WO2021016780A1 - 一种隔热组合物及制备方法和应用 - Google Patents

一种隔热组合物及制备方法和应用 Download PDF

Info

Publication number
WO2021016780A1
WO2021016780A1 PCT/CN2019/098101 CN2019098101W WO2021016780A1 WO 2021016780 A1 WO2021016780 A1 WO 2021016780A1 CN 2019098101 W CN2019098101 W CN 2019098101W WO 2021016780 A1 WO2021016780 A1 WO 2021016780A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
aerogel material
organic resin
insulation composition
aerogel
Prior art date
Application number
PCT/CN2019/098101
Other languages
English (en)
French (fr)
Inventor
张雅
郭晓峰
林志宏
程骞
吴定国
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Priority to ES19939144T priority Critical patent/ES2958966T3/es
Priority to CN201980098360.0A priority patent/CN114096616B/zh
Priority to EP19939144.2A priority patent/EP4007006B1/en
Priority to PCT/CN2019/098101 priority patent/WO2021016780A1/zh
Publication of WO2021016780A1 publication Critical patent/WO2021016780A1/zh
Priority to US17/589,733 priority patent/US20220153958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a thermal insulation composition, in particular to a thermal insulation composition that can be used for a thermal insulation module component of a lithium ion battery, and belongs to the technical field of thermal insulation materials.
  • lithium-ion batteries have become the most important power source for new energy vehicles.
  • the energy density of its single cell is greater than 250Wh /kg.
  • the industry is still pursuing higher energy density (>300Wh/kg).
  • the existing module structural parts are generally made of resin or aluminum alloy materials, and do not have the performance of heat insulation and fire prevention when the electric core is thermally out of control.
  • the purpose of the present invention is to provide a modular component, which not only has both mechanical strength and functionality, but also can play a role in fire prevention and heat insulation when thermal runaway occurs, blocking heat transmission, Greatly improve the safety performance of the battery.
  • the present invention provides a thermal insulation composition, wherein the thermal insulation composition is a composite of aerogel material and organic resin, and the composite mass ratio of the aerogel material and organic resin is 5wt% : 95wt%-50wt%: 50wt%;
  • the porosity of the aerogel material used is greater than 95% (the porosity of the aerogel material refers to the porosity of the aerogel material before it is filled with organic resin), and the pore diameter of the aerogel material is less than or equal to 100 nm, The particle size of each particle of the aerogel material is 5nm-20nm, and the organic resin is filled in the pores of the aerogel material.
  • the thermal insulation composition of the present invention has both mechanical strength and thermal conductivity at room temperature. When a certain temperature is reached, the composition will become a thermal insulation material with extremely high thermal insulation performance and block the difference between the electric core and the electric core. The heat transfer between the batteries can greatly improve the safety of the battery.
  • the thermal insulation composition of the present invention includes thermal insulation aerogel material and organic resin. At room temperature, more than 95% of the aerogel material is air pores, and the air pores are filled with organic resin.
  • the aerogel material filled with organic resin can achieve sufficient mechanical strength and thermal conductivity; at high temperatures (such as above 180°C) , Reaching the degradation temperature of the organic resin, the organic resin is decomposed into carbon dioxide and water, leaving aerogel materials with ultra-low thermal conductivity, which can effectively prevent heat transmission.
  • the aerogel material used in the thermal insulation composition of the present invention not only has ultra-low thermal conductivity, but also has the advantages of light weight and high thermal stability.
  • the aerogel material is prepared by the following steps:
  • the precursor solution used to form the aerogel material is a mixed solution of the aerogel material and a solvent, and the precursor solution is a stable solution.
  • the solvent used can be an aqueous liquid, such as water or a water/ethanol mixture; or an organic solvent, such as N-methylpyrrolidone, propylene carbonate solvent, propylene carbonate, ethylene carbonate, and diethyl carbonate Or dimethyl carbonate; or an ionic liquid, such as 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt.
  • the raw material composition of the aerogel material used includes a precursor, and the precursor used has a particle size of less than 500nm; preferably 100nm or less, more preferably 50nm or more small.
  • the precursor used includes one of silicon dioxide, titanium oxide, chromium oxide, iron oxide, vanadium oxide, neodymium oxide, carbon (including carbon nanotubes), and carbon oxides Or a combination of two or more.
  • the used precursor includes one or a combination of two or more of silicon dioxide, titanium oxide, and carbon.
  • the precursor used is silica.
  • the raw material composition of the aerogel material used can also include additives.
  • the weight addition amount of the precursor is 60%-90%.
  • the aerogel material may contain 60%-90% by mass of SiO 2 or mixed particles of SiO 2 and TiO 2 with a particle size of 10 nm; the aerogel material may contain 5%-30% by mass of particles. SiC with a diameter of 20 ⁇ m and a glass fiber with a length of 100 ⁇ m with a mass percentage of 2%-10%.
  • the additive used is one or a combination of two or more of glass fiber and sunscreen.
  • the aerogel material may include glass fibers as a binder to increase the mechanical strength of the aerogel material; for example, glass fibers with a length of 10 ⁇ m-2 mm are used.
  • the aerogel material may include opacifiers, such as SiC, TiO 2 or carbon black. These sunscreen particles are uniformly distributed in the aerogel material, and can disperse up to 95% of the infrared radiation to prevent thermal radiation, especially at high temperatures.
  • the light-shielding agent may be single crystal or polycrystalline, or particles with a particle size of 1 ⁇ m-50 ⁇ m.
  • the particle size can be measured by a laser particle size analyzer such as HORIBA LA-960.
  • the particle size may refer to the secondary particle size of polycrystalline particles.
  • an oxide-chemical bond or an alcohol-chemical bond combination is formed through a polycondensation reaction, so that the solution containing the precursor can be solized, thereby significantly increasing the viscosity of the solution.
  • the polycondensation reaction can be initiated by changing the pH of the solution.
  • an alkaline solution may be added to the solution to adjust the pH of the precursor solution.
  • the alkaline solution is not particularly limited in the present invention, and may include a solution of alkali metal hydroxide such as NaOH or KOH, a solution of alkaline earth metal hydroxide such as MgOH, and a solution of carbonate such as Na 2 CO 3 .
  • a solution of alkali metal hydroxide such as NaOH or KOH
  • a solution of alkaline earth metal hydroxide such as MgOH
  • a solution of carbonate such as Na 2 CO 3 .
  • the alkaline solution NaOH can be used to adjust the pH of the solution to 3-4 to form a SiO 2 /TiO 2 sol.
  • the gel is prepared by aging. During this period, the polycondensation reaction continues, and the solvent is discharged from the gel pores until the sol is transformed into a gel.
  • the aging process can be carried out at 50°C-55°C for 8h-10h.
  • the SiO 2 /TiO 2 sol can be aged at 50° C. for 10 hours to form a gel.
  • the gel obtained after the aging is supercritically dried and shaped into a desired shape to obtain the aerogel material.
  • the solvent can be removed in this step.
  • the solution is completely evaporated, leaving the polymer framework.
  • the temperature of supercritical drying is 30°C-60°C. More specifically, the temperature of super critical drying is 40°C-45°C.
  • the medium used for supercritical drying is carbon dioxide, methanol or ethanol; preferably carbon dioxide.
  • the time for supercritical drying is 2h-5h. More specifically, the time for supercritical drying is 2h-3h.
  • the pressure of supercritical drying is higher than 1.01 MPa; the pressure of supercritical drying is preferably higher than 5.06 MPa; more preferably, the pressure of supercritical drying is higher than 7.38 MPa.
  • the SiO 2 /TiO 2 gel formed after aging is dried in a supercritical CO 2 medium at 50° C. for 2 hours to form the SiO 2 /TiO 2 aerogel.
  • the aerogel material obtained by the above preparation method of the present invention has higher porosity, lower thermal conductivity, smaller pore size and smaller particle size.
  • the porosity of the aerogel material of the present invention can be expressed by air volume percentage (%).
  • the porosity of the aerogel material of the present invention is greater than 95%, preferably greater than 97%, more preferably greater than 99% by air volume percentage.
  • the pores of the aerogel material of the present invention have a pore diameter of 100 nm or less, more preferably have a pore diameter of 50 nm or less, and most preferably have a pore diameter of 10 nm or less.
  • the aerogel material of the present invention may have a thickness of about 500 ⁇ m or more, preferably about 1000 ⁇ m or more, more preferably about 1200 ⁇ m or more, preferably 2000 ⁇ m or less, more preferably The thickness is 1500 ⁇ m or less. Can be more easily manufactured and better matched with the battery pack.
  • the aerogel material of the present invention has an extremely low shrinkage rate at high temperature.
  • the shrinkage rate of the aerogel material may be less than 0.5%, preferably less than 0.1%, and more preferably 0%.
  • the shrinkage rate of the aerogel material may be less than 2%, preferably less than 1.5%, and more preferably less than 1%.
  • the electric core will produce thermal expansion during the charging and discharging process, and the aerogel material will be compressed by the adjacent electric core due to the thermal expansion, causing the aerogel to deform.
  • the aerogel material of the present invention has a compression deformation rate of 10% or higher in a compression experiment, preferably a compression deformation rate of 10% to 15%.
  • the conditions of the compression experiment are as follows. A sample with a size of 3 ⁇ 3 mm 2 and a thickness of 1 mm is applied with a load of 10 kg (5 ⁇ 5 mm 2 ) for a duration of 1 hour.
  • the thermal conductivity of the aerogel material of the present invention is 25 mW/(mK) or lower, preferably 5 mW/(mK) or lower.
  • the aerogel material contains a precursor for forming the aerogel frame.
  • the precursor used has a particle size of less than 500 nm; preferably 100 nm or less, more preferably 50 nm or less.
  • the precursor used includes one of silicon dioxide, titanium oxide, chromium oxide, iron oxide, vanadium oxide, neodymium oxide, carbon (including carbon nanotubes), and carbon oxides Or a combination of two or more.
  • the precursor used includes one or a combination of two or more of silicon dioxide, titanium oxide, and carbon.
  • the precursor used is silica.
  • the aerogel material may also include additives.
  • the weight addition amount of the precursor is 60%-90%.
  • the aerogel material may contain 60%-90% by mass of SiO 2 or mixed particles of SiO 2 and TiO 2 with a particle size of 10 nm; the aerogel material may contain 5%-30% by mass of particles. SiC with a diameter of 20 ⁇ m and a glass fiber with a length of 100 ⁇ m with a mass percentage of 2%-10%.
  • the additive used is one or a combination of two or more of glass fiber and sunscreen.
  • the aerogel material may include glass fibers as a binder to increase the mechanical strength of the aerogel material; for example, glass fibers with a length of 10 ⁇ m-2 mm are used.
  • the aerogel material may include opacifiers, such as SiC, TiO 2 or carbon black. These sunscreen particles are uniformly distributed in the aerogel material, and can disperse up to 95% of the infrared radiation to prevent thermal radiation, especially at high temperatures.
  • the light-shielding agent may be single crystal or polycrystalline, or particles with a particle size of 1 ⁇ m-50 ⁇ m.
  • the particle size can be measured by a laser particle size analyzer such as HORIBA LA-960.
  • the particle size may refer to the secondary particle size of polycrystalline particles.
  • the organic resin used includes polymethyl carbonate, polyethyl carbonate, polypropylene carbonate (PPC), and functional group-modified polymethyl carbonate, polyethyl carbonate, polycarbonate Any one or a combination of two or more of propylene carbonate.
  • the functional group may be a hydroxyl group, a carboxyl group, a halogen, or propylene oxide.
  • epoxy compounds with ester groups can reduce the decomposition temperature from 200°C to 250°C to around 150°C.
  • some inorganic substances such as hydrochloric acid, sulfuric acid, potassium hydroxide, or salts such as sodium carbonate, sodium sulfate, the decomposition temperature of the organic resin can also be controlled.
  • the present invention also provides a method for preparing the thermal insulation composition, which is to immerse the aerogel material in the organic resin under vacuum, and then make the organic resin penetrate into the aerogel under a certain pressure, and then recover the excess organic resin under equal pressure. Resin, continue to increase the pressure under constant pressure to thermally cure the organic resin.
  • the above-mentioned operation cycle is performed several times to prepare a heat insulating composition.
  • the preparation method of the thermal insulation composition of the present invention includes the following steps:
  • the organic resin is fully penetrated into the aerogel material, the pressure holding time is 10min-60min (preferably 30min), and the excess organic resin is recovered;
  • the sample was taken out and cured at room temperature to obtain a thermal insulation composition.
  • the present invention also provides a thermal insulation module component, wherein the thermal insulation module component is prepared from the thermal insulation composition of the present invention.
  • the thermal insulation module component of the present invention has both mechanical strength and thermal conductivity at room temperature, and can be used as a battery module component and Pack structural material. When the battery enters into thermal runaway, the thermal insulation module component will become a thermal insulation material with extremely high thermal insulation performance, blocking the heat transfer between the battery cell and the battery cell, and greatly improving the safety of the battery.
  • the thermal insulation module component of the present invention includes thermal insulation aerogel material and organic resin. At room temperature, sufficient mechanical strength and thermal conductivity can be achieved in the pores of the organic resin filled aerogel material; when thermal runaway occurs, the temperature rises above 180°C, reaching the degradation temperature of the organic resin binder (Usually thermal degradation occurs around 170°C), which decomposes the organic resin binder into carbon dioxide and water, leaving only the aerogel material.
  • the aerogel material has excellent thermal insulation properties and can effectively prevent heat transmission.
  • the invention also provides a lithium ion battery, which contains the thermal insulation module component of the invention. Since the lithium ion battery of the present invention contains the thermal insulation module member of the present invention, it has higher safety performance.
  • the thermal insulation module component of the present invention has the advantages of light weight, good thermal insulation performance, and high mechanical strength; it can solve the heat transmission problem in the battery box, and it can effectively prevent heat transmission when a battery cell is thermally out of control. , Limiting thermal runaway within the controllable range, greatly improving the safety of lithium-ion batteries.
  • Fig. 1 is a schematic diagram of the structure of the thermal insulation composition in an embodiment of the present invention.
  • Fig. 2 is an exploded view of the soft-pack battery cell module in the embodiment of the present invention.
  • Figure 3 is a schematic diagram of a thermal runaway experiment in an embodiment of the present invention.
  • a 100% PPC sheet with a thickness of 1 mm was used to test its thermal conductivity.
  • a composite heat-insulating material with a thickness of 1 mm was used.
  • the composite heat-insulating material had a structure as shown in Fig. 1, and the pores of the aerogel material were filled with organic resin (100% PPC). Test its thermal conductivity. It should be noted here that the organic resin can be randomly filled into the pores of the aerogel material, and there is no need to fill regularly as shown in FIG. 1, which is only a schematic illustration.
  • the composite thermal insulation material is prepared through the following steps:
  • the sample was taken out and cured at room temperature to obtain a thermal insulation composition.
  • Example 1 is pure PPC and has good thermal conductivity.
  • Example 1 is a 1mm insulation material mixed with PPC, which also has the same good thermal conductivity, and 61°C is within the experimental error range.
  • Example 2 is a 2mm insulation material mixed with PPC, which is inferior compared to 1mm, but still has very ideal performance.
  • mica sheet IEC-60371-2, AXIM MICA
  • a thickness of 1 mm as the heat insulation sheet to test its heat insulation performance.
  • Example 1 The composite thermal insulation material of Example 1 with a thickness of 1 mm was used as the thermal insulation sheet to test its thermal insulation performance.
  • the composite thermal insulation material of Example 2 with a thickness of 2 mm was used as the thermal insulation sheet to test its thermal insulation performance.
  • the organic resin binder component is 100% PPC (25511-85-7, Sigma-Aldrich). Thermogravimetric analysis was used to measure the thermal degradation temperature of the organic resin binder. The results are listed in Table 3.
  • the organic resin binder composition is 90% PPC (25511-85-7, Sigma-Aldrich) and 10% potassium hydroxide (1310-58-3, Sigma-Aldrich). Thermogravimetric analysis was used to measure the thermal degradation temperature of the organic resin binder. The results are listed in Table 3.
  • the organic resin binder component is 90% PPC (25511-85-7, Sigma-Aldrich) and 10% benzyl glycidate (Sigma-Aldrich). Thermogravimetric analysis was used to measure the thermal degradation temperature of the organic resin binder. The results are listed in Table 3.
  • mica with a thickness of 1 mm as the heat insulation sheet.
  • a battery module with 4 soft-packed cells 250Wh/kg, 550Wh/L is used as a test carrier.
  • Cell 1, cell 2, cell 3 and cell 4 are arranged in parallel as shown in FIG. 3.
  • a total of 3 mica flakes are used in this module.
  • the composite heat insulating material of Example 1 with a thickness of 1 mm was used as the heat insulating sheet.
  • picture A in Fig. 2 is an exploded view of the soft pack battery cell module
  • picture B in Fig. 2 is the core structure of the module including aluminum plate ⁇ plastic frame ⁇ soft pack battery cell ⁇ foam ⁇ soft pack Cell ⁇ Plastic Frame ⁇ Aluminum Plate
  • Picture C in Figure 2 is the aluminum plate and frame in Picture B, which are made of composite heat insulation materials.
  • a battery module with 4 soft-packed cells (250Wh/kg, 550Wh/L) is used as a test carrier.
  • Cell 1, cell 2, cell 3 and cell 4 are arranged in parallel as shown in FIG. 3.
  • Insert the composite heat insulation material as a heat insulation sheet between the two batteries. A total of 3 pieces of composite insulation material are used in this module.
  • the composite heat insulating material of Example 2 with a thickness of 2 mm was used as the heat insulating sheet.
  • a battery module with 4 soft-packed cells (250Wh/kg, 550Wh/L) is used as a test carrier.
  • Cell 1, cell 2, cell 3 and cell 4 are arranged in parallel as shown in FIG. 3.
  • Insert the composite heat insulation material as a heat insulation sheet between the two batteries. A total of 3 pieces of composite insulation material are used in this module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种隔热组合物及制备方法和应用。该隔热组合物由气凝胶材料和有机树脂复合而成,气凝胶材料和有机树脂的复合质量比为5wt%:95wt%-50wt%:50wt%;气凝胶材料的孔隙率大于95%,气凝胶材料的孔隙孔径小于等于100nm,气凝胶材料每个颗粒的粒径为5nm-20nm,有机树脂填充在气凝胶材料的孔隙中。由本发明的隔热组合物制备得到的隔热模组构件,在常温下兼具机械强度和热传导能力,当电池进入热失控时,该材料会变成绝热材料,具备极高的隔热性能,阻断电芯与电芯之间的热传递,可大大提高电池的安全性能。

Description

一种隔热组合物及制备方法和应用 技术领域
本发明涉及一种隔热组合物,尤其涉及一种可以用于锂离子电池的隔热模组构件的隔热组合物,属于隔热材料技术领域。
背景技术
在过去的二十年中,锂离子电池已成为新能源汽车最重要的动力源。目前行业中已经商品化的锂离子电池具有以石墨为阳极,以层状LiMO(M=Ni,Co,Mn二元或三元系统)为阴极的结构,其单体电芯的能量密度大于250Wh/kg。行业内部还在不断追求更高的能量密度(>300Wh/kg)。
与具有相对较低能量密度(160-180Wh/kg)的磷酸铁锂电池相比,高镍NCM或NCA电池在高能量密度方面具有很大优势。然而,由于镍含量的升高,正极材料的稳定性和发热量会显著升高,相比于使用LFP或低镍正极材料(NCM111,NCM523),安全性大大降低,当电池遭受高温,过充电或内部短路时,很容易发生热失控和对周围电芯的热扩散。由此很可能引发电池组因热传播而产生火灾或爆炸,从而严重危及人身安全。
因此,将单体电芯的热失控控制在一定范围内,阻止电池模组中热失控的单个或多个电芯间的热扩散是非常重要的。
现有的模组结构件一般是树脂或铝合金材料,在电芯发生热失控时不具备隔热防火的性能。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种模组构件,该模组构件不仅兼具机械强度与功能性,并且在热失控时可以起到防火隔热的作用,阻断热传播,大大提高电池的安全性能。
为了实现上述技术目的,本发明提供了一种隔热组合物,其中,该隔热组合物由气凝胶材料和有机树脂复合而成,气凝胶材料和有机树脂的复合质量比为5wt%:95wt%-50wt%:50wt%;
采用的气凝胶材料的孔隙率大于95%(气凝胶材料的孔隙率是指没有被有机树脂填充前,气凝胶材料具有的孔隙率),气凝胶材料的孔隙孔径小于等于100nm,气凝胶材 料每个颗粒的粒径为5nm-20nm,有机树脂填充在气凝胶材料的孔隙中。
本发明的隔热组合物,在常温下兼具机械强度和热传导能力,当达到一定温度时,该组合物会变成绝热材料,具备极高的隔热性能,阻断电芯与电芯之间的热传递,可大大提高电池的安全性。
本发明的隔热组合物,包括隔热气凝胶材料和有机树脂。在常温下,气凝胶材料的95%以上是空气孔隙,空气孔隙中填充有机树脂,有机树脂填充的气凝胶材料可以实现足够的机械强度和导热性能;在高温下(比如180℃以上),达到有机树脂的降解温度,使有机树脂分解为二氧化碳和水,留下导热率超低的气凝胶材料,可以有效阻止热传播。
本发明的隔热组合物采用的气凝胶材料不仅具备超低的导热率,而且还具有重量轻和热稳定性高的优点。
在本发明的一具体实施方式中,气凝胶材料是通过以下步骤制备得到的:
制备用于形成气凝胶材料的前驱体溶液;
通过缩聚反应使前驱体溶液溶胶化;
将溶胶化的前驱体溶液在在45℃-60℃下老化8h-24h;
进行超临界干燥,得到气凝胶材料。
在本发明的气凝胶材料的制备过程中,用于形成气凝胶材料的前驱体溶液是气凝胶材料与溶剂的混合液,该前驱体溶液为稳定存在的溶液。对形成稳定前驱体的溶液的方法没有特别限制。例如,采用的溶剂可以为水性液体,比如水或水/乙醇混合物;或者采用有机溶剂,比如N-甲基吡咯烷酮、碳酸亚丙酯溶剂、碳酸亚丙酯、碳酸亚乙酯、碳酸二乙酯或碳酸二甲酯;或者采用离子液体,比如,1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。
在本发明的气凝胶材料的制备过程中,采用的气凝胶材料的原料组成包括前驱体,采用的前驱体为粒径小于500nm;优选地为100nm或更小,更优选为50nm或更小。
在本发明的一具体实施方式中,采用的前驱体包括二氧化硅、氧化钛、氧化铬、氧化铁、氧化钒、氧化钕、碳(包括碳纳米管)和碳的氧化物中的一种或两种以上的组合。
具体地,采用的前驱体包括二氧化硅、氧化钛、碳中一种或两种以上的组合。
更具体地,采用的前驱体为二氧化硅。
在本发明的气凝胶材料的制备过程中,采用的气凝胶材料的原料组成还可以包括添加剂,在含有添加剂时,前驱体的重量添加量为60%-90%。例如,气凝胶材料可含有质量百分比为60%-90%的粒径为10nm的SiO 2或SiO 2与TiO 2的混合颗粒;气凝胶材料可 含有质量百分比为5%-30%的粒径为20μm的SiC和质量百分比为2%-10%的长度为100μm的玻璃纤维。
具体地,采用的添加剂为玻璃纤维和遮光剂中的一种或两种以上的组合。
比如,添加剂可用于增强气凝胶材料的结构稳定性。例如,气凝胶材料可包括玻璃纤维作为粘合剂以增加气凝胶材料的机械强度;例如使用长度为10μm-2mm的玻璃纤维。
比如,在高温下会发生辐射热传导,气凝胶材料可包括遮光剂,例如SiC,TiO 2或炭黑。这些遮光剂颗粒均匀分布在气凝胶材料中,可分散高达95%的红外辐射,以阻止热辐射,特别是在高温下阻断热辐射。遮光剂可以是单晶或多晶,也可以是粒径为1μm-50μm的颗粒。粒度可通过激光粒度分析仪如HORIBA LA-960测量。这里,粒径可以指多晶粒子的二次粒径。
在本发明的气凝胶材料的制备过程中,通过缩聚反应形成氧化物-化学键或醇-化学键结合,可以使含有前驱体的溶液溶胶化,进而使溶液的粘度显著增加。
在本发明的一具体实施方式中,可以通过改变溶液的pH来引发缩聚反应。具体地,可以向溶液中添加碱性溶液以调节前驱体溶液的pH。
碱性溶液在本发明中没有特别限制,可以包括碱金属氢氧化物如NaOH或KOH的溶液、碱土金属氢氧化物如MgOH的溶液、碳酸盐如Na 2CO 3的溶液。对pH值没有限制,可以根据前驱体的类型来确定。
例如,当前驱体含有硅酸盐和钛酸盐时,可以使用碱性溶液NaOH将溶液的pH调节至3-4以形成SiO 2/TiO 2溶胶。
在本发明的气凝胶材料的制备过程中,通过老化制备凝胶。在此期间缩聚反应持续进行,溶剂从凝胶孔隙中排出,直到溶胶转变成凝胶。
在本发明的一具体实施地方时中,老化过程可在50℃-55℃下进行8h-10h。
例如,在通过缩聚反应使前驱体溶液溶胶化形成SiO 2/TiO 2溶胶的情况下,SiO 2/TiO 2溶胶可以在50℃下老化10h以形成凝胶。
在本发明的气凝胶材料的制备过程中,将所得老化后得到的凝胶进行超临界干燥,成形为所需的形状,得到气凝胶材料。同时,在该步骤中可以除去溶剂。
在本发明的气凝胶材料的制备过程中,在超临界干燥期间,使溶液全部蒸发,留下高分子框架。
在本发明的一具体实施方式中,超临界干燥的温度为30℃-60℃。更具体地,超临 界干燥的温度为40℃-45℃。
在本发明的一具体实施方式中,超临界干燥采用的介质为二氧化碳、甲醇或乙醇;优选为二氧化碳。
在本发明的一具体实施方式中,超临界干燥的时间为2h-5h。更具体地,超临界干燥的时间为2h-3h。
在本发明的一具体实施方式中,超临界干燥的压力高于1.01MPa;超临界干燥的压力优选高于5.06MPa;更优选地,超临界干燥的压力高于7.38MPa。
例如,将老化后形成的SiO 2/TiO 2凝胶,在超临界CO 2介质中在50℃下干燥2h以形成SiO 2/TiO 2气凝胶。
通过本发明的上述制备方法得到的气凝胶材料的孔隙率较高、导热效率更低、孔径更小、颗粒尺寸更小。
本发明的气凝胶材料的孔隙率可以用空气体积百分比(%)表示。本发明的气凝胶材料的孔隙率大于95%,优选大于97%,更优选大于99%的空气体积百分比。
本发明的气凝胶材料的孔隙具有100nm或更小的孔径,更优选为具有50nm或更小的孔径,最优选为具有10nm或更小的孔径。
本发明的气凝胶材料可具有约500μm或更大的厚度,优选为具有约1000μm或更大的厚度,更优选为约1200μm或更大的厚度,优选为2000μm或更小的厚度,更优选为1500μm或更小的厚度。可以更容易的制造和与电池组更好的匹配。
本发明的气凝胶材料在高温下具有极低的收缩率。例如,在600℃下加热24小时后,气凝胶材料的收缩率可小于0.5%,优选小于0.1%,更优选为0%。此外,在900℃下加热24小时后,气凝胶材料的收缩率可小于2%,优选小于1.5%,更优选小于1%。
电芯在充放电过程中会产生热膨胀,气凝胶材料会受到相邻电芯由于热膨胀而产生的压缩力,导致气凝胶变形。本发明的气凝胶材料在压缩实验中具有10%或更高的压缩变形率,优选为10%至15%的压缩变形率。压缩实验的条件如下,对尺寸为3×3mm 2,厚度为1mm的样品施加10kg(5×5mm 2)的负荷,持续时间为1小时。
本发明的气凝胶材料的导热率为25mW/(mK)或更低,优选为5mW/(mK)或更低。
在本发明的隔热组合物中,气凝胶材料中含有用于形成气凝胶框架的前驱体。
在本发明的一具体实施方式中,采用的前驱体为粒径小于500nm;优选地为100nm或更小,更优选为50nm或更小。
在本发明的一具体实施方式中,采用的前驱体包括二氧化硅、氧化钛、氧化铬、氧化铁、氧化钒、氧化钕、碳(包括碳纳米管)和碳的氧化物中的一种或两种以上的组合。
具体地,采用的前驱体包括二氧化硅、氧化钛和碳中的一种或两种以上的组合。
更具体地,采用的前驱体为二氧化硅。
在本发明的隔热组合物中,气凝胶材料中还可以包括添加剂,在含有添加剂时,前驱体的重量添加量为60%-90%。例如,气凝胶材料可含有质量百分比为60%-90%的粒径为10nm的SiO 2或SiO 2与TiO 2的混合颗粒;气凝胶材料可含有质量百分比为5%-30%的粒径为20μm的SiC和质量百分比为2%-10%的长度为100μm的玻璃纤维。
具体地,采用的添加剂为玻璃纤维和遮光剂中的一种或两种以上的组合。
比如,添加剂可用于增强气凝胶材料的结构稳定性。例如,气凝胶材料可包括玻璃纤维作为粘合剂以增加气凝胶材料的机械强度;例如使用长度为10μm-2mm的玻璃纤维。
比如,在高温下会发生辐射热传导,气凝胶材料可包括遮光剂,例如SiC,TiO 2或炭黑。这些遮光剂颗粒均匀分布在气凝胶材料中,可分散高达95%的红外辐射,以阻止热辐射,特别是在高温下阻断热辐射。遮光剂可以是单晶或多晶,也可以是粒径为1μm-50μm的颗粒。粒度可通过激光粒度分析仪如HORIBA LA-960测量。这里,粒径可以指多晶粒子的二次粒径。
在本发明的一具体实施方式中,采用的有机树脂包括聚碳酸甲酯、聚碳酸乙酯、聚碳酸亚丙酯(PPC)、和经过官能团修饰的聚碳酸甲酯、聚碳酸乙酯、聚碳酸亚丙酯中的任意一种或两种以上的组合。
具体地,官能团可以为羟基、羧基、卤素或环氧丙烷。通过对分子链的修饰,尤其是加入环氧丙烷,具有酯基的环氧物可以将分解温度200℃-250℃降为150℃附近。或者通过加入一些无机物,比如盐酸,硫酸,氢氧化钾,或者盐类比如碳酸钠,硫酸钠也可以控制有机树脂的分解温度。
本发明还提供了隔热组合物的制备方法,是在真空下将气凝胶材料浸渍在有机树脂中,再在一定压力下使有机树脂向气凝胶内部渗透,然后等压回收多余的有机树脂,继续等压升温使有机树脂热固化。上述操作循环进行若干次,制备得到隔热组合物。
具体地,本发明的隔热组合物的制备方法包括以下步骤:
将有机树脂加热到熔融加工温度以上;
在真空下,将气凝胶材料充分浸渍于有机树脂中;
在0.5MPa-2MPa(优选1.2MPa)下,使有机树脂向气凝胶材料内部充分渗透,保压时间为10min-60min(优选30min),回收多余的有机树脂;
循环上述操作(浸渍、渗透和回收),使有机树脂完全浸润于气凝胶材料;
取出样品,常温下固化,得到隔热组合物。
本发明还提供了一种隔热模组构件,其中,该隔热模组构件是由本发明的隔热组合物制备得到的。
本发明的隔热模组构件,在常温下兼具机械强度和热传导能力,可以作为电池模组构件和Pack结构材料使用。当电池进入热失控时,该隔热模组构件会变成绝热材料,具备极高的隔热性能,阻断电芯与电芯之间的热传递,可大大提高电池的安全性。
本发明的隔热模组构件包括隔热气凝胶材料和有机树脂。在常温下,有机树脂填充的气凝胶材料的孔隙中,可以实现足够的机械强度和导热性能;在热失控发生时,由于温度升高到180℃以上,达到有机树脂粘结剂的降解温度(通常在170℃附近出现热降解),从而使有机树脂粘结剂分解为二氧化碳和水,只留下气凝胶材料,气凝胶材料具备优异的隔热性能,可以有效阻止热传播。
本发明还提供了一种锂离子电池,该锂离子电池含有本发明的隔热模组构件。本发明的锂离子电池由于含有本发明的隔热模组构件,具有较高的安全性能。
本发明的隔热模组构件具有重量轻、隔热性能好、机械强度高的优点;可以解决电池箱中的热传播问题,既当一个电芯发生热失控时,可有效的阻止其热传播,将热失控限制在可控范围内,大大提高锂离子电池的安全性。
附图说明
图1为本发明的实施例中的隔热组合物的结构示意图。
图2为本发明的实施例中的软包电芯模组分解图。
图3为本发明的实施例中的热失控实验示意图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
比较例1
使用厚度为1mm的100%PPC片材,测试其导热性能。
调节加热板温度至60℃,将PPC片材置于加热板上,使其一侧与加热板接触,在PPC片材加热1min、5min后,记录PPC片材另一侧的温度。结果列于表1中。
实施例1
使用厚度为1mm的复合隔热材料,该复合隔热材料具有如图1所示的结构,有机树脂(100%PPC)填充气凝胶材料的孔隙中。测试其导热性能。这里需要说明的是,有机树脂可以随机的填充到气凝胶材料的孔隙中,不需要按照图1所示的有规律的填充,图1只是示意性的说明。
调节加热板温度至60℃,将上述复合隔热材料置于加热板上,使其一侧与加热板接触,在复合隔热材料加热1min、5min后,记录复合隔热材料另一侧的温度。结果列于表1中。
本实施例的气凝胶材料是通过以下步骤制备得到的:
制备用于形成气凝胶的前驱体溶液(溶剂为水:乙醇=1:1的混合溶液,前驱体为正硅酸乙酯);
通过缩聚反应使前驱体溶液溶胶化;
将溶胶化的前驱体溶液在在45℃-60℃下老化8h-24h;
进行超临界干燥(温度为40℃-45℃、压力为7.38MPa,保持2h-3h),得到气凝胶材料。
该复合隔热材料是通过以下步骤制备得到的:
将有机树脂加热到熔融加工温度(105℃-130℃)以上;
在真空下,将气凝胶材料充分浸渍于有机树脂中;
在1.2MPa下,使有机树脂向气凝胶材料内部充分渗透,保压30min,回收多余的有机树脂;
循环浸渍、渗透和回收的步骤3次,使有机树脂完全浸润于气凝胶材料;
取出样品,常温下固化,得到隔热组合物。
实施例2
使用厚度为2mm的复合隔热材料(此处复合材料的制备方法及成份组成与实施例1相同,只改变了厚度),测试其导热性能。
调节加热板温度至60℃,将上述复合隔热材料置于加热板上,使其一侧与加热板接触,在复合隔热材料加热1min、5min后,记录复合隔热材料另一侧的温度。结果列于表1中。
表1
Figure PCTCN2019098101-appb-000001
表1说明,比较例1是纯PPC,具有很好的导热性能。实施例1是1mm的绝热材料混合PPC,也有同样好的导热能力,61℃是在实验误差范围之内。实施例2是2mm的绝热材料混合PPC,相比于1mm的较差,但是还是有很比较理想的性能。
比较例2
使用厚度为1mm的云母片(IEC-60371-2,AXIM MICA)作为隔热片,测试其隔热性能。
调节加热板温度至600℃,将上述云母片置于加热板上,使其一侧与加热板接触,在云母片加热5min后,记录云母片另一侧的温度。结果列于表2中。
实施例3
使用厚度为1mm的实施例1的复合隔热材料作为隔热片,测试其隔热性能。
调节加热板温度至600℃,将上述复合材料置于加热板上,使其一侧与加热板接触,在复合材料加热5min后,记录复合材料另一侧的温度。结果列于表2中。
实施例4
使用厚度为2mm的实施例2复合隔热材料作为隔热片,测试其隔热性能。
调节加热板温度至600℃,将上述复合材料置于加热板上,使其一侧与加热板接触,在复合材料加热5min后,记录复合材料另一侧的温度。结果列于表2中。
表2
Figure PCTCN2019098101-appb-000002
比较例3
有机树脂粘结剂成分为100%PPC(25511-85-7,Sigma-Aldrich)。使用热重分析法 来测量上述有机树脂粘结剂的热降解温度。结果列于表3中。
实施例5
有机树脂粘结剂成分为90%PPC(25511-85-7,Sigma-Aldrich)和10%氢氧化钾(1310-58-3,Sigma-Aldrich)。使用热重分析法来测量上述有机树脂粘结剂的热降解温度。结果列于表3中。
实施例6
有机树脂粘结剂成分为90%PPC(25511-85-7,Sigma-Aldrich)和10%环氧丙酸苯甲酯(Sigma-Aldrich)。使用热重分析法来测量上述有机树脂粘结剂的热降解温度。结果列于表3中。
表3
  成份 热降解温度
比较例3 100%PPC 208℃
实施例5 90%PPC+10%KOH 178℃
实施例6 90%PPC+10%C 11H 13O 3 158℃
比较例4
使用厚度为1mm的云母作为隔热片。如图3所示,具有4个软包电芯(250Wh/kg,550Wh/L)的电池模组作为测试载体。电芯1、电芯2、电芯3和电芯4如图3所示,平行排列。将云母片作为隔热片插入到两个电芯之间。在该模组中总共使用3片云母片。
在测试中,电芯1被强制发生热失控。记录电芯2、电芯3和电芯4发生热失控的时间。将4个软包电芯放置在足够大的开放空间中,使得电芯发生热失控产生的热气体不会影响相邻电芯。相邻的电芯只能通过热传递来引发热失控。实验结果列于表4中。
实施例7
使用厚度为1mm的实施例1的复合隔热材料作为隔热片。
如图2所示,图2中的图片A为软包电芯模组分解图;图2中的图片B为模组核心结构依次包括铝板→塑料框架→软包电芯→泡棉→软包电芯→塑料框架→铝板;图2中的图片C为图片B中铝板和框架,用复合隔热材料制备得到。
如图3所示,具有4个软包电芯(250Wh/kg,550Wh/L)的电池模组作为测试载体。电芯1、电芯2、电芯3和电芯4如图3所示,平行排列。将复合隔热材料作为隔热片插入到两个电芯之间。在该模组中总共使用3片复合隔热材料。
在测试中,电芯1被强制发生热失控。记录电芯2、电芯3和电芯4发生热失控的时间。将4个软包电芯放置在足够大的开放空间中,使得电芯发生热失控产生的热气体 不会影响相邻电芯。相邻的电芯只能通过热传递来引发热失控。实验结果列于表4中。
实施例8
使用厚度为2mm的实施例2的复合隔热材料作为隔热片。
如图3所示,具有4个软包电芯(250Wh/kg,550Wh/L)的电池模组作为测试载体。电芯1、电芯2、电芯3和电芯4如图3所示,平行排列。将复合隔热材料作为隔热片插入到两个电芯之间。在该模组中总共使用3片复合隔热材料。
在测试中,电芯1被强制发生热失控。记录电芯2、电芯3和电芯4发生热失控的时间。将4个软包电芯放置在足够大的开放空间中,使得电芯发生热失控产生的热气体不会影响相邻电芯。相邻的电芯只能通过热传递来引发热失控。实验结果列于表4中。
表4
Figure PCTCN2019098101-appb-000003
以上实施例说明,由本发明的隔热组合物形成的模组构件用在锂离子电池中时,不仅兼具机械强度与功能性,并且在热失控时可以起到防火隔热的作用,阻断热传播,大大提高电池的安全性能。

Claims (10)

  1. 一种隔热组合物,其中,该隔热组合物由气凝胶材料和有机树脂复合而成,气凝胶材料和有机树脂的复合质量比为5wt%:95wt%-50wt%:50wt%;
    所述气凝胶材料的孔隙率大于95%,气凝胶材料的孔隙孔径小于等于100nm,气凝胶材料每个颗粒的粒径为5nm-20nm;
    有机树脂填充在气凝胶材料的孔隙中。
  2. 根据权利要求1所述的隔热组合物,其中,所述气凝胶材料是通过以下步骤制备得到的:
    制备用于形成气凝胶材料的前驱体溶液;
    通过缩聚反应使前驱体溶液溶胶化;
    将溶胶化的前驱体溶液在45℃-60℃下老化8h-24h;
    进行超临界干燥,得到气凝胶材料。
  3. 根据权利要求2所述的隔热组合物,其中,超临界干燥的温度为30℃-60℃;
    优选地,超临界干燥的介质为二氧化碳、甲醇或乙醇;
    优选地,超临界干燥的时间为2h-5h;
    优选地,超临界干燥的压力高于1.01MPa。
  4. 根据权利要求2所述的隔热组合物,其中,所述用于形成气凝胶材料的前驱体溶液采用的溶剂为水、水与乙醇混合物、碳酸亚丙酯、碳酸亚乙酯、碳酸二乙酯、碳酸二甲酯或1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。
  5. 根据权利要求1所述的隔热组合物,其中,气凝胶材料的原料组成包括前驱体;所述前驱体为粒径小于500nm的二氧化硅、氧化钛、氧化铬、氧化铁、氧化钒、氧化钕、碳和碳的氧化物中的一种或两种以上的组合;
    优选地,前驱体包括粒径小于500nm的二氧化硅、氧化钛、碳中一种或两种以上的组合;
    更优选地,前驱体包括粒径小于500nm的二氧化硅。
  6. 根据权利要求5所述的隔热组合物,其中,所述气凝胶材料的原料组成还包括添加剂,在含有添加剂时,气凝胶材料中的前驱体的重量添加量为60%-90%;
    优选地,所述添加剂为玻璃纤维和遮光剂中的一种或两种以上的组合。
  7. 根据权利要求1所述的隔热组合物,其中,所述有机树脂包括聚碳酸甲酯、聚碳酸乙酯、聚碳酸亚丙酯、和经过官能团修饰的聚碳酸甲酯、聚碳酸乙酯、聚碳酸亚丙 酯中的任意一种或两种以上的组合;
    优选地,官能团包括羟基、羧基、卤素或环氧丙烷。
  8. 权利要求1-7任一项所述的隔热组合物的制备方法,其中,该制备方法包括:
    将有机树脂加热到熔融加工温度以上;
    在真空下,将气凝胶材料充分浸渍于有机树脂中;
    在0.5MPa-2MPa下,使有机树脂向气凝胶材料内部充分渗透,保压时间为10min-60min,回收多余的有机树脂;
    循环浸渍、渗透和回收的操作,使有机树脂完全浸润于气凝胶材料;
    取出样品,常温下固化,得到隔热组合物。
  9. 一种隔热模组构件,其中,该隔热模组构件是由权利要求1-7任一项所述的隔热组合物制备得到的。
  10. 一种锂离子电池,其中,该锂离子电池含有权利要求9所述的隔热模组构件。
PCT/CN2019/098101 2019-07-29 2019-07-29 一种隔热组合物及制备方法和应用 WO2021016780A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES19939144T ES2958966T3 (es) 2019-07-29 2019-07-29 Composición de aislamiento térmico y procedimiento de preparación y aplicación
CN201980098360.0A CN114096616B (zh) 2019-07-29 2019-07-29 一种隔热组合物及制备方法和应用
EP19939144.2A EP4007006B1 (en) 2019-07-29 2019-07-29 Thermal insulation composition and preparation method and application
PCT/CN2019/098101 WO2021016780A1 (zh) 2019-07-29 2019-07-29 一种隔热组合物及制备方法和应用
US17/589,733 US20220153958A1 (en) 2019-07-29 2022-01-31 Thermal insulation composition and preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098101 WO2021016780A1 (zh) 2019-07-29 2019-07-29 一种隔热组合物及制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/589,733 Continuation US20220153958A1 (en) 2019-07-29 2022-01-31 Thermal insulation composition and preparation method and application

Publications (1)

Publication Number Publication Date
WO2021016780A1 true WO2021016780A1 (zh) 2021-02-04

Family

ID=74228263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098101 WO2021016780A1 (zh) 2019-07-29 2019-07-29 一种隔热组合物及制备方法和应用

Country Status (5)

Country Link
US (1) US20220153958A1 (zh)
EP (1) EP4007006B1 (zh)
CN (1) CN114096616B (zh)
ES (1) ES2958966T3 (zh)
WO (1) WO2021016780A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045284A (zh) * 2021-03-11 2021-06-29 山东茂盛管业有限公司 一种基于纳米气凝胶颗粒的隔热铺垫瓦块及其制备方法
EP4261187A1 (en) * 2022-04-14 2023-10-18 Taiwan Aerogel Technology Material Co., Ltd. Aerogel and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449194B (zh) * 2022-08-12 2023-08-04 湖北硅金凝节能减排科技有限公司 一种气凝胶电芯隔热片及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443746A (en) * 1994-02-14 1995-08-22 Hughes Aircraft Company Ferroelectric aerogel composites for voltage-variable dielectric tuning, and method for making the same
US5731360A (en) * 1996-03-05 1998-03-24 Regents Of The University Of California Compression molding of aerogel microspheres
CN102239114A (zh) * 2008-12-04 2011-11-09 泰科电子公司 石墨烯和氧化石墨烯气凝胶
US20140127490A1 (en) * 2011-04-04 2014-05-08 Carnegie Mellon University Carbon nanotube aerogels, composites including the same, and devices formed therefrom
CN105452387A (zh) * 2013-07-04 2016-03-30 莱姆泰克株式会社 一种隔热组合物及其制备方法和使用该隔热组合物的隔热元件
CN106422995A (zh) * 2015-08-11 2017-02-22 中国科学院化学研究所 一种石墨烯气凝胶和其杂化复合材料及其制备方法与应用
US20170096548A1 (en) * 2015-10-01 2017-04-06 Korea Institute Of Science And Technology Heat insulation composites having aerogel with preserving aerogel pores using volatile solvent and method for preparing the same
CN107099117A (zh) * 2016-02-20 2017-08-29 金承黎 一种纤维增强气凝胶-聚合物复合材料及其制备方法
CN107286491A (zh) * 2017-06-16 2017-10-24 青岛大学 一种高导电性碳纳米管/石墨烯气凝胶/聚苯乙烯复合材料及其制备方法
CN108699259A (zh) * 2015-12-30 2018-10-23 密执安州立大学董事会 含anf的凝胶和纳米复合材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880418B (zh) * 2010-06-30 2012-08-22 华南理工大学 一种透明eva隔热材料及其制备方法
CN104029429A (zh) * 2014-06-18 2014-09-10 航天海鹰(镇江)特种材料有限公司 一种以热熔胶为粘结剂的气凝胶复合布料及其制备方法
KR102171649B1 (ko) * 2015-12-15 2020-10-29 애플 인크. 미세다공성 절연체

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443746A (en) * 1994-02-14 1995-08-22 Hughes Aircraft Company Ferroelectric aerogel composites for voltage-variable dielectric tuning, and method for making the same
US5731360A (en) * 1996-03-05 1998-03-24 Regents Of The University Of California Compression molding of aerogel microspheres
CN102239114A (zh) * 2008-12-04 2011-11-09 泰科电子公司 石墨烯和氧化石墨烯气凝胶
US20140127490A1 (en) * 2011-04-04 2014-05-08 Carnegie Mellon University Carbon nanotube aerogels, composites including the same, and devices formed therefrom
CN105452387A (zh) * 2013-07-04 2016-03-30 莱姆泰克株式会社 一种隔热组合物及其制备方法和使用该隔热组合物的隔热元件
CN106422995A (zh) * 2015-08-11 2017-02-22 中国科学院化学研究所 一种石墨烯气凝胶和其杂化复合材料及其制备方法与应用
US20170096548A1 (en) * 2015-10-01 2017-04-06 Korea Institute Of Science And Technology Heat insulation composites having aerogel with preserving aerogel pores using volatile solvent and method for preparing the same
CN108699259A (zh) * 2015-12-30 2018-10-23 密执安州立大学董事会 含anf的凝胶和纳米复合材料
CN107099117A (zh) * 2016-02-20 2017-08-29 金承黎 一种纤维增强气凝胶-聚合物复合材料及其制备方法
CN107286491A (zh) * 2017-06-16 2017-10-24 青岛大学 一种高导电性碳纳米管/石墨烯气凝胶/聚苯乙烯复合材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AN JING-JING ,KE YU-CAI, CAO XIN-YU, MA YONG-MEI, WANG FO-SONG: "Research Progress on Thermal Degradation and Stability of Eco-Friendly Material Poly(propylene carbonate)", PLASTICS, vol. 43, no. 4, 18 August 2014 (2014-08-18), pages 60 - 64, XP055776681, ISSN: 1001-9456 *
EDITORIAL COMMITTEE OF CHEMICAL ENCYCLOPEDIA: "3.1 Aliphatic polycarbonate", ENCYCLOPEDIA OF CHEMICAL INDUSTRY (VOLUME 9), vol. 9, 30 June 1995 (1995-06-30), pages 301 - 302, XP009525760, ISBN: 7-5025-0846-5 *
LASKOWSKI JESSICA; MILOW BARBARA; RATKE LORENZ: "Aerogel–aerogel composites for normal temperature range thermal insulations", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 441, 2 April 2016 (2016-04-02), pages 42 - 48, XP029522594, ISSN: 0022-3093, DOI: 10.1016/j.jnoncrysol.2016.03.020 *
LIANG YU-YING, HUI-JUN WU, HUANG REN-DA , JIAN-MING YANG: "Optimizations of Thermal and Mechanical Properties of Silica Aerogel Composite", BULLETIN OF THE CHINESE CERAMIC SOCIETY, vol. 36, no. 5, 15 May 2017 (2017-05-15), pages 1693 - 1699, XP055776675, ISSN: 1001-1625, DOI: 10.16552/j.cnki.issn1001-1625.2017.05.040 *
RAJENDRAN MUTHURAJ,YVES GROHENS,BASTIEN SEANTIER: "Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels", NANO-STRUCTURES & NANO-OBJECTS, vol. 12, 13 October 2017 (2017-10-13), pages 68 - 79, XP055776687, ISSN: 2352-507X, DOI: 10.1016/j.nanoso.2017.09.002 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045284A (zh) * 2021-03-11 2021-06-29 山东茂盛管业有限公司 一种基于纳米气凝胶颗粒的隔热铺垫瓦块及其制备方法
EP4261187A1 (en) * 2022-04-14 2023-10-18 Taiwan Aerogel Technology Material Co., Ltd. Aerogel and preparation method therefor

Also Published As

Publication number Publication date
US20220153958A1 (en) 2022-05-19
CN114096616A (zh) 2022-02-25
EP4007006B1 (en) 2023-09-06
EP4007006A1 (en) 2022-06-01
EP4007006C0 (en) 2023-09-06
EP4007006A4 (en) 2022-08-17
CN114096616B (zh) 2024-03-08
ES2958966T3 (es) 2024-02-16

Similar Documents

Publication Publication Date Title
WO2021016780A1 (zh) 一种隔热组合物及制备方法和应用
WO2021189836A1 (zh) 高性能锂离子电池石墨负极材料及其制备方法
JP7176134B2 (ja) 複合断熱材
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
JP7053971B1 (ja) 安全性の高いパック設計用の異方性熱伝導率を有する多層複合材料
WO2019205589A1 (zh) 一种以静电纺丝法制取的可用于锂离子电池的对位芳纶聚合物隔膜的制备方法
Zhao et al. A core@ sheath nanofiber separator with combined hardness and softness for lithium-metal batteries
CN105161661A (zh) 一种锂离子电池复合隔膜及其制备方法以及一种锂离子电池
CN101662042B (zh) 一种聚合物锂离子电池及其隔膜的制备方法
CN112125295B (zh) 一种酚醛树脂/蔗糖基硬炭微球材料及其制备方法和钠离子电池
CN101127392A (zh) 一种安全锂离子电芯及其制造方法
CN109037552B (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN101986443A (zh) 一种锂硫电池正极材料及其制备方法
WO2023098191A1 (zh) 一种硬碳负极材料及其制备方法与应用
WO2023160450A1 (zh) 一种具有热安全性的高镍锂离子电池正极材料及其制备方法
CN105428577A (zh) 一种锂离子电池的隔膜
CN113823781A (zh) 一种复合负极材料及其制备方法
CN113394405B (zh) 一种主动防御锂离子电池热失控电极涂层的制备方法
CN112635731B (zh) 一种基于导电碳气凝胶复合纳米硅负极材料的制备方法及其产品
CN111477818B (zh) 一种全陶瓷锂离子电池隔膜及其制备方法
CN108682831B (zh) 一种锂电池单质硫-碳复合正极材料的制备方法
CN107644989B (zh) 一种纳米储能材料的制备方法及包含其的锂离子电池
CN114725502A (zh) 一种固体电解质膜及其制备方法与应用
CN114335500A (zh) 一种纳米多孔结构SiO2包覆的三元正极材料及其制备方法和应用
CN113611864A (zh) 炭气凝胶包覆氧化亚硅中空微球负极材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019939144

Country of ref document: EP

Effective date: 20220228