably 0.5% or more and 0.7% or less).
  • the light-absorbing powder in this embodiment is, for example, titanium black (titanium oxynitride).
  • the transmittance of the light-absorbing powder is lower for each wavelength of red light and infrared light and higher for each wavelength of violet light and ultraviolet light compared to the transmittance of carbon black. .
  • the particle size of the light-absorbing powder is not limited at all, but is, for example, 62 nm or more and 75 nm or less.
  • the light-absorbing powder may be any material as long as it absorbs light from the semiconductor light-emitting element 4.
  • carbon black may be used instead of titanium black.
  • the first resin portion 61 has a rectangular shape in plan view.
  • the first resin portion 61 has a first resin main surface 611, a first resin back surface 612, and a plurality of first resin side surfaces 613 to 616.
  • the first resin main surface 611 and the first resin back surface 612 are spaced apart in the thickness direction z.
  • the first resin main surface 611 faces upward in the thickness direction z, and the first resin back surface 612 faces downward in the thickness direction z.
  • Each of the plurality of first resin side surfaces 613 to 616 is sandwiched between and connected to the first resin main surface 611 and the first resin back surface 612 in the thickness direction z.
  • a pair of first resin side surfaces 613 and 614 are spaced apart in the first direction x.
  • the pair of first resin side surfaces 613 and 614 face oppositely to each other in the first direction x.
  • the pair of first resin side surfaces 613 and 614 respectively face the same direction in the first direction x as the pair of element side surfaces 403 and 404.
  • a pair of first resin side surfaces 615 and 616 are spaced apart in the second direction y.
  • the pair of first resin side surfaces 615 and 616 face oppositely to each other in the second direction y.
  • the pair of first resin side surfaces 615 and 616 respectively face the same direction in the second direction y as the pair of element side surfaces 405 and 406.
  • the thickness of the first resin portion 61 (the dimension along the thickness direction z between the first resin main surface 611 and the first resin back surface 612) is 20 ⁇ m or more and 400 ⁇ m or less.
  • the dimension of the first resin portion 61 in the first direction x (the dimension of the pair of first resin side surfaces 613 and 614 along the first direction x) is 390 ⁇ m or more and 1.4 mm or less.
  • the dimension of the first resin portion 61 in the second direction y (the dimension of the pair of first resin side surfaces 615 and 616 along the second direction y) is 390 ⁇ m or more and 650 ⁇ m or less.
  • the first resin portion 61 has, for example, the following dimensional relationship. That is, the thickness of the part of the first resin part 61 that covers the upper side of the semiconductor light emitting element 4 (hereinafter referred to as “coating thickness”) is the thickness of the part of the first resin part 61 that covers the side of the semiconductor light emitting element 4. (hereinafter referred to as “covering width”) is 1% or more and 103% or less.
  • the distance d1 (see FIG. 7) between the element main surface 401 and the first resin main surface 611 along the thickness direction z is used as the coating thickness
  • the coating width is the distance between the element side surface 404 and the first resin main surface 611.
  • a distance d2 (see FIG.
  • the distance d1 is 1% or more and 103% or less of the distance d2.
  • the covering width can be determined by using the distance between the first resin side surface 613 and the element side surface 403 along the first direction x instead of the distance d2 between the element side surface 404 and the first resin side surface 614 along the first direction x.
  • the distance between the first resin side surface 615 and the element side surface 405 along the second direction y may be used, or the distance between the first resin side surface 616 and the element side surface 406 along the second direction y may be used. good.
  • the covering width in this embodiment uses the distance d2 which is the relatively largest value among these distances (including the distance d2), but unlike this configuration, the covering width is the relatively smallest value among these distances (including the distance d2). There may be. Alternatively, the length of the covering width may be determined based on the location where stray light occurs when the first resin portion 61 does not contain light-absorbing powder.
  • the case 7 is placed on the main surface 201 of the base material, as shown in FIGS. 3 and 5 to 7.
  • the case 7 is arranged on the side where the semiconductor light emitting element 4 is arranged with respect to the conduction support member 1 in the thickness direction z.
  • the case 7 is a frame. Case 7 surrounds semiconductor light emitting element 4 and first resin part 61 in plan view.
  • the material of the case 7 is not limited in any way, but may be, for example, epoxy resin or silicone resin.
  • the color of the case 7 is not limited at all, but is preferably black.
  • the case 7 has an upper surface 71, a plurality of outer surfaces 731-734, and a plurality of inner surfaces 741-744.
  • the upper surface 71 has a rectangular ring shape, as shown in FIGS. 1 and 2.
  • the upper surface 71 is flush with the first resin main surface 611, as shown in FIG. Unlike this example, the first resin main surface 611 may be depressed downward in the thickness direction z with respect to the upper surface 71, or may protrude upward in the thickness direction z with respect to the upper surface 71.
  • Each of the plurality of outer surfaces 731 to 734 is connected to the upper surface 71.
  • the pair of outer surfaces 731 and 732 are spaced apart from each other in the first direction x.
  • the pair of outer surfaces 731 and 732 face oppositely to each other in the first direction x.
  • the pair of outer surfaces 733 and 734 are spaced apart from each other in the second direction y.
  • the pair of outer surfaces 733 and 734 face oppositely to each other in the second direction y.
  • the plurality of outer surfaces 731 to 734 are flush with the plurality of base material side surfaces 203 to 206, respectively.
  • Each of the pair of inner surfaces 741 to 744 is connected to the upper surface 71.
  • the pair of inner surfaces 741 and 742 face oppositely to each other in the first direction x.
  • a pair of inner surfaces 741 and 742 face each other in the first direction x.
  • the pair of inner surfaces 743 and 744 are spaced apart in the second direction y.
  • a pair of inner surfaces 743 and 744 face each other in the second direction y.
  • the plurality of inner surfaces 741 to 744 are in contact with the plurality of first resin side surfaces 613 to 616, respectively.
  • the effects of the semiconductor light emitting device A1 are as follows.
  • the semiconductor light emitting device A1 includes a first resin portion 61 that covers the semiconductor light emitting element 4.
  • the first resin part 61 includes a translucent resin material and light-absorbing powder. According to this configuration, the light from the semiconductor light emitting device 4 is absorbed by the light-absorbing powder of the first resin portion 61 and reduced. Therefore, the diffused light from the semiconductor light emitting element 4 and the light reflected at the interface of each part (for example, the interface between the first resin part 61 and the conductive support member 1, the interface between the first resin part 61 and the case 7, etc.) Reflected light can be reduced. In other words, the semiconductor light emitting device A1 can reduce stray light. Therefore, it becomes possible to cause the semiconductor light emitting device A1 to emit light as a clearer point light source.
  • the content ratio of the light-absorbing powder in the first resin portion 61 is 0.1% or more and 10% or less.
  • the higher the content of this light-absorbing powder the more effective it is to reduce stray light, but on the other hand, it causes a decrease in luminous intensity.
  • the lower the content of this light-absorbing powder the more the reduction in luminous intensity can be suppressed, but on the other hand, the effect of reducing stray light becomes weaker. Therefore, in the semiconductor light emitting device A1, by setting the content ratio of the light-absorbing powder in the first resin part 61 within the above range (0.1% or more and 10% or less), while reducing stray light, the decrease in luminous intensity is suppressed. can.
  • the light-absorbing powder of the first resin portion 61 is titanium black. According to this configuration, the transmittance for each wavelength of red light or infrared light is lower than that of carbon black. That is, the semiconductor light emitting device A1 can reduce red light or infrared stray light more than when the light-absorbing powder of the first resin part 61 is carbon black. Therefore, the semiconductor light emitting device A1 is effective in reducing stray light in a configuration in which the semiconductor light emitting element 4 emits red light or infrared light. Furthermore, since titanium black has better electrical insulation than carbon black, the semiconductor light emitting device A1 has better electrical insulation than when the light-absorbing powder of the first resin portion 61 is carbon black.
  • the case 7 includes black resin. According to this configuration, reflection of light at the interface between the case 7 and the first resin portion 61 is reduced. Therefore, the semiconductor light emitting device A1 can further reduce stray light.
  • the distance d1 (the above-mentioned coating thickness) between the element main surface 401 and the first resin main surface 611 in the thickness direction z is equal to It is 1% or more and 103% or less with respect to the distance d2 (the above-mentioned covering width). Since the semiconductor light emitting element 4 is covered with the first resin part 61, the light emitted from the semiconductor light emitting element 4 upward in the thickness direction z is reduced by the light-absorbing powder of the first resin part 61. That is, the luminous intensity of the light radiated upward in the thickness direction z from the semiconductor light emitting element 4 decreases.
  • the semiconductor light emitting device A1 after ensuring an appropriate covering width (for example, distance d2) that can reduce stray light, the distance d1 is set within the above range (1% or more and 103% or less) with respect to the distance d2. , the coating thickness is reduced. Thereby, the semiconductor light emitting device A1 can suppress a decrease in luminous intensity in the upper direction z of the thickness while ensuring an appropriate covering width to reduce stray light. In other words, the semiconductor light emitting device A1 can improve directivity.
  • an appropriate covering width for example, distance d2
  • the semiconductor light emitting device A11 differs from the semiconductor light emitting device A1 in that a recess 619 is formed in the first resin portion 61.
  • the recess 619 is depressed downward in the thickness direction z from the first resin main surface 611.
  • the recess 619 is arranged above the semiconductor light emitting element 4 in the thickness direction z.
  • the recess 619 has a truncated pyramid shape. Unlike this configuration, the recess 619 may have a truncated conical shape.
  • the recess 619 includes a bottom 619a and a wall 619b. As shown in FIG. 9, the bottom portion 619a is located between the first resin main surface 611 and the first resin back surface 612 in the thickness direction z. In this embodiment, the bottom portion 619a is located above the top portion 54 of the wire 5 in the thickness direction z. As shown in FIG. 8, the bottom portion 619a overlaps the semiconductor light emitting element 4 in plan view. In the illustrated example, the bottom portion 619a has a rectangular shape in plan view. The planar shape of the bottom portion 619a is not limited to a rectangle, but may be a circle, an ellipse, or a polygon.
  • the wall portion 619b is connected to the bottom portion 619a and the first resin main surface 611. In the illustrated example, the wall portion 619b is inclined with respect to the thickness direction z, but may be parallel to the thickness direction z.
  • the first resin portion 61 includes a translucent resin material and a light absorbing powder, so that stray light can be reduced. Therefore, it becomes possible to cause the semiconductor light emitting device A11 to emit light as a clearer point light source.
  • the semiconductor light emitting device A11 a recess 619 is formed in the first resin portion 61.
  • the first resin portion 61 is thinner in a portion above the semiconductor light emitting element 4 in the thickness direction z. Therefore, with respect to the light radiated upward in the thickness direction z from the semiconductor light emitting element 4, a reduction in luminous intensity due to the light-absorbing powder of the first resin portion 61 is suppressed.
  • the semiconductor light emitting device A11 can suppress a decrease in luminous intensity above the thickness direction z while suppressing stray light.
  • the semiconductor light emitting device A2 differs from the semiconductor light emitting device A1 in that it further includes a second resin portion 62.
  • the second resin part 62 is arranged on the first resin main surface 611 of the first resin part 61.
  • the second resin part 62 is surrounded by the case 7 similarly to the first resin part 61.
  • the absorbance of the second resin part 62 is lower than the absorbance of the first resin part 61 with respect to the wavelength of the light from the semiconductor light emitting element 4 . That is, the absorbance of the first resin part 61 is higher than the absorbance of the second resin part 62.
  • the second resin part 62 includes a translucent resin.
  • this light-transmitting resin for example, epoxy resin or silicone resin is used. This light-transmitting resin is transparent, but may be semi-transparent. Moreover, this translucent resin may contain titanium oxide or a fluorescent material.
  • the second resin part 62 differs from the first resin part 61 in that it does not contain a light-absorbing powder, but the second resin part 62 may contain a light-absorbing powder as long as the above relationship of absorbance is satisfied.
  • the second resin portion 62 has a second resin main surface 621, a second resin back surface 622, and a plurality of second resin side surfaces 623 to 626.
  • the second resin main surface 621 and the second resin back surface 622 are spaced apart from each other in the thickness direction z and face opposite to each other.
  • the second resin back surface 622 is in contact with the second resin main surface 621.
  • Each of the plurality of second resin side surfaces 623 to 626 is sandwiched between and connected to the second resin main surface 621 and the second resin back surface 622 in the thickness direction z.
  • the pair of second resin side surfaces 623 and 624 are spaced apart from each other in the first direction x.
  • the pair of second resin side surfaces 623 and 624 face oppositely to each other in the first direction x.
  • the second resin side surface 623 is flush with the first resin side surface 613 and is in contact with the inner surface 741 of the case 7 .
  • the second resin side surface 624 is flush with the first resin side surface 614 and is in contact with the inner surface 742 of the case 7 .
  • the pair of second resin side surfaces 625 and 626 are spaced apart from each other in the second direction y.
  • the pair of second resin side surfaces 625 and 626 face oppositely to each other in the second direction y.
  • the second resin side surface 625 is flush with the first resin side surface 615 and is in contact with the inner surface 743 of the case 7 .
  • the second resin side surface 626 is flush with the first resin side surface 616 and is in contact with the inner surface 744 of the case 7 .
  • the interface between the first resin part 61 and the second resin part 62 (the first resin main surface 611 and the second resin back surface 622) is the element main surface 401 and the element back surface 402 in the thickness direction z. located between. Therefore, the first resin portion 61 covers the lower portion in the thickness direction z (for example, the lower half in the thickness direction z) of each of the element side surfaces 403 to 406. Further, the second resin portion 62 covers the upper portion in the thickness direction z (for example, the upper half in the thickness direction z) of each of the element side surfaces 403 to 406 and the element main surface 401.
  • the top portion 54 of the wire 5 on the upper side in the thickness direction z is located on the first resin portion 61 and covered with the second resin portion 62.
  • the first resin portion 61 includes a light-transmitting resin material and a light-absorbing powder, so that stray light can be reduced. Therefore, it becomes possible to cause the semiconductor light emitting device A2 to emit light as a clearer point light source.
  • the semiconductor light emitting device A2 a part of the light emitted from the semiconductor light emitting element 4 to the side of the semiconductor light emitting element 4 (in a direction perpendicular to the thickness direction z), and a part of the light emitted from the semiconductor light emitting element 4 to the side of the semiconductor light emitting element 4, Since the light reflected at the interface with the first resin part 61 is reduced by the light-absorbing powder of the first resin part 61, stray light caused by this light is reduced.
  • the second resin part 62 is arranged on the first resin part 61.
  • the main surface 401 of the semiconductor light emitting device 4 is exposed from the first resin portion 61 and covered by the second resin portion 62 .
  • the semiconductor light emitting device A2 can suppress a decrease in luminous intensity in the upper direction in the thickness direction z.
  • FIG. 12 shows a semiconductor light emitting device A21 according to a first modification of the second embodiment.
  • the semiconductor light emitting device A21 differs from the semiconductor light emitting device A2 in the following points.
  • the thickness of the first resin portion 61 of the semiconductor light emitting device A21 is greater than the thickness of the first resin portion 61 of the semiconductor light emitting device A2.
  • the thickness of the second resin part 62 of the semiconductor light emitting device A21 is smaller than the thickness of the second resin part 62 of the semiconductor light emitting device A2.
  • the interface between the first resin part 61 and the second resin part 62 (the first resin main surface 611 and the second resin back surface 622) is the element main surface of the semiconductor light emitting element 4 in the thickness direction z. It is located at the same location as 401. Therefore, the first resin portion 61 covers all the side surfaces 403 to 406 of each element. Further, the second resin portion 62 covers the element main surface 401.
  • the top portion 54 of the wire 5 on the upper side in the thickness direction z is located on the first resin portion 61 and covered with the second resin portion 62.
  • the semiconductor light emitting device A21 Similarly to the semiconductor light emitting device A2, stray light can be reduced in the semiconductor light emitting device A21. Therefore, it becomes possible to cause the semiconductor light emitting device A21 to emit light as a clearer point light source. Note that in the semiconductor light emitting device A21, since all of the side surfaces 403 to 406 of the semiconductor light emitting element 4 are covered with the first resin part 61, the light absorbing powder of the first resin part 61 makes the semiconductor light emitting element 4 The light emitted to the sides of the semiconductor light emitting element 4 (in the direction orthogonal to the thickness direction z) can be reduced more than in the semiconductor light emitting device A2. In other words, the semiconductor light emitting device A21 can reduce stray light more than the semiconductor light emitting device A2.
  • the main surface 401 of the semiconductor light emitting device 4 is exposed from the first resin portion 61, so that a decrease in luminous intensity above the thickness direction z can be suppressed. .
  • FIG. 13 shows a semiconductor light emitting device A22 according to a second modification of the second embodiment.
  • the semiconductor light emitting device A22 differs from the semiconductor light emitting device A21 in the following points.
  • the thickness of the first resin portion 61 of the semiconductor light emitting device A22 is greater than the thickness of the first resin portion 61 of the semiconductor light emitting device A21.
  • the thickness of the second resin part 62 of the semiconductor light emitting device A22 is smaller than the thickness of the second resin part 62 of the semiconductor light emitting device A21.
  • the interface between the first resin part 61 and the second resin part 62 (the first resin main surface 611 and the second resin back surface 622) is located above the top part 54 of the wire 5 in the thickness direction z. do. Therefore, the first resin portion 61 completely covers the element main surface 401 and each element side surface 403 to 406. That is, the semiconductor light emitting device 4 is entirely covered with the first resin portion 61. Note that, unlike the illustrated example, the interface between the first resin part 61 and the second resin part 62 may be at the same position as the top part 54 in the thickness direction z.
  • the top portion 54 of the wire 5 on the upper side in the thickness direction z is covered with the first resin portion 61. That is, all of the wires 5 are covered with the first resin part 61.
  • the semiconductor light emitting device A22 As well, stray light can be reduced similarly to the semiconductor light emitting devices A2 and A21. Therefore, it becomes possible to cause the semiconductor light emitting device A22 to emit light as a clearer point light source.
  • the main surface 401 of the semiconductor light emitting element 4 is covered with the first resin part 61, but the first resin part 61 above the semiconductor light emitting element 4 than the semiconductor light emitting device A1 is covered with the first resin part 61. Since the thickness is small, it is possible to suppress a decrease in the luminous intensity of light irradiated above the semiconductor light emitting device A1 in the thickness direction z.
  • the top portion 54 of the wire 5 is covered with the first resin portion 61 (the wire 5 is entirely covered with the first resin portion 61). According to this configuration, the wire 5 becomes difficult to see due to the first resin portion 61, so that the appearance of the semiconductor light emitting device A22 can be improved.
  • FIGS. 14 and 15 show a semiconductor light emitting device A23 according to a third modification of the second embodiment.
  • the semiconductor light emitting device A23 differs from each of the semiconductor light emitting devices A2, A21, and A22 in the following points. That is, as shown in FIGS. 14 and 15, the positional relationship between the first resin part 61 and the second resin part 62 is different.
  • the first resin portion 61 is formed into a frame shape.
  • the first resin part 61 surrounds the second resin part 62 in plan view.
  • the second resin portion 62 is arranged above the semiconductor light emitting device 4 in the thickness direction z.
  • the interface between the first resin part 61 and the second resin part 62 overlaps each element side surface 403 to 406 in plan view. Therefore, the first resin portion 61 covers all the side surfaces 403 to 406 of each element. Further, the second resin portion 62 covers the element main surface 401. Unlike the illustrated example, the interface between the first resin part 61 and the second resin part 62 may be located inward of the semiconductor light emitting device 4 from each of the device side surfaces 403 to 406 in plan view. .
  • the semiconductor light emitting device A23 As well, stray light can be reduced similarly to the semiconductor light emitting devices A2, A21, and A22. Therefore, it becomes possible to cause the semiconductor light emitting device A23 to emit light as a clearer point light source. Further, the semiconductor light emitting device A23 can suppress a decrease in the luminous intensity of light irradiated upward in the thickness direction z, similarly to the semiconductor light emitting devices A2, A21, and A22.
  • the configuration of the conductive support member 1 is not limited to the above-described example, and may be, for example, the configuration shown in FIG. 16 or 17.
  • 16 and 17 each show an example in which the configuration of the conductive support member 1 is changed in the semiconductor light emitting device A1.
  • the configuration of the conductive support member 1 may be similarly changed in each of the semiconductor light emitting devices A11, A2, A21 to A23 instead of the semiconductor light emitting device A1.
  • the conductive support member 1 shown in FIG. 16 includes a through portion 37 instead of the side portion 33, and a through portion 38 instead of the side portion 34.
  • Each of the penetrating portions 37 and 38 penetrates the base material 2 in the thickness direction z.
  • the penetrating portion 37 is in contact with the main surface electrode portion 31 and the back surface electrode portion 35, respectively. Therefore, the main surface electrode section 31 and the back surface electrode section 35 are electrically connected via the penetration section 37.
  • the penetrating portion 38 is in contact with the main surface electrode portion 32 and the back surface electrode portion 36, respectively. Therefore, the main surface electrode section 32 and the back surface electrode section 36 are electrically connected via the penetration section 38.
  • the conductive support member 1 shown in FIG. 17 includes a first lead 11, a second lead 12, and an insulating part 19.
  • the first lead 11 and the second lead 12 are plate-shaped metal members.
  • the first lead 11 and the second lead 12 are spaced apart from each other.
  • the semiconductor light emitting element 4 is bonded to the first lead 11 via a conductive bonding material 49 .
  • the wire 5 is joined to the second lead 12 .
  • the insulating section 19 insulates the first lead 11 and the second lead 12.
  • the material of the insulating portion 19 is not limited at all, but includes, for example, insulating resin such as epoxy resin.
  • FIG. 18 shows an example in which case 7 is not provided in semiconductor light emitting device A1. Note that the case 7 may not be provided in each of the semiconductor light emitting devices A11, A2, A21 to A23 instead of the semiconductor light emitting device A1.
  • each first resin side surface 613, 614 of the first resin part 61 is parallel to the thickness direction z, but the first resin side surface 613, 614 is parallel to the thickness direction z.
  • each of the first resin side surfaces 613 and 614 may be inclined such that the area on a plane perpendicular to the thickness direction z decreases as it goes upward in the thickness direction z.
  • each first resin side surface 615, 616 of the first resin portion 61 may be parallel to the thickness direction z, or may be inclined with respect to the thickness direction z.
  • the semiconductor light emitting device 4 has a vertical structure, but the semiconductor light emitting device 4 may have a horizontal structure.
  • the two electrodes of the semiconductor light emitting device 4 are arranged on the main surface 401 of the device, one of the two electrodes and the main surface electrode section 31 are electrically connected by the first wire, and the two electrodes and the main surface electrode portion 32 are electrically connected by a second wire.
  • the semiconductor light emitting device is not limited to the embodiments described above.
  • the specific configuration of each part of the semiconductor light emitting device of the present disclosure can be modified in various ways.
  • the present disclosure includes the embodiments described in the appendix below. Additional note 1.
  • Appendix 2 2.
  • the conductive support member has a base material and a wiring part
  • the base material has a base material main surface facing one side in the thickness direction
  • the semiconductor light emitting device is mounted on the main surface of the base material,
  • Appendix 3 The base material has a back surface facing opposite to the main surface of the base material in the thickness direction,
  • the semiconductor light emitting device according to appendix 2 wherein the wiring section includes a back electrode section formed on the back surface of the base material.
  • the semiconductor light emitting device has an element main surface facing in the same direction as the base material main surface in the thickness direction, and an element side surface facing one of the first directions orthogonal to the thickness direction,
  • the first resin part has a first resin main surface facing in the same direction as the element main surface in the thickness direction, and a first resin side surface facing in the same direction as the element side surface in the first direction.
  • the semiconductor light emitting device according to appendix 2 or 3. Appendix 5.
  • the distance between the element main surface and the first resin main surface along the thickness direction is 1% or more and 103% or less of the distance between the element side surface and the first resin side surface along the first direction.
  • the semiconductor light emitting device has a main surface electrode on the main surface of the device, The semiconductor light emitting device according to appendix 4 or 5, wherein the wire is joined to the main surface electrode.
  • Appendix 7. The semiconductor light emitting device according to appendix 6, further comprising a second resin portion disposed on the first resin main surface.
  • Appendix 8. The semiconductor light emitting device according to appendix 7, wherein a top portion of the wire on one side in the thickness direction is located on the first resin portion and covered with the second resin portion.
  • the semiconductor light emitting device according to any one of Supplementary Notes 7 to 9, wherein the first resin portion has a higher absorbance than the second resin portion.
  • Appendix 11 The semiconductor light emitting device according to any one of Supplementary Notes 7 to 10, wherein the second resin portion includes a light-transmitting resin.
  • Appendix 12. further comprising a case disposed on the main surface of the base material, The semiconductor light emitting device according to any one of appendices 4 to 11, wherein the case surrounds the semiconductor light emitting element and the first resin portion when viewed in the thickness direction.
  • Appendix 13 The semiconductor light emitting device according to appendix 12, wherein the case includes black resin.
  • the semiconductor light-emitting device according to any one of appendices 1 to 13, wherein the light-absorbing powder has a transmittance lower than that of carbon black for wavelengths of red light or infrared light.
  • Appendix 15 The semiconductor light emitting device according to any one of Supplementary notes 1 to 14, wherein the light-absorbing powder is titanium black.
  • Appendix 16 The semiconductor light emitting device according to any one of Supplementary notes 1 to 15, wherein the content ratio of the light-absorbing powder in the first resin portion is 0.1% or more and 10% or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

半導体発光装置は、半導体発光素子と、前記半導体発光素子を支持する導通支持部材と、前記半導体発光素子を覆う第1樹脂部と、を備える。前記第1樹脂部は、たとえば、透光性樹脂材料および吸光性粉末を含んでいる。前記導通支持部材は、たとえば、基材および配線部を有する。前記基材は、厚さ方向の一方を向く基材主面を有している。前記半導体発光素子は、前記基材主面に搭載されている。前記配線部は、前記半導体発光素子に導通している。

Description

半導体発光装置
 本開示は、半導体発光装置に関する。
 従来、半導体発光装置は、半導体発光素子(LED:Light Emitting Diode)を光源として備える。特許文献1には、従来の半導体発光装置(LEDモジュール)の一例が開示されている。同文献に開示されたLEDモジュールは、基板と、一対の電極と、LEDチップと、ボンディングワイヤと、樹脂パッケージとを備える。基板は、たとえばガラスエポキシ樹脂からなる絶縁基板である。一対の電極はそれぞれ、LEDチップに導通する。一対の電極の一部ずつは、LEDモジュールを実装するための実装端子として用いられる。LEDチップは、LEDモジュールの光源である。LEDチップは、たとえば銀ペーストによって、一対の電極の一方に接合されており、銀ペーストを介して、一対の電極の一方に導通する。また、LEDチップは、ボンディングワイヤを介して、一対の電極の他方に導通する。樹脂パッケージは、LEDチップおよびボンディングワイヤを保護するためのものである。樹脂パッケージは、LEDチップからの光に対して透光性を有する。樹脂パッケージは、たとえばエポキシ樹脂を用いてモールド成形される。
特開2009-289441号公報
 半導体発光装置において、迷光が生じることがある。迷光は、本来想定される光路外に光が発生する現象である。迷光は、たとえば、LEDチップからの光の拡散、および、樹脂パッケージの界面での乱反射などによって発生する。迷光は、半導体発光装置の見栄えを損なうものであり、半導体発光装置としての商品性の低下を招く。また、半導体発光装置を光学式のセンサに用いる場合において、迷光は、検出精度および検出距離などの性能低下を及ぼすことがある。
 本開示は、従来よりも改良が施された半導体発光装置を提供することを一の課題とする。特に本開示は、上記事情に鑑み、迷光を低減することが可能な半導体発光装置を提供することを一の課題とする。
 本開示の第1の側面による半導体発光装置は、半導体発光素子と、前記半導体発光素子を支持する導通支持部材と、前記半導体発光素子を覆う第1樹脂部と、を備え、前記第1樹脂部は、透光性樹脂材料および吸光性粉末を含む。
 上記構成によれば、半導体発光装置は、迷光を低減することができる。
図1は、第1実施形態にかかる半導体発光装置を示す斜視図である。 図2は、第1実施形態にかかる半導体発光装置を示す平面図であって、第1樹脂部およびケースを想像線で示す。 図3は、第1実施形態にかかる半導体発光装置を示す正面図である。 図4は、第1実施形態にかかる半導体発光装置を示す底面図である。 図5は、第1実施形態にかかる半導体発光装置を示す左側面図である。 図6は、第1実施形態にかかる半導体発光装置を示す右側面図である。 図7は、図2のVII-VII線に沿う断面図である。 図8は、第1実施形態の変形例にかかる半導体発光装置を示す平面図である。 図9は、図8のIX-IX線に沿う断面図である。 図10は、第2実施形態にかかる半導体発光装置を示す平面図である。 図11は、図10のXI-XI線に沿う断面図である。 図12は、第2実施形態の第1変形例にかかる半導体発光装置を示す断面図である。 図13は、第2実施形態の第2変形例にかかる半導体発光装置を示す断面図である。 図14は、第2実施形態の第3変形例にかかる半導体発光装置を示す平面図である。 図15は、図14のXV-XV線に沿う断面図である。 図16は、本開示の半導体発光装置の他の変形例を示す断面図である。 図17は、本開示の半導体発光装置の他の変形例を示す断面図である。 図18は、本開示の半導体発光装置の他の変形例を示す断面図である。
 本開示の半導体発光装置の好ましい実施の形態について、図面を参照して、以下に説明する。以下では、同一あるいは類似の構成要素に、同じ符号を付して、重複する説明を省略する。本開示における「第1」、「第2」、「第3」等の用語は、単にラベルとして用いたものであり、必ずしもそれらの対象物に順列を付することを意図していない。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B(の)上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B(の)上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B(の)上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B(の)上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B(の)上に位置していること」を含む。また、「ある方向に見てある物Aがある物Bに重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。また、「ある物A(の材料)がある材料Cを含む」とは、「ある物A(の材料)がある材料Cからなる場合」、および、「ある物A(の材料)の主成分がある材料Cである場合」を含む。
 図1~図7は、第1実施形態にかかる半導体発光装置A1を示している。半導体発光装置A1は、導通支持部材1、半導体発光素子4、ワイヤ5、第1樹脂部61およびケース7を備える。
 説明の便宜上、半導体発光装置A1の厚さ方向を「厚さ方向z」という。以下の説明では、厚さ方向zの一方を上方といい、他方を下方ということがある。なお、「上」、「下」、「上方」、「下方」、「上面」および「下面」などの記載は、厚さ方向zにおける各部品等の相対的位置関係を示すものであり、必ずしも重力方向との関係を規定する用語ではない。また、「平面視」とは、厚さ方向zに見たときをいう。厚さ方向zに対して直交する方向を「第1方向x」という。第1方向xは、半導体発光装置A1の平面図(図2参照)における左右方向である。厚さ方向zおよび第1方向xに直交する方向を「第2方向y」という。第2方向yは、半導体発光装置A1の平面図(図2参照)における上下方向である。
 導通支持部材1は、半導体発光装置A1の土台となるものである。図2および図7に示すように、導通支持部材1には、半導体発光素子4が搭載されている。導通支持部材1は、半導体発光素子4を支持するとともに、半導体発光素子4に電力を供給するための導通経路を構成する。導通支持部材1は、図2および図4に示すように、平面視において、矩形状である。導通支持部材1は、基材2および配線部3を含む。
 基材2は、たとえば絶縁性材料を含む。当該絶縁材料としては、たとえばガラスエポキシ樹脂、セラミック、または、単結晶半導体などが用いられる。基材2は、平面視矩形状である。基材2の平面視形状は、矩形に限定されず、多角形であってもよい。図示された例では、基材2は、平面視において、第1方向xを長手方向とするが、第2方向yを長手方向としてもよい。基材2の大きさは特に限定されないが、基材2の厚さ(厚さ方向zの寸法)は、たとえば0.10mm以上0.50mm以下である。基材2の第1方向xの寸法は、たとえば1.8mm以上2.2mm以下であり、基材2の第2方向yの寸法は、たとえば1.05mm以上1.45mm以下である。
 基材2は、基材主面201、基材裏面202および複数の基材側面203~206を有する。基材主面201および基材裏面202は、厚さ方向zにおいて互いに離間する。基材主面201は、厚さ方向zの上方を向き、基材裏面202は、厚さ方向zの下方を向く。複数の基材側面203~206はそれぞれ、厚さ方向zにおいて基材主面201および基材裏面202に挟まれ、且つ、これらに繋がる。一対の基材側面203,204は、第1方向xに互いに離間し、且つ、第1方向xにおいて互いに反対側を向く。一対の基材側面205,206は、第2方向yに互いに離間し、且つ、第2方向yにおいて互いに反対側を向く。
 基材側面203には、スルーホール部203aが形成されており、基材側面204には、スルーホール部204aが形成されている。スルーホール部203aは、平面視において、基材側面203から基材2の内方に窪んだ部分である。スルーホール部204aは、平面視において、基材側面203から基材2の内方に窪んだ部分である。各スルーホール部203a,204aは、基材主面201から基材裏面202まで厚さ方向zに貫通する。図2および図4に示すように、各スルーホール部203a,204aは、平面視においてたとえば半円状である。
 配線部3は、基材2に形成されており、半導体発光素子4への導通経路を構成する。配線部3は、導電性材料を含む。当該導電性材料は、たとえば銅または銅合金であるが、銅または銅合金のいずれでもなく、ニッケルまたはニッケル合金、金または金合金、鉄または鉄合金、もしくは、アルミニウムまたはアルミニウム合金などである。配線部3は、たとえばめっきにより形成される。配線部3は、一対の主面電極部31,32、一対の側部33,34および一対の裏面電極部35,36を含む。
 一対の主面電極部31,32はそれぞれ、基材主面201に形成される。一対の主面電極部31,32は、第1方向xに互いに離間する。
 主面電極部31は、図2に示すように、ダイボンディング部311、第1端縁部312および第1連結部313を含む。ダイボンディング部311、第1端縁部312および第1端縁部312は、一体的に形成されている。図7に示すように、ダイボンディング部311には、半導体発光素子4が搭載される。ダイボンディング部311は、半導体発光素子4(後述の裏面電極42)に導通する。図示された例では、ダイボンディング部311は、平面視において矩形状である。ダイボンディング部311の平面視形状は、矩形に限定されず、円形、楕円形あるいは多角形などであってもよい。ダイボンディング部311は、平面視における基材主面201の中央を含む領域に形成される。第1端縁部312は、基材主面201のうちのスルーホール部203aに繋がる部分近傍を覆っている。図示された例では、第1端縁部312は、平面視において、スルーホール部203aと同心円状の半円環状をなす。第1連結部313は、ダイボンディング部311と第1端縁部312とを繋ぐ。第1連結部313は、平面視において、第1方向xに延びる帯状である。
 主面電極部32は、図2に示すように、ワイヤボンディング部321、第2端縁部322および第2連結部323を含む。ワイヤボンディング部321、第2端縁部322および第2連結部323は、一体的に形成されている。図7に示すように、ワイヤボンディング部321には、ワイヤ5が接合される。ワイヤボンディング部321は、ワイヤ5を介して、半導体発光素子4(後述の主面電極41)に導通する。ワイヤボンディング部321は、ダイボンディング部311に対して、第1方向xの一方側(図2における左側)に離間して配置される。ワイヤボンディング部321は、平面視において矩形状である。ワイヤボンディング部321の平面視形状は、矩形に限定されず、円形、楕円形あるいは多角形状などであってもよい。第2端縁部322は、基材主面201のうちのスルーホール部204aに繋がる部分近傍を覆っている。図示された例では、第2端縁部322は、平面視において、スルーホール部204aと同心円状の半円環状をなす。第2連結部323は、ワイヤボンディング部321と第2端縁部322とを繋ぐ。第2連結部323は、平面視において、第1方向xに延びる帯状である。
 側部33は、図2および図7に示すように、基材側面203に形成されたスルーホール部203aを覆う。側部33は、主面電極部31(第1端縁部312)および裏面電極部35に繋がる。主面電極部31および裏面電極部35は、側部33を介して、導通する。側部34は、図2および図7に示すように、基材側面204に形成されたスルーホール部204aを覆う。側部34は、主面電極部32(第2端縁部322)および裏面電極部36に繋がる。主面電極部32および裏面電極部36は、側部34を介して、導通する。
 一対の裏面電極部35,36はそれぞれ、図4および図7に示すように、基材裏面202に形成される。一対の裏面電極部35,36は、第1方向xに互いに離間する。裏面電極部35は、側部33に繋がっている。裏面電極部35は、側部33および主面電極部31を介して、半導体発光素子4(後述の裏面電極42)に導通する。裏面電極部36は、側部34に繋がっている。裏面電極部36は、側部34、主面電極部32およびワイヤ5を介して、半導体発光素子4(後述の主面電極41)に導通する。一対の裏面電極部35,36は、たとえば半導体発光装置A1を電子機器等の回路基板(図示略)に実装する際に、はんだなどの導電性接合材によって当該回路基板に接合される。つまり、一対の裏面電極部35,36は、半導体発光装置A1における端子である。
 半導体発光素子4は、半導体発光装置A1の光源である。半導体発光素子4は、たとえばLEDである。半導体発光素子4は、たとえば赤色光または赤外線を発する。半導体発光素子4が発する光の波長は、たとえば610nm以上780nm以下(赤色光)もしくは780nm以上1000μm以下(赤外線)である。なお、半導体発光素子4が発する光の波長は、これらの数値例に限定されない。つまり、半導体発光素子4から発する光は、赤色光または赤外線に限定されない。図7に示すように、半導体発光素子4は、基材主面201上に搭載される。半導体発光素子4は、導電性接合材49を介して、主面電極部31のダイボンディング部311に接合される。導電性接合材49は、たとえばはんだ、焼結金属または金属ペースト材などである。半導体発光素子4の大きさは、何ら限定されないが、一例では次の通りである。半導体発光素子4の厚さは、たとえば130μm以上220μm以下である。半導体発光素子4の第1方向xの寸法は、たとえば320μm以上520μm以下である。半導体発光素子4の第2方向yの寸法は、たとえば320μm以上520μm以下である。
 半導体発光素子4は、素子主面401、素子裏面402および複数の素子側面403~406を有する。素子主面401および素子裏面402は、厚さ方向zに互いに離間する。素子主面401は、厚さ方向z上方を向き、素子裏面402は、厚さ方向z下方を向く。つまり、素子主面401は、基材主面201と同じ方向を向き、素子裏面402は、基材裏面202と同じ方向を向く。素子裏面402は、導通支持部材1に対向する。複数の素子側面403~406はそれぞれ、厚さ方向zにおいて素子主面401および素子裏面402に挟まれ、これらに繋がる。一対の素子側面403,404は、第1方向xに互いに離間し、且つ、第1方向xにおいて互いに反対側を向く。一対の素子側面405,406は、第2方向yに互いに離間し、且つ、第2方向yにおいて互いに反対側を向く。
 半導体発光素子4は、たとえば縦型構造である。半導体発光素子4は、主面電極41および裏面電極42を有する。半導体発光素子4は、主面電極41および裏面電極42間に流れる電流により発光する。図7に示すように、主面電極41は、素子主面401に形成される。主面電極41には、ワイヤ5が接合される。主面電極41は、ワイヤ5を介して、ワイヤボンディング部321に導通する。図7に示すように、裏面電極42は、素子裏面402に形成される。裏面電極42は、導電性接合材49を介してダイボンディング部311に導通する。
 ワイヤ5は、互いに離間する2つの部位を電気的に接続する。ワイヤ5は、ボンディングワイヤである。ワイヤ5は、たとえば金、アルミニウムまたは銅のいずれかを含む。
 ワイヤ5は、一対の接合部51,52および接続部53を含む。接合部51は、ワイヤ5のうち主面電極41に接合された部位である。接合部52は、ワイヤ5のうちワイヤボンディング部321に接合された部位である。接続部53は、ワイヤ5のうち一対の接合部51,52を接続する部位である。図示された例において、ワイヤ5のループ形状は、三角形状であるが、台形形状であってもよい。
 第1樹脂部61は、導通支持部材1に支持される。第1樹脂部61は、半導体発光素子4およびワイヤ5を覆う。第1樹脂部61は、透光性樹脂材料および吸光性粉末を含む。第1樹脂部61は、透光性樹脂材料に吸光性粉末を混ぜたものであり、第1樹脂部61において、透光性樹脂材料に吸光性粉末が分散されている。
 透光性樹脂材料は、たとえばエポキシ樹脂またはシリコーン樹脂を含む。本実施形態において、透光性樹脂材料は、透明であるが、半透明であってもよい。また、透光性樹脂材料は、蛍光材料を含んでいてもよい。この場合、半導体発光素子4からの光によって蛍光材料が励起されることにより、半導体発光装置A1は、半導体発光素子4からの光とは異なる波長域の光を発する。
 吸光性粉末は、半導体発光素子4からの光を吸光するものである。第1樹脂部61における吸光性粉末の含有割合が多い程、半導体発光素子4から発せられた光の光度が低減する。本実施形態では、第1樹脂部61における吸光性粉末の含有割合は、たとえば0.1%以上10%以下(好ましくは0.5%以上0.7%以下)である。本実施形態における吸光性粉末は、たとえばチタンブラック(酸窒化チタン)である。吸光性粉末がチタンブラックである例において、吸光性粉末の透過率は、カーボンブラックの透過率と比べて、赤色光および赤外線の各波長に対して低く、紫光および紫外線の各波長に対して高い。また、吸光性粉末の粒径は、何ら限定されないが、たとえば62nm以上75nm以下である。なお、吸光性粉末は、半導体発光素子4からの光を吸光する材料であればよい。たとえばチタンブラックではなくカーボンブラックであってもよい。
 第1樹脂部61は、平面視において矩形状である。第1樹脂部61は、第1樹脂主面611、第1樹脂裏面612および複数の第1樹脂側面613~616を有する。第1樹脂主面611および第1樹脂裏面612は、厚さ方向zに離間する。第1樹脂主面611は、厚さ方向z上方を向き、第1樹脂裏面612は、厚さ方向z下方を向く。複数の第1樹脂側面613~616はそれぞれ、厚さ方向zにおいて、第1樹脂主面611および第1樹脂裏面612に挟まれ、これらに繋がる。一対の第1樹脂側面613,614は、第1方向xに離間する。一対の第1樹脂側面613,614は、第1方向xにおいて、互いに反対側を向く。一対の第1樹脂側面613,614は、一対の素子側面403,404と第1方向xにおいてそれぞれ同じ方向を向く。一対の第1樹脂側面615,616は、第2方向yに離間する。一対の第1樹脂側面615,616は、第2方向yにおいて、互いに反対側を向く。一対の第1樹脂側面615,616は、一対の素子側面405,406と第2方向yにおいてそれぞれ同じ方向を向く。
 第1樹脂部61の大きさの一例は、次の通りである。第1樹脂部61の厚さ(第1樹脂主面611と第1樹脂裏面612との厚さ方向zに沿う寸法)は、20μm以上400μm以下である。第1樹脂部61の第1方向xの寸法(一対の第1樹脂側面613,614の第1方向xに沿う寸法)は、390μm以上1.4mm以下である。第1樹脂部61の第2方向yの寸法(一対の第1樹脂側面615,616の第2方向yに沿う寸法)は、390μm以上650μm以下である。
 また、第1樹脂部61は、たとえば、次の寸法関係がある。それは、第1樹脂部61のうちの半導体発光素子4の上方を覆う部分の厚さ(以下「被覆厚」という)が、第1樹脂部61のうちの半導体発光素子4の側方を覆う部分の幅(以下「被覆幅」という)に対して、1%以上103%以下である。本実施形態では、被覆厚として、素子主面401と第1樹脂主面611との厚さ方向zに沿う距離d1(図7参照)が用いられ、被覆幅として、素子側面404と第1樹脂側面614との第1方向xに沿う距離d2(図7参照)が用いられる。つまり、本実施形態では、距離d1は、距離d2に対して1%以上103%以下である。なお、被覆幅は、素子側面404と第1樹脂側面614との第1方向xに沿う距離d2ではなく、第1樹脂側面613と素子側面403との第1方向xに沿う距離を用いてもよいし、第1樹脂側面615と素子側面405との第2方向yに沿う距離を用いてもよいし、第1樹脂側面616と素子側面406との第2方向yに沿う距離を用いてもよい。本実施形態における被覆幅は、これらの距離(距離d2を含む)のうち、相対的に一番大きい値である距離d2を用いているが、この構成と異なり、相対的に一番小さい値であってもよい。または、第1樹脂部61に吸光性粉末が含まれない場合における迷光の発生箇所を基に、被覆幅とする長さを決めてもよい。
 ケース7は、図3および図5~図7に示すように、基材主面201に配置される。ケース7は、導通支持部材1に対して、厚さ方向zにおいて半導体発光素子4が配置される側に配置される。図1および図2に示すように、ケース7は、枠体である。ケース7は、平面視において、半導体発光素子4および第1樹脂部61を囲む。ケース7の材料は、何ら限定されないが、たとえばエポキシ樹脂またはシリコーン樹脂などである。ケース7の色は、何ら限定されないが、好ましくは黒色である。
 ケース7は、上面71、複数の外面731~734および複数の内面741~744を有する。上面71は、図1および図2に示すように、矩形環状である。図示された例では、図7に示すように、上面71は、第1樹脂主面611と面一である。この例とは異なり、第1樹脂主面611が、上面71に対して厚さ方向z下方に窪んでいてもよいし、上面71に対して厚さ方向z上方に突き出ていてもよい。複数の外面731~734はそれぞれ、上面71に繋がる。一対の外面731,732は、第1方向xにおいて互いに離間する。一対の外面731,732は、第1方向xにおいて互いに反対側を向く。一対の外面733,734は、第2方向yにおいて互いに離間する。一対の外面733,734は、第2方向yにおいて互いに反対側を向く。複数の外面731~734は、複数の基材側面203~206とそれぞれ面一である。一対の内面741~744はそれぞれ、上面71に繋がる。一対の内面741,742は、第1方向xにおいて互いに反対側を向く。一対の内面741,742は、第1方向xにおいて互いに向かい合う。一対の内面743,744は、第2方向yにおいて離間する。一対の内面743,744は、第2方向yにおいて互いに向かい合う。複数の内面741~744は、複数の第1樹脂側面613~616にそれぞれ接する。
 半導体発光装置A1の作用効果は、次の通りである。
 半導体発光装置A1は、半導体発光素子4を覆う第1樹脂部61を備える。第1樹脂部61は、透光性樹脂材料および吸光性粉末を含む。この構成によれば、半導体発光素子4からの光は、第1樹脂部61の吸光性粉末に吸収されて減少する。したがって、半導体発光素子4からの拡散光、および、各部位の界面(たとえば、第1樹脂部61と導通支持部材1との界面および第1樹脂部61とケース7との界面など)で反射した反射光などを低減させることができる。つまり、半導体発光装置A1は、迷光を低減できる。このため、半導体発光装置A1を、より明瞭な点光源として発光させることが可能となる。
 半導体発光装置A1では、第1樹脂部61における吸光性粉末の含有割合が0.1%以上10%以下である。この吸光性粉末の含有割合が多い程、迷光を低減する効果を得られるが、一方で、光度低下を招く。反対に、この吸光性粉末の含有割合が少ない程、光度低下を抑制できるが、一方で、迷光を低減する効果が弱くなる。そこで、半導体発光装置A1では、第1樹脂部61における吸光性粉末の含有割合を上記範囲(0.1%以上10%以下)内にすることで、迷光を低減しつつ、光度の低下を抑制できる。
 半導体発光装置A1では、第1樹脂部61の吸光性粉末は、チタンブラックである。この構成によれば、赤色光または赤外線の各波長に対する透過率が、カーボンブラックである場合よりも低い。つまり、半導体発光装置A1は、第1樹脂部61の吸光性粉末がカーボンブラックである場合よりも、赤色光または赤外線の迷光を低減できる。したがって、半導体発光装置A1は、半導体発光素子4が赤色光または赤外線を発する構成において、迷光を低減することに有効である。また、チタンブラックは、カーボンブラックよりも電気絶縁性に優れているので、半導体発光装置A1は、第1樹脂部61の吸光性粉末がカーボンブラックである場合よりも、電気絶縁性を向上する。
 半導体発光装置A1では、ケース7は、黒色樹脂を含む。この構成によれば、ケース7と第1樹脂部61との界面における光の反射が低減される。したがって、半導体発光装置A1は、さらに迷光を低減できる。
 半導体発光装置A1では、素子主面401と第1樹脂主面611との厚さ方向zに沿う距離d1(上記被覆厚)は、素子側面404と第1樹脂側面614との第1方向xに沿う距離d2(上記被覆幅)に対して1%以上103%以下である。半導体発光素子4は第1樹脂部61に覆われているため、半導体発光素子4から厚さ方向z上方に発せられた光は第1樹脂部61の吸光性粉末によって低減される。つまり、半導体発光素子4から厚さ方向z上方に照射される光の光度が低下する。そこで、半導体発光装置A1では、迷光を低減できる適度な被覆幅(たとえば距離d2)を確保した上で、距離d1を距離d2に対して上記範囲(1%以上103%以下)内にすることで、上記被覆厚を小さくしている。これにより、半導体発光装置A1は、迷光を低減する上で適度な被覆幅を確保しつつ、厚さ方向z上方における光度低下を抑制できる。つまり、半導体発光装置A1は、指向性の向上を図ることができる。
 以下に、本開示の半導体発光装置の他の実施形態および変形例について、説明する。なお、各実施形態および各変形例における各部の構成は、技術的な矛盾が生じない範囲において相互に組み合わせ可能である。
 図8および図9は、第1実施形態の変形例にかかる半導体発光装置A11を示している。半導体発光装置A11は、半導体発光装置A1と比較して、第1樹脂部61に凹部619が形成されている点で異なる。
 図9に示すように、凹部619は、第1樹脂主面611から厚さ方向z下方に窪む。凹部619は、半導体発光素子4の厚さ方向z上方に配置される。図示された例では、凹部619は、角錐台状である。この構成と異なり、凹部619は、円錐台状であってもよい。
 凹部619は、底部619aおよび壁部619bを含む。図9に示すように、底部619aは、厚さ方向zにおいて、第1樹脂主面611と第1樹脂裏面612との間に位置する。本実施形態では、底部619aは、厚さ方向zにおいて、ワイヤ5の頂部54よりも厚さ方向z上方に位置する。図8に示すように、底部619aは、平面視において、半導体発光素子4に重なる。図示された例では、底部619aは、平面視矩形状である。底部619aの平面視形状は、矩形に限定されず、円形、楕円形、多角形であってもよい。壁部619bは、底部619aと第1樹脂主面611とに繋がる。図示された例では、壁部619bは、厚さ方向zに対して傾斜するが、厚さ方向zに平行であってもよい。
 半導体発光装置A11においても、半導体発光装置A1と同様に、第1樹脂部61は、透光性樹脂材料および吸光性粉末を含むので、迷光を低減できる。このため、半導体発光装置A11を、より明瞭な点光源として発光させることが可能となる。
 半導体発光装置A11では、第1樹脂部61には、凹部619が形成されている。この構成によれば、第1樹脂部61は、半導体発光素子4の厚さ方向z上方の部分が薄くなる。したがって、半導体発光素子4から厚さ方向z上方に照射される光に対して、第1樹脂部61の吸光性粉末による光度低下が抑制される。つまり、半導体発光装置A11は、迷光を抑制しつつ、厚さ方向z上方における光度低下を抑制できる。
 図10および図11は、第2実施形態にかかる半導体発光装置A2を示している。半導体発光装置A2は、半導体発光装置A1と比較して、第2樹脂部62をさらに備える点で異なる。
 第2樹脂部62は、第1樹脂部61の第1樹脂主面611上に配置される。第2樹脂部62は、第1樹脂部61と同様に、ケース7に囲まれる。半導体発光素子4からの光の波長に対して、第2樹脂部62の吸光度は、第1樹脂部61の吸光度よりも低い。つまり、第1樹脂部61の吸光度は、第2樹脂部62の吸光度よりも高い。本実施形態では、第2樹脂部62は、透光性樹脂を含む。この透光性樹脂としては、たとえばエポキシ樹脂またはシリコーン樹脂が用いられる。この透光性樹脂は、透明であるが、半透明であってもよい。また、この透光性樹脂は、酸化チタンまたは蛍光材料を含んでいてもよい。第2樹脂部62は、第1樹脂部61と異なり、吸光性粉末を含んでいないが、上記吸光度の関係を満たせば、第2樹脂部62は、吸光性粉末を含んでいてもよい。
 第2樹脂部62は、図10および図11に示すように、第2樹脂主面621、第2樹脂裏面622および複数の第2樹脂側面623~626を有する。第2樹脂主面621および第2樹脂裏面622は、厚さ方向zに互いに離間し、且つ、互いに反対側を向く。第2樹脂裏面622は、第2樹脂主面621に接する。複数の第2樹脂側面623~626はそれぞれ、厚さ方向zにおいて、第2樹脂主面621および第2樹脂裏面622に挟まれ、これらに繋がる。一対の第2樹脂側面623,624は、第1方向xにおいて互いに離間する。一対の第2樹脂側面623,624は、第1方向xにおいて互いに反対側を向く。第2樹脂側面623は、第1樹脂側面613と面一であり、ケース7の内面741に接する。第2樹脂側面624は、第1樹脂側面614と面一であり、ケース7の内面742に接する。一対の第2樹脂側面625,626は、第2方向yにおいて互いに離間する。一対の第2樹脂側面625,626は、第2方向yにおいて互いに反対側を向く。第2樹脂側面625は、第1樹脂側面615と面一であり、ケース7の内面743に接する。第2樹脂側面626は、第1樹脂側面616と面一であり、ケース7の内面744に接する。
 半導体発光装置A2では、第1樹脂部61と第2樹脂部62との界面(第1樹脂主面611および第2樹脂裏面622)は、厚さ方向zにおいて、素子主面401と素子裏面402との間に位置する。このため、第1樹脂部61は、各素子側面403~406のうちの厚さ方向z下方部分(たとえば厚さ方向z下方側の半分)を覆う。また、第2樹脂部62は、各素子側面403~406のうちの厚さ方向z上方部分(たとえば厚さ方向z上方側の半分)、および、素子主面401を覆う。
 半導体発光装置A2では、ワイヤ5の厚さ方向z上方側の頂部54は、第1樹脂部61上に位置し、第2樹脂部62に覆われている。
 半導体発光装置A2においても、半導体発光装置A1と同様に、第1樹脂部61は、透光性樹脂材料および吸光性粉末を含んでいるので、迷光を低減できる。このため、半導体発光装置A2を、より明瞭な点光源として発光させることが可能となる。なお、半導体発光装置A2においては、半導体発光素子4から半導体発光素子4の側方(厚さ方向zに直交する方向)に放出される光の一部、および、導通支持部材1と第1樹脂部61と界面における反射光が、第1樹脂部61の吸光性粉末によって低減されるので、これらの光に起因する迷光が低減される。
 半導体発光装置A2では、第1樹脂部61上に第2樹脂部62が配置されている。半導体発光素子4の素子主面401は、第1樹脂部61から露出し、第2樹脂部62に覆われている。この構成によれば、半導体発光素子4から厚さ方向z上方に発せられた光は、光度があまり低下することなく、半導体発光装置A2から照射される。つまり、半導体発光装置A2は、厚さ方向z上方における光度低下を抑制できる。
 図12は、第2実施形態の第1変形例にかかる半導体発光装置A21を示している。半導体発光装置A21は、半導体発光装置A2と比較して、次の点で異なる。それは、図12に示すように、半導体発光装置A21の第1樹脂部61の厚さが、半導体発光装置A2の第1樹脂部61の厚さよりも大きい。一方で、半導体発光装置A21の第2樹脂部62の厚さが、半導体発光装置A2の第2樹脂部62の厚さよりも小さい。
 半導体発光装置A21では、第1樹脂部61と第2樹脂部62との界面(第1樹脂主面611および第2樹脂裏面622)は、厚さ方向zにおいて、半導体発光素子4の素子主面401と同じ位置にある。このため、第1樹脂部61は、各素子側面403~406をすべて覆う。また、第2樹脂部62は、素子主面401を覆う。
 半導体発光装置A21では、半導体発光装置A2と同様に、ワイヤ5の厚さ方向z上方側の頂部54は、第1樹脂部61上に位置し、第2樹脂部62に覆われている。
 半導体発光装置A21においても、半導体発光装置A2と同様に、迷光を低減することができる。このため、半導体発光装置A21を、より明瞭な点光源として発光させることが可能となる。なお、半導体発光装置A21においては、半導体発光素子4の各素子側面403~406はすべて、第1樹脂部61に覆われているので、第1樹脂部61の吸光性粉末によって、半導体発光素子4から半導体発光素子4の側方(厚さ方向zに直交する方向)に放出される光を、半導体発光装置A2よりも低減できる。つまり、半導体発光装置A21は、半導体発光装置A2よりも迷光を低減できる。また、半導体発光装置A21においても、半導体発光装置A2と同様に、半導体発光素子4の素子主面401が、第1樹脂部61から露出するので、厚さ方向z上方における光度の低下を抑制できる。
 図13は、第2実施形態の第2変形例にかかる半導体発光装置A22を示している。半導体発光装置A22は、半導体発光装置A21と比較して、次の点で異なる。それは、図13に示すように、半導体発光装置A22の第1樹脂部61の厚さが、半導体発光装置A21の第1樹脂部61の厚さよりも大きい。一方で、半導体発光装置A22の第2樹脂部62の厚さが、半導体発光装置A21の第2樹脂部62の厚さよりも小さい。
 半導体発光装置A22では、第1樹脂部61と第2樹脂部62との界面(第1樹脂主面611および第2樹脂裏面622)は、ワイヤ5の頂部54よりも厚さ方向z上方に位置する。このため、第1樹脂部61は、素子主面401および各素子側面403~406をすべて覆う。つまり、半導体発光素子4はすべて、第1樹脂部61に覆われている。なお、図示された例とは異なり、第1樹脂部61と第2樹脂部62との界面は、厚さ方向zにおいて、頂部54と同じ位置であってもよい。
 半導体発光装置A22では、ワイヤ5の厚さ方向z上方側の頂部54は、第1樹脂部61に覆われている。つまり、ワイヤ5はすべて、第1樹脂部61に覆われている。
 半導体発光装置A22においても、各半導体発光装置A2,A21と同様に、迷光を低減することができる。このため、半導体発光装置A22を、より明瞭な点光源として発光させることが可能となる。なお、半導体発光装置A22においては、半導体発光素子4の素子主面401は、第1樹脂部61に覆われているが、半導体発光装置A1よりも半導体発光素子4上方の第1樹脂部61の厚さが小さいので、半導体発光装置A1よりも厚さ方向z上方に照射される光の光度低下を抑制できる。また、半導体発光装置A22においては、ワイヤ5の頂部54が、第1樹脂部61に覆われている(ワイヤ5はすべて、第1樹脂部61に覆われている)。この構成によれば、ワイヤ5が第1樹脂部61によって見え難くなるので、半導体発光装置A22の見栄えをよくすることができる。
 図14および図15は、第2実施形態の第3変形例にかかる半導体発光装置A23を示している。半導体発光装置A23は、各半導体発光装置A2,A21,A22と比較して、次の点で異なる。すなわち、図14および図15に示すように、第1樹脂部61と第2樹脂部62との位置関係が異なる。
 半導体発光装置A23では、第1樹脂部61は、枠状に形成されている。第1樹脂部61は、平面視において、第2樹脂部62を囲む。第2樹脂部62は、半導体発光素子4の厚さ方向z上方に配置される。
 半導体発光装置A23では、第1樹脂部61と第2樹脂部62との界面(各第2樹脂側面623~626)は、平面視において、各素子側面403~406に重なる。このため、第1樹脂部61は、各素子側面403~406をすべて覆う。また、第2樹脂部62は、素子主面401を覆う。図示された例とは異なり、第1樹脂部61と第2樹脂部62との界面は、平面視において、各素子側面403~406よりも半導体発光素子4の内方に位置していてもよい。
 半導体発光装置A23においても、各半導体発光装置A2,A21,A22と同様に、迷光を低減することができる。このため、半導体発光装置A23を、より明瞭な点光源として発光させることが可能となる。また、半導体発光装置A23は、各半導体発光装置A2,A21,A22と同様に、厚さ方向z上方に照射される光の光度低下を抑制できる。
 第1実施形態、第2実施形態およびこれらの変形例において、導通支持部材1の構成は、上記した例に限定されず、たとえば図16または図17に示す構成としてもよい。図16および図17はそれぞれ、半導体発光装置A1において、導通支持部材1の構成を変えた例を示している。なお、半導体発光装置A1ではなく、各半導体発光装置A11,A2,A21~A23において、導通支持部材1の構成を同様に変えてもよい。
 図16に示す導通支持部材1は、側部33の代わりに貫通部37を含み、且つ、側部34の代わりに貫通部38を含む。各貫通部37,38は、基材2を厚さ方向zに貫通する。貫通部37は、主面電極部31および裏面電極部35にそれぞれ接している。よって、主面電極部31と裏面電極部35とが、貫通部37を介して導通する。貫通部38は、主面電極部32および裏面電極部36にそれぞれ接している。よって、主面電極部32と裏面電極部36とが、貫通部38を介して導通する。
 図17に示す導通支持部材1は、第1リード11、第2リード12および絶縁部19を含む。第1リード11および第2リード12は、板状の金属部材である。第1リード11および第2リード12は、互いに離間する。第1リード11には、導電性接合材49を介して半導体発光素子4が接合される。第2リード12には、ワイヤ5が接合される。絶縁部19は、第1リード11と第2リード12とを絶縁する。絶縁部19の材料は、何ら限定されないが、たとえばエポキシ樹脂などの絶縁性樹脂を含む。
 図16および図17に示す構成であっても、半導体発光装置A1と同様に、迷光を低減できる。
 第1実施形態、第2実施形態およびこれらの変形例において、ケース7を備える例を示したが、たとえば図18に示すように、ケース7を備えていなくてもよい。図18は、半導体発光装置A1においてケース7を設けない例を示している。なお、半導体発光装置A1ではなく、各半導体発光装置A11,A2,A21~A23において、ケース7を設けなくてもよい。図18に示す構成では、第1樹脂部61の各第1樹脂側面613,614が、厚さ方向zに平行する例を示しているが、当該第1樹脂側面613,614が厚さ方向zに対して傾斜していてもよい。この場合、たとえば、各第1樹脂側面613,614は、厚さ方向z上方に向かうにつれて、厚さ方向zに直交する平面での面積が小さくなるように傾斜していてもよい。同様に、第1樹脂部61の各第1樹脂側面615,616は、厚さ方向zに平行していてもよいし、厚さ方向zに対して傾斜していてもよい。
 第1実施形態、第2実施形態およびこれらの変形例において、半導体発光素子4は、縦型構造である例を示したが、半導体発光素子4は、横型構造であってもよい。この場合、半導体発光素子4の2つの電極がそれぞれ素子主面401に配置されているので、2つの電極の一方と主面電極部31とが第1ワイヤで電気的に接続され、2つの電極の他方と主面電極部32とが第2ワイヤで電気的に接続される。
 本開示にかかる半導体発光装置は、上記した実施形態に限定されるものではない。本開示の半導体発光装置の各部の具体的な構成は、種々に設計変更自在である。たとえば、本開示は、以下の付記に記載された実施形態を含む。
 付記1.
 半導体発光素子と、
 前記半導体発光素子を支持する導通支持部材と、
 前記半導体発光素子を覆う第1樹脂部と、
を備え、
 前記第1樹脂部は、透光性樹脂材料および吸光性粉末を含む、半導体発光装置。
 付記2.
 前記導通支持部材は、基材および配線部を有し、
 前記基材は、厚さ方向の一方を向く基材主面を有し、
 前記半導体発光素子は、前記基材主面に搭載され、
 前記配線部は、前記半導体発光素子に導通する、付記1に記載の半導体発光装置。
 付記3.
 前記基材は、前記厚さ方向において前記基材主面と反対側を向く基材裏面を有し、
 前記配線部は、前記基材裏面に形成された裏面電極部を含む、付記2に記載の半導体発光装置。
 付記4.
 前記半導体発光素子は、前記厚さ方向において前記基材主面と同じ方向を向く素子主面と、前記厚さ方向に直交する第1方向の一方を向く素子側面とを有し、
 前記第1樹脂部は、前記厚さ方向において前記素子主面と同じ方向を向く第1樹脂主面と、前記第1方向において前記素子側面と同じ方向を向く第1樹脂側面と、を有する、付記2または付記3に記載の半導体発光装置。
 付記5.
 前記素子主面と前記第1樹脂主面との前記厚さ方向に沿う距離は、前記素子側面と前記第1樹脂側面との前記第1方向に沿う距離に対して1%以上103%以下である、付記4に記載の半導体発光装置。
 付記6.
 前記半導体発光素子と前記配線部とを電気的に接続するワイヤをさらに備え、
 前記半導体発光素子は、前記素子主面に主面電極を有し、
 前記ワイヤは、前記主面電極に接合される、付記4または付記5に記載の半導体発光装置。
 付記7.
 前記第1樹脂主面上に配置された第2樹脂部をさらに備える、付記6に記載の半導体発光装置。
 付記8.
 前記ワイヤの前記厚さ方向の一方側の頂部は、前記第1樹脂部上に位置し、且つ、前記第2樹脂部に覆われている、付記7に記載の半導体発光装置。
 付記9.
 前記第1樹脂部は、前記素子側面を覆い、
 前記第2樹脂部は、前記素子主面を覆う、付記8に記載の半導体発光装置。
 付記10.
 前記第1樹脂部の吸光度は、前記第2樹脂部の吸光度よりも高い、付記7ないし付記9のいずれかに記載の半導体発光装置。
 付記11.
 前記第2樹脂部は、透光性樹脂を含む、付記7ないし付記10のいずれかに記載の半導体発光装置。
 付記12.
 前記基材主面に配置されたケースをさらに備え、
 前記ケースは、前記厚さ方向に見て前記半導体発光素子および前記第1樹脂部を囲む、付記4ないし付記11のいずれかに記載の半導体発光装置。
 付記13.
 前記ケースは、黒色樹脂を含む、付記12に記載の半導体発光装置。
 付記14.
 赤色光または赤外線の波長に対して、前記吸光性粉末の透過率は、カーボンブラックの透過率よりも低い、付記1ないし付記13のいずれかに記載の半導体発光装置。
 付記15.
 前記吸光性粉末は、チタンブラックである、付記1ないし付記14のいずれかに記載の半導体発光装置。
 付記16.
 前記第1樹脂部における前記吸光性粉末の含有割合は、0.1%以上10%以下である、付記1ないし付記15のいずれかに記載の半導体発光装置。
A1,A11,A2,A21,A22,A23:半導体発光装置
1:導通支持部材    11:第1リード
12:第2リード    19:絶縁部
2:基材    201:基材主面
202:基材裏面    203~206:基材側面
203a,204a:スルーホール部    3:配線部
31:主面電極部    311:ダイボンディング部
312:第1端縁部    313:第1連結部
32:主面電極部    321:ワイヤボンディング部
322:第2端縁部    323:第2連結部
33,34:側部    35,36:裏面電極部
37,38:貫通部    4:半導体発光素子
401:素子主面    402:素子裏面
403~406:素子側面    41:主面電極
42:裏面電極    49:導電性接合材
5:ワイヤ    51:接合部
52:接合部    53:接続部
54:頂部    61:第1樹脂部
611:第1樹脂主面    612:第1樹脂裏面
613~616:第1樹脂側面    619:凹部
619a:底部    619b:壁部
62:第2樹脂部    621:第2樹脂主面
622:第2樹脂裏面    623~626:第2樹脂側面
7:ケース    71:上面
731~734:外面    741~744:内面

Claims (16)

  1.  半導体発光素子と、
     前記半導体発光素子を支持する導通支持部材と、
     前記半導体発光素子を覆う第1樹脂部と、
    を備え、
     前記第1樹脂部は、透光性樹脂材料および吸光性粉末を含む、半導体発光装置。
  2.  前記導通支持部材は、基材および配線部を有し、
     前記基材は、厚さ方向の一方を向く基材主面を有し、
     前記半導体発光素子は、前記基材主面に搭載され、
     前記配線部は、前記半導体発光素子に導通する、請求項1に記載の半導体発光装置。
  3.  前記基材は、前記厚さ方向において前記基材主面と反対側を向く基材裏面を有し、
     前記配線部は、前記基材裏面に形成された裏面電極部を含む、請求項2に記載の半導体発光装置。
  4.  前記半導体発光素子は、前記厚さ方向において前記基材主面と同じ方向を向く素子主面と、前記厚さ方向に直交する第1方向の一方を向く素子側面とを有し、
     前記第1樹脂部は、前記厚さ方向において前記素子主面と同じ方向を向く第1樹脂主面と、前記第1方向において前記素子側面と同じ方向を向く第1樹脂側面と、を有する、請求項2または請求項3に記載の半導体発光装置。
  5.  前記素子主面と前記第1樹脂主面との前記厚さ方向に沿う距離は、前記素子側面と前記第1樹脂側面との前記第1方向に沿う距離に対して1%以上103%以下である、請求項4に記載の半導体発光装置。
  6.  前記半導体発光素子と前記配線部とを電気的に接続するワイヤをさらに備え、
     前記半導体発光素子は、前記素子主面に主面電極を有し、
     前記ワイヤは、前記主面電極に接合される、請求項4または請求項5に記載の半導体発光装置。
  7.  前記第1樹脂主面上に配置された第2樹脂部をさらに備える、請求項6に記載の半導体発光装置。
  8.  前記ワイヤの前記厚さ方向の一方側の頂部は、前記第1樹脂部上に位置し、且つ、前記第2樹脂部に覆われている、請求項7に記載の半導体発光装置。
  9.  前記第1樹脂部は、前記素子側面を覆い、
     前記第2樹脂部は、前記素子主面を覆う、請求項8に記載の半導体発光装置。
  10.  前記第1樹脂部の吸光度は、前記第2樹脂部の吸光度よりも高い、請求項7ないし請求項9のいずれかに記載の半導体発光装置。
  11.  前記第2樹脂部は、透光性樹脂を含む、請求項7ないし請求項10のいずれかに記載の半導体発光装置。
  12.  前記基材主面に配置されたケースをさらに備え、
     前記ケースは、前記厚さ方向に見て前記半導体発光素子および前記第1樹脂部を囲む、請求項4ないし請求項11のいずれかに記載の半導体発光装置。
  13.  前記ケースは、黒色樹脂を含む、請求項12に記載の半導体発光装置。
  14.  赤色光または赤外線の波長に対して、前記吸光性粉末の透過率は、カーボンブラックの透過率よりも低い、請求項1ないし請求項13のいずれかに記載の半導体発光装置。
  15.  前記吸光性粉末は、チタンブラックである、請求項1ないし請求項14のいずれかに記載の半導体発光装置。
  16.  前記第1樹脂部における前記吸光性粉末の含有割合は、0.1%以上10%以下である、請求項1ないし請求項15のいずれかに記載の半導体発光装置。
PCT/JP2023/005472 2022-03-17 2023-02-16 半導体発光装置 WO2023176291A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043109 2022-03-17
JP2022-043109 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176291A1 true WO2023176291A1 (ja) 2023-09-21

Family

ID=88022969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005472 WO2023176291A1 (ja) 2022-03-17 2023-02-16 半導体発光装置

Country Status (1)

Country Link
WO (1) WO2023176291A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289441A (ja) * 2008-05-27 2009-12-10 Rohm Co Ltd Ledランプおよびその製造方法
JP2011091101A (ja) * 2009-10-20 2011-05-06 Stanley Electric Co Ltd 発光装置および発光装置の製造方法
JP2020188094A (ja) * 2019-05-13 2020-11-19 ローム株式会社 半導体発光装置
WO2021017711A1 (zh) * 2019-07-26 2021-02-04 泉州三安半导体科技有限公司 发光装置封装件和显示装置
JP2022015703A (ja) * 2020-07-09 2022-01-21 シチズン電子株式会社 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289441A (ja) * 2008-05-27 2009-12-10 Rohm Co Ltd Ledランプおよびその製造方法
JP2011091101A (ja) * 2009-10-20 2011-05-06 Stanley Electric Co Ltd 発光装置および発光装置の製造方法
JP2020188094A (ja) * 2019-05-13 2020-11-19 ローム株式会社 半導体発光装置
WO2021017711A1 (zh) * 2019-07-26 2021-02-04 泉州三安半导体科技有限公司 发光装置封装件和显示装置
JP2022015703A (ja) * 2020-07-09 2022-01-21 シチズン電子株式会社 発光装置

Similar Documents

Publication Publication Date Title
US7763905B2 (en) Semiconductor light-emitting device
US6833566B2 (en) Light emitting diode with heat sink
US7994518B2 (en) Light-emitting diode
US8115106B2 (en) Surface mount device
US10193040B2 (en) LED package with a plurality of LED chips
US20090194783A1 (en) Light emitting element, production method thereof, backlight unit having the light emitting element, and production method thereof
JP4166611B2 (ja) 発光装置用パッケージ、発光装置
JP4082544B2 (ja) 裏面実装チップ型発光装置
US20170186735A1 (en) Led module
US6686218B2 (en) Method for packaging a high efficiency electro-optics device
US20080210968A1 (en) Light-emitting diode
US20130062643A1 (en) Light emitting device
JP4913099B2 (ja) 発光装置
JP3851418B2 (ja) 赤外線データ通信モジュール
JP2002043632A (ja) 発光ダイオード
WO2023176291A1 (ja) 半導体発光装置
JP4908669B2 (ja) チップ型発光素子
US8237188B2 (en) Light source
KR100751084B1 (ko) 발광소자
JP6087098B2 (ja) 光源装置、ledランプ、および液晶表示装置
JP3985363B2 (ja) 光伝送素子
JP2001358367A (ja) チップ型発光素子
JPH04107861U (ja) 発光表示装置
CN216389362U (zh) 发光结构及光源模块
JP7141277B2 (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770251

Country of ref document: EP

Kind code of ref document: A1