WO2021014821A1 - m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置 - Google Patents

m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置 Download PDF

Info

Publication number
WO2021014821A1
WO2021014821A1 PCT/JP2020/023419 JP2020023419W WO2021014821A1 WO 2021014821 A1 WO2021014821 A1 WO 2021014821A1 JP 2020023419 W JP2020023419 W JP 2020023419W WO 2021014821 A1 WO2021014821 A1 WO 2021014821A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
polymer
group
compound
formula
Prior art date
Application number
PCT/JP2020/023419
Other languages
English (en)
French (fr)
Inventor
幸治 弘中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021533861A priority Critical patent/JP7193642B2/ja
Publication of WO2021014821A1 publication Critical patent/WO2021014821A1/ja
Priority to US17/553,807 priority patent/US20220105462A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/52Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3814Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/773Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to an m-phenylenediamine compound, a polymer having an m-phenylenediamine skeleton and a method for producing the same, and a gas separation membrane, a gas separation module, and a gas separation device using this polymer.
  • a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • a membrane composed of a specific polymer compound As an industrial use mode of this gas separation membrane (gas separation membrane), carbon dioxide is emitted from a large-scale carbon dioxide source in thermal power plants, cement plants, steel mill blast furnaces, etc. in relation to the problem of global warming. Separation and recovery are being considered.
  • natural gas and biogas gas generated by fermentation of biological excrement, organic fertilizer, biodegradable substances, sewage, garbage, energy crops, etc., and anaerobic digestion
  • methane and carbon dioxide are mainly mixed gases containing methane and carbon dioxide. Therefore, the use of a gas separation membrane is being studied as a means for removing impurities such as carbon dioxide from this mixed gas.
  • Patent Document 1 describes a polyimide compound having a diamine component in which a specific polar group is introduced into a specific site of m-phenylenediamine. According to Patent Document 1, by forming a gas separation layer of a gas separation membrane using this polyimide compound, both gas permeability and gas separation selectivity can be enhanced, and it depends on the plasticizing component in the gas. It is said that the deterioration of performance can be suppressed.
  • the gas separation layer In order to obtain a practical gas separation membrane, the gas separation layer must be thinned to ensure sufficient gas permeability, and the desired gas separation selectivity must be realized.
  • a method for thinning the gas separation layer there is a method in which a polymer compound such as a polyimide compound is formed into an asymmetric film by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer.
  • a portion other than the dense layer functions as a support layer that bears the mechanical strength of the film.
  • the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and a gas separation layer having a gas separation ability is thinly layered on the gas permeable support layer.
  • the morphology of the composite membrane formed in is also known.
  • gas permeability and gas separation selectivity are in a so-called trade-off relationship with each other. Therefore, although it is possible to improve either the gas permeability or the gas separation selectivity of the gas separation layer by adjusting the copolymerization component of the polyimide compound used for the gas separation layer, both characteristics are exhibited at a high level. It is difficult to achieve both. Further, when the amount of the plasticizing component in the natural gas is small, when the natural gas is used for a long period of time, contrary to the plasticizing, the film is dried and a phenomenon such as densification occurs, and the gas permeability is impaired. Therefore, the gas separation membrane is also required to have a property of being able to sufficiently maintain gas permeability even under harsh drying conditions.
  • the present invention has excellent gas permeability, gas separation selectivity, and a gas separation membrane that does not easily decrease gas permeability even when exposed to harsh drying conditions, a gas separation module having this gas separation membrane, and a gas separation membrane.
  • An object of the present invention is to provide a gas separation device.
  • Another object of the present invention is to provide a functional polymer suitable for application of the gas separation membrane to a gas separation layer, a method for producing the same, and a diamine compound suitable as a raw material for the polymer.
  • R A and R B represents a hydrogen atom, an alkyl group or a halogen atom.
  • the number of carbon atom of the L A is 4 or less. * Indicates the connection site.
  • the m-phenylenediamine compound represented by the above formula (Ia) is the m-phenylenediamine compound represented by the following formula (Ia-1) or (Ia-2), according to [1] or [2].
  • R A and R B represents a hydrogen atom, an alkyl group or a halogen atom.
  • the number of carbon atom of the L A is 4 or less. * Indicates the connection site.
  • * indicates the connection site.
  • R A and R B represents a hydrogen atom, an alkyl group or a halogen atom.
  • R represents a group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 represent a single bond or a divalent linking group
  • R 1 and R 2 represent a hydrogen atom or a substituent
  • * is a formula (*).
  • II) Shows the binding site with the carbonyl group in. [12]
  • the numerical range represented by "-" means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by a specific reference numeral, or when a plurality of substituents, etc. are specified simultaneously or alternately, each of them is used. It means that the substituents and the like may be the same or different from each other. This also applies to the regulation of the number of substituents and the like.
  • the polymer has a plurality of constituents having the same indication (expressed by the same general formula), the constituents may be the same as or different from each other.
  • Substituents (same for linking groups) for which substitution or non-substitution is not specified in the present specification may have any substituent as long as the desired effect is not impaired. is there. This is also synonymous with compounds that do not specify substitution or no substitution.
  • the gas separation membrane, gas separation module, and gas separation device of the present invention have excellent gas permeability, excellent gas separation selectivity, and sufficient gas permeability even when the gas separation layer is exposed to harsh drying conditions. Can be maintained at.
  • the polymer of the present invention has a structure in which the constituent components are characteristic, and can be used as various functional polymers including the constituent material of the gas separation layer.
  • the m-phenylenediamine compound of the present invention is suitable as a raw material for the above polymer.
  • R A and R B represents a hydrogen atom, an alkyl group or a halogen atom.
  • Alkyl group which may take as R A and R B preferably has a carbon number of an integer from 1 to 10, more preferably from 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, methyl or ethyl It is particularly preferable to have.
  • Alkyl group which may take as R A and R B may have a substituent, in this case, monosubstituted alkyl group and disubstituted alkyl groups are preferred.
  • Examples of the substituent in the mono-substituted alkyl group and the di-substituted alkyl group include a halogen atom, a hydroxy group, an alkoxy group (preferably 1 to 3 carbon atoms), and an acyloxy group (preferably 1 to 3 carbon atoms). , Halogen atom is preferred.
  • R A and an alkyl group which may take as R B is 3 or more carbon atoms, may have either linear or branched, and is preferably linear.
  • R A and R B is preferably a group selected from a hydrogen atom and an alkyl group.
  • all three are hydrogen atoms, or three R A R A, and it is preferable that all of the two R B is a hydrogen atom or an alkyl group.
  • all three R A is a hydrogen atom (that * -C (R A) 3 is methyl) is preferable. It is also preferred that all three R A and two R B is a hydrogen atom.
  • the halogen atom can be taken as R A and R B, a fluorine atom, a chlorine atom, a bromine atom, and iodine atom.
  • the halogen atom is preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
  • " * " indicates a connecting site.
  • L A is the above "divalent group formed by combining two or more of these groups"
  • the number of carbon atom of the L A is 4 or less.
  • the number of carbon atoms which L A has the L A in the case of "comprising a combination of two or more of these groups the divalent radical" is 3 or less.
  • L A is more preferably * -CF 2 - * or * -CF (CF 3) - a *.
  • the compound represented by the above formula (Ia) is particularly preferably a compound represented by the following formula (Ia-1) or (Ia-2).
  • the m-phenylenediamine compound of the present invention is suitable as a synthetic raw material for a polymer, and can impart desired properties to the obtained polymer.
  • the polymer obtained by using the m-phenylenediamine compound of the present invention as a synthetic raw material (monomer) can realize a low dielectric constant and can further enhance the transparency of the polymer. The reason for this is not clear, but the fact that the constituents derived from the m-phenylenediamine compound of the present invention incorporated in the polymer have a trifluoromethyl group at a specific site makes the polymer low in dielectric constant and transparent.
  • the m-phenylenediamine compound of the present invention provides a constituent polymer such as a transparent heat-resistant resin, a low dielectric constant resin, a high-frequency-compatible material, and a moisture-proof coating material by using it as a synthetic raw material for various functional polymers. can do. Further, by using the m-phenylenediamine compound of the present invention as a synthetic raw material, it is possible to provide a polymer suitable as a constituent material of the gas separation layer of the gas separation membrane as described later.
  • a polyimide compound, a polyurethane compound, a polyurea compound, or a polyamide compound can be obtained by using the m-phenylenediamine compound of the present invention as a synthetic raw material.
  • the polymer (polymer compound) of the present invention has a constituent component represented by the following formula (Ib).
  • R A, R B and L A are each the same meaning as R A, R B and L A in formula (Ia), the preferred embodiment also the same.
  • the constituent component represented by the above formula (Ib) is particularly preferably a constituent component represented by the following formula (Ib-1) or (Ib-2).
  • the polymer of the present invention exhibits desired properties or functionality due to the unique structure represented by the above formula (Ib).
  • the polymer having the constituent component represented by the above formula (Ib) is, for example, a constituent polymer (functional polymer) such as a transparent heat-resistant resin, a low dielectric constant resin, a high-frequency compatible material, and a moisture-proof coating material.
  • a constituent polymer such as a transparent heat-resistant resin, a low dielectric constant resin, a high-frequency compatible material, and a moisture-proof coating material.
  • a constituent polymer such as a transparent heat-resistant resin, a low dielectric constant resin, a high-frequency compatible material, and a moisture-proof coating material.
  • the polymer of the present invention is also suitable as a constituent material of the gas separation layer of the gas separation membrane.
  • a desired gas component can be permeated from the mixed gas with high selectivity, and gas permeability and gas separation selection can be achieved. It is possible to achieve both sex at a high level.
  • This gas separation membrane can sufficiently maintain the gas permeability of the gas separation layer even under harsh drying conditions. This is sufficient to the extent that the trifluoromethyl group suppresses the cohesive force of the polymer and, in combination with the inhibitory effect of the specific substituent on the flatness or packing property, does not inhibit the gas separation selectivity in the polymer.
  • the gas separation membrane using the polymer of the present invention for the gas separation layer is particularly suitable for use in a natural gas field having a small amount of plasticizing components.
  • the polymer of the present invention is preferably a polyimide compound as described later.
  • the constituent component represented by the above formula (Ib) is preferably a diamine-derived component. That is, the polymer of the present invention is preferably obtained by using the m-phenylenediamine compound represented by the above formula (Ia) as a synthetic raw material. An example of a method for obtaining a polymer using the m-phenylenediamine compound represented by the above formula (Ia) as a synthetic raw material will be described below.
  • the polymer of the present invention can be obtained as a polyimide compound by polycondensing the m-phenylenediamine compound represented by the above formula (Ia) and a tetracarboxylic dianhydride.
  • the polyimide compound can be synthesized by a conventional method except for the raw materials used.
  • general books for example, edited by Yoshio Imai and Rikio Yokota, "Latest Polygon-Basics and Applications-", NTS Co., Ltd., August 25, 2010, pp. 3-49, etc. ) Can be appropriately referred to and synthesized.
  • a polyurethane compound can be obtained by isocyanateting the transamination of the m-phenylenediamine compound of the general formula (Ia) and then reacting it with a diol compound.
  • Polyurethane compounds can be synthesized by a conventional method except for the raw materials used. For example, "Polymer Experiments Vol. 5, Polycondensation and Polyaddition", edited by the editorial board of Polymer Experiments of the Society of Polymer Science, Kyoritsu. You can see the publication, 1980.
  • the polyurea compound is produced by reacting with the diamine compound or by reacting the m-phenylenediamine compound of the general formula (Ia) with the diisocyanate compound.
  • the polyurea compound can be synthesized by a conventional method except for the raw materials used. For example, the editorial board of Polymer Experiments of the Society of Polymer Science, "Polymer Experiments Vol. 5, Polycondensation and Polyaddition", Kyoritsu Shuppan, 1980 can be referred to.
  • a polyamide compound can be obtained by polycondensing the m-phenylenediamine compound of the general formula (Ia) and the dicarboxylic acid compound.
  • Polyamide compounds can be synthesized by a conventional method except for the raw materials used. For example, "Polymer Experiments Vol. 5, Polycondensation and Polyaddition", edited by the editorial board of Polymer Experiments of the Society of Polymer Science, Kyoritsu. You can refer to the publication, 1980.
  • the molecular weight of the "polymer” is not particularly limited as long as the above structure is satisfied.
  • the molecular weight can be 1000 to 10000, preferably 10000 to 500000, and more preferably 20000 to 300,000.
  • the molecular weight is 1000 or more, it is a value as a weight average molecular weight.
  • the gas separation membrane of the present invention has a gas separation layer containing the polymer of the present invention described above. It is considered that the polymer of the present invention has a high free volume as described above, and can maintain this free volume even when exposed to harsh drying conditions. By using this polymer as a constituent material of the gas separation layer, it is possible to achieve both gas permeability and gas separation selectivity at a high level, and to sufficiently maintain gas separation performance even in a harsh environment. ..
  • the gas separation layer of the gas separation membrane of the present invention is preferably a polyimide compound having at least a constituent component represented by the above formula (Ib).
  • This polyimide compound preferably has at least a structural unit (repeating unit) represented by the following formula (II).
  • R A, R B and L A are each the same meaning as R A, R B and L A in formula (Ia), the preferred embodiment also the same. That is, among the structural units represented by the formula (II), the preferred form of the diamine-derived component (the structural portion having the benzene ring on the right side in the formula (II)) is the constituent component represented by the above formula (Ib). It is the same as the preferable form of.
  • R represents a group having a structure represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 represent a single bond or a divalent linking group
  • R 1 and R 2 represent a hydrogen atom or a substituent
  • * is a formula (*).
  • R is preferably a group represented by the formula (I-1), (I-2) or (I-4), and is a group represented by (I-1) or (I-4). Is more preferable, and it is particularly preferable that the group is represented by (I-1).
  • the formula (I-1), (I -9) and (I-18) in, X 1 ⁇ X 3 represents a single bond or a divalent linking group.
  • the divalent linking group include -C (R x ) 2- (R x indicates a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring).
  • R x indicates a substituent, specific examples thereof include a group selected from the Substituent Group Z described below, and among them, an alkyl group (preferably the range is synonymous with the alkyl group shown in the Substituent Group Z described later).
  • an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • the formula (I-18) is, X 3 is either one of the two carbon atoms that are described on the left side, and, in conjunction with one of the two carbon atoms that are described in the right side Means to be.
  • R 1 and R 2 represent a hydrogen atom or a substituent. Examples of this substituent include a group selected from the substituent group Z described later. R 1 and R 2 may be combined with each other to form a ring. R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • the carbon atoms represented by the formulas (I-1) to (I-28) may further have a substituent as long as the effects of the present invention are not impaired.
  • the form having this substituent is also included in the group represented by any of the formulas (I-1) to (I-28).
  • Specific examples of this substituent include a group selected from the Substituent Group Z described later, and an alkyl group or an aryl group is preferable.
  • the content of the structural unit represented by the above formula (II) is preferably 20% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more.
  • the polyimide compound used in the present invention is also preferably composed of the structural unit represented by the above formula (II).
  • the polyimide compound may have a structural unit represented by the following formula (III) or (IV) in addition to the structural unit represented by the above formula (II). However, the structural units represented by the following formula (III) do not include those included in the structural units represented by the above formula (II).
  • the polyimide compound may contain one or more structural units represented by the following formula (III) or (IV).
  • R has the same meaning as R in the formula (II), and the preferred form is also the same.
  • R 4 to R 6 indicate substituents. Examples of the substituent include a group selected from the substituent group Z described later.
  • R 4 is preferably an alkyl group, a carboxy group, a sulfamoyl group, a carbamoyl group or a halogen atom.
  • L1 indicating the number of R 4 is an integer of 0-4.
  • the number of carbon atoms of this alkyl group is preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and even more preferably methyl. It is ethyl or trifluoromethyl.
  • the structural unit of the formula (III) preferably has a carboxy group or a sulfamoyl group.
  • the number of the carboxy group or sulfamoyl group in the formula (III) is preferably one.
  • 2 two connecting sites for incorporation into the polyimide compound of the diamine component i.e. phenylene group which may have R 4
  • R 5 and R 6 represent an alkyl group or a halogen atom, or a group linked to each other to form a ring with X 4 . Moreover, and form two R 5 are linked to form a ring, also a preferred form of the two R 6 are linked to form a ring.
  • the structure in which R 5 and R 6 are connected is not particularly limited, and a single bond, —O— or —S— is preferable.
  • M1 and n1 represents the number of R 5 and R 6 is an integer of 0 to 4, preferably 0 to 3, more preferably 0 to 2, more preferably 0 or 1.
  • R 5 and R 6 are alkyl groups
  • the number of carbon atoms of this alkyl group is preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and even more preferably.
  • two coupling sites for incorporation into the polyimide compound of the two phenylene groups in the diamine component i.e. two phenylene groups which may have R 5 and R 6) is a linking site X 4 On the other hand, it is preferably located in the meta position or the para position.
  • X 4 has the same meaning as X 1 in the above formula (I-1), and the preferred form is also the same.
  • the polyimide compound used in the present invention has a structural unit represented by the above formula (II), a structural unit represented by the above formula (III), and a structural unit represented by the above formula (IV) in its structure.
  • the ratio of the molar amount of the structural unit represented by the formula (II) to the total molar amount is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, and 40 to 100 mol%. It is also preferable. Further, the ratio of the molar amount of the structural unit represented by the formula (II) may be 90 mol% or less, or 80 mol% or less.
  • the structural unit represented by the above formula (II), the structural unit represented by the above formula (III), and the structural unit represented by the above formula (IV) account for the total molar amount of the formula (II).
  • the ratio of the molar amount of the structural unit represented by) is 100 mol%, which means that the polyimide compound is a structural unit represented by the above formula (III) and a structural unit represented by the above formula (IV). It means that it does not have either.
  • the polyimide compound used in the present invention is composed of a structural unit represented by the above formula (II), or when it has a structural unit other than the structural unit represented by the above formula (II), the above formula (II). It is preferable that the balance other than the structural unit represented by) is composed of the structural unit represented by the above formula (III) or the above formula (IV).
  • “consisting of the structural unit represented by the above formula (III) or the above formula (IV)” is represented by the above formula (IV), which is an embodiment composed of the structural unit represented by the above formula (III). It is meant to include three aspects, that is, an aspect composed of the structural unit represented by the above formula (III) and a configuration unit represented by the above formula (III) and the structural unit represented by the above formula (IV).
  • Substituent group Z Alkyl groups (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl.
  • cycloalkyl groups preferably 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.
  • alkyl groups preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, 2 -Butenyl, 3-pentenyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, for example, propargyl, 3-pentynyl and the like
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms
  • phenyl, naphthyl, anthranyl, etc. includes phenyl, naphthyl, anthranyl, etc.), amino groups (containing amino groups, alkylamino groups, arylamino groups, heterocyclic amino groups, etc., preferably 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, Particularly preferably, it is an amino group having 0 to 10 carbon atoms, and examples thereof include amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, and ditrilamino), and an alkoxy group (preferably 1 to 30 carbon atoms).
  • an alkoxy group having 1 to 20 carbon atoms particularly preferably 1 to 10 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy, 2-ethylhexyloxy and the like), and an aryloxy group (preferably carbon).
  • a ring oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyraziloxy, pyrimidyloxy, and quinolyloxy. .),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, pivaloyl and the like), alkoxy.
  • a carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbonyl groups, and examples thereof include methoxycarbonyl and ethoxycarbonyl), aryloxy.
  • a carbonyl group preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbonyl groups, and examples thereof include phenyloxycarbonyl and the like
  • acyloxy groups It is preferably an acyloxy group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy
  • an acylamino group preferably having 2 to 10 carbon atoms. It is an acylamino group having 2 to 30, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino).
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino
  • aryl preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino).
  • a sulfonylamino group (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamino and benzenesulfonylamino), sulfamoyl groups.
  • alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio
  • an arylthio group preferably. It is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio) and a heterocyclic thio group (preferably 1 to 30 carbon atoms).
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pursel, tosyl, etc.), a sulfinyl group (preferably). It is a sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl), and ureido groups (preferably 1 to 12 carbon atoms).
  • halogen atoms eg, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, more preferably fluorine atoms
  • Cyano group carboxy group, oxo group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably a heterocyclic group with a 3- to 7-membered ring, and even an aromatic heterocycle is not aromatic. It may be a hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hetero ring has preferably 0 to 30 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • These substituents may be further substituted with any one or more substituents selected from the above-mentioned Substituent Group Z.
  • those substituents when there are a plurality of substituents in one structural site, those substituents are linked to each other to form a ring, or are condensed with a part or all of the structural sites to form an aromatic aromatic ring. It may form a ring or an unsaturated heterocycle.
  • the compound or substituent contains an alkyl group, an alkenyl group or the like, these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group and the like may be monocyclic or condensed, and may be substituted or unsubstituted.
  • substituents refer to this substituent group Z unless otherwise specified, and when the names of the respective groups are merely described ( For example, when it is only described as "alkyl group"), a preferable range and specific examples of the corresponding group of the substituent group Z are applied.
  • the molecular weight of the polyimide compound is preferably 10,000 to 1,000,000, more preferably 15,000 to 500,000, and further preferably 20,000 to 200,000 as a weight average molecular weight. is there.
  • the molecular weight and the degree of dispersion are values measured by the GPC (gel permeation chromatography) method unless otherwise specified, and the molecular weight is the weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. It is preferable to use 2 to 6 columns connected together.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably carried out in a solvent flow rate range of 0.1 to 2 mL / min, and most preferably 0.5 to 1.5 mL / min. By performing the measurement within this range, the device is not overloaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C., most preferably 20 to 40 ° C.
  • the column and carrier to be used can be appropriately selected according to the physical characteristics of the polymer to be measured symmetric.
  • the polyimide compound can be synthesized by subjecting a difunctional acid anhydride (tetracarboxylic dianhydride) having a specific structure and a diamine having a specific structure to condensation polymerization by a conventional method as described above.
  • a difunctional acid anhydride tetracarboxylic dianhydride
  • the tetracarboxylic dianhydride which is one of the raw materials is preferably represented by the following formula (V).
  • R is synonymous with R in formula (II) above, and the preferred form is also the same.
  • Ph is phenyl.
  • At least one of the diamine compounds that is the other raw material is the m-phenylenediamine compound represented by the above formula (Ia).
  • the diamine compound used as a raw material is represented by the following formula (IIIa) or the following formula (IVa) in addition to the diamine compound represented by the above formula (Ia).
  • Diamine compounds may be used.
  • R 4 and l1 are each the same meaning as R 4 and l1 in the formula (III), a preferred form also the same.
  • the diamine compound represented by the formula (III) is not the diamine compound represented by the formula (Ia).
  • R 5, R 6, X 4, m1 and n1 are each the same meaning as R 5, R 6, X 4 , m1 and n1 in the formula (IV), a preferred form also the same ..
  • the polyimide compound used in the present invention may be a block copolymer, a random copolymer, or a graft copolymer.
  • the polyimide compound used in the present invention can be obtained by mixing the above raw materials in a solvent and performing condensation polymerization by a usual method as described above.
  • the solvent is not particularly limited, but is not limited to ester compounds such as methyl acetate, ethyl acetate and butyl acetate, and aliphatic ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone and cyclohexanone.
  • Ethylene glycol dimethyl ether, dibutylbutyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane and other ether compounds N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethylacetamide and other amide compounds, dimethylsulfoxide, sulfolane and the like.
  • Examples include sulfur-containing compounds.
  • These organic solvents are appropriately selected to the extent that they can dissolve the reaction substrate tetracarboxylic dianhydride, diamine compound, reaction intermediate polyamic acid, and the final product polyimide compound. It is a thing.
  • an ester compound preferably butyl acetate
  • an aliphatic ketone compound preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone
  • an ether compound diethylene glycol monomethyl ether, methylcyclopentyl ether
  • Compounds preferably N-methylpyrrolidone
  • sulfur-containing compounds dimethylsulfoxide, sulfolane
  • the polymerization reaction temperature is not particularly limited, and a temperature that can be usually adopted in the synthesis of a polyimide compound can be adopted. Specifically, it is preferably ⁇ 40 to 60 ° C., more preferably ⁇ 30 to 50 ° C.
  • a polyimide compound can be obtained by imidizing the polyamic acid produced by the above polymerization reaction by subjecting it to an intramolecular dehydration ring closure reaction.
  • a thermal imidization method in which the by-product water is removed from the system by heating to 120 ° C. to 200 ° C., or acetic anhydride or dicyclohexyl in the presence of a basic catalyst such as pyridine, triethylamine, or DBU.
  • a method such as so-called chemical imidization using a dehydration condensing agent such as carbodiimide or triphenyl phosphite is preferably used.
  • the total concentration of the tetracarboxylic dianhydride and the diamine compound in the polymerization reaction solution of the polyimide compound is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5 to 50% by mass. Is preferable, and more preferably 5 to 30% by mass.
  • the configuration of the gas separation membrane of the present invention will be described.
  • the gas separation layer is made thin to ensure gas permeability, and the desired gas separation selectivity is also realized.
  • a method of thinning the gas separation layer there is a method in which the gas separation membrane is made into an asymmetric membrane by a phase separation method, and the portion contributing to the separation is made into a thin layer called a dense layer or a skin layer.
  • a portion other than the dense layer functions as a support layer that bears the mechanical strength of the film.
  • a gas separation layer responsible for a gas separation function and a support layer responsible for mechanical strength are made of different materials, and a gas separation layer having a gas separation ability is formed as a thin layer on a gas permeable support layer.
  • the gas separation asymmetric membrane can be formed by a phase conversion method using a solution containing a polyimide compound.
  • the phase conversion method is a known method for forming a film while contacting a polymer solution with a coagulating solution to perform a phase conversion, and the so-called dry-wet method is preferably used in the present invention.
  • the solution on the surface of the polymer solution formed into a film is evaporated to form a thin dense layer, and then the solution is immersed in a coagulating solution (compatible with the solvent of the polymer solution and the polymer is an insoluble solvent).
  • a coagulating solution compatible with the solvent of the polymer solution and the polymer is an insoluble solvent.
  • the thickness of the surface layer called a dense layer or a skin layer that contributes to gas separation is not particularly limited, but is 0.01 to 5.0 ⁇ m from the viewpoint of imparting practical gas permeability. It is preferably 0.05 to 1.0 ⁇ m, and more preferably 0.05 to 1.0 ⁇ m.
  • the porous layer below the dense layer plays a role of imparting mechanical strength at the same time as lowering the resistance of gas permeability, and its thickness is particularly high as long as it is imparted with independence as an asymmetric membrane. Not limited. For example, it can be 5 to 500 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 5 to 100 ⁇ m.
  • the gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane.
  • the asymmetric hollow fiber membrane can be produced by a dry-wet spinning method.
  • the dry-wet spinning method is a method of producing an asymmetric hollow fiber membrane by applying the dry-wet spinning method to a polymer solution having a hollow fiber-like target shape by discharging it from a spinning nozzle. More specifically, after the polymer solution is discharged from the nozzle into a hollow filament-like target shape and passed through an air or nitrogen gas atmosphere immediately after the discharge, the polymer is substantially insoluble and compatible with the solvent of the polymer solution.
  • This is a method of producing a separation membrane by immersing it in a coagulating solution having an asymmetric structure, then drying it, and then heat-treating it if necessary.
  • the solution viscosity of the solution containing the polyimide compound discharged from the nozzle is 2 to 17,000 Pa ⁇ s, preferably 10 to 1500 Pa ⁇ s, particularly 20 to 1000 Pa ⁇ s at the discharge temperature (for example, 10 ° C.). It is preferable because the shape of the product after ejection can be stably obtained.
  • To immerse in the coagulation liquid immerse it in the primary coagulation liquid to coagulate it to the extent that the shape of the membrane such as hollow filament can be maintained, then wind it up on a guide roll and then immerse it in the secondary coagulation liquid to sufficiently immerse the entire membrane. It is preferable to solidify. It is efficient to dry the solidified membrane after replacing the coagulating liquid with a solvent such as a hydrocarbon.
  • the heat treatment for drying is preferably carried out at a temperature lower than the softening point or the secondary transition point of the polyimide compound used.
  • FIG. 1 is a vertical cross-sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 1 is a gas separation layer, and 2 is a support layer made of a porous layer. FIG.
  • FIGS. 1 and 2 show an embodiment in which carbon dioxide is selectively permeated from a mixed gas of carbon dioxide and methane.
  • upper side of the support layer means that another layer may intervene between the support layer and the gas separation layer.
  • the side to which the gas to be separated is supplied is defined as “upper”
  • the side from which the separated gas is emitted is defined as “upper”.
  • the gas separation composite film of the present invention can be formed into a composite film by forming a gas separation layer on at least the surface of a porous support (support layer).
  • the film thickness of the gas separation layer is preferably as thin as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
  • the thickness of the gas separation layer is not particularly limited, but is preferably 0.01 to 5.0 ⁇ m, and more preferably 0.05 to 2.0 ⁇ m.
  • the porous support preferably applied to the support layer is not particularly limited as long as it is intended to meet the provision of mechanical strength and high gas permeability, and may be an organic or inorganic material. Good. It is preferably a porous membrane of an organic polymer, and its thickness is preferably 1 to 3000 ⁇ m, more preferably 5 to 500 ⁇ m, and further preferably 5 to 150 ⁇ m.
  • the pore structure of this porous membrane usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the porosity is preferably 20 to 90%, more preferably 30 to 80%.
  • the fact that the support layer has "gas permeability" means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with a total pressure of 4 MPa on the gas supply side.
  • the permeation rate of carbon dioxide is 1 ⁇ 10-5 cm 3 (STP) / cm 2 ⁇ sec ⁇ cm Hg (10 GPU) or more.
  • the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C. and the total pressure on the gas supply side is set to 4 MPa, the carbon dioxide permeation rate is 3 ⁇ 10-5 cm 3 (STP) /.
  • porous membrane preferably cm 2 ⁇ sec ⁇ cmHg (30GPU ) or more, more preferably at least 100GPU, further preferably at least 200GPU.
  • Materials for the porous membrane include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluororesins such as polytetrafluoroethylene, polyvinylidene fluoride and polyvinylidene fluoride, polystyrene, cellulose acetate and polyurethane. Examples thereof include various resins such as polyacrylonitrile, polyphenylidene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid.
  • the shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow thread shape.
  • a support is formed in the lower part of the support layer on which the gas separation layer is formed in order to further impart mechanical strength.
  • a support include a woven fabric, a non-woven fabric, and a net, and the non-woven fabric is preferably used from the viewpoint of film forming property and cost.
  • the non-woven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination of two or more.
  • the non-woven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water with a circular net, a long net, or the like, and drying the non-woven fabric with a dryer. Further, for the purpose of removing fluff and improving mechanical properties, it is also preferable to perform pressure heat processing by sandwiching the non-woven fabric between two rolls.
  • the content of the polymer of the present invention in the gas separation layer is not particularly limited as long as the desired gas separation performance can be obtained.
  • the content of the polymer of the present invention in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. It is preferably present, and more preferably 70% by mass or more.
  • the content of the polymer of the present invention in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
  • another layer may be present between the support layer and the gas separation layer.
  • a preferred example of the other layer is a siloxane compound layer.
  • the siloxane compound layer By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned.
  • the siloxane compound forming the siloxane compound layer include those having a main chain composed of polysiloxane and compounds having a siloxane structure and a non-siloxane structure in the main chain.
  • these siloxane compound layers for example, those described in paragraphs [0103] to [0127] of Japanese Patent Application Laid-Open No. 2015-160167 can be preferably applied.
  • the gas separation membrane may have a siloxane compound layer as a protective layer on the gas separation layer.
  • a siloxane compound layer used as the protective layer for example, those described in paragraphs [0125] to [0175] of International Publication No. 2017/002407 can be preferably applied.
  • the gas separation membrane of the present invention is preferably in the form of a gas separation composite membrane.
  • the gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used as a gas separation and recovery method and a gas separation and purification method.
  • a gas separation and purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation film capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound of the above can be obtained.
  • a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the pressure at the time of gas separation using the gas separation membrane of the present invention is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and even more preferably 2 to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • a gas separation module can be prepared using the gas separation membrane of the present invention.
  • modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. Further, using the gas separation membrane or the gas separation module of the present invention, it is possible to obtain a gas separation device having means for separating and recovering or separating and purifying the gas.
  • the m-phenylenediamine compound was prepared as follows. 4- (Heptafluoroisopropyl) toluene, 25.0 g (manufactured by P & M-Invest Ltd.), was placed in a three-necked flask and cooled in an ice bath. Concentrated sulfuric acid 250mL (1.84g / cm 3, Fuji Photo Film manufactured by Wako Pure Chemical Industries, Ltd.) was added fuming nitric acid 36g (1.52g / cm 3, Fuji Photo Film manufactured by Wako Pure Chemical Industries, Ltd.) was carefully added dropwise. After reacting at an internal temperature of 45 ° C. for 10 hours, the mixture was ice-cooled and carefully poured into ice.
  • the obtained solid was purified on a silica gel column using ethyl acetate and chloroform, and the obtained crystals were vacuum-dried at 60 ° C. for 8 hours to obtain the desired m-phenylenediamine compound (the above scheme). 23.1 g of the compound on the right end of the above was obtained. The yield from 4- (heptafluoroisopropyl) toluene was 83%.
  • the m-phenylenediamine compound was prepared as follows. 19.0 g of 1-methyl-4- (pentafluoroethyl) benzene (manufactured by Marchester Organics Ltd.) was placed in a three-necked flask and cooled in an ice bath. Concentrated sulfuric acid 190mL (1.84g / cm 3, Fuji Photo Film manufactured by Wako Pure Chemical Industries, Ltd.) was added fuming nitric acid 34g (1.52g / cm 3, Fuji Photo Film manufactured by Wako Pure Chemical Industries, Ltd.) was carefully added dropwise. After reacting at an internal temperature of 45 ° C. for 5 hours, the mixture was ice-cooled and carefully poured into ice.
  • ⁇ Preparation of polyimide P-01> 10.4 g of m-phenylenediamine compound prepared in ⁇ Preparation of m-phenylenediamine compound-1>, 3.7 g of 3,5-diaminobenzoic acid (manufactured by Nippon Pure Chemical Industries, Ltd.), 81 mL of N-methylpyrrolidone (Fujifilm sum) (Made by Kojunyaku Kogyo) was placed in a three-necked flask and placed under a nitrogen stream.
  • polyimide P-01 having the following structure.
  • the weight average molecular weight measured by gel permeation chromatography using tetrahydrofuran was 100,000.
  • the numerical value assigned to the structural unit is the molar ratio (%).
  • the gas separation composite membrane shown in FIG. 2 was produced (the smooth layer is not shown in FIG. 2).
  • 0.08 g of polyimide P-01 and 7.92 g of tetrahydrofuran are mixed in a 30 ml brown vial, stirred for 30 minutes, and then spin-coated on the PAN porous membrane provided with the smooth layer to form a gas separation layer.
  • a composite film was obtained.
  • the thickness of the polyimide P-01 layer was about 100 nm
  • the thickness of the PAN porous film was about 180 ⁇ m including the non-woven fabric.
  • the polyacrylonitrile porous membrane used had a molecular weight cut-off of 100,000 or less.
  • the permeability of carbon dioxide of this porous membrane at 40 ° C. and 5 MPa was 25,000 GPU.
  • Example 2 to 8 Preparation of gas separation membrane
  • the gas separation membranes of Examples 2 to 8 were prepared, respectively.
  • the permeated gas was analyzed by gas chromatography.
  • the gas permeability of the membrane was determined by calculating the CO 2 permeation rate as the gas permeability (Permeance).
  • the gas separation selectivity was calculated as the ratio of the CO 2 permeation rate R CO2 to the CH 4 permeation rate R CH4 of this membrane (R CO2 / R CH4 ).
  • the performance of the gas separation membrane was evaluated by applying the above CO 2 permeation rate and gas separation selectivity to the following evaluation criteria.
  • Test Example 2 Forced drying test The gas separation membranes (composite membranes) of the above Examples and Comparative Examples were left at 90 ° C. for 2 weeks to be dried. Using this dried gas separation membrane, the CO 2 permeation rate was examined in the same manner as in Test Example 1. The evaluation criteria for the CO 2 permeation rate are the same as in Test Example 1. By this test, the applicability to natural gas fields with few plasticizing components can be simulated.
  • the gas separation membrane using the polymer having the diamine component having the structure specified in the present invention for the gas separation layer was excellent in both the gas permeation rate and the gas separation selectivity.
  • the gas permeation rate could be sufficiently maintained even when exposed to drying conditions (Examples 1 to 8).
  • Polyamide PA-01 was prepared as follows according to the above scheme. 4,4'-(Hexafluoroisopropyridene) bis (benzoic acid) dichloride 2.00 g (synthesized by a conventional method), diamine 1.35 g (synthesized in the same manner as above), N-methylpyrrolidone 20 g (Fujifilm Wako Pure Chemical Industries, Ltd.) 1.20 g of 4-dimethylaminopyridine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated and stirred at 60 ° C. for 4 hours.
  • polyurea PU-01 was prepared as follows. 2,2-Bis (4-isocyanatophenyl) hexafluoropropane 1.00 g (manufactured by Tokyo Chemical Industry), diamine 0.75 g (synthesized in the same manner as above), N-methylpyrrolidone 12 g (Fuji Film Wako Pure Chemical Industries, Ltd.) , Neostan U-600 (manufactured by Nitto Kasei) was added, and the mixture was heated and stirred at 70 ° C. for 6 hours. After cooling to room temperature, the concentration was adjusted with 10 g of N-methylpyrrolidone and reprecipitated with methanol to obtain 1.5 g of the target PU-01. The weight average molecular weight measured by gel permeation chromatography using N-methylpyrrolidone was 30,000.
  • Gas separation layer 2 Porous layer 3 Non-woven fabric layer 10, 20 Gas separation composite membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記式(Ia)で表される化合物、これを合成原料とするポリマー、このポリマーを含有してなるガス分離層を有するガス分離膜、このガス分離膜を有するガス分離モジュール及びガス分離装置。R及びRは水素原子、アルキル基又はハロゲン原子を示す。 Lは-CF-、-CF(CF)-、-C(=O)-、-CH-、-CH(CH)-もしくは-CH(CF)-、又はこれらを組合せた基を示す。Lが有する炭素原子の数は4以下である。

Description

m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置
 本発明は、m-フェニレンジアミン化合物、m-フェニレンジアミン骨格を有するポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置に関する。
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜(ガス分離膜)の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所、セメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源から二酸化炭素を分離回収することが検討されている。また、天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、この混合ガスから二酸化炭素等の不純物を除去する手段としてガス分離膜の利用が検討されている。
 ガス分離膜を用いた天然ガスの精製では、より効率的に目的のガスを分離するために、優れたガス透過性とガス分離選択性が求められる。これを実現するために種々の膜素材が検討されており、その一環としてポリイミド化合物を用いたガス分離膜が検討されてきた。例えば、特許文献1には、m-フェニレンジアミンの特定部位に特定の極性基が導入されたジアミン成分を有するポリイミド化合物が記載されている。特許文献1によれば、このポリイミド化合物を用いてガス分離膜のガス分離層を形成することにより、ガス透過性とガス分離選択性をともに高めることができ、また、ガス中の可塑化成分による性能の劣化も抑えられるとされる。
 実用的なガス分離膜とするためには、ガス分離層を薄層にして十分なガス透過性を確保した上で、さらに目的のガス分離選択性も実現しなければならない。ガス分離層を薄層化する手法としては、ポリイミド化合物等の高分子化合物を相分離法により非対称膜とし、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、上記非対称膜の他に、ガス分離機能を担うガス分離層と機械強度を担う支持層とを別素材とし、ガス透過性の支持層上に、ガス分離能を有するガス分離層を薄層に形成する複合膜の形態も知られている。
特開2015-083296号公報
 一般に、ガス透過性とガス分離選択性は互いにいわゆるトレードオフの関係にある。したがって、ガス分離層に用いるポリイミド化合物の共重合成分等を調整することにより、ガス分離層のガス透過性あるいはガス分離選択性のいずれかを改善することはできても、両特性を高いレベルで両立するのは困難とされる。また、天然ガス中の可塑化成分が少ない場合には、長期使用した際に、可塑化とは逆に、膜の乾燥が進んで緻密化のような現象が生じ、ガス透過性が損なわれる。したがって、ガス分離膜には過酷な乾燥条件においてもガス透過性を十分に維持できる特性も求められる。
 本発明は、ガス透過性に優れ、ガス分離選択性にも優れ、さらに過酷な乾燥条件に曝されてもガス透過性の低下を生じにくいガス分離膜、このガス分離膜を有するガス分離モジュール及びガス分離装置を提供することを課題とする。また、本発明は、上記ガス分離膜のガス分離層への適用に好適な機能性ポリマー及びその製造方法、並びにこのポリマーの原料として好適なジアミン化合物を提供することを課題とする。
 本発明の上記課題は下記手段により解決される。
〔1〕
 下記式(Ia)で表されるm-フェニレンジアミン化合物。
Figure JPOXMLDOC01-appb-C000008
 式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
 L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
 は連結部位を示す。
〔2〕
 上記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつLが有する炭素原子の数が3以下である、〔1〕に記載のm-フェニレンジアミン化合物。
〔3〕
 上記式(Ia)で表されるm-フェニレンジアミン化合物が、下記式(Ia-1)又は(Ia-2)で表される、〔1〕又は〔2〕に記載のm-フェニレンジアミン化合物。
Figure JPOXMLDOC01-appb-C000009
〔4〕
 下記式(Ib)で表される構成成分を有するポリマー。
Figure JPOXMLDOC01-appb-C000010
 式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
 L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
 は連結部位を示す。
〔5〕
 上記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつLが有する炭素原子の数が3以下である、〔4〕に記載のポリマー。
〔6〕
 上記式(Ib)で表される構成成分が、下記式(Ib-1)又は(Ib-2)で表される、〔4〕又は〔5〕に記載のポリマー。
Figure JPOXMLDOC01-appb-C000011
 式中、は連結部位を示す。
〔7〕
 上記構成成分がジアミン由来成分である、〔4〕~〔6〕のいずれかに記載のポリマー。
〔8〕
 上記ポリマーが、ポリイミド化合物、ポリウレタン化合物、ポリウレア化合物、又はポリアミド化合物である、〔4〕~〔7〕のいずれかに記載のポリマー。
〔9〕
 〔1〕~〔3〕のいずれかに記載のm-フェニレンジアミン化合物を原料としてポリマーを得ることを含む、ポリマーの製造方法。
〔10〕
 〔4〕~〔8〕のいずれかに記載のポリマーを含有してなるガス分離層を有するガス分離膜。
〔11〕
 ガス分離層を構成するポリマーとして、下記式(II)で表される構成単位を有するポリイミド化合物を含有する、ガス分離膜。
Figure JPOXMLDOC01-appb-C000012
 式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
 L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
 は連結部位を示す。
 Rは下記式(I-1)~(I-28)のいずれかで表される基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(II)中のカルボニル基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000013
〔12〕
 上記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつLが有する炭素原子の数が3以下である、〔11〕に記載のガス分離膜。
〔13〕
 上記式(II)で表される構成単位が、下記式(II-1)又は(II-2)で表される構成単位である、〔11〕又は〔12〕に記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000014
 式中、Rは上記式(II)におけるRと同義である。
〔14〕
 上記ガス分離膜が、上記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、〔10〕~〔13〕のいずれか1項に記載のガス分離膜。
〔15〕
 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、〔10〕~〔14〕のいずれかに記載のガス分離膜。
〔16〕
 〔10〕~〔15〕のいずれかに記載のガス分離膜を有するガス分離モジュール。
〔17〕
 〔10〕~〔15〕のいずれかに記載のガス分離膜を有するガス分離装置。
 本明細書において「~」で表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む意味である。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、ポリマーが同一表示の(同一の一般式で表示された)複数の構成成分を有する場合は、各構成成分は互いに同一でも異なっていてもよい。
 本明細書において置換又は無置換を明記していない置換基(連結基についても同様)については、所望の効果を損なわない範囲で、その基に任意の置換基を有していてもよい意味である。これは置換又は無置換を明記していない化合物についても同義である。
 本発明のガス分離膜、ガス分離モジュール及びガス分離装置は、ガス透過性に優れ、ガス分離選択性にも優れ、さらに、ガス分離層が過酷な乾燥条件に曝されてもガス透過性を十分に維持することができる。また、本発明のポリマーは、構成成分が特徴的な構造を有し、ガス分離層の構成材料をはじめ、種々の機能性ポリマーとして用いることができる。また、本発明のm-フェニレンジアミン化合物は、上記ポリマーの原料として好適である。
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。
 本発明の好ましい実施形態について説明する。
[m-フェニレンジアミン化合物]
 本発明のm-フェニレンジアミン化合物は、下記式(Ia)で表される。
Figure JPOXMLDOC01-appb-C000015
 式(Ia)中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
 R及びRとして採り得るアルキル基は、炭素数が1~10の整数であることが好ましく、炭素数1~6がより好ましく、さらに好ましくは炭素数1~3であり、メチル又はエチルであることが特に好ましい。R及びRとして採り得るアルキル基は置換基を有してもよく、この場合、一置換アルキル基及び二置換アルキル基が好ましい。一置換アルキル基及び二置換アルキル基における置換基としては、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基(好ましくは炭素数1~3)、及びアシルオキシ基(好ましくは炭素数1~3)が挙げられ、ハロゲン原子が好ましい。R及びRとして採り得るアルキル基が炭素数3以上の場合、直鎖でも分岐を有してもよく、直鎖であることが好ましい。
 R及びRは、好ましくは水素原子及びアルキル基から選ばれる基である。なかでも3つのRのすべてが水素原子又は3つのRのうち2つが水素原子で1つがアルキル基で、かつ、2つのRのすべてが水素原子又はアルキル基であることが好ましい。この場合、3つのRのすべてが水素原子であること(-C(Rがメチルであること)がより好ましい。3つのR及び2つのRのすべてが水素原子であることも好ましい。
 R及びRとして採り得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。上記ハロゲン原子は好ましくは塩素原子、臭素原子であり、より好ましくは塩素原子である。本明細書において、「」は連結部位を示す。
 Lは、-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基(すなわち-CF-CF(CF)--C(=O)--CH-CH(CH)-及び-CH(CF)-)の2つ以上を組合せてなる2価の基を示す。但し、Lが上記の「これらの基の2つ以上を組合せてなる2価の基」の場合、Lが有する炭素原子の数は4以下である。
 Lは、より好ましくは-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。この場合には、Lが「これらの基の2つ以上を組合せてなる2価の基」の場合のLが有する炭素原子の数は3以下である。
 Lは、さらに好ましくは-CF又は-CF(CF)-である。
 上記式(Ia)で表される化合物の具体例を以下に示す。上記式(Ia)で表される化合物は、下記式(Ia-1)又は(Ia-2)で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(Ia)で表されるm-フェニレンジアミン化合物を得るための方法に特に制限はない。例えば、後述する実施例に記載された調製方法を参照し、また、適宜に、Organic Letters,21(4),1093-1097,2019; Journal of Fluorine Chemistry,189,59-67,2016; Chemical Communications,52(4),796-799,2016; Chemistry-A European Journal,24(39),9794-9798,2018; Journal of the American Chemical Society,135(34),12584-12587,2013; Synthetic Communications,22(22),3189-3195、1992; Synthesis,(16),2716-2726,2004等を参照して、上記式(Ia)で表されるm-フェニレンジアミン化合物を調製することができる。
 本発明のm-フェニレンジアミン化合物は、ポリマーの合成原料として好適であり、得られるポリマーに所望の特性を付与することができる。例えば、本発明のm-フェニレンジアミン化合物を合成原料(モノマー)として得られるポリマーは、低誘電率化を実現でき、また、ポリマーの透明性をより高めることができる。この理由は定かではないが、ポリマーに組み込まれた本発明のm-フェニレンジアミン化合物由来の構成成分が、特定の部位にトリフルオロメチル基を有することが、ポリマーの低誘電率化と透明性の向上に寄与すること、また、この構成成分が有する特定の置換基が、ポリマーの平面性ないしパッキング性をほどよく抑えてポリマー内に適度な空隙を生じることなどが、上記の低誘電率化と透明性の向上に効果的に作用しているものと考えられる。
 したがって、本発明のm-フェニレンジアミン化合物は、種々の機能性ポリマーの合成原料として用いることにより、例えば、透明耐熱樹脂、低誘電率樹脂、高周波対応材料、及び防湿コート材料等の構成ポリマーを提供することができる。
 また、本発明のm-フェニレンジアミン化合物を合成原料として用いることにより、後述のように、ガス分離膜のガス分離層の構成材料として好適なポリマーを提供することができる。
 本発明のm-フェニレンジアミン化合物を合成原料として、ポリイミド化合物、ポリウレタン化合物、ポリウレア化合物、又はポリアミド化合物を得ることができる。
[ポリマー]
 本発明のポリマー(高分子化合物)は、下記式(Ib)で表される構成成分を有する。
Figure JPOXMLDOC01-appb-C000017
 式(Ib)中、R、R及びLは、それぞれ上記式(Ia)におけるR、R及びLと同義であり、好ましい形態も同じである。
 上記式(Ib)で表される構成成分の具体例を以下に示す。上記式(Ib)で表される構成成分は、下記式(Ib-1)又は(Ib-2)で表される構成成分であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000018
 本発明のポリマーは、上記式(Ib)で表される特有の構造に起因して所望の特性ないし機能性を発現する。例えば、上述の通りポリマーの低誘電率化を実現でき、また、ポリマーの透明性をより高めることができる。これらの特性に基づき、上記式(Ib)で表される構成成分を有するポリマーは、例えば、透明耐熱樹脂、低誘電率樹脂、高周波対応材料、及び防湿コート材料等の構成ポリマー(機能性ポリマー)として好適に用いることができる。
 本発明のポリマーは、ガス分離膜のガス分離層の構成材料としても好適である。本発明のポリマーを用いることにより、ガス分離層を薄層に形成した場合であっても、混合ガス中から所望のガス成分を高い選択性で透過させることができ、ガス透過性とガス分離選択性の両立を高度なレベルで実現することができる。このガス分離膜は、過酷な乾燥条件下においてもガス分離層のガス透過性を十分に維持することができる。これは、上記トリフルオロメチル基がポリマーの凝集力を抑え、特定の置換基による平面性ないしパッキング性の抑制作用と相俟って、ポリマー内に、ガス分離選択性を阻害しない程度の十分な空隙が形成されること、その結果、高い自由体積量が付与され、この自由体積量が過酷な乾燥条件に晒しても十分に維持できるためと考えられる。したがって、本発明のポリマーをガス分離層に用いたガス分離膜は、可塑化成分の少ない天然ガス田などにおける使用に特に好適である。
 本発明のポリマーをガス分離層の構成材料とする場合、このポリマーは後述するように、ポリイミド化合物であることが好ましい。
 上記式(Ib)で表される構成成分は、ジアミン由来成分であることが好ましい。すなわち、本発明のポリマーは、好ましくは、上記式(Ia)で表されるm-フェニレンジアミン化合物を合成原料として得られるものである。上記式(Ia)で表されるm-フェニレンジアミン化合物を合成原料としてポリマーを得る方法の一例を、以下に説明する。
 本発明のポリマーは、上記式(Ia)で表されるm-フェニレンジアミン化合物とテトラカルボン酸二無水物とを縮重合させることにより、ポリイミド化合物として得ることができる。ポリイミド化合物の合成は、用いる原料以外は、常法により行うことができる。また、一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)を適宜参照して合成することができる。
 また、一般式(Ia)のm-フェニレンジアミン化合物のアミノ基をイソシアネート化した後、ジオール化合物と反応させることにより、ポリウレタン化合物を得ることができる。ポリウレタン化合物の合成は、用いる原料以外は、常法により行うことができる、また、例えば、高分子学会高分子実験学編集委員編、「高分子実験学第5巻 重縮合と重付加」、共立出版、1980年を参照することができる。
 一般式(Ia)のm-フェニレンジアミン化合物をイソシアネート化した後、ジアミン化合物と反応させたり、一般式(Ia)のm-フェニレンジアミン化合物とジイソシアネート化合物とを反応させたりすることにより、ポリウレア化合物を得ることができる。ポリウレア化合物の合成は、用いる原料以外は、常法により行うことができる。また、例えば、高分子学会高分子実験学編集委員編、「高分子実験学第5巻 重縮合と重付加」、共立出版、1980年を参照することができる。
 一般式(Ia)のm-フェニレンジアミン化合物とジカルボン酸化合物とを縮重合させることによりポリアミド化合物を得ることができる。ポリアミド化合物の合成は、用いる原料以外は、常法により行うことができる、また、例えば、高分子学会高分子実験学編集委員編、「高分子実験学第5巻 重縮合と重付加」、共立出版、1980年を参照することができる。
 本発明において「ポリマー」の分子量は上記構造を満たす限り特に制限されない。例えば分子量を1000~1000000とすることができ、10000~500000とすることが好ましく、20000~300000とするがより好ましい。ここで、分子量が1000以上のものについては、重量平均分子量としての値である。
[ガス分離膜]
 本発明のガス分離膜は、上述した本発明のポリマーを含有してなるガス分離層を有する。本発明のポリマーは上記の通り高い自由体積を有し、過酷な乾燥条件に曝されてもこの自由体積を保持できるものと考えられる。このポリマーをガス分離層の構成材料として用いることにより、ガス透過性とガス分離選択性を高いレベルで両立し、また、過酷な環境下においてもガス分離性能を十分に維持することが可能となる。
 本発明のガス分離膜が有するガス分離層は好ましくは、少なくとも上記式(Ib)で表される構成成分を有するポリイミド化合物である。このポリイミド化合物は好ましくは、少なくとも下記式(II)で表される構成単位(繰り返し単位)を有する。
Figure JPOXMLDOC01-appb-C000019
 式(II)中、R、R及びLは、それぞれ、上記式(Ia)におけるR、R及びLと同義であり、好ましい形態も同じである。すなわち、式(II)で表される構造単位中、ジアミン由来成分(式(II)中の右側のベンゼン環を有する構造部)の好ましい形態は、上述した式(Ib)で表される構成成分の好ましい形態と同じである。
 上記式(II)中、Rは下記式(I-1)~(I-28)のいずれかで表される構造の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(II)中のカルボニル基との結合部位を示す。Rは式(I-1)、(I-2)又は(I-4)で表される基であることが好ましく、(I-1)又は(I-4)で表される基であることがより好ましく、(I-1)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式(I-1)、(I-9)及び(I-18)中、X~Xは、単結合又は2価の連結基を示す。この2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、-C-(フェニレン基)、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zに示されたアルキル基と同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、式(I-18)は、Xが、その左側に記載された2つの炭素原子のいずれか一方、及び、その右側に記載された2つの炭素原子のうちいずれか一方と連結していることを意味する。
 上記式(I-4)、(I-15)、(I-17)、(I-20)、(I-21)及び(I-23)中、Lは-CH=CH-又は-CH-を示す。
 上記式(I-7)中、R及びRは水素原子又は置換基を示す。この置換基としては、後述する置換基群Zから選ばれる基が挙げられる。R及びRは互いに結合して環を形成していてもよい。
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。
 式(I-1)~(I-28)中に示された炭素原子は、本発明の効果を損なわない範囲でさらに置換基を有していてもよい。本発明においては、この置換基を有する形態も、式(I-1)~(I-28)のいずれかで表される基に包含される。この置換基の具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基又はアリール基が好ましい。
 本発明に用いるポリイミド化合物中、上記式(II)で表される構造単位の含有量は20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。本発明に用いるポリイミド化合物は、上記式(II)で表される構造単位からなることも好ましい。
 上記ポリイミド化合物は、上記式(II)で表される構成単位に加えて、下記式(III)又は(IV)で表される構成単位を有してもよい。但し、下記式(III)で表される構成単位には、上記式(II)で表される構成単位に包含されるものは含まれない。上記ポリイミド化合物は、下記式(III)又は(IV)で表される構成単位を1種又は2種以上含むことができる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 
 上記式(III)及び(IV)中、Rは式(II)中のRと同義であり、好ましい形態も同じである。R~Rは置換基を示す。置換基としては、後述する置換基群Zから選ばれる基が挙げられる。
 Rはアルキル基、カルボキシ基、スルファモイル基、カルバモイル基又はハロゲン原子であることが好ましい。Rの数を示すl1は0~4の整数である。Rがアルキル基である場合、このアルキル基の炭素数は1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、さらに好ましくはメチル、エチル又はトリフルオロメチルである。式(III)の構成単位は、カルボキシ基、又はスルファモイル基を有することが好ましい。また、式(III)の構成単位がカルボキシ基又はスルファモイル基を有する場合、式(III)中のカルボキシ基又はスルファモイル基の数は1つであることが好ましい。
 式(III)において、ジアミン成分(すなわちRを有しうるフェニレン基)のポリイミド化合物に組み込まれるための2つの連結部位は、互いにメタ位又はパラ位に位置することが好ましく、互いにメタ位に位置することがより好ましい。
 R及びRはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示すことが好ましい。また、2つのRが連結して環を形成している形態や、2つのRが連結して環を形成している形態も好ましい。RとRが連結した構造に特に制限はなく、単結合、-O-又は-S-が好ましい。R及びRの数を示すm1及びn1は0~4の整数であり、0~3であることが好ましく、0~2であることがより好ましく、より好ましくは0又は1である。R及びRがアルキル基である場合、このアルキル基の炭素数は1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、さらに好ましくはメチル、エチル又はトリフルオロメチルである。
 式(IV)において、ジアミン成分中の2つのフェニレン基(すなわちRとRを有しうる2つのフェニレン基)のポリイミド化合物に組み込まれるための2つの連結部位は、Xの連結部位に対しメタ位又はパラ位に位置することが好ましい。
 Xは上記式(I-1)におけるXと同義であり、好ましい形態も同じである。
 本発明に用いるポリイミド化合物は、その構造中、上記式(II)で表される構成単位と、上記式(III)で表される構成単位と、上記式(IV)で表される構成単位の総モル量中に占める、式(II)で表される構成単位のモル量の割合が20~100モル%であることが好ましく、30~100モル%がより好ましく、40~100モル%であることも好ましい。また、式(II)で表される構成単位のモル量の割合は90モル%以下としてもよく、80モル%以下としてもよい。なお、上記式(II)で表される構成単位と、上記式(III)で表される構成単位と、上記式(IV)で表される構成単位の総モル量中に占める、式(II)で表される構成単位のモル量の割合が100モル%であるとは、ポリイミド化合物が、上記式(III)で表される構成単位と、上記式(IV)で表される構成単位のいずれも有しないことを意味する。
 本発明に用いるポリイミド化合物は、上記式(II)で表される構成単位からなるか、又は、上記式(II)で表される構成単位以外の構成単位を有する場合には、上記式(II)で表される構成単位以外の残部が、上記式(III)又は上記式(IV)で表される構成単位からなることが好ましい。ここで、「上記式(III)又は上記式(IV)で表される構成単位からなる」とは、上記式(III)で表される構成単位からなる態様、上記式(IV)で表される構成単位からなる態様、並びに、上記式(III)で表される構成単位と上記式(IV)で表される構成単位とからなる態様の3つの態様を含む意味である。
 置換基群Z:
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、
 アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、
 シアノ基、カルボキシ基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 本明細書において、単に置換基としてしか記載されていないものは、特に断わりのない限りこの置換基群Zを参照するものであり、また、各々の基の名称が記載されているだけのとき(例えば、「アルキル基」と記載されているだけのとき)は、この置換基群Zの対応する基における好ましい範囲、具体例が適用される。
 上記ポリイミド化合物の分子量は、重量平均分子量として10,000~1,000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。
 本明細書において分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となるポリマーの物性に応じて適宜選定することができる。
 上記ポリイミド化合物は、特定構造の2官能酸無水物(テトラカルボン酸二無水物)と特定構造のジアミンとを、上述の通り、常法により縮合重合させて合成することができる。
 上記ポリイミド化合物の合成において、一方の原料であるテトラカルボン酸二無水物は下記式(V)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(V)中、Rは上記式(II)におけるRと同義であり、好ましい形態も同じである。
 本発明に用いうるテトラカルボン酸二無水物の具体例としては、例えば以下に示すものが挙げられる。下記構造式中、Phはフェニルである。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明に用いうるポリイミド化合物の合成において、他方の原料であるジアミン化合物の少なくとも1種は、上記式(Ia)で表されるm-フェニレンジアミン化合物である。
 また、本発明に用いうるポリイミド化合物の合成において、原料とするジアミン化合物として、上記式(Ia)で表されるジアミン化合物に加えて、下記式(IIIa)又は下記式(IVa)で表されるジアミン化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000026
 式(IIIa)中、R及びl1は、それぞれ上記式(III)におけるR及びl1と同義であり、好ましい形態も同じである。但し、式(III)で表されるジアミン化合物は、式(Ia)で表されるジアミン化合物ではない。
 式(IVa)中、R、R、X、m1及びn1は、それぞれ上記式(IV)におけるR、R、X、m1及びn1と同義であり、好ましい形態も同じである。
 式(IIIa)又は(IVa)で表されるジアミン化合物の好ましい具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 
 本発明の用いうるポリイミド化合物の合成において、原料とするジアミン化合物として、特開2015-83296の段落[0023]~[0034]、及び国際公開第2017/002407号の段落[0017]~[0045]に定義されるような、ポリイミドの繰り返し単位を導くジアミン化合物を用いることも好ましい。このようなジアミン化合物の具体例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000029
 本発明に用いるポリイミド化合物は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。
 本発明に用いるポリイミド化合物は、上記各原料を溶媒中に混合して、上記のように通常の方法で縮合重合させて得ることができる。
 上記溶媒としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン化合物、エチレングリコールジメチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル化合物、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルアセトアミド等のアミド化合物、ジメチルスルホキシド、スルホラン等の含硫黄化合物などが挙げられる。これらの有機溶媒は反応基質であるテトラカルボン酸二無水物、ジアミン化合物、反応中間体であるポリアミック酸、さらに最終生成物であるポリイミド化合物を溶解させることを可能とする範囲で適切に選択されるものである。好ましくは、エステル化合物(好ましくは酢酸ブチル)、脂肪族ケトン化合物(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル化合物(ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)、アミド化合物(好ましくはN-メチルピロリドン)、又は含硫黄化合物(ジメチルスルホキシド、スルホラン)が好ましい。また、これらは、1種又は2種以上を組み合わせて用いることができる。
 重合反応温度に特に制限はなくポリイミド化合物の合成において通常採用されうる温度を採用することができる。具体的には-40~60℃であることが好ましく、より好ましくは-30~50℃である。
 上記の重合反応により生成したポリアミック酸を分子内で脱水閉環反応させることによりイミド化することで、ポリイミド化合物が得られる。例えば、120℃~200℃に加熱して、副生する水を系外に除去しながら反応させる熱イミド化法や、ピリジンやトリエチルアミン、DBUのような塩基性触媒共存下で、無水酢酸やジシクロヘキシルカルボジイミド、亜リン酸トリフェニルのような脱水縮合剤を用いるいわゆる化学イミド化等の手法が好適に用いられる。
 本発明において、ポリイミド化合物の重合反応液中のテトラカルボン酸二無水物及びジアミン化合物の総濃度は特に限定されるものではないが、5~70質量%が好ましく、より好ましくは5~50質量%が好ましく、さらに好ましくは5~30質量%である。
 続いて、本発明のガス分離膜の構成について説明する。本発明のガス分離膜は、ガス分離層を薄層にしてガス透過性を確保した上で、目的のガス分離選択性も実現するものである。ガス分離層を薄層化する手法としては、ガス分離膜を相分離法により非対称膜とし、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、ガス分離機能を担うガス分離層と機械強度を担う支持層とを別素材とし、ガス透過性の支持層上に、ガス分離能を有するガス分離層を薄層に形成する複合膜の形態も知られている。各形態について以下に順に説明する。
<ガス分離非対称膜>
 ガス分離非対称膜は、ポリイミド化合物を含む溶液を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらの提案(例えば、米国特許第3,133,132号明細書)したものである。
 本発明のガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層の厚さは特に限定されないが、実用的なガス透過性を付与する観点から、0.01~5.0μmであることが好ましく、0.05~1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されない。例えば、5~500μmとすることができ、5~200μmがより好ましく、5~100μmがさらに好ましい。
 本発明のガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。
 ノズルから吐出させるポリイミド化合物を含む溶液の溶液粘度は、吐出温度(例えば10℃)で2~17000Pa・s、好ましくは10~1500Pa・s、特に20~1000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたポリイミド化合物の軟化点又は二次転移点よりも低い温度で実施することが好ましい。
<ガス分離複合膜>
 ガス分離複合膜は、ガス透過性の支持層の上側に、特定のポリイミド化合物を含有してなるガス分離層が形成されている。この複合膜は、多孔質の支持体の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は多孔質層からなる支持層である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。
 図1及び2は、二酸化炭素とメタンの混合ガスから二酸化炭素を選択的に透過させる態様を示す。
 本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される側を「上」とし、分離されたガスが出される側(ガスが透過して出ていく側)を「下」とする。
 本発明のガス分離複合膜は、多孔質性の支持体(支持層)の少なくとも表面にガス分離層を形成して複合膜とすることができる。ガス分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
 本発明のガス分離複合膜において、ガス分離層の厚さは特に限定されないが、0.01~5.0μmであることが好ましく、0.05~2.0μmであることがより好ましい。
 支持層に好ましく適用される多孔質支持体は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であってもよい。好ましくは有機高分子の多孔質膜であり、その厚さは好ましくは1~3000μm、より好ましくは5~500μmであり、さらに好ましくは5~150μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20~90%であり、より好ましくは30~80%である。
 ここで、支持層が「ガス透過性」を有するとは、支持層(支持層のみからなる膜)に対して、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素の透過速度が1×10-5cm(STP)/cm・sec・cmHg(10GPU)以上であることを意味する。さらに、支持層のガス透過性は、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素透過速度が3×10-5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。
 本発明のガス分離複合膜においては、ガス分離層が形成される支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性及びコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたりする等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。
 ガス分離複合膜の製造法それ自体は公知であり、例えば、特開2015-83296号公報を参照することができる。
 本発明のガス分離膜において、ガス分離層中における本発明のポリマーの含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中における本発明のポリマーの含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることが好ましく、70質量%以上であることがさらに好ましい。また、ガス分離層中の本発明のポリマーの含有量は、100質量%であってもよいが、通常は99質量%以下である。
(支持層とガス分離層の間の他の層)
 本発明のガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造と非シロキサン構造とを有する化合物とが挙げられる。これらのシロキサン化合物層としては、例えば、特開2015-160167号公報の段落[0103]~[0127]に記載されたものを好適に適用することができる。
(ガス分離層の上側の保護層)
 ガス分離膜は、上記ガス分離層上に、保護層としてシロキサン化合物層を有してもよい。
 保護層として用いるシロキサン化合物層としては、例えば、国際公開第2017/002407号の段落[0125]~[0175]に記載されたものを好適に適用することができる。
 本発明のガス分離膜は、ガス分離複合膜の形態が好ましい。
(ガス分離膜の用途)
 本発明のガス分離膜(複合膜及び非対称膜)は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択的に分離するガス分離膜とすることが好ましい。
 本発明のガス分離膜を用いたガス分離の際の圧力は0.5~10MPaであることが好ましく、1~10MPaであることがより好ましく、2~7MPaであることがさらに好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
[ガス分離モジュール、ガス分離装置]
 本発明のガス分離膜を用いてガス分離モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。
 また、本発明のガス分離膜又はガス分離モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。
 実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。下記において、Meはメチルを示す。
[合成例1]
<m-フェニレンジアミン化合物の調製-1>
Figure JPOXMLDOC01-appb-C000030
 上記スキームに従って、下記の通りm-フェニレンジアミン化合物を調製した。
 4-(ヘプタフルオロイソプロピル)トルエン、25.0g(P&M-Invest Ltd.製)を三口フラスコに入れ、氷浴で冷却した。濃硫酸250mL(1.84g/cm、富士フイルム和光純薬社製)を加えた後、発煙硝酸36g(1.52g/cm、富士フイルム和光純薬社製)を慎重に滴下した。内温45℃で10時間反応させた後、氷冷し、慎重に氷に注いだ。目的物が乾かないように慎重にろ過した後、水と飽和重曹水を用いて洗浄し、水を含んだ状態のジニトロ化合物40gを得た。
 このジニトロ化合物40gをメタノール700mLに溶解し、2Lオートクレーブに入れた。パラジウム-活性炭素(Pd5%)6.8g(富士フイルム和光純薬社製)を入れ、オートクレーブを密閉した後、約5MPaの水素を充填し、35℃で6時間反応させた。パラジウム-活性炭素が乾かないように注意しながら慎重にろ過した。ろ液を減圧濃縮した後、得られた固体を酢酸エチルとクロロホルムを用いてシリカゲルカラムで精製し、得られた結晶を60℃で8時間真空乾燥し、目的のm-フェニレンジアミン化合物(上記スキームの右端の化合物)23.1gを得た。4-(ヘプタフルオロイソプロピル)トルエンからの収率は83%であった。
 上記で得られたm-フェニレンジアミン化合物のスペクトルデータを以下に示す。
 H NMR(400MHz,CDCl) δ ppm 6.38(s,2H),3.71(brs,4H),1.98(s,3H),19F NMR(376MHz,CDCl) δ ppm -75.73(d,7Hz,6F),-182.82(hept,7Hz,1F)
<m-フェニレンジアミン化合物の調製-2>
Figure JPOXMLDOC01-appb-C000031
 
 上記スキームに従って、下記の通りm-フェニレンジアミン化合物を調製した。
 1-メチルー4-(ペンタフルオロエチル)ベンゼン、19.0g(Manchester Organics Ltd.製)を三口フラスコに入れ、氷浴で冷却した。濃硫酸190mL(1.84g/cm、富士フイルム和光純薬社製)を加えた後、発煙硝酸34g(1.52g/cm、富士フイルム和光純薬社製)を慎重に滴下した。内温45℃で5時間反応させた後、氷冷し、慎重に氷に注いだ。目的物が乾かないように慎重にろ過した後、水と飽和重曹水を用いて洗浄し、水を含んだ状態のジニトロ化合物32gを得た。
 このジニトロ化合物32gをメタノール600mLに溶解し、2Lオートクレーブに入れた。パラジウム-活性炭素(Pd5%)5.4g(富士フイルム和光純薬社製)を入れ、オートクレーブを密閉した後、約5MPaの水素を充填し、35℃で6時間反応させた。パラジウム-活性炭素が乾かないように注意しながら慎重にろ過した。ろ液を減圧濃縮した後、得られた固体を酢酸エチルとクロロホルムを用いてシリカゲルカラムで精製し、得られた結晶を60℃で8時間真空乾燥し、目的のジアミン化合物(上記スキームの右端の化合物)、16.8gを得た。1-メチルー4-(ペンタフルオロエチル)ベンゼンからの収率は77%であった。
 上記で得られたm-フェニレンジアミン化合物のスペクトルデータを以下に示す。
 H NMR(400MHz,CDCl) δ ppm 6.37(s,2H),3.71(brs,4H),1.99(s,3H),19F NMR(376MHz,CDCl) δ ppm -84.69(s,3F),-114.97(s,2F)
 上記と同様にして、下記構造のm-フェニレンジアミン化合物を調製した。
Figure JPOXMLDOC01-appb-C000032
<ポリイミドP-01の調製>
 上記<m-フェニレンジアミン化合物の調製-1>で調製したm-フェニレンジアミン化合物10.4g、3,5-ジアミノ安息香酸3.7g(日本純良薬品製)、N-メチルピロリドン81mL(富士フイルム和光純薬工業製)を三口フラスコに入れ、窒素気流下とした。水冷下、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物26.7g(ダイキン工業製)を添加し、N-メチルピロリドン27mLで洗い込んだ。40℃で3時間撹拌した後、トルエン24mL(富士フイルム和光純薬工業製)を加え、170℃で6時間撹拌した。室温に冷却した後、アセトン200mLで希釈し、5L三口フラスコに移した。ここに、メタノール2Lを滴下してポリイミドを白色粉体として析出させた。吸引ろ過し、メタノールでリスラリー洗浄し、50℃、20時間、送風乾燥し、下記構造のポリイミドP-01を32.8g(収率85%)得た。テトラヒドロフランを用いたゲル浸透クロマトグラフィーにより測定した重量平均分子量は100,000であった。下記構造中、構成単位に付された数値はモル比(%)である。
Figure JPOXMLDOC01-appb-C000033
<ポリイミドP-02~P-08、cP-01~cP-03の調製>
 使用する原料を、下記構造を導くものに代えたこと以外は、上記<ポリイミドP-01の調製>と同様にして、下記構造のポリイミドP-02~P-08、cP-01~cP-03を得た。いずれのポリイミドも重量平均分子量が30000~200000の範囲内にあった。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 
[実施例1] ガス分離膜の作製
<平滑層付PAN多孔質膜の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mLの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業社製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。これを95℃で168時間維持し、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
(重合性の放射線硬化性組成物の調製)
 上記放射線硬化性ポリマー溶液5gを20℃まで冷却し、n-ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5g及びオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(重合性の放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として上記の重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有する厚み1μmの平滑層を形成した。
<ガス分離膜の作製>
 図2に示すガス分離複合膜を作製した(図2では平滑層図示を省略している)。
 30ml褐色バイアル瓶に、ポリイミドP-01を0.08g、テトラヒドロフラン7.92gを混合して30分攪拌した後、上記平滑層を付与したPAN多孔質膜上にスピンコートしてガス分離層を形成し、複合膜を得た。ポリイミドP-01層の厚さは約100nmであり、PAN多孔質膜の厚さは不織布を含めて約180μmであった。
 なお、ポリアクリロニトリル多孔質膜は分画分子量100,000以下のものを使用した。また、この多孔質膜の40℃、5MPaにおける二酸化炭素の透過性は、25000GPUであった。
[実施例2~8] ガス分離膜の作製
 上記実施例1における複合膜の作製において、ポリイミドP-01をポリイミドP-02~P-8に変更したこと以外は、実施例1と同様にして、それぞれ実施例2~8のガス分離膜を作製した。
[比較例1~3] ガス分離膜の作製
 上記実施例1において、ポリイミドP-01をポリイミドcP-01~cP-03に変更したこと以外は、実施例1と同様にして、それぞれ比較例1~3のガス分離膜を作製した。
[試験例1] ガス分離膜のCO透過速度及びガス分離選択性の評価-1
 上記各実施例及び比較例のガス分離膜(複合膜)を用いて、ガス分離性能を以下のように評価した。
 ガス分離膜を多孔質支持体(支持層)ごと直径47mmに切り取り、透過試験サンプルを作製した。GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO):メタン(CH)が10:90(体積比)の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.3MPa)、流量500mL/min、45℃となるように調整し供給した。透過してきたガスをガスクロマトグラフィーにより分析した。膜のガス透過性は、ガス透過率(Permeance)としてCO透過速度を算出することにより決定した。ガス透過率(ガス透過速度)の単位はGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕で表した。ガス分離選択性は、この膜のCH透過速度RCH4に対するCO透過速度RCO2の比(RCO2/RCH4)として計算した。
 上記CO透過速度とガス分離選択性を下記評価基準にあてはめ、ガス分離膜の性能を評価した。
<CO透過速度の評価基準>
 A:120GPU以上
 B:105GPU以上120GPU未満
 C:90GPU以上105GPU未満
 D:75GPU以上90GPU未満
 E:75GPU未満
<ガス分離選択性(RCO2/RCH4)の評価基準>
 A:18以上
 B:14以上18未満
 C:10以上14未満
 D:10未満
[試験例2] 強制乾燥試験
 上記各実施例及び比較例のガス分離膜(複合膜)を、90℃で2週間放置して乾燥させた。この乾燥後のガス分離膜を用いて、試験例1と同様にしてCO透過速度を調べた。CO透過速度の評価基準は試験例1と同じである。この試験により、可塑化成分の少ない天然ガス田などへの適用性を模擬的に評価できる。
 上記の各試験例の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000036
 上記表1に示されるように、ポリマーのジアミン成分がパーフルオロメチルを有するフェニレン構造を有していても、本発明で規定する特定の構造を有する形態でない場合には、このポリマーにより構成したガス分離層を有するガス分離膜は、ガス透過速度に劣り、さらに、乾燥条件に曝すことによりガス透過速度はさらに低下する結果となった(比較例1及び3)。また、ポリマーのジアミン成分中に、パーフルオロメチルに代えて長鎖のパーフルオロアルキル基を導入した場合、ガス分離選択性が大きく劣る結果となった(比較例2)。
 これに対し、本発明で規定する構造のジアミン成分を有するポリマーをガス分離層に用いたガス分離膜は、ガス透過速度とガス分離選択性のいずれにも優れていた。また、乾燥条件に曝してもガス透過速度を十分に維持することができるものであった(実施例1~8)。
[合成例2]
<ポリアミドPA-01の調製>
Figure JPOXMLDOC01-appb-C000037
 
 上記スキームに従って、下記の通りポリアミドPA-01を調製した。
 4,4’-(ヘキサフルオロイソプロピリデン)ビス(安息香酸)ジクロリド2.00g(常法により合成)、ジアミン1.35g(上記と同様にして合成)、N-メチルピロリドン20g(富士フイルム和光純薬工業製)、4-ジメチルアミノピリジン1.20g(富士フイルム和光純薬社製)を入れ、60℃にて、4時間加熱撹拌した。室温まで冷却後、N-メチルピロリドン10gで濃度を調整して、メタノールで再沈殿し、目的のPA-01を2.8g得た。N-メチルピロリドンを用いたゲル浸透クロマトグラフィーにより測定した重量平均分子量は40000であった。
Figure JPOXMLDOC01-appb-C000038
 
<ポリアミドPA-02、PA-03の調製>
 使用する原料を、下記構造を導くものに代えたこと以外は、上記<ポリアミドPA-01の調製>と同様にして、下記ポリアミドPA-02及びPA-03を調製した。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 
[合成例3]
<ポリウレアPU-01の調製>
Figure JPOXMLDOC01-appb-C000041
 
 上記スキームに従って、下記の通りポリウレアPU-01を調製した。
 2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン1.00g(東京化成工業製)、ジアミン0.75g(上記と同様にして合成)、N-メチルピロリドン12g(富士フイルム和光純薬工業製)、ネオスタンU-600(日東化成製)0.05gを入れ、70℃にて、6時間加熱撹拌した。室温まで冷却後、N-メチルピロリドン10gで濃度を調整して、メタノールで再沈殿し、目的のPU-01を1.5g得た。N-メチルピロリドンを用いたゲル浸透クロマトグラフィーにより測定した重量平均分子量は30000であった。
Figure JPOXMLDOC01-appb-C000042
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2019年7月23日に日本国で特許出願された特願2019-135162に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜

Claims (17)

  1.  下記式(Ia)で表されるm-フェニレンジアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
     式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
     L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
     は連結部位を示す。
  2.  前記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつ該Lが有する炭素原子の数が3以下である、請求項1に記載のm-フェニレンジアミン化合物。
  3.  前記式(Ia)で表されるm-フェニレンジアミン化合物が、下記式(Ia-1)又は(Ia-2)で表される、請求項1又は2に記載のm-フェニレンジアミン化合物。
    Figure JPOXMLDOC01-appb-C000002
  4.  下記式(Ib)で表される構成成分を有するポリマー。
    Figure JPOXMLDOC01-appb-C000003
     式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
     L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
     は連結部位を示す。
  5.  前記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつ該Lが有する炭素原子の数が3以下である、請求項4に記載のポリマー。
  6.  前記式(Ib)で表される構成成分が、下記式(Ib-1)又は(Ib-2)で表される、請求項4又は5に記載のポリマー。
    Figure JPOXMLDOC01-appb-C000004
     式中、は連結部位を示す。
  7.  前記構成成分がジアミン由来成分である、請求項4~6のいずれか1項に記載のポリマー。
  8.  前記ポリマーが、ポリイミド化合物、ポリウレタン化合物、ポリウレア化合物、又はポリアミド化合物である、請求項4~7のいずれか1項に記載のポリマー。
  9.  請求項1~3のいずれか1項に記載のm-フェニレンジアミン化合物を原料としてポリマーを得ることを含む、ポリマーの製造方法。
  10.  請求項4~8のいずれか1項に記載のポリマーを含有してなるガス分離層を有するガス分離膜。
  11.  ガス分離層を構成するポリマーとして、下記式(II)で表される構成単位を有するポリイミド化合物を含有する、ガス分離膜。
    Figure JPOXMLDOC01-appb-C000005
     式中、R及びRは水素原子、アルキル基又はハロゲン原子を示す。
     L-CF-CF(CF)--C(=O)--CH-CH(CH)-もしくは-CH(CF)-、又はこれらの基の2つ以上を組合せてなる2価の基を示す。但し、Lが有する炭素原子の数は4以下である。
     は連結部位を示す。
     Rは下記式(I-1)~(I-28)のいずれかで表される基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(II)中のカルボニル基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000006
  12.  前記L-CF-CF(CF)-もしくは-C(=O)-、又はこれらの基の2つ以上を組合せてなる2価の基を示し、かつ該Lが有する炭素原子の数が3以下である、請求項11に記載のガス分離膜。
  13.  前記式(II)で表される構成単位が、下記式(II-1)又は(II-2)で表される構成単位である、請求項11又は12に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000007
     式中、Rは前記式(II)におけるRと同義である。
  14.  前記ガス分離膜が、前記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、請求項10~13のいずれか1項に記載のガス分離膜。
  15.  二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、請求項10~14のいずれか1項に記載のガス分離膜。
  16.  請求項10~15のいずれか1項に記載のガス分離膜を有するガス分離モジュール。
  17.  請求項10~15のいずれか1項に記載のガス分離膜を有するガス分離装置。
PCT/JP2020/023419 2019-07-23 2020-06-15 m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置 WO2021014821A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021533861A JP7193642B2 (ja) 2019-07-23 2020-06-15 m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置
US17/553,807 US20220105462A1 (en) 2019-07-23 2021-12-17 m-PHENYLENEDIAMINE COMPOUND, POLYMER AND METHOD FOR PRODUCING THE SAME, AND GAS SEPARATION MEMBRANE, GAS SEPARATION MODULE, AND GAS SEPARATION APPARATUS USING THE POLYMER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-135162 2019-07-23
JP2019135162 2019-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/553,807 Continuation US20220105462A1 (en) 2019-07-23 2021-12-17 m-PHENYLENEDIAMINE COMPOUND, POLYMER AND METHOD FOR PRODUCING THE SAME, AND GAS SEPARATION MEMBRANE, GAS SEPARATION MODULE, AND GAS SEPARATION APPARATUS USING THE POLYMER

Publications (1)

Publication Number Publication Date
WO2021014821A1 true WO2021014821A1 (ja) 2021-01-28

Family

ID=74192513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023419 WO2021014821A1 (ja) 2019-07-23 2020-06-15 m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置

Country Status (3)

Country Link
US (1) US20220105462A1 (ja)
JP (1) JP7193642B2 (ja)
WO (1) WO2021014821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429301A (zh) * 2021-06-28 2021-09-24 河北工业大学 一种以异丙醇为氢源的二硝基甲苯加氢制备甲苯二胺的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232496A1 (de) * 1992-09-28 1994-03-31 Geesthacht Gkss Forschung Poly(amid-imide) und daraus gefertigte Membran
WO2017145728A1 (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
CN109370426A (zh) * 2018-10-08 2019-02-22 广东美的厨房电器制造有限公司 涂料组合物及其制备方法、涂覆件及其制备方法、家用电器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511971B1 (en) 1998-10-13 2003-01-28 Brown University Research Foundation Substituted perhalogenated phthalocyanines
KR20150065225A (ko) * 2013-12-04 2015-06-15 한국화학연구원 내재적 마이크로 기공성 폴리아릴렌에테르계 공중합체, 이의 제조방법 및 이를 이용한 기체 분리막
JP6634692B2 (ja) 2015-04-01 2020-01-22 Dic株式会社 重合性化合物及び光学異方体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232496A1 (de) * 1992-09-28 1994-03-31 Geesthacht Gkss Forschung Poly(amid-imide) und daraus gefertigte Membran
WO2017145728A1 (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
CN109370426A (zh) * 2018-10-08 2019-02-22 广东美的厨房电器制造有限公司 涂料组合物及其制备方法、涂覆件及其制备方法、家用电器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry STN; 6 June 2008 (2008-06-06), "1,3-Benzenediamine, 2-methyl-5-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]- (CA INDEX NAME)", XP055786361, Database accession no. RN 1025929-41-2 *
GAIN, O ET AL.: "Aromatic polyimides with low dielectric constant", POLYMERS, vol. 363, 1992, pages 401 - 404, XP006515011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429301A (zh) * 2021-06-28 2021-09-24 河北工业大学 一种以异丙醇为氢源的二硝基甲苯加氢制备甲苯二胺的方法
CN113429301B (zh) * 2021-06-28 2023-11-17 河北工业大学 一种以异丙醇为氢源的二硝基甲苯加氢制备甲苯二胺的方法

Also Published As

Publication number Publication date
JP7193642B2 (ja) 2022-12-20
US20220105462A1 (en) 2022-04-07
JPWO2021014821A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
US9700849B2 (en) Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
US10040035B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6366813B2 (ja) ガス分離非対称膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP6999611B2 (ja) ポリマー及びその製造方法、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置、並びにm-フェニレンジアミン化合物
US20180339275A1 (en) Gas separation membrane, gas separation module, gas separator, and gas separation method
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
JP2014024939A (ja) ポリイミド樹脂の製造方法、ガス分離膜、ガス分離モジュール、及びガス分離装置、並びにガス分離方法
WO2017130604A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2021014821A1 (ja) m-フェニレンジアミン化合物、ポリマー及びその製造方法、並びに、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置
JP2018122280A (ja) 非対称膜
US10537859B2 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
US20180361327A1 (en) Gas separation membrane, gas separation module, gas separator, gas separation method, composition for forming gas separation layer, method of producing gas separation membrane, polyimide compound, and diamine monomer
US20180339274A1 (en) Gas separation membrane, gas separation module, gas separator, gas separation method, and polyimide compound
WO2017175598A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2021256237A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びポリイミド化合物
US11806661B2 (en) Polymer and method for producing the same, gas separation membrane, gas separation module, and gas separation apparatus using the polymer, and m-phenylenediamine compound
WO2017145905A1 (ja) ポリイミド化合物、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP2020203226A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びポリイミド化合物
WO2018043149A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
JP2019010631A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
KR20100075072A (ko) 6-fda계 폴리이미드 및 폴리메틸메타크릴레이트(pmma)계 폴리머를 포함하는 천연가스 분리용 고분자 분리막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844899

Country of ref document: EP

Kind code of ref document: A1