WO2021017219A1 - 一种永磁铁氧体磁环磁粉及其制备方法 - Google Patents

一种永磁铁氧体磁环磁粉及其制备方法 Download PDF

Info

Publication number
WO2021017219A1
WO2021017219A1 PCT/CN2019/113538 CN2019113538W WO2021017219A1 WO 2021017219 A1 WO2021017219 A1 WO 2021017219A1 CN 2019113538 W CN2019113538 W CN 2019113538W WO 2021017219 A1 WO2021017219 A1 WO 2021017219A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
oxide
magnetic powder
anisotropic
magnetic
Prior art date
Application number
PCT/CN2019/113538
Other languages
English (en)
French (fr)
Inventor
孔苏红
Original Assignee
南京唐壹信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京唐壹信息科技有限公司 filed Critical 南京唐壹信息科技有限公司
Publication of WO2021017219A1 publication Critical patent/WO2021017219A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to the technical field of magnetic materials, in particular to a method for preparing permanent ferrite magnetic ring magnetic powder.
  • Magnetic materials commonly referred to as magnetic materials, refer to strong magnetic materials. They are ancient and widely used functional materials. The magnetic properties of materials have been known and applied as early as 3000 years ago. For example, natural magnets were used as compasses in ancient China. . Modern magnetic materials have been widely used in our lives. For example, permanent magnetic materials are used as motors, core materials in transformers, magneto-optical disks used as memories, and magnetic recording floppy disks for computers. According to Big Bit Information, magnetic materials are closely related to all aspects of informatization, automation, mechatronics, national defense, and the national economy. It is generally believed that magnetic materials refer to materials that can directly or indirectly generate magnetism from transition elements such as iron, cobalt, nickel and their alloys.
  • Magnetic materials can be divided into soft magnetic materials and hard magnetic materials according to the difficulty of demagnetization after magnetization. Substances that are easy to demagnetize after magnetization are called soft magnetic materials, and those that are not easy to demagnetize are called hard magnetic materials. Generally speaking, the remanence of soft magnetic materials is relatively small, and that of hard magnetic materials is relatively large.
  • the main advantages of magnetic materials are: low density, high impact resistance, products can be processed by cutting, drilling, welding, lamination and embossing, and will not be broken during use, and are easy to process into high-precision, thin
  • composite magnetic materials which is a promising basic functional material.
  • With the wide application of magnetic materials more and more fields need to use magnetic materials, and the requirements for magnetic materials are getting higher and higher.
  • the existing magnetic materials have poor elasticity and stretchability and affect the environment.
  • the purpose of the present invention is to provide a permanent ferrite magnetic ring magnetic powder in view of the defects and deficiencies of the prior art, which can save rare earths, reduce costs, and have a high cost performance. Adding other cheap anisotropic magnetic powder to the anisotropic neodymium iron boron not only maintains the higher magnetic properties of the magnet, but also reduces the cost of raw materials and is cost-effective.
  • a formula for making permanent ferrite magnetic ring magnetic powder which consists of the following parts by weight: 60 to 90 parts of anisotropic neodymium iron boron magnetic powder, anisotropic 5 to 40 parts of anisotropic samarium cobalt magnetic powder, 0.5 to 15 parts of anisotropic strontium ferrite magnetic powder, 20 to 25 parts of iron oxide, 15 to 25 parts of bismuth oxide, 12 to 17 parts of nickel oxide, 10 to 17 parts of titanium oxide, 11 to 17 parts of silicon dioxide, 4 to 7 parts of niobium oxide, 4 to 6 parts of tantalum oxide, 13 to 19 parts of graphene, 8 to 11 parts of epoxy resin, 3 to 5 parts of manganese oxide, 2.5 to 3.5 parts of cobalt oxide , 12 to 14 parts of calcium carbonate, 2 to 3 parts of dispersant, 5 to 7 parts of adhesive and 1 to 2 parts of wetting agent.
  • the particle size of the anisotropic NdFeB magnetic powder is controlled within 30-240 ⁇ m;
  • the particle size of the anisotropic samarium cobalt magnetic powder is less than 80 ⁇ m;
  • the particle size of the anisotropic strontium ferrite magnetic powder is less than 10 ⁇ m.
  • a method for preparing permanent ferrite magnetic ring magnetic powder includes powder mixing, bonded magnetic powder preparation, warm pressing forming, primary demagnetization, cooling demoulding, and secondary demagnetization solidification steps, in which the bonded magnet warm pressing forming step For a given mold used in, each process is described as follows:
  • Powder preparation Weigh anisotropic neodymium iron boron magnetic powder 60-90 with a particle size of 30-240 ⁇ m, anisotropic samarium cobalt magnetic powder 5-40 with a particle size of less than 80 ⁇ m, and anisotropic strontium with a particle size of less than 10 ⁇ m. Ferrite magnetic powder 0.5 ⁇ 15 are put into the blender and mixed evenly to obtain mixed magnetic powder;
  • Preparation of bonded magnetic powder Weigh 100 parts by weight of the mixed magnetic powder and add 0.5-10 parts by weight of thermosetting resin and 0.01-3 parts by weight of zinc stearate, and continue to stir evenly at room temperature to 120°C to obtain a sticky Magnetic powder
  • thermosetting resin is bisphenol A type epoxy resin, or phenolic type epoxy resin, or thermosetting phenolic resin;
  • Warm pressure molding Put the prepared bonded magnetic powder into a mold, and perform warm pressure molding on the bonded magnetic powder under a positive magnetic field strength> 10.0KGs at 60-180°C. Control at 200 ⁇ 500MPa, control the holding time of warm press molding at 0.1 ⁇ 60s, and obtain bonded magnets in the mold after warm press molding;
  • One-time demagnetization demagnetize the bonded magnet with a reverse magnetic field, and the reverse magnetic field strength is controlled at 1.0KGs ⁇ 20.0KGs;
  • Cooling and demolding cooling the bonded magnet after one demagnetization, using air cooling or water cooling, after 5-10 seconds of air cooling or water cooling, eject the bonded magnet from the mold for demolding, demolding The time is controlled within 10 ⁇ 180s;
  • Secondary demagnetization and solidification Put the demolded bonded magnet into an oscillating pulsed magnetic field for secondary demagnetization.
  • the maximum peak value of the oscillating pulsed magnetic field is> 20.0KGs.
  • the maximum surface magnetism is less than 50Gs, and then the bonded magnet after the secondary demagnetization is put into an oven and cured at 100-180°C for 0.5-2h to prepare the magnet.
  • the present invention has the beneficial effects of saving rare earths, reducing costs, and high cost performance. Adding other cheap anisotropic magnetic powder to the anisotropic neodymium iron boron not only maintains the higher magnetic properties of the magnet, but also reduces the cost of raw materials and is cost-effective.
  • a preparation formula for permanent ferrite magnetic ring magnetic powder which is composed of the following parts by weight of raw materials: 60 parts anisotropic neodymium iron boron magnetic powder; 5 parts anisotropic samarium cobalt magnetic powder; anisotropic strontium ferrite magnetic powder 0.5 parts, 20 parts of iron oxide, 15 parts of bismuth oxide, 12 parts of nickel oxide, 10 parts of titanium oxide, 11 parts of silicon dioxide, 4 parts of niobium oxide, 4 parts of tantalum oxide, 13 parts of graphene, 8 parts of epoxy resin, 3 parts of manganese oxide, 2.5 parts of cobalt oxide, 12 parts of calcium carbonate, 2 parts of dispersant, 5 parts of binder and 1 part of wetting agent.
  • a method for preparing permanent ferrite magnetic ring magnetic powder includes powder mixing, bonded magnetic powder preparation, warm pressing forming, primary demagnetization, cooling demoulding, and secondary demagnetization solidification steps, in which the bonded magnet warm pressing forming step For a given mold used in, each process is described as follows:
  • Powder preparation Weigh anisotropic neodymium iron boron magnetic powder 60-90 with a particle size of 30-240 ⁇ m, anisotropic samarium cobalt magnetic powder 5-40 with a particle size of less than 80 ⁇ m, and anisotropic strontium with a particle size of less than 10 ⁇ m. Ferrite magnetic powder 0.5 ⁇ 15 are put into the blender and mixed evenly to obtain mixed magnetic powder;
  • Preparation of bonded magnetic powder Weigh 100 parts by weight of the mixed magnetic powder and add 0.5-10 parts by weight of thermosetting resin and 0.01-3 parts by weight of zinc stearate, and continue to stir evenly at room temperature to 120°C to obtain a sticky Magnetic powder
  • thermosetting resin is a bisphenol A type epoxy resin, or a novolac type epoxy resin, or a thermosetting phenol resin.
  • this embodiment is composed of the following parts by weight of raw materials: 65 parts of anisotropic neodymium iron boron magnetic powder; 25 parts of anisotropic samarium cobalt magnetic powder; anisotropic strontium ferrite magnetic powder 5 Parts, iron oxide 25 parts, bismuth oxide 18 parts, nickel oxide 15 parts, titanium oxide 12 parts, silicon dioxide 15 parts, niobium oxide 5 parts, tantalum oxide 5 parts, graphene 15 parts, epoxy resin 9 parts, oxide 4 parts of manganese, 3 parts of cobalt oxide, 13 parts of calcium carbonate, 2.5 parts of dispersant, 6 parts of binder and 2 parts of wetting agent.
  • this embodiment is composed of the following parts by weight of raw materials: 90 parts of anisotropic neodymium iron boron magnetic powder; 40 parts of anisotropic samarium cobalt magnetic powder; 15 parts of anisotropic strontium ferrite magnetic powder Parts, iron oxide 25 parts, bismuth oxide 25 parts, nickel oxide 17 parts, titanium oxide 12 parts, silicon dioxide 15 parts, niobium oxide 7 parts, tantalum oxide 6 parts, graphene 19 parts, epoxy resin 11 parts, oxide 5 parts of manganese, 3.5 parts of cobalt oxide, 14 parts of calcium carbonate, 3 parts of dispersant, 7 parts of binder and 2 parts of wetting agent.
  • the present invention has the beneficial effects of saving rare earths, reducing costs, and high cost performance. Adding other cheap anisotropic magnetic powder to the anisotropic neodymium iron boron not only maintains the higher magnetic properties of the magnet, but also reduces the cost of raw materials and is cost-effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种永磁铁氧体磁环磁粉及其制备方法,它涉及磁性材料技术领域;它由以下原料组成:各向异性钕铁硼磁粉、各向异性钐钴磁粉、各向异性锶铁氧体磁粉、氧化铁、氧化铋、氧化镍、氧化钛、二氧化硅、氧化铌、氧化钽、石墨烯、环氧树脂、氧化锰、氧化钴、碳酸钙、分散剂、粘合剂、和润湿剂;按照计量配比取上述原料根据一种永磁铁氧体磁环磁粉及其制备方法加工即可完成制备。本发明有益效果为:节约稀土,降低成本,性价比高。在各向异性钕铁硼中添加价格便宜的其它各向异性磁粉,既保持了磁体较高的磁性能,又降低了原材料成本,性价比高。

Description

一种永磁铁氧体磁环磁粉及其制备方法 技术领域
本发明涉及磁性材料技术领域,具体涉及一种永磁铁氧体磁环磁粉的制备方法。
背景技术
磁性材料,通常所说的磁性材料是指强磁性物质,是古老而用途十分广泛的功能材料,而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。大比特资讯上说,磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。而通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。
磁性材料的主要优点是:密度小、耐冲击强度大,制品可进行切割、钻孔、焊接、层压和压花纹等加工,而且使用时不会发生碎裂,易于加工成尺寸精度高、薄壁、复杂形状的制品,现在复合磁性材料越来越多为人们所重视,是一种很有前途的基础功能材料。随着磁性材料的广泛应用,越来越多的领域需要用到磁性材料,磁性材料的要求也就越来越高,但目前现有的磁性材料弹性和拉伸性很差,而且影响环境。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种永磁铁氧体磁环磁粉,节约稀土,降低成本,性价比高。在各向异性钕铁硼中添加价格便宜的其它各向异性磁粉,既保持了磁体较高的磁性能,又降低了原材料成本,性价比高。
为实现上述目的,本发明采用以下技术方案是:一种永磁铁氧体磁环磁粉的制作配方,它由以下重量份数的原料组成:各向异性钕铁硼磁粉60~90份、各向异性钐钴磁粉5~40份、各向异性锶铁氧体磁粉0.5~15份、氧化铁20~25份、氧化铋15~25份、氧化镍12~17份、氧化钛10~17份、二氧化硅11~17份、氧化铌4~7份、氧化钽4~6份、石墨烯13~19份、环氧树脂8~11份、氧化锰3~5份、氧化钴2.5~3.5份、碳酸钙12~14份、分散剂2~3份、粘合剂5~7份和润湿剂1~2份。
所述的各向异性钕铁硼磁粉的粒径控制在30~240μm;
所述的各向异性钐钴磁粉的粒径小于80μm;
所述的各向异性锶铁氧体磁粉的粒径小于10μm。
一种永磁铁氧体磁环磁粉的制备方法,该制备方法包括配粉、粘结磁粉配制、温压成型、一次退磁、冷却脱模、二次退磁固化工序,其中粘结磁体温压成型工序中使用到给定模具,各工序分述如下:
配粉:按重量份分别称取粒径30~240μm的各向异性钕铁硼磁粉60~90、粒径小于80μm的各向异性钐钴磁粉5~40及粒径小于10μm的各向异性锶铁氧体磁粉0.5~15一同放入搅拌机中搅拌均匀并得到混合磁粉;
粘结磁粉配制:称取所述混合磁粉100重量份并加入0.5~10重量份的热固性树脂和0.01~3重量份的硬脂酸锌,在室温~120℃的温度下继续搅拌均匀并得到粘结磁粉;
上述热固性树脂是双酚A型环氧树脂,或是酚醛型环氧树脂,或是热固性酚醛树脂;
温压成型:将配制好的所述粘结磁粉装入模具中,在正向磁场强度>10.0KGs下并在60~180℃内对所述粘结磁粉进行温压成型,温压成型的压力控制在200~500MPa,温压成型的保压时间控制在0.1~60s,温压成型后得到模具中的粘结磁体;
一次退磁:对所述粘结磁体进行反向磁场退磁,所述反向磁场强度控制在1.0KGs~20.0KGs;
冷却脱模:对一次退磁后的所述粘结磁体进行冷却,冷却采用风冷或是水冷,待风冷或是水冷5~10s后将所述粘结磁体顶出模具进行脱模,脱模时间控制在10~180s内;
二次退磁固化:将脱模后的所述粘结磁体放入振荡脉冲磁场中进行二次退磁,所述振荡脉冲磁场的强度最大峰值>20.0KGs,要求二次退磁后所述粘结磁体的最大表磁<50Gs,然后将二次退磁后的所述粘结磁体放入烘箱中,并在100~180℃内固化0.5~2h后即制备出磁体。
采用上述技术方案后,本发明有益效果为:节约稀土,降低成本,性价比高。在各向异性钕铁硼中添加价格便宜的其它各向异性磁粉,既保持了磁体较高的磁性能,又降低了原材料成本,性价比高。
具体实施方式
实施例1
一种永磁铁氧体磁环磁粉的制作配方,它由以下重量份数的原料组成:各向异性钕铁硼磁粉60份;各向异性钐钴磁粉5份;各向异性锶铁氧体磁粉0.5份、氧化铁20份,氧化铋15份,氧化镍12份,氧化钛10份,二氧化硅11份,氧化铌4份,氧化钽4份,石墨烯13份,环氧树脂8份,氧化锰3份,氧化钴2.5份,碳酸钙12份,分散剂2份,粘合剂5份和润湿剂1份。
一种永磁铁氧体磁环磁粉的制备方法,该制备方法包括配粉、粘结磁粉配制、温压成型、一次退磁、冷却脱模、二次退磁固化工序,其中粘结磁体温压成型工序中使用到给定模具,各工序分述如下:
配粉:按重量份分别称取粒径30~240μm的各向异性钕铁硼磁粉60~90、粒径小于80μm的各向异性钐钴磁粉5~40及粒径小于10μm的各向异性锶铁氧体磁粉0.5~15一同放入搅拌机中搅拌均匀并得到混合磁粉;
粘结磁粉配制:称取所述混合磁粉100重量份并加入0.5~10重量份的热固性树脂和0.01~3重量份的硬脂酸锌,在室温~120℃的温度下继续搅拌均匀并得到粘结磁粉;
上述热固性树脂是双酚A型环氧树脂,或是酚醛型环氧树脂,或是热固 性酚醛树脂。
实施例2
本实施例与实施例1的不同点在于:它由以下重量份数的原料组成:各向异性钕铁硼磁粉65份;各向异性钐钴磁粉25份;各向异性锶铁氧体磁粉5份、氧化铁25份,氧化铋18份,氧化镍15份,氧化钛12份,二氧化硅15份,氧化铌5份,氧化钽5份,石墨烯15份,环氧树脂9份,氧化锰4份,氧化钴3份,碳酸钙13份,分散剂2.5份,粘合剂6份和润湿剂2份。
实施例3
本实施例与实施例1的不同点在于:它由以下重量份数的原料组成:各向异性钕铁硼磁粉90份;各向异性钐钴磁粉40份;各向异性锶铁氧体磁粉15份、氧化铁25份,氧化铋25份,氧化镍17份,氧化钛12份,二氧化硅15份,氧化铌7份,氧化钽6份,石墨烯19份,环氧树脂11份,氧化锰5份,氧化钴3.5份,碳酸钙14份,分散剂3份,粘合剂7份和润湿剂2份。
采用上述技术方案后,本发明有益效果为:节约稀土,降低成本,性价比高。在各向异性钕铁硼中添加价格便宜的其它各向异性磁粉,既保持了磁体较高的磁性能,又降低了原材料成本,性价比高。
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (8)

  1. 一种永磁铁氧体磁环磁粉,其特征在于它由以下重量份数的原料组成:各向异性钕铁硼磁粉60~90份、各向异性钐钴磁粉5~40份、各向异性锶铁氧体磁粉0.5~15份、氧化铁20~25份、氧化铋15~25份、氧化镍12~17份、氧化钛10~17份、二氧化硅11~17份、氧化铌4~7份、氧化钽4~6份、石墨烯13~19份、环氧树脂8~11份、氧化锰3~5份、氧化钴2.5~3.5份、碳酸钙12~14份、分散剂2~3份、粘合剂5~7份和润湿剂1~2份。
  2. 根据权利要求1所述的一种永磁铁氧体磁环磁粉,由以下重量份数的原料组成:各向异性钕铁硼磁粉60份;各向异性钐钴磁粉5份;各向异性锶铁氧体磁粉0.5份、氧化铁20份,氧化铋15份,氧化镍12份,氧化钛10份,二氧化硅11份,氧化铌4份,氧化钽4份,石墨烯13份,环氧树脂8份,氧化锰3份,氧化钴2.5份,碳酸钙12份,分散剂2份,粘合剂5份和润湿剂1份。
  3. 根据权利要求1所述的一种永磁铁氧体磁环磁粉,由以下重量份数的原料组成:各向异性钕铁硼磁粉65份;各向异性钐钴磁粉25份;各向异性锶铁氧体磁粉5份、氧化铁25份,氧化铋18份,氧化镍15份,氧化钛12份,二氧化硅15份,氧化铌5份,氧化钽5份,石墨烯15份,环氧树脂9份,氧化锰4份,氧化钴3份,碳酸钙13份,分散剂2.5份,粘合剂6份和润湿剂2份。
  4. 根据权利要求1所述的一种永磁铁氧体磁环磁粉,由以下重量份数的原料组成:各向异性钕铁硼磁粉90份;各向异性钐钴磁粉40份;各向异性锶铁氧体磁粉15份、氧化铁25份,氧化铋25份,氧化镍17份,氧化钛12份,二氧化硅15份,氧化铌7份,氧化钽6份,石墨烯19份,环氧树脂11份,氧化锰5份,氧化钴3.5份,碳酸钙14份,分散剂3份,粘合剂7份和润湿剂2份。
  5. 制备权利要求1所述的永磁铁氧体磁环磁粉的制备方法,该制备方法 包括配粉、粘结磁粉配制、温压成型、一次退磁、冷却脱模、二次退磁固化工序,其中粘结磁体温压成型工序中使用到给定模具,各工序分述如下:
    配粉:按重量份分别称取粒径30~240μm的各向异性钕铁硼磁粉60~90、粒径小于80μm的各向异性钐钴磁粉5~40及粒径小于10μm的各向异性锶铁氧体磁粉0.5~15一同放入搅拌机中搅拌均匀并得到混合磁粉;
    粘结磁粉配制:称取所述混合磁粉100重量份并加入0.5~10重量份的热固性树脂和0.01~3重量份的硬脂酸锌,在室温~120℃的温度下继续搅拌均匀并得到粘结磁粉;
    上述热固性树脂是双酚A型环氧树脂,或是酚醛型环氧树脂,或是热固性酚醛树脂;
    温压成型:将配制好的所述粘结磁粉装入模具中,在正向磁场强度>10.0KGs下并在60~180℃内对所述粘结磁粉进行温压成型,温压成型的压力控制在200~500MPa,温压成型的保压时间控制在0.1~60s,温压成型后得到模具中的粘结磁体;
    一次退磁:对所述粘结磁体进行反向磁场退磁,所述反向磁场强度控制在1.0KGs~20.0KGs;
    冷却脱模:对一次退磁后的所述粘结磁体进行冷却,冷却采用风冷或是水冷,待风冷或是水冷5~10s后将所述粘结磁体顶出模具进行脱模,脱模时间控制在10~180s内;
    二次退磁固化:将脱模后的所述粘结磁体放入振荡脉冲磁场中进行二次退磁,所述振荡脉冲磁场的强度最大峰值>20.0KGs,要求二次退磁后所述粘结磁体的最大表磁<50Gs,然后将二次退磁后的所述粘结磁体放入烘箱中,并在100~180℃内固化0.5~2h后即制备出磁体。
  6. 根据权利要求5所述的制备方法,其特征在于:所述的各向异性钕铁硼磁粉的粒径控制在30~240μm。
  7. 根据权利要求5所述的制备方法,其特征在于:所述的各向异性钐钴磁粉的粒径小于80μm。
  8. 根据权利要求5所述的制备方法,其特征在于:所述的各向异性锶铁氧体磁粉的粒径小于10μm。
PCT/CN2019/113538 2019-07-30 2019-10-28 一种永磁铁氧体磁环磁粉及其制备方法 WO2021017219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910696708.8 2019-07-30
CN201910696708.8A CN112309663A (zh) 2019-07-30 2019-07-30 一种永磁铁氧体磁环磁粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2021017219A1 true WO2021017219A1 (zh) 2021-02-04

Family

ID=74229037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113538 WO2021017219A1 (zh) 2019-07-30 2019-10-28 一种永磁铁氧体磁环磁粉及其制备方法

Country Status (2)

Country Link
CN (1) CN112309663A (zh)
WO (1) WO2021017219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020074B (zh) * 2022-07-21 2022-11-18 广东力王高新科技股份有限公司 一种储能电感及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616853A (zh) * 2015-01-29 2015-05-13 厦门双瑞高磁科技有限公司 一种由三种各向异性磁粉构成粘结磁体的配方及制备方法
CN107500606A (zh) * 2017-09-28 2017-12-22 江苏新旭磁电科技有限公司 一种磁性材料配方
CN109411172A (zh) * 2018-09-04 2019-03-01 徐州远洋磁性材料有限公司 一种磁性材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616853A (zh) * 2015-01-29 2015-05-13 厦门双瑞高磁科技有限公司 一种由三种各向异性磁粉构成粘结磁体的配方及制备方法
CN107500606A (zh) * 2017-09-28 2017-12-22 江苏新旭磁电科技有限公司 一种磁性材料配方
CN109411172A (zh) * 2018-09-04 2019-03-01 徐州远洋磁性材料有限公司 一种磁性材料

Also Published As

Publication number Publication date
CN112309663A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN104575910A (zh) 电气工程用磁性材料
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN104844188A (zh) 一种电机磁性材料
CN106952703B (zh) 一种耐高温高磁性能永磁材料
CN104851545A (zh) 一种具有晶界扩散层的永磁材料制备方法
CN105957673A (zh) 一种各向同性稀土永磁粉及其制备方法
CN105405569A (zh) 一种磁性材料
US4063970A (en) Method of making permanent magnets
WO2017181669A1 (zh) 一种高取向度烧结钕铁硼永磁材料的制备方法
WO2021017219A1 (zh) 一种永磁铁氧体磁环磁粉及其制备方法
CN103559972A (zh) 一种烧结钕铁硼永磁材料的制备方法
CN108899150B (zh) 一种Nd-Fe-B/Sm-Co复合粘结磁体及其制备方法
CN104575909A (zh) 电气工程用复合磁性材料
CN103545076A (zh) 用原位聚合粘结剂制备钕铁硼-铁氧体层叠复合粘结磁体的方法
CN103295770B (zh) 一种复合粘结永磁体的制备方法
JPH07169633A (ja) ヨーク一体型永久磁石の製造方法並びに当該製造方法により作製したヨーク一体型永久磁石
CN103280311A (zh) 一种各向异性粘结永磁体的制备方法
CN108831660B (zh) 一种复合粘结稀土永磁材料
CN202824654U (zh) 一种烧结钕铁硼的压制模具
CN114591074A (zh) 自偏置环行器用高剩磁m型钡铁氧体制备技术
WO2021017216A1 (zh) 一种高频低磁滞锰锌软磁铁氧体材料及其制备方法
CN105895360A (zh) 各向异性磁体的制备方法
WO2020118466A1 (zh) 一种磁性材料
CN105206416A (zh) 一种钕铁硼磁体的取向压制方法
CN104464998A (zh) 一种高磁能积烧结钕铁硼永磁材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939160

Country of ref document: EP

Kind code of ref document: A1