WO2021013251A1 - 后走式自推工作机 - Google Patents

后走式自推工作机 Download PDF

Info

Publication number
WO2021013251A1
WO2021013251A1 PCT/CN2020/104524 CN2020104524W WO2021013251A1 WO 2021013251 A1 WO2021013251 A1 WO 2021013251A1 CN 2020104524 W CN2020104524 W CN 2020104524W WO 2021013251 A1 WO2021013251 A1 WO 2021013251A1
Authority
WO
WIPO (PCT)
Prior art keywords
working machine
propelled working
machine according
preset
walking
Prior art date
Application number
PCT/CN2020/104524
Other languages
English (en)
French (fr)
Inventor
任宇飞
李阳
朱荣根
许海深
张锐
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to EP20843060.3A priority Critical patent/EP3987906B1/en
Priority to CA3148298A priority patent/CA3148298A1/en
Priority to AU2020317357A priority patent/AU2020317357B2/en
Publication of WO2021013251A1 publication Critical patent/WO2021013251A1/zh
Priority to US17/576,567 priority patent/US20220132732A1/en
Priority to US17/869,830 priority patent/US11844305B2/en
Priority to US17/972,272 priority patent/US20230037664A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/001Accessories not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D34/69Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels with motor driven wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D34/6806Driving mechanisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D2034/6843Control levers on the handle of the mower
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a garden tool, for example, to a rear-walking self-propelled working machine.
  • the rear-walking self-propelled working machine lawn mower is generally a machine used by users to mow home lawns. When the user pushes the lawn mower to mow the lawn for a long time, it will consume a lot of physical energy. In order to reduce the labor intensity of the operator when cutting grass, lawn mowers that can walk on the market appear. In some related lawn mowers with self-propelled function, the self-propelled function needs to be controlled manually, and can only output a constant speed, and the user can only follow the lawn mower and perform mowing operations. In some more advanced lawn mowers, the self-propelled system is complicated to operate, the user's comfort is poor, and the reliability is poor.
  • This application provides a back-propelled self-propelled working machine with high comfort and good reliability, and the self-propelled speed adapts to the walking speed of humans.
  • An embodiment provides a rear-walking self-propelled working machine, which includes: a host, including a walking component and a driving motor for driving the walking component; an operating switch, connected to the driving motor; a handle device, connected to the host; wherein: the handle device includes: The operating member includes a grip portion for the user to hold; a connecting rod connected to the host; a sensing module for sensing the thrust applied to the handle device to drive the back-walking self-propelled working machine; the sensing module also Including: a pressure sensor, which is arranged between the operating member and the connecting rod; a pressing member, when the grip part is pushed, the pressing member applies a force along a preset linear direction to the sensor to drive the pressure sensor to deform; a pre-tensioning element is used To apply a pre-tightening force to the pressure sensor; wherein the ratio of the component force of the holding part along the preset straight line to the deformation of the pressure sensor along the preset straight line is greater than or equal to 40N/mm and less than
  • the rear-walking self-propelled working machine has a low-speed driving mode and an adaptive mode; when the thrust is less than the first preset value, the rear-walking self-propelled working machine is in the low-speed driving mode; when the thrust is greater than the second preset value When the self-propelled machine is still in adaptive mode.
  • control module controls the speed of the drive motor to be less than or equal to the first preset speed; when the self-propelled self-propelled working machine is in the adaptive mode, the control module controls The driving motor changes toward a desired rotation speed obtained according to the thrust, and the desired rotation speed is greater than the first preset rotation speed.
  • the first preset value is equal to the second preset value.
  • the first preset value is less than the second preset value, and when the thrust is less than the second preset value, the rear-walking self-propelled working machine is in a low-speed driving mode.
  • the rear-walking self-propelled working machine is in a low-speed driving mode.
  • the rear-walking self-propelled working machine is in a low-speed driving mode.
  • the control module controls the rotation speed of the drive motor to be less than or equal to the first preset rotation speed; when the thrust is greater than 0 and less than the first preset Set the value, when the thrust duration is greater than a preset duration, the control module controls the rotational speed output of the drive motor to be 0.
  • the rotational speed output by the driving motor of the rear-walking self-propelled working machine is 0.
  • it further includes a conversion module, which obtains the desired rotational speed according to the thrust sensed by the sensing module.
  • the drive motor further includes a starting state and a non-starting state.
  • the drive motor When the thrust is less than the second preset value, the drive motor does not start; when the thrust is greater than or equal to the second preset value, the expected speed is greater than a second preset speed And when the duration is greater than or equal to a preset duration, the drive motor is started.
  • the ratio of the component force of the thrust received by the grip portion along the preset linear direction to the deformation amount of the pressure sensor along the preset linear direction is greater than or equal to 150 N/mm and less than or equal to 300 N/mm.
  • it further includes a support member formed with a first accommodating cavity, and the pressure sensor and the pressing member are at least partially disposed in the first accommodating cavity.
  • the supporting member, the pressing member and the pressure sensor are arranged in sequence along the preset linear direction.
  • the operating member includes a connecting arm extending in a predetermined linear direction; the supporting member includes a second receiving cavity sleeved on the connecting arm.
  • the first accommodating cavity and the second accommodating cavity are at least partially penetrated and can allow the pressing member to pass through.
  • the pressing member includes a trigger surface capable of applying pressure to the pressure sensor, and the pressure sensor includes a force receiving surface that cooperates with the trigger surface.
  • the force-receiving surface intersects perpendicularly with the preset straight line direction.
  • the plane where the trigger surface is located obliquely intersects the preset straight line.
  • the projection of the trigger surface and the force surface in the plane along the preset linear direction is a circle.
  • the pressure sensor includes a force-receiving surface, and the pre-tensioning element causes the force-receiving surface to undergo initial deformation.
  • an initial signal value is output, and when the operating member is pulled backward, the output signal value is less than the initial signal value, and the back-walking self-propelled working machine stops.
  • an initial signal value is output.
  • the output signal value is greater than the initial signal value, and the back-propelled self-propelled working machine starts to self-propelled.
  • the output signal value of the pressure sensor changes with the change of the thrust, and the signal value includes a first interval value and a second interval value; the deformation of the sensor when outputting the first interval value is smaller than that of the sensor The amount of deformation when the second interval value is output; when the pre-tensioning element applies a pre-tightening force to the sensor, the initial signal value is in the second interval value.
  • the first interval value has a nonlinear distribution
  • the second interval value has a linear distribution
  • the pretensioning element is configured as an elastic member.
  • the pretensioning element is arranged on the upper side of the pressure sensor.
  • the pretensioning element is arranged on the lower side of the pressure sensor.
  • the rear-walking self-propelled working machine is set or stored with a preset thrust value; the rear-walking self-propelled working machine further includes: a conversion module, which is obtained according to the thrust sensed by the sensing module and the preset thrust value A desired speed; the control module, which controls the speed of the drive motor to change toward the desired speed.
  • it further includes a preset module, the preset thrust value is stored in the preset module, and the preset thrust value is set to a fixed value.
  • the preset thrust value is set to be greater than or equal to 10N and less than or equal to 60N.
  • the preset thrust value is set to be greater than or equal to 20N and less than or equal to 30N.
  • control module drives the driving motor to accelerate from the current actual speed to the desired speed with a varying acceleration.
  • control module drives the drive motor to decelerate from the current actual speed to the desired speed with a varying acceleration.
  • the adjustment process of the conversion module can be set as a PID adjustment process; the PID adjustment is set as the difference between the preset thrust value and the thrust value sensed by the sensing module to obtain a difference value, and then perform a proportional operation on the difference value , Integral operation, differential operation to obtain the desired speed.
  • the time from the sensing module to the next sensing after sensing the current pressure value is set to 0.04s.
  • control module which controls the driving motor to stop when the thrust sensed by the sensing module is continuously less than or equal to a first preset value for a preset period of time.
  • the preset module sets or stores the first preset value and the preset duration, and the preset module also sets or stores a preset thrust value.
  • it further includes a conversion module, which obtains a desired rotational speed according to the thrust sensed by the sensing module and the preset thrust value.
  • the conversion module outputs the desired rotational speed.
  • the control module obtains the desired rotational speed.
  • the rotation speed signal obtained by the control module is zero.
  • it further includes: a preset module that stores the normal distribution of the initial output signal of the sensing module; and a correction module that corrects the initial output signal when the initial output signal of the sensing module does not conform to the normal distribution.
  • the sensing module includes two left and right pressure sensors arranged on the handle device.
  • the left and right pressure sensors When the handle device is in a no-pressure state, the left and right pressure sensors generate two sets of initial elements through random rules. Two sets of initial elements are estimated by statistical parameters to obtain two sets of mean and standard deviation, thereby obtaining two normal distributions.
  • the sensing module filters the collected values and obtains the filter value. After averaging the filter values, the parameter value can be obtained, and it is determined whether the parameter value conforms to the normal distribution. For normal distribution, discard the current parameter value; if it does not conform to the normal distribution, correct the initial signal.
  • the correction module includes a creep calibration rule.
  • the creep calibration rule is used to determine whether the current parameter value satisfies (a21- ⁇ ) ⁇ 1.1 ⁇ 3 ⁇ , where a21 is the current parameter value and ⁇ is the normal distribution Mathematical expectation, ⁇ is the standard deviation of the normal distribution.
  • the initial element in the preset module is updated, and the parameter value replaces one of the initial elements to obtain a new normal distribution.
  • a speed control switch for the user to operate to adjust the walking speed of the rear-walking self-propelled working machine when walking on the ground; wherein the rear-walking self-propelled working machine has an adaptive mode and manual speed regulation Mode; when the back-walking self-propelled working machine is in the adaptive mode, the walking speed of the back-walking self-propelled working machine can automatically adapt to the walking speed of the user when the user is pushing the back-walking self-propelled working machine; When the push working machine is in manual speed regulation mode, the walking speed of the backward self-propelled working machine is controlled by the speed control switch.
  • it further includes an operation switch arranged on the handle device, and the operation switch is used to control the rear-walking working machine to switch between the adaptive mode and the manual speed regulation mode.
  • the operating switch includes a signal receiving element, and when the signal receiving element receives a switching signal, it controls and controls the rear-walking self-propelled working machine to perform mode switching.
  • the switching signal includes a wireless signal or a wired signal.
  • the switching signal is set to be input through smart voice input or through a mobile phone client.
  • the operation switch is set as a switch.
  • the operation switch is set as a control panel.
  • the speed control switch moves between the first position and the second position relative to the handle device; the speed of the drive motor when the speed control switch is in the first position is greater than the speed of the drive motor when the speed control switch is in the second position.
  • An embodiment provides a rear-walking self-propelled working machine, which includes: a host, including a walking component and a driving motor for driving the walking component; an operating switch, connected to the driving motor; a handle device, connected to the host; wherein: the handle device includes: The operating member includes a grip portion for the user to hold; a connecting rod connected to the host; a sensing module for sensing the thrust applied to the handle device to drive the back-walking self-propelled working machine; the sensing module also It includes: a pressure sensor, which is arranged between the operating member and the connecting rod; a pressing member, when the holding part is pushed, the pressing part applies a force along a preset linear direction to the sensor to drive the pressure sensor to deform; wherein, the holding part The ratio of the component force of the received thrust along the preset linear direction to the deformation amount of the pressure sensor along the preset linear direction is greater than or equal to 40N/mm.
  • the ratio of the component force of the thrust received by the grip portion along the preset linear direction to the deformation amount of the pressure sensor along the preset linear direction is greater than or equal to 150 N/mm and less than or equal to 300 N/mm.
  • it further includes a support member formed with a first accommodating cavity, and the pressure sensor and the pressing member are at least partially disposed in the first accommodating cavity.
  • the supporting member, the pressing member and the pressure sensor are arranged in sequence along the preset linear direction.
  • the operating member includes a connecting arm extending in a predetermined linear direction; the supporting member includes a second receiving cavity sleeved on the connecting arm.
  • the first accommodating cavity and the second accommodating cavity are at least partially penetrated and can allow the pressing member to pass through.
  • the pressing member includes a trigger surface that can apply pressure to the pressure sensor, and the pressure sensor includes a force receiving surface that cooperates with the trigger surface.
  • the force-receiving surface intersects perpendicularly with the preset straight line direction.
  • the plane where the trigger surface is located obliquely intersects the preset straight line.
  • the projection of the trigger surface and the force surface in the plane along the preset linear direction is a circle.
  • the handle device includes: a support member for supporting the pressing member; wherein the support member is formed with a containing cavity, the operating member at least partially extends into the containing cavity, and the side wall of the containing cavity and the operating member extend into the containing cavity There are gaps between the outer surfaces of the parts.
  • the accommodating cavity includes a first length extending in the left-right direction and a second length extending in the up-down direction; wherein the first length is greater than the second length.
  • the difference between the first length and the second length is greater than or equal to 1 mm and less than or equal to 10 mm.
  • the support member extends along a preset straight line direction, and on a first plane perpendicular to the preset straight line direction, the projection of the receiving cavity on the first plane along the preset straight line direction is an ellipse.
  • the support member extends along a preset linear direction, and on a first plane perpendicular to the preset linear direction, the projection of the accommodating cavity on the first plane along the preset linear direction has a first area, and the operating member extends into The projection of the portion to the accommodating cavity on the first plane along the preset linear direction has a second area, and the ratio of the first area to the second area is greater than or equal to 1 and less than or equal to 3.
  • a rail part is formed around the inner wall of the support member, and when the operating member at least partially extends into the accommodating cavity, the operating member and the inner wall of the support member at least partially contact in the up-down direction.
  • the handle device includes: a support member for supporting the pressing member; wherein there is a gap between the support member and the operating member.
  • the support member is formed with a containing cavity, and the operating member at least partially extends into the containing cavity.
  • the containing cavity includes a first length extending in the left-right direction and a second length extending in the up-down direction; wherein the first length is greater than the second length. Length; the difference between the first length and the second length is greater than or equal to 1mm and less than or equal to 10mm.
  • the supporting member is formed with a containing cavity
  • the operating member at least partially extends into the containing cavity
  • the supporting member extends along a preset straight line direction, and on a first plane perpendicular to the preset straight line direction, the containing cavity extends along the preset straight line
  • the projection of the direction on the first plane has a first area
  • the projection of the part of the operating element into the receiving cavity along the preset linear direction on the first plane has a second area
  • the ratio of the first area to the second area is greater than or equal to 1 and less than or equal to 3.
  • the handle device includes: a support member, which is fixedly connected to the connecting rod or integrally formed and used to support the pressing member; wherein there is a gap between the support member and the operating member.
  • the pressing member includes a contact surface that is in contact with the sensor to apply pressure to the sensor along a preset linear direction; wherein the cross section of the contact surface in a plane parallel to the preset linear direction includes a section line, The line connecting certain two points of, and the preset line obliquely intersect.
  • it further includes an intermediate piece for connecting the pressing piece and the operating piece, and the intermediate piece includes a first connecting hole for connecting the pressing piece.
  • the pressing member includes a first end and a second end, the first end is formed with a second connecting hole that cooperates with the first connecting hole, and the second end forms a limiting portion and a triggering end; wherein the limiting portion and the second An accommodating cavity cooperates to restrict the pressing member from leaving the first accommodating cavity; the triggering end is formed with a triggering surface.
  • the support is further formed with a third connecting hole that is matched with the first connecting hole and the second connecting hole, and the connecting pin passes through the first connecting hole, the second connecting hole and the third connecting hole at the same time to simultaneously connect the support
  • the connecting pin of the intermediate piece, the intermediate piece and the pressing piece, the connecting pin passes through the first connecting hole and is in interference fit with the first connecting hole.
  • the trigger end has a truncated cone shape.
  • the pressure sensor is formed with a force receiving surface matched with the trigger surface, and the force receiving surface is formed with a through hole through which at least part of the trigger end can pass.
  • the supporting member further includes a second accommodating cavity for accommodating at least a part of the operating member, the first accommodating cavity and the second accommodating cavity at least partially pass through, and the end of the pressing member away from the trigger surface is at least partially disposed in the second accommodating cavity .
  • it further includes a package that closes at least a part of the first accommodating cavity, the package is formed with or connected to a supporting part, and the supporting part cooperates with the pressure sensor to support at least part of the pressure sensor.
  • the pressure sensor includes a force-receiving surface that is in contact with the pressing member to receive pressure along a predetermined linear direction; the cross-section of the force-receiving surface in a plane parallel to the predetermined linear direction includes a section line, The straight line connecting the two points obliquely intersects the preset straight line.
  • An embodiment provides a rear-walking self-propelled working machine, which includes: a host, including a walking component and a driving motor for driving the walking component; an operating switch, connected to the driving motor; a handle device, connected to the host; wherein: the handle device includes: The operating member includes a grip portion for the user to hold; a connecting rod, which connects the operating member and the host; a sensing module, used to sense the thrust applied to the handle device to drive the rear-walking self-propelled working machine; The module also includes: a pressure sensor, which is arranged between the operating member and the connecting rod.
  • the pressing part When the holding part receives a thrust, the output signal of the pressure sensor changes with the change of the thrust; the pressing part is used to transmit the thrust received by the holding part to A pressure sensor, the pressing member includes a contact surface contacting the pressure sensor to apply pressure along a first straight line direction to the pressure sensor; wherein the cross section of the contact surface in a plane parallel to the first straight line direction includes a section line, A straight line connecting certain two points on the cross-section line obliquely intersects the first straight line, and the operating switch can generate a control signal according to the thrust sensed by the pressure sensor to control the rotation speed of the driving motor.
  • it further includes a supporting member, the supporting member is arranged between the operating member and the connecting rod, and a first accommodating cavity is formed, and the pressing member and the sensor assembly are at least partially arranged in the first accommodating cavity.
  • it further includes an intermediate piece for connecting the pressing piece and the operating piece, and the intermediate piece includes a first connecting hole for connecting the pressing piece.
  • the pressing member includes a first end and a second end, the first end is formed with a second connecting hole that cooperates with the first connecting hole, and the second end forms a limiting portion and a triggering end; wherein the limiting portion and the second An accommodating cavity cooperates to restrict the pressing member from leaving the first accommodating cavity; the triggering end is formed with a triggering surface.
  • the support is further formed with a third connecting hole that is matched with the first connecting hole and the second connecting hole, and the connecting pin passes through the first connecting hole, the second connecting hole and the third connecting hole at the same time to simultaneously connect the support
  • the connecting pin of the intermediate piece, the intermediate piece and the pressing piece, the connecting pin passes through the first connecting hole and is in interference fit with the first connecting hole.
  • the trigger end has a truncated cone shape.
  • the senor is a pressure sensor, and the pressure sensor is formed with a force-receiving surface matched with the contact surface, and the force-receiving surface is formed with a through hole through which at least part of the trigger end can pass.
  • the support member further includes a second accommodating cavity for accommodating at least part of the operating member, the first accommodating cavity and the second accommodating cavity at least partially penetrate, and the end of the pressing member away from the contact surface is at least partially disposed in the second accommodating cavity .
  • it further includes a package that closes at least part of the first accommodating cavity, the package is formed or connected with a support, and the support part cooperates with the sensor to support at least a part of the sensor.
  • An embodiment provides a rear-walking self-propelled working machine, which includes: a host, including a walking component and a driving motor for driving the walking component; an operating switch, connected to the driving motor; a handle device, connected to the host; wherein: the handle device includes: The operating member includes a grip portion for the user to hold; a connecting rod, which connects the operating member and the host; a sensing module, used to sense the thrust applied to the handle device to drive the rear-walking self-propelled working machine; The module also includes: a pressure sensor, which is arranged between the operating member and the connecting rod.
  • the output signal of the pressure sensor changes with the change of the thrust;
  • the pressing part is used to transmit the thrust received by the holding part to A pressure sensor;
  • the pressure sensor includes a pressure receiving surface contacting the pressing member to receive pressure along the first straight line direction;
  • the cross section of the pressure receiving surface in a plane parallel to the first straight line direction includes a section line, the section The line connecting certain two points on the line obliquely intersects with the first line, and the operating switch can generate a control signal according to the thrust sensed by the pressure sensor to control the rotation speed of the driving motor.
  • the user's thrust is sensed in real time, so that the self-propelled speed of the lawn mower can adapt to the user's walking speed.
  • Figure 1 is a three-dimensional view of a rear-walking self-propelled working machine
  • Figure 2 is a perspective view of the handle device of the rear walking self-propelled working machine in Figure 1;
  • FIG. 3 is a cross-sectional view of the partial structure of the handle device of the rear walking self-propelled working machine in FIG. 1;
  • Fig. 4 is an exploded schematic view of a partial structure of the handle device of the rear walking self-propelled working machine in Fig. 1;
  • Fig. 5 is an exploded schematic view of another view of the partial structure of the handle device of the rear walking self-propelled working machine in Fig. 4;
  • Fig. 6 is a logic control diagram of the signal received by the sensing module of the rear-walking self-propelled working machine in Fig. 1;
  • Figure 7 is a trend chart of the relationship between the speed and thrust of the rear-walking self-propelled working machine in Figure 1 over time;
  • Fig. 8 is a logic control diagram of the signal received by the sensing module of the rear-walking self-propelled working machine in Fig. 1;
  • Fig. 9 is a logic control diagram of the acquisition process of the left sensor array of the rear-walking self-propelled working machine in Fig. 1;
  • Fig. 10 is a logic control diagram of the acquisition process of the right sensor array of the rear-walking self-propelled working machine in Fig. 1;
  • Fig. 11 is a logic control diagram of the motor response after obtaining the thrust value of the rear-walking self-propelled working machine in Fig. 1;
  • Fig. 12 is a logic control diagram of the rear-walking self-propelled working machine in Fig. 1 for judging whether the motor is started;
  • FIG. 13 is a logic control diagram of the response mode of judging thrust of the rear walking self-propelled working machine in FIG. 1;
  • Fig. 14 is a logic control diagram of PID adjustment of the rear walking self-propelled working machine in Fig. 1.
  • FIG. 1 shows a rear-walking self-propelled working machine, which can be a lawnmower, snowplow or trolley and other working machines with self-propelled functions.
  • a lawn mower is taken as an example for introduction.
  • the lawn mower 100 mainly includes a handle device 11 and a host 12.
  • the host 12 includes a walking assembly 121 and a power mechanism (not shown in the figure).
  • the lawn mower 100 is a hand-push lawn mower 100.
  • the handle device 11 is connected to the host 12 for the user to operate the lawn mower 100 on the rear side of the lawn mower 100.
  • Other rear-walking self-propelled working machines such as snowplows, trolleys, etc.
  • the handle device 11 includes a connecting rod 111 and an operating member 112 that can be held.
  • the operating member includes a grip portion for the user to hold;
  • the connecting rod 111 is a hollow long rod structure, and the connecting rod 111 connects the operating member 112 and the host 12.
  • the walking assembly 121 is installed on the host 12, and the walking assembly 121 can rotate around a rotating shaft so that the entire lawn mower 100 can move on the ground.
  • the lawn mower 100 in this embodiment also has a self-propelled function.
  • the power mechanism can drive the walking assembly 121 to rotate, thereby driving the lawn mower 100 to move on the ground, so that the user does not need to manually push the cutting The lawn mower 100 moves.
  • the power mechanism may be a driving motor 122, and the driving motor 122 can output a driving force for driving the walking assembly 121 to rotate.
  • turning on and off the self-propelled function requires the user to operate the control switch separately.
  • the power button 112a, the trigger 112b, and the operation switch 112c of the lawn mower 100 are all integrated on the handle device 11.
  • the power button 112a, the trigger 112b, and the operation switch 112c of the lawn mower 100 are all integrated on the operating member 112.
  • the operation switch 112c is not limited to a physical switch or a signal switch, and any device that can control the opening and closing of the current in the circuit is applicable.
  • this type of operation switch 112c is not limited to the control of current, and can also be controlled by mechanical means to turn on or off the self-propelled function.
  • this embodiment provides a convenient operation lawn mower 100, which can automatically determine its own self-propelled speed according to the user's walking speed, and can judge and control the self-propelled according to the user's operating state The start and close of the state provide an adaptive mode.
  • This embodiment also provides a manual adjustment mode.
  • the lawn mower 100 includes a speed adjustment switch set on the handle device 11, which can be used by the user to adjust the rear-walking self-propelled working machine when walking on the ground. Walking speed. It also includes an operation switch 112c arranged on the handle device, and the operation switch 112c is used to control the rear walking machine to switch between the adaptive mode and the manual speed regulation mode.
  • the operation switch 112c includes a signal receiving element, and when the signal receiving element receives a switching signal, it controls and controls the rear-walking self-propelled working machine to perform mode switching.
  • the switching signal includes a wireless signal or a wired signal.
  • the switching signal is also set to be input through smart voice input or through the mobile phone client.
  • the operation switch 112c can also be configured as a switch or a control panel.
  • the handle device 11 and the host 12 form an active connection.
  • the handle device 11 and the host 12 form a rotating connection, and can be locked at a preset angle by a locking member.
  • the lawn mower 100 can automatically adjust the self-propelled speed according to the walking speed of the user, and can automatically cut off the power output of the driving motor 122 when the user stops moving.
  • a sensing module 14 is provided between the operating element 112 and the host 12.
  • the sensing module 14 may be specifically arranged on the host 12, or may be arranged on the connection between the operating member 112 and the main body 12 or at any position between the operating member 112 and the main body 12. In this embodiment, the sensing module 14 is provided between the operating member 112 and the connecting rod 111. The sensing module 14 can output electrical signals by sensing the thrust from the operating member 112. In fact, if the thrust from the operating element 112 is different, the electrical signal output by the sensing module 14 is also different.
  • the operating member 112 is formed with an accommodation space 112e, and the sensing module 14 is disposed in the accommodation space 112e.
  • the sensing module 14 includes a supporting member 145, a pressing member 146 and a sensor assembly 141.
  • the supporting member 145 is formed with a first receiving cavity 145a, and the pressing member 146 and the sensor assembly 141 are at least partially disposed in the first receiving cavity 145a.
  • the pressing member 146 can be operated to trigger the sensor assembly 141 so that the sensor assembly 141 can output an electrical signal.
  • the sensor assembly 141 includes two pressure sensors 141a respectively arranged on the left and right sides of the support 145, which can feed back the pressure value through strain and convert the pressure value into an electrical signal for calculation or to issue an indication signal.
  • the extending direction of the connecting rod 111 can be defined as the preset straight line 101 direction, and the support 145, the pressing member 146 and the sensor assembly 141 are arranged in sequence along the preset straight line 101 direction.
  • the sensing module 14 further includes a middleware 147 and a package 149.
  • the middle piece 147 is used to connect the pressing piece 146 to the operating piece 112, and the packaging piece 149 is used to close at least part of the first receiving cavity 145a, so that the pressing piece 146 and the sensor assembly 141 can be fixed in the first receiving cavity 145a .
  • the operating member 112 also includes a connecting arm 112d formed along the direction of the preset straight line 101.
  • the supporting member 145 further includes a second accommodating cavity 145b sleeved on the connecting arm 112d, the first accommodating cavity 145a and the second accommodating cavity 145b are at least partially penetrated, and the pressing member 146 can pass through.
  • the middle piece 147 itself is formed with a through hole, and the pressing piece 146 is at least partially disposed in the through hole, and is connected to the middle piece 147 through the first connecting piece 145f.
  • the middle piece 147 is formed with a first connecting hole 147a for connecting the pressing piece 146, and the pressing piece 146 is formed with a second connecting hole 146a mated with the first connecting hole 147a.
  • the middle piece 147 and the pressing piece 146 pass through the first connecting hole 147a.
  • the connecting hole 147a is connected to the first connecting member 145f of the second connecting hole 146a.
  • the supporting member 145 is also formed with a third connecting hole 145c that cooperates with the first connecting hole 147a and the second connecting hole 146a, that is, the first connecting member 145f passes through the first connecting hole 147a and the second connecting hole 146a at the same time. And the third connecting hole 145c. Wherein, when the first connecting member 145f passes through the first connecting hole 147a, it is in interference fit with the first connecting hole 147a, so that the intermediate member 147 will not be displaced along the preset straight line 101.
  • the diameter of the second connecting hole 146a is larger than the outer diameter of the first connecting member 145f, which enables relative rotation between the pressing member 146 and the intermediate member 147 when the pressing member 146 is connected to the intermediate member 147, so that the pressure from the operating member 112
  • the force can be transmitted to the pressing member 146, and the pressing member 146 can press the sensor assembly 141, thereby deforming the sensor assembly 141.
  • the ratio of the component force of the thrust along the direction of the preset straight line 101 received by the grip to the deformation amount of the pressure sensor 141a along the direction of the preset straight line 101 is greater than or equal to 40 N/mm and less than or equal to 1200 N/mm.
  • the ratio of the component force of the thrust received by the grip along the direction of the preset straight line 101 to the amount of deformation of the pressure sensor 141a along the direction of the preset straight line 101 is greater than or equal to 150 N/mm and less than or equal to 300 N/mm.
  • the pressure sensor 141a can recognize the pressure more easily, and thus can output a more accurate pressure value.
  • the intermediate piece 147 further includes a fourth connecting hole 147b through which the second connecting piece 145g can pass, and the fourth connecting hole 147b can pass through the second connecting piece 145g to connect the intermediate piece 147 to the connecting arm 112d.
  • a fifth connecting hole (not shown in the figure) for the second connecting member 145g is formed on the connecting arm 112d.
  • the fifth connecting hole is set as a screw hole that fits with the screw.
  • the middle piece 147 can also be connected to the connecting arm 112d in other ways, which will not be repeated here.
  • the support 145 may be provided as a separate part in the accommodating space 112e, or may be fixedly connected to the connecting rod 111 or integrally formed.
  • the connecting rod 111 is configured in two halves, so that the sensor, the pressing member 146, etc. can be installed therein.
  • the pressing member 146 further includes a main body portion extending substantially along the direction of the preset straight line 101, wherein the first end of the main body portion forms the above-mentioned second connecting hole 146a, and the second end forms a limiting portion 146c and a trigger end 146d.
  • the limiting portion 146c is used to cooperate with the supporting member 145 to prevent the pressing member 146 from being separated from the supporting member 145.
  • the sensing module 14 further includes a pre-tensioning element 148.
  • the pre-tensioning element 148 is disposed on the side of the limiting portion 146c away from the trigger end 146d.
  • the pre-tensioning element 148 provided between the limiting portion 146c and the supporting member 145 can provide a pre-tensioning force.
  • the signal value acquired by the sensor assembly 141 due to deformation is of a small order of magnitude, and the signal value it acquires is generated by the deformation of the pressure sensor 141a itself.
  • the pressure sensor 141a may not be able to obtain the data, or even if it is known
  • the data also cannot determine the accuracy of the transmitted data, that is, the signal value output by the pressure sensor 141a includes the first interval value and the second interval value.
  • the first interval value is composed of discrete data or nonlinear data, and the first interval value forms a nonlinear relationship.
  • the second interval value is the data or known data after the pressure sensor 141a is compressed to a certain interval, and it has a linear relationship.
  • the first interval value needs to be filtered out by the system through complex calculations, and due to the non-linear relationship of the data in this section, the calculation of the entire system may be inaccurate.
  • the pressure sensor 141a can be pre-compressed, which can directly and effectively filter the first interval value, so that the pressure sensor 141a can output a value that includes a zero point value and can have a linear relationship. This makes it more convenient for the system to calculate data, and at the same time prevents the system from obtaining zero point data through multiple calibrations, thereby reducing the computing load of the system.
  • the aforementioned pretensioning element 148 is actually arranged on the upper side of the pressure sensor 141a.
  • the pre-tensioning element 148 can also be arranged on the lower side of the pressure sensor 141a, and its achievable effect is basically the same as the effect of the pre-tensioning element 148 arranged on the upper side of the pressure sensor 141a.
  • the pre-tensioning element 148 may be a compression spring or other elastic parts with elastic force, which can produce substantially linear elastic deformation when subjected to force, and return to the original position after the force is withdrawn.
  • the trigger end 146d also includes a trigger surface 146e that cooperates with the sensor assembly 141 to apply pressure to the sensor assembly 141.
  • the sensor assembly 141 also includes a force-receiving surface 141d that contacts the trigger surface 146e to receive pressure.
  • the cross section of the contact surface in a plane parallel to the direction of the preset straight line 101 includes a section line, and the straight line connecting certain two points on the cross section line intersects the preset straight line 101 obliquely. In fact, the plane where the triggering surface 146e is located obliquely intersects the preset straight line 101.
  • the trigger end 146d is set as a circular platform, and the sensor assembly 141 is provided with a through hole 141e through which the circular platform at least partially penetrates.
  • the plane where the through hole 141e is located is the force-receiving surface 141d; the side of the circular platform is the trigger surface 146e.
  • the package 149 is further formed with or connected to a supporting portion 149a, and the supporting portion 149a is configured to cooperate with the sensor assembly 141 to at least partially support the sensor assembly 141, so as to prevent the sensor assembly 141 from being under the action of the pressing member 146. Lead to excessive deformation and failure.
  • the section of the force-bearing surface 141d in a plane parallel to the direction of the preset line 101 includes a section line, and the line connecting two points on the section line is in line with the preset line.
  • the straight lines 101 intersect obliquely.
  • the trigger surface 146e is set as a plane, which can also realize that when the trigger surface 146e and the force receiving surface 141d are in contact, the projection of the contact surface between the two in the direction along the preset straight line 101 is still a round surface, ensuring the pressure sensor
  • the 141a component accurately knows the current pressure value, thus avoiding more complicated calculation processes.
  • the projection of the position of the second receiving cavity 145b on the support 145 on the plane includes a first length extending in the left-right direction and a first length extending in the up-down direction. Two length. Wherein, the first length is greater than or equal to the second length. Optionally, the first length is greater than the second length, and the difference between the first length and the second length is greater than or equal to 1 mm and less than or equal to 10 mm.
  • the connecting arm 112d and the operating member 112 are limited to a certain extent in the up and down direction, and a certain amount of shaking can be generated in the left and right direction, thereby avoiding the friction between the support member 145 and the connecting arm 112d. It is stuck, or the force cannot be effectively transmitted due to friction.
  • the projection of the second receiving cavity 145b on the first plane is elliptical. The long sides of the ellipse are arranged in the left-right direction, and the short sides of the ellipse are arranged in the front-rear direction.
  • the projection surface of the second receiving cavity 145b on the support 145 on the first plane has a first area
  • the projection of the connecting arm 112d on the first plane has a second area.
  • the first area is greater than the second area
  • the ratio of the first area to the second area is greater than or equal to 1 and less than or equal to 3.
  • the connecting arm 112d can be effectively inserted into the second accommodating cavity 145b, and on the other hand, it can also ensure that the inner wall of the second accommodating cavity 145b can at least partially limit the connecting arm 112d to avoid When the operating member 112 is operated, it shakes in the vertical direction between the operating member 112 and the support member 145.
  • the inner wall of the second accommodating cavity 145b of the support 145 surrounds a rail 145e, that is, the inner wall of the second accommodating cavity 145b is not a continuous elliptic curve, but is provided with a substantially uniform distribution
  • the connecting arm 112d is inserted into the second accommodating cavity 145b, the contact surface between the supporting member 145 and the connecting arm 112d is small and a gap can be generated, so that the friction between the two Smaller.
  • it further includes a fixing member matched with the packaging member 149, which can be fixed to the connecting rod 111 and cooperate with the housing of the operating member 112 to form a receiving space 112e that can seal the pressure sensing module 14.
  • the sensing module 14 further includes: a filter 142 and a signal amplifier 143.
  • the sensor component 141 is used to receive the pressure from the operating element 112 and output an electrical signal
  • the filter 142 is used to filter the electrical signal output by the sensor component 141
  • the signal amplifier 143 is used to filter the electrical signal filtered by the filter 142. The signal is further amplified to make it an electrical signal for judgment.
  • the sensor assembly 141 may further include a first sensor and a second sensor.
  • the first sensor and the second sensor are respectively arranged at two connecting positions of the operating member 112 and the connecting rod 111.
  • the first sensor is provided at the left connection of the operating member 112 and the connecting rod 111
  • the second sensor is provided at the right connection of the operating member 112 and the connecting rod 111, wherein the left connection and the right connection may be located in the horizontal or longitudinal direction. The same position can also be located at different positions in the horizontal and vertical directions.
  • the first signal input to the sensing module and the second signal are different, and the sensing module needs to be superimposed Signal values from the first sensor and the second sensor.
  • the sensor assembly 141 may also include only one sensor.
  • the signal is recognized according to the user's operation, and the signal is output to control the self-propelled function of the lawn mower 100 .
  • the above-mentioned sensor can be arranged on one side of the operating member 112 and the connecting rod 111, or arranged at the connection point between the connecting rod 111 and the host 12, and can pass the force and displacement acting on the connecting rod 111 or the host 12 And so on to form a signal for output, and use the signal to control the self-propelled function of the lawn mower 100.
  • the first sensor and the second sensor are specifically two identical pressure sensors 141a.
  • the pressure sensor 141a may be a contactable pressure sensor or a non-contact pressure sensor.
  • the force-receiving surface 141d when the triggering end 146d contacts the force-receiving surface 141d, the force-receiving surface 141d produces a certain elastic deformation, and the deformation is converted into an electrical signal output. Due to the different pressure received, the pressure sensor 141a can output a voltage signal proportional to the pressure, and obtain the thrust value applied to the handle by the user according to this, and then control the driving motor 122 to accelerate the movement.
  • the pressure sensor senses a positive voltage signal that is roughly proportional to the user's thrust value.
  • the initial positions of the force surface 141d and the trigger end 146d of the pressure sensor 141a on the lawnmower 100 are about 1mm-10mm, so the overall appearance of the connection between the operating member 112 and the connecting rod 111 of the lawnmower 100 No change, the relative displacement between the operating member 112 and the connecting rod 111 is small, and the user is not easy to notice that there is an obvious detachable connection or movable connection between the operating member 112 and the connecting rod 111 of the lawn mower 100. Good user experience.
  • the electrical signal output after sensing the deformation is also weak.
  • the electrical signal is generated by the signal amplifying circuit provided in the handle device 11. enlarge.
  • the pressure sensor 141a transmits the signal and the electric signal is amplified, the electric signal needs to be filtered.
  • the electrical signal output by the pressure sensor 141a has noise clutter, and the clutter generally may include: high-frequency and small-amplitude noise signals, abnormal pressure signals caused by accidental touch, etc.
  • a pre-filtering part is connected to the subsequent circuit connected to the pressure sensor 141a, and high-frequency noise is eliminated by a capacitor with a smaller capacitance, and low-frequency noise is eliminated by a capacitor with a larger capacitance.
  • the signal output by the pressure sensor 141a is filtered and amplified, it outputs a substantially stable signal for judgment.
  • the sensing module 14 also includes an attitude sensor 144, which is used to collect the spatial position signal of the lawn mower 100 and can output a three-dimensional attitude and orientation signal.
  • an attitude sensor 144 which is used to collect the spatial position signal of the lawn mower 100 and can output a three-dimensional attitude and orientation signal.
  • the user In the process of operating the lawn mower 100 to cut grass, when the lawn mower 100 needs to turn around, the user generally needs to tilt the head of the lawn mower 100 and use the rear wheels as a fulcrum to make it more convenient to turn and turn around.
  • the lawn mower 100 is still in working condition during the process from before to after the turn of the lawn mower 100, and the user generally does not have the consciousness of actively operating the control switch on the operating member 112 to shut down the lawn mower 100 , So that the lawn mower 100 at this time has a certain safety hazard.
  • the attitude sensor 144 After detecting that the lawn mower 100 is lifted and has a turning tendency, it outputs a signal to the sensing module 14, and the sensing module 14 outputs a stop signal to control the lawn mower 100 to brake or stop.
  • the sensing module 14 After the sensing module 14 receives various signals, it undergoes preliminary processing, and can further output an electrical signal for judgment, and the electrical signal is further transmitted to the driving circuit 15.
  • the driving circuit 15 controls the driving motor 122 according to the signal transmitted from the sensing module 14.
  • the pressure sensor 141a will transmit a larger electrical signal, which is initially processed by the sensing module 14, that is, the pressure signals of the two pressure sensors 141a are filtered, amplified and combined, and then transmitted to the drive circuit 15.
  • the drive circuit 15 controls the drive motor 122 to output a larger torque according to the electrical signal.
  • the thrust value of the user acting on the operating element 112 at this time becomes smaller, and the pressure sensor 141a will transmit a smaller electrical signal.
  • the driving circuit 15 controls the driving motor 122 to output a small torque according to the electric signal.
  • the pressure sensor 141a no longer outputs an electrical signal at this time, and the drive circuit 15 will control the self-propelled drive motor 122 to stop according to the change of the electrical signal value in the circuit, so that The lawn mower 100 stops.
  • the rotation speed of the driving motor 122 is basically positively correlated with the walking speed of the lawn mower 100 pushed by the user. That is, the user's walking speed increases, and the rotation speed of the self-propelled drive motor 122 also increases; the user's walking speed decreases, and the rotation speed of the self-propelled drive motor 122 decreases.
  • the circuit fluctuates or the electrical signal is unstable, the proportional relationship between the rotation speed of the drive motor 122 and the user's walking speed is outside the aforementioned positive correlation, the proportional relationship between the rotation speed of the drive motor 122 and the user's walking speed is also considered Fall into the above-mentioned positive correlation.
  • the magnitude of the electrical signal output by the sensor assembly and the output torque of the self-propelled drive motor 122 also form a positive correlation.
  • the accuracy of the sensing module 14 and the driving circuit 15 reaches a higher level, the rotation speed of the self-propelled driving motor 122 and the walking speed of the user can reach a proportional relationship.
  • the attitude sensor 144 When the user needs to tilt the head of the lawn mower 100 and turn it, the attitude sensor 144 will detect the situation and output an electrical signal. The electrical signal is transmitted to the driving circuit 15 and the driving circuit 15 is determined The self-propelled drive motor 122 controlling the lawn mower 100 is stopped. When the user adjusts the steering of the lawn mower 100 and lays down the lawn mower 100, the driving circuit 15 of the lawn mower 100 is turned on, which can activate the self-propelled function and adjust the self-propelled speed according to the walking speed of the user.
  • the rear-walking self-propelled working machine also has a constant speed mode.
  • the driving method of the lawn mower 100 enables the user to operate more conveniently.
  • the lawn mower 100 enters a soft-start stage.
  • the self-propelled drive The motor 122 gives the lawn mower 100 an acceleration, and the lawn mower 100 instantly enters the walking state from the stopped state.
  • the time of the soft start phase is very short, which only provides an acceleration to change the state of the lawn mower 100.
  • the lawn mower 100 When the user presses the operation switch 112c while pushing the mowing and walking, the soft-start phase has been completed and enters the self-propelled state. At this time, the lawn mower 100 will control the speed of the self-propelled driving motor 122 according to the user's walking speed. Torque to control the self-propelled speed. The lawn mower 100 receives pressure from the operating member 112 through the sensor assembly 141 under the push of the user, thereby controlling the lawn mower 100 to accelerate. When the user walks to a constant speed state adapted to the walking speed of the user, and maintains a relatively stable pressure output to the operating member 112 of the lawn mower 100, the lawn mower 100 enters a constant speed state adapted to the user's walking speed.
  • the lawn mower 100 is in a constant speed state within a preset pressure range.
  • the pressure received by the sensor component 141 is greater than or equal to F1 and less than or equal to F2
  • the lawn mower 100 enters a constant speed state adapted to the user's walking speed according to the user's walking state.
  • the walking speed of the lawn mower 100 does not have a positive correlation with the force received. But when the user pushes the lawn mower 100 to move forward, the sensor assembly 141 will drive the lawn mower 100 to move forward at a faster speed according to the applied force.
  • the sensing module 14 will control the lawn mower 100 to be constant at the current walking speed according to the change in the force.
  • the walking speed is different.
  • the force of the user acting on the operating member 112 gradually decreases when the user and the lawn mower 100 are moving at a constant speed and fall into F1 and F2.
  • the lawn mower 100 enters a constant speed state that is the same as the operating speed at the previous moment.
  • the user does not need to push the lawn mower 100 to move forward, but only needs to place his hand on the operating member 112 to follow the lawn mower 100 to move at a constant speed.
  • the lawn mower 100 when the force transmitted to the sensor assembly 141 is greater than F2, the lawn mower 100 will continue to enter the acceleration state, until the force again falls within an interval greater than or equal to F1 and less than or equal to F2, the lawn mower 100 again Enter the constant speed state.
  • the force transmitted to the sensor assembly 141 is less than F1
  • the lawn mower 100 enters the deceleration state from the constant speed state.
  • the force transmitted to the sensor assembly 141 continues to decrease and decreases to zero, the lawn mower 100 stops running.
  • the F1 and F2 defined here do not limit the maximum and minimum speeds of the user's own walking.
  • the user adjusts the relative movement of the lawn mower 100 according to his own walking speed, and the force transmitted to the sensor assembly 141 falls into F1 and During F2, keep the same speed as the previous moment and run at a constant speed.
  • the speed at which the lawn mower 100 runs at a constant speed is also limited to a safe and effective speed range for mowing. That is, when the lawn mower 100 runs at a high speed, it will not exceed the highest speed N2 that threatens the user’s safety and makes the user’s walking speed unable to keep up; when the lawn mower 100 runs at a low speed, it will not be lower than one that hinders the user’s normal operation.
  • the lowest speed N1 for walking and affecting the mowing effect when the lawn mower 100 runs at a high speed, it will not exceed the highest speed N2 that threatens the user’s safety and makes the user’s walking speed unable to keep up; when the lawn mower 100 runs at a low speed, it will not be lower than one that hinders the user’s normal operation.
  • the lawn mower 100 further includes a controller, and the controller may be provided with a preset module, a conversion module, and a control module.
  • the preset module is used to set or store a preset thrust value; the aforementioned sensing module can periodically sense the thrust value applied to the handle device to drive the lawn mower 100; the conversion module can be based on the sensing module A desired rotational speed is obtained according to the thrust value that is sensed or stored in the preset module, and the control module controls the rotational speed of the driving motor 122 to change toward the desired rotational speed.
  • the preset module serves as the storage system of the lawn mower 100, which can store a group of data in the initialization state.
  • the preset module separately records the electrical signal values of the left and right sensors under no pressure, and generates 20 initial elements a1 to a20 on the left side and 20 initial elements b1 to b20 on the right side through random rules, and stores them in the preset module And obtain the average of the storage matrix A1 and the average of the storage matrix A2. Furthermore, two sets of averages and standard deviations are obtained through statistical parameter estimation to obtain the left and right normal distributions, and the system is initialized.
  • the lawn mower 100 can be operated normally.
  • the left and right pressure sensors provided on the operating member start to act as sensing modules to start sensing the current pressure signal value.
  • the pressure sensor set on the left as an example.
  • the system filters the sensed pressure signal.
  • the filtering is completed, the system collects 100 filter values. Calculate the average and obtain a parameter a21.
  • call the normal distribution stored on the left side to determine whether the parameter a21 falls within the normal distribution. If so, discard the current parameter a21, call the average value of the storage matrix A1 and Obtain the storage matrix A1, if not, enter the creep calibration rule judgment process.
  • the lawn mower 100 further includes a correction module, the creep calibration rule is set in the correction module, and the correction module is used to correct the initial output signal value when the initial output signal sensed by the sensing module conforms to the normal distribution.
  • the creep calibration rule determines whether the current determination parameter a21 satisfies (a21- ⁇ ) ⁇ 1.1 ⁇ 3 ⁇ , where ⁇ is the mathematical expectation of the normal distribution stored in the preset module, and ⁇ is stored in the preset The standard deviation of the normal distribution in the module.
  • the left initial elements a1 to a20 are updated to a2 to a21, the updated initial elements form the updated storage matrix A1', and the updated storage matrix A1' is averaged, Furthermore, a set of updated averages and standard deviations are obtained through statistical parameter estimation. At this time, the normal distribution on the left side is updated, and the system calls the average value of the updated storage matrix A1' to obtain the storage matrix A1'.
  • the current parameter a21 is discarded, the average value of the original storage matrix A1 is called and the storage matrix A1 is obtained.
  • the right pressure sensor obtains the average value of the real storage matrix in the same way.
  • the system filters the sensed pressure signal.
  • the system collects 100 filter values, averages the 100 values, and obtains a parameter b21, At this time, call the normal distribution stored on the left side, determine whether the parameter b21 falls within the normal distribution, if yes, discard the current parameter b21, call the average value of the storage matrix A2 and obtain the storage matrix A2, if not, Then it enters the process of determining the creep calibration rule.
  • the creep calibration rule determines whether the current determination parameter b21 satisfies (b21- ⁇ ) ⁇ 1.1 ⁇ 3 ⁇ , where ⁇ is the mathematical expectation of the normal distribution stored in the preset module, and ⁇ is the mathematical expectation stored in the preset module. Let the standard deviation of the normal distribution in the module.
  • the parameter b21 satisfies the creep calibration rule, the above-mentioned left initial elements b1 to b20 are updated to b2 to b21, and the updated initial elements form the updated storage matrix A2', and the updated storage matrix A2' is averaged, Furthermore, a set of updated averages and standard deviations are obtained through statistical parameter estimation.
  • the normal distribution on the left side is updated, and the system calls the average of the updated storage matrix A2' to obtain the storage matrix A2'.
  • the current parameter b21 does not meet the creep calibration rule, the current parameter b21 is discarded, the average value of the original storage matrix A2 is called, and the storage matrix A2 is obtained.
  • the pressure sensor can provide accurate data in real time.
  • the real-time thrust value of the pressure sensor is obtained by averaging the average value of the real storage matrix obtained by the left and right pressure sensors.
  • the lawn mower 100 in the present application includes a low-speed driving mode and an adaptive mode.
  • the preset module also sets or stores a preset speed.
  • the control module controls the rotation speed of the drive motor 122 to be less than or equal to the preset speed;
  • the control module controls the driving motor 122 to change toward a desired rotation speed obtained according to the thrust value, and the desired rotation speed is greater than the preset rotation speed.
  • the first preset value f1 is less than or equal to the second preset value f2.
  • the self-propelled self-propelled working machine is set to include only the low-speed driving mode and the adaptive mode.
  • the self-propelled self-propelled working machine is set to also include a low-speed driving mode and an adaptive mode.
  • the thrust value is greater than the second preset value f2
  • the lawn mower 100 is in the adaptive mode; when the thrust value is greater than 0 and less than f2, the lawn mower 100 is in the low-speed driving mode; wherein, when the thrust value is greater than or equal to f1 and less than At f2, the lawn mower 100 is in a low-speed driving mode, and the driving motor 122 keeps rotating at less than or equal to the preset speed value.
  • the driving motor 122 When the thrust value is greater than 0 and less than f1, the driving motor 122 has a tendency to keep rotating at a value less than or equal to the preset rotation speed.
  • the conversion module determines the rotation speed of the driving motor 122 according to the duration of the thrust value sensed by the sensing module. That is, when the thrust value sensed by the sensing module is greater than 0 and less than f1 and the duration is less than or equal to a preset duration T, the control module controls the drive motor 122 to still keep rotating at a value less than or equal to the preset speed; when the sensing module senses When the measured thrust value is greater than 0 and less than f1 and the duration is greater than a preset duration T, the control module controls the driving motor 122 to stop.
  • the above only gives a process of determining the lawn mower 100 between the low speed driving mode and the adaptive mode.
  • the thrust value applied to the operating part will be continuously sensed
  • the sensing module will continuously determine the implemented thrust value according to the above determination process, thereby controlling the lawn mower 100 to regulate its own operating conditions in real time according to the real-time thrust value, that is, the driving motor 122 is getting the current After the rotation speed, the whole machine will respond and control the whole machine to drive at the current speed.
  • the control module obtains the next speed value, it will immediately control the drive motor 122 to perform the whole machine response according to the next speed value.
  • the thrust value sensed by the sensing module is less than or equal to 0, and the control module controls the rotation speed of the driving motor 122 to be 0 .
  • the sensing module is provided with a pre-compression element, the pre-compression element itself is in a pre-compression state, which makes the pressure sensor in a pre-compression state.
  • the pressure is applied The pre-pressure on the sensor is at least partially removed, and the pressure sensor outputs a negative value at this time, that is, the thrust value output by the sensing module at this time is less than or equal to 0.
  • the control module controls the driving motor 122 to keep rotating at a speed less than or equal to the preset speed.
  • the user can keep the lawn mower 100 walking in a more comfortable state.
  • the lawn mower 100 should be pushed to walk quickly.
  • the force applied by the user to the operating member may be greater than or equal to f2 within a certain period of time.
  • the conversion module can detect The module senses the thrust value and obtains a desired rotational speed according to the thrust value set or stored in the preset module, and the control module controls the rotational speed of the driving motor 122 to change toward the desired rotational speed.
  • the conversion module can obtain a desired speed according to the thrust value sensed by the sensing module and the thrust value set or stored in the preset module, and the control module controls the drive motor
  • the rotation speed of 122 changes toward the desired rotation speed.
  • the conversion module first filters the current thrust value. Then adjust the filtered thrust value to obtain a desired speed.
  • the conversion process of the conversion module can be adjusted by PID.
  • a preset thrust value F* is also set or stored in the preset module, and the preset thrust value F* can be set as a fixed value and can be set to be selected within a preset interval range.
  • the difference between the preset thrust value F* and the real-time obtained thrust value obtains a value, and the proportional operation, integral operation, and differential operation are performed on the value to obtain a desired speed.
  • the control module controls the motor to run at the desired speed in real time.
  • the expected speed value is greater than the preset speed value.
  • the system will continue PID adjustment until the user's walking speed and the self-propelled speed of the lawn mower 100 reach a dynamic balance, that is, the user's walking speed and the self-propelled lawn mower 100
  • the speed is basically the same.
  • the thrust value sensed by the sensing module may not necessarily be adjusted by PID to reflect the real-time rotation speed of the drive motor 122.
  • the desired rotational speed signal is transmitted to the drive motor 122 and the drive motor 122 responds to the current signal to change the rotational speed, there is a response time difference, that is, the sensing module senses the current thrust value until the PID adjustment is completed to obtain the desired rotational speed.
  • the duration is relatively short, and the desired speed of rotation speed and signal transmission speed is much greater than the response speed of the drive motor 122.
  • the existence of the response time difference does not affect the operation of the lawn mower 100.
  • the sensing module is set to pass 0.04s from the current thrust value to the next sensed thrust value.
  • the sensing module senses The time from measuring the current pressure value to the conversion module to complete the conversion of the current thrust value and obtain the desired speed is much less than 0.04s, and the sensing module no longer senses the thrust value, until 0.04s, the sensing module restarts to sense the current The thrust value is transferred to the conversion module for conversion, so as to obtain a new desired speed.
  • the preset rotation speed at this time is a rotation speed value preset in the system for reference, and the desired rotation speed is the rotation speed value that the operator expects the drive motor 122 to reach during operation.
  • the aforementioned values can be set to the following data.
  • the preset speed in the preset module of the lawn mower 100 is set to 3000r/min
  • the first preset value f1 is set to 10N
  • the second preset value is set to 17N.
  • the preset duration T is set to 0.25s
  • the preset thrust value F* can be selected in the range of greater than or equal to 10N and less than or equal to 60N; optionally, the preset thrust value F* can be greater than or equal to 20N and less than or equal to 30N Select within the interval range.
  • the control module controls the rotation speed of the drive motor 122 to be 0; when the thrust value received by the sensing module is greater than 0N and less than or equal to 10N, it is determined whether the thrust value lasts for less than or equal to 0.25 s, when the duration is less than or equal to 0.25s, the control module controls the driving motor 122 to rotate at a speed less than or equal to 3000r/min, and when the duration is greater than 0.25s, the control module controls the driving motor 122 to rotate at zero.
  • the control module controls the rotation speed of the driving motor 122 to rotate at a speed less than or equal to 3000 r/min.
  • the conversion module can obtain a desired speed through filtering and PID adjustment according to the thrust value sensed by the sensing module, and the control module controls the drive motor 122 to be greater than 3000r/min.
  • the rotation speed is rotated until the user's thrust value is stabilized within the range of greater than or equal to 20N and less than or equal to 30N, and the lawn mower 100 runs at a speed that allows the user to walk comfortably.
  • the preset rotation speeds, f1, f2, and T are not limited to the aforementioned values, and only an alternative embodiment is given here for reference.
  • the system before the lawn mower 100 enters the low-speed running mode or the adaptive mode, the system also needs to determine whether the drive motor 122 is activated according to the real-time thrust value.
  • the motor does not start.
  • the system filters the acquired real-time thrust value, and then performs PID adjustment on the filtered value to obtain a motor target value.
  • the preset module also stores a startup preset speed. When the target value of the motor is greater than the startup preset speed and the duration is greater than 0.25s, the motor starts and enters the mode determination process of low speed driving mode or adaptive mode . Otherwise, the motor will not start.
  • This application also provides a method for a rear-walking propulsion working machine, which includes the following steps:
  • S101 Start to power on, and execute S102. That is, the lawn mower 100 is connected to the power source, and the power switch is in the on phase.
  • S102 After collecting the electrical signal, execute S103.
  • the sensing module arranged inside the operating member starts to collect pressure signals under the action of external force.
  • the first sensor collects 100 electrical signals; the second sensor collects 100 electrical signals.
  • S103 After the filtering is completed, execute S104.
  • the system begins to filter the collected pressure signal, that is, to filter out some noise clutter.
  • the filtering the system collects the left and right 100 filtered filtered values, averages them, and determines a21 and b21.
  • S104 Determine whether a21 conforms to the normal distribution in the initial state, if yes, execute 105, if not, execute 107.
  • S105 Discard the current value a21 and execute S106.
  • S111 The normal distribution of the storage matrix A1 in the initial state is not updated; the average of the current storage matrix A1 on the left is obtained.
  • S112 Obtain the average of the current storage matrices on the left and right, and execute S113.
  • S120 The driving motor 122 is started, and S121 is executed.
  • S121 Judge the thrust response mode according to the real-time thrust value F. If F ⁇ 0, execute S122; if 0 ⁇ F ⁇ f1, execute S123; if f1 ⁇ F ⁇ f2, execute S124; if f2 ⁇ F, execute S125.
  • S122 The output speed of the driving motor 122 is 0. That is, the drive motor 122 is in a braking state.
  • S124 The system starts to filter the thrust value F. That is to filter out some noise clutter.
  • S125 is executed.
  • S126 Obtain the desired speed Pre-speed of the drive motor 122, and execute S127. At this time, there is a process in which the speed of the driving motor 122 follows the pre-speed of the driving motor 122.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Harvester Elements (AREA)
  • Handcart (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种后走式自推工作机,包括:主机(12),包括行走组件(121)和驱动行走组件(121)的驱动马达(122);操作开关(112c),与驱动马达(122)连接;把手装置(11),连接至主机(12);把手装置包括:操作件(112),包括用于供用户握持的握持部;连接杆(111),连接至主机(12);感测模块(14),用于感测施加至把手装置(11)以驱动后走式自推工作机的推力;感测模块(14)还包括:压力传感器(141a),设置在操作件(112)和连接杆(111)之间;按压件(146),在握持部受到推力时,按压件(146)向压力传感器(141a)施加沿预设直线方向的作用力以驱动压力传感器(141a)发生形变。

Description

后走式自推工作机
本申请要求申请日为2019年7月25日、申请号为201910674384.8,以及申请日为2019年10月21日、申请号为201911001974.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种花园类工具,例如涉及一种后走式自推工作机。
背景技术
后走式自推工作机割草机一般是用户用于修剪家用草坪的机器。用户长时间在草地上推行割草机修剪草坪时,会耗费较大的体力。为了减轻操作者在割草时劳动强度,市场上出现了可以自行走的割草机。在一些相关的具有自走功能的割草机中,其自走功能需要人为控制,并仅能输出一个恒定的速度,用户仅能跟随割草机并进行割草作业。在一些较先进的割草机中,自行走系统操作复杂,用户使用舒适度差,且可靠性较差。
发明内容
本申请提供了一种舒适性高且可靠性好的自走速度适应人行走速度的后走式自推工作机。
一实施例提供一种后走式自推工作机,包括:主机,包括行走组件和驱动行走组件的驱动马达;操作开关,与驱动马达连接;把手装置,连接至主机;其中:把手装置包括:操作件,包括用于供用户握持的握持部;连接杆,连接至主机;感测模块,用于感测施加至把手装置以驱动后走式自推工作机的推力;感测模块还包括:压力传感器,设置在操作件和连接杆之间;按压件,在握持部受到推力时,按压件向传感器施加沿预设直线方向的作用力以驱动压力传感器发生形变;预紧元件,用于向压力传感器施加一个预紧力;其中,握持部受到的推力沿预设直线方向的分力与压力传感器沿预设直线方向的形变量的比值大于等于40N/mm且小于等于1200N/mm,操作开关能够根据压力传感器感测到的推力生成控制信号以控制驱动马达的转速。
可选地,后走式自推工作机具有低速行驶模式和自适应模式;在推力小于 第一预设值时,后走式自推工作机处于低速行驶模式;在推力大于第二预设值时,后走式自推工作机还处于自适应模式。
可选地,在自走式自推工作机处于低速行驶模式时,控制模块控制驱动马达的转速小于等于第一预设转速;在自走式自推工作机处于自适应模式时,控制模块控制驱动马达朝向一个根据推力获得的期望转速改变,期望转速大于第一预设转速。
可选地,第一预设值等于第二预设值。
可选地,第一预设值小于第二预设值,在推力小于第二预设值时,后走式自推工作机处于低速行驶模式。
可选地,在推力大于等于第一预设值且小于第二预设值时,后走式自推工作机处于低速行驶模式。
可选地,在推力大于0且小于第一预设值时,后走式自推工作机处于低速行驶模式。
可选地,当推力大于0且小于第一预设值,推力持续时间小于一个预设时长时,控制模块控制驱动马达的转速小于等于第一预设转速;当推力大于0且小于第一预设值,推力持续时间大于一个预设时长时,控制模块控制驱动马达的转速输出为0。
可选地,当推力值小于等于0时,后走式自推工作机的驱动马达输出的转速为0。
可选地,还包括转换模块,根据感测模块感测到的推力获得期望转速。
可选地,驱动马达还包括启动状态和不启动状态,当推力小于第二预设值时,驱动马达不启动;当推力大于等于第二预设值时,期望转速大于一个第二预设转速且持续时间大于等于一个预设时长时,驱动马达启动。
可选地,握持部受到的推力沿预设直线方向的分力与压力传感器沿预设直线方向的形变量的比值大于等于150N/mm且小于等于300N/mm。
可选地,还包括支撑件,形成有第一容纳腔,压力传感器和按压件至少部分设置在第一容纳腔内。
可选地,支撑件、按压件和压力传感器沿预设直线方向依次排布。
可选地,操作件包括沿预设直线方向延伸的连接臂;支撑件包括套设至连接臂的第二容纳腔。
可选地,第一容纳腔和第二容纳腔至少部分贯通,并可供按压件穿过。
可选地,按压件包括能向压力传感器施加压力的触发面,压力传感器包括与触发面配合的受力面。
可选地,受力面与预设直线方向垂直相交。
可选地,触发面所在的平面与预设直线倾斜相交。
可选地,触发面与受力面接触时,在一个垂直与预设直线方向的平面内,触发面与受力面在沿预设直线方向在平面内的投影为圆。
可选地,压力传感器包括受力面,预紧元件使得受力面发生初始变形。
可选地,压力传感器发生初始变形时,输出一个初始信号值,当拉动操作件向后时输出的信号值小于初始信号值,后走式自推工作机停机。
可选地,压力传感器发生初始变形时,输出一个初始信号值,当推动操作件向后时输出的信号值大于初始信号值,后走式自推工作机开始自走。
可选地,在握持部受到推力时,压力传感器的输出信号值随推力的变化而变化,信号值包括第一区间值和第二区间值;传感器在输出第一区间值时的变形量小于传感器在输出第二区间值时的变形量;当预紧元件向传感器施加一个预紧力时,初始信号值位于第二区间值中。
可选地,第一区间值呈非线性分布,第二区间值呈线性分布。
可选地,预紧元件被设置为弹性件。
可选地,预紧元件设置在压力传感器的上侧。
可选地,预紧元件设置在压力传感器的下侧。
可选地,后走式自推工作机设定或者存储有一个预设推力值;后走式自推工作机还包括:转换模块,根据感测模块感测到的推力和预设推力值获取一个期望转速;控制模块,控制驱动马达的转速朝向期望转速改变。
可选地,还包括预设模块,预设推力值存储在预设模块中,预设推力值被设置为定值。
可选地,预设推力值被设置为大于等于10N且小于等于60N。
可选地,预设推力值被设置为大于等于20N且小于等于30N。
可选地,控制模块驱动驱动马达从当前的实际转速以一个变化的加速度朝向期望转速加速。
可选地,控制模块驱动驱动马达从当前的实际转速以一个变化的加速度朝向期望转速减速。
可选地,转换模块的调节过程可被设置为PID调节过程;PID调节被设置 为预设推力值与感测模块感测到的推力值做差以获得一个差值,对差值进行比例运算、积分运算、微分运算以获得期望转速。
可选地,感测模块感测完当前压力值至进行下次感测的时长被设置为0.04s。
可选地,还包括:控制模块,在感测模块感测到的推力在一个预设时长内持续小于等于第一预设值时控制驱动马达停机。
可选地,还包括预设模块,预设模块设定或存储第一预设值和预设时长,预设模块还设定或存储有一个预设推力值。
可选地,还包括一个转换模块,根据感测模块感测到的推力和预设推力值获取一个期望转速,当推力值小于等于第一预设值时,转换模块输出一个期望转速。
可选地,当感测模块感测到的推力小于预设时长时,控制模块获得期望转速。
可选地,当感测模块感测到的推力大于预设时长时,控制模块获得的转速信号为0。
可选地,还包括:预设模块,存储有感测模块的初始输出信号的正态分布;矫正模块,在感测模块的初始输出信号不符合正态分布时矫正初始输出信号。
可选地,感测模块包括设置在把手装置上的左、右两个压力传感器,当把手装置处于无压力状态下时,左、右两个压力传感器通过随机规则生成两组初始元素,通过对两组初始元素进行统计参数估计获得二组平均数和标准差,从而获得两个正态分布。
可选地,压力传感器感测到压力时,感测模块对采集到的数值进行滤波,并获得滤波值,对滤波值求平均后可获得参数值,判定参数值是否符合正态分布,若符合正态分布,则丢弃当前参数值;若不符合正态分布,则矫正初始信号。
可选地,矫正模块包括一个蠕变校准规则,蠕变校准规则用于判定当前参数值是否满足(a21-μ)<1.1×3σ,其中,a21为当期那参数值,μ为正态分布的数学期望,σ为正态分布的标准差。
可选地,当参数值满足蠕变校准规则时,预设模块中的初始元素被更新,参数值更替初始元素中的一个,以获得一个新的正态分布。
可选地,还包括:调速开关,供用户操作以调节后走式自推工作机在地面上行走时的行走速度;其中,后走式自推工作机具有一个自适应模式和手动调 速模式;在后走式自推工作机处于自适应模式时,后走式自推工作机的行走速度能自动适应用户推动后走式自推工作机时用户行走的行走速度;在后走式自推工作机处于手动调速模式时,后走式自推工作机的行走速度由调速开关控制。
可选地,还包括一个设置在把手装置上的操作开关,操作开关用于控制后走式工作机在自适应模式和手动调速模式之间切换。
可选地,操作开关包括一个信号接收件,信号接收件收到一个切换信号时,控制且控制后走式自推工作机进行模式切换。
可选地,切换信号包括无线信号或有线信号。
可选地,切换信号被设置为通过智能语音输入或通过手机客户端输入。
可选地,操作开关被设置为一个切换开关。
可选地,操作开关被设置为一个控制面板。
可选地,调速开关相对于把手装置在第一位置和第二位置之间运动;调速开关位于第一位置时驱动电机的转速大于调速开关位于第二位置时驱动电机的转速。
一实施例提供一种后走式自推工作机,包括:主机,包括行走组件和驱动行走组件的驱动马达;操作开关,与驱动马达连接;把手装置,连接至主机;其中:把手装置包括:操作件,包括用于供用户握持的握持部;连接杆,连接至主机;感测模块,用于感测施加至把手装置以驱动后走式自推工作机的推力;感测模块还包括:压力传感器,设置在操作件和连接杆之间;按压件,在握持部受到推力时,按压件向传感器施加沿预设直线方向的作用力以驱动压力传感器发生形变;其中,握持部受到的推力沿预设直线方向的分力与压力传感器沿预设直线方向的形变量的比值大于等于40N/mm。
可选地,握持部受到的推力沿预设直线方向的分力与压力传感器沿预设直线方向的形变量的比值大于等于150N/mm且小于等于300N/mm。
可选地,还包括支撑件,形成有第一容纳腔,压力传感器和按压件至少部分设置在第一容纳腔内。
可选地,支撑件、按压件和压力传感器沿预设直线方向依次排布。
可选地,操作件包括沿预设直线方向延伸的连接臂;支撑件包括套设至连接臂的第二容纳腔。
可选地,第一容纳腔和第二容纳腔至少部分贯通,并可供按压件穿过。
可选地,按压件包括能向压力传感器施加压力的触发面,压力传感器包括 与触发面配合的受力面。
可选地,受力面与预设直线方向垂直相交。
可选地,触发面所在的平面与预设直线倾斜相交。
可选地,触发面与受力面接触时,在一个垂直与预设直线方向的平面内,触发面与受力面在沿预设直线方向在平面内的投影为圆。
可选地,把手装置包括:支撑件,用于支撑按压件;其中,支撑件形成有容纳腔,操作件至少部分伸入至容纳腔,容纳腔的侧壁与操作件伸入至容纳内的部分的外表面之间具有间隙。
可选地,容纳腔包括沿左右方向延伸的第一长度和沿上下方向延伸的第二长度;其中,第一长度大于第二长度。
可选地,第一长度与第二长度的差值大于等于1mm且小于等于10mm。
可选地,支撑件沿预设直线方向延伸,在一个垂直于预设直线方向的第一平面上,容纳腔沿预设直线方向在第一平面上的投影为椭圆。
可选地,支撑件沿预设直线方向延伸,在一个垂直于预设直线方向的第一平面上,容纳腔沿预设直线方向在第一平面上的投影具有第一面积,操作件伸入至容纳腔的部分沿预设直线方向在第一平面上的投影具有第二面积,第一面积与第二面积的比值大于等于1且小于等于3。
可选地,支撑件的内壁围绕形成有轨道部,操作件至少部分伸入至容纳腔时,操作件与支撑件的内壁沿上下方向上至少部分接触。
可选地,把手装置包括:支撑件,用于支撑按压件;其中,支撑件与操作件在之间具有间隙。
可选地,支撑件形成有容纳腔,操作件至少部分伸入至容纳腔,容纳腔包括沿左右方向延伸的第一长度和沿上下方向延伸的第二长度;其中,第一长度大于第二长度;第一长度与第二长度的差值大于等于1mm且小于等于10mm。
可选地,支撑件形成有容纳腔,操作件至少部分伸入至容纳腔,支撑件沿预设直线方向延伸,在一个垂直于预设直线方向的第一平面上,容纳腔沿预设直线方向在第一平面上的投影具有第一面积,操作件伸入至容纳腔的部分沿预设直线方向在第一平面上的投影具有第二面积,第一面积与第二面积的比值大于等于1且小于等于3。
可选地,把手装置包括:支撑件,与连接杆固定连接或一体成型并用于支撑按压件;其中,支撑件与操作件在之间具有间隙。
可选地,按压件包括与传感器接触以向传感器施加沿预设直线方向的压力的接触面;其中,接触面在一个平行于预设直线方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直线与预设直线倾斜相交。
可选地,还包括中间件,用于连接按压件和操作件,中间件包括用于连接按压件的第一连接孔。
可选地,按压件包括第一端和第二端,第一端形成有与第一连接孔配合的第二连接孔,第二端形成有限位部和触发端;其中,限位部与第一容纳腔配合用于限制按压件脱离第一容纳腔;触发端形成有触发面。
可选地,支撑件上还形成有与第一连接孔和第二连接孔配合的第三连接孔,连接销同时穿过第一连接孔、第二连接孔和第三连接孔从而同时连接支撑件、中间件和按压件的连接销,连接销穿过第一连接孔与第一连接孔过盈配合。
可选地,触发端呈圆台状。
可选地,压力传感器形成有与触发面配合的受力面,受力面形成有可供至少部分触发端通过的通孔。
可选地,支撑件还包括用于容纳至少部分操作件的第二容纳腔,第一容纳腔与第二容纳腔至少部分贯通,按压件远离触发面的一端至少部分设置在第二容纳腔内。
可选地,还包括封闭至少部分第一容纳腔的封装件,封装件形成或连接有支撑部,支撑部与压力传感器配合用于支撑至少部分的压力传感器。
可选地,压力传感器包括与按压件接触以接收沿预设直线方向的压力的受力面;受力面在一个平行于预设直线方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直线与预设直线倾斜相交。
一实施例提供一种后走式自推工作机,包括:主机,包括行走组件和驱动行走组件的驱动马达;操作开关,与驱动马达连接;把手装置,连接至主机;其中:把手装置包括:操作件,包括用于供用户握持的握持部;连接杆,连接操作件和主机;感测模块,用于感测施加至把手装置以驱动后走式自推工作机的推力;感测模块还包括:压力传感器,设置在操作件和连接杆之间,在握持部受到推力时,压力传感器的输出信号随推力的变化而变化;按压件,用于将握持部受到的推力传递至压力传感器,按压件包括与压力传感器接触以向压力传感器施加沿第一直线方向的压力的接触面;其中,接触面在一个平行于第一直线方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直 线与第一直线倾斜相交,操作开关能够根据压力传感器感测到的推力生成控制信号以控制驱动马达的转速。
可选地,还包括支撑件,支撑件设置在操作件与连接杆之间,并形成有第一容纳腔,按压件和传感器组件至少部分设置在第一容纳腔中。
可选地,还包括中间件,用于连接按压件和操作件,中间件包括用于连接按压件的第一连接孔。
可选地,按压件包括第一端和第二端,第一端形成有与第一连接孔配合的第二连接孔,第二端形成有限位部和触发端;其中,限位部与第一容纳腔配合用于限制按压件脱离第一容纳腔;触发端形成有触发面。
可选地,支撑件上还形成有与第一连接孔和第二连接孔配合的第三连接孔,连接销同时穿过第一连接孔、第二连接孔和第三连接孔从而同时连接支撑件、中间件和按压件的连接销,连接销穿过第一连接孔与第一连接孔过盈配合。
可选地,触发端呈圆台状。
可选地,传感器为压力传感器,压力传感器形成有与接触面配合的受力面,受力面形成有可供至少部分触发端通过的通孔。
可选地,支撑件还包括用于容纳至少部分操作件的第二容纳腔,第一容纳腔与第二容纳腔至少部分贯通,按压件远离接触面的一端至少部分设置于第二容纳腔内。
可选地,还包括封闭至少部分第一容纳腔的封装件,封装件形成或连接有支撑,支撑部与传感器配合用于支撑至少部分的传感器。
一实施例提供一种后走式自推工作机,包括:主机,包括行走组件和驱动行走组件的驱动马达;操作开关,与驱动马达连接;把手装置,连接至主机;其中:把手装置包括:操作件,包括用于供用户握持的握持部;连接杆,连接操作件和主机;感测模块,用于感测施加至把手装置以驱动后走式自推工作机的推力;感测模块还包括:压力传感器,设置在操作件和连接杆之间,在握持部受到推力时,压力传感器的输出信号随推力的变化而变化;按压件,用于将握持部受到的推力传递至压力传感器;其中,压力传感器包括与按压件接触以接收沿第一直线方向的压力的受力面;受力面在一个平行于第一直线方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直线与第一直线倾斜相交,操作开关能够根据压力传感器感测到的推力生成控制信号以控制驱动马达的转速。
通过在操作件和连接杆之间设置压力传感器,通过实时感应用户的推力,从而使得割草机的自行走速度能够适应用户的行走速度。
附图说明
图1是后走式自推工作机的立体图;
图2是图1中的后走式自推工作机的把手装置的立体图;
图3是图1中的后走式自推工作机的把手装置的部分结构的剖视图;
图4是图1中的后走式自推工作机的把手装置的部分结构的分解示意图;
图5是图4中的后走式自推工作机的把手装置的部分结构的另一视角的分解示意图;
图6是图1中的后走式自推工作机的感测模块接受信号的一种逻辑控制图;
图7是图1中的后走式自推工作机的速度与推力随时间关系的走势图;
图8是图1中的后走式自推工作机的感测模块接受信号的逻辑控制图;
图9是图1中的后走式自推工作机的左侧传感器数组采集过程的逻辑控制图;
图10是图1中的后走式自推工作机的右侧传感器数组采集过程的逻辑控制图;
图11是图1中的后走式自推工作机的获取推力值后电机响应的逻辑控制图;
图12是图1中的后走式自推工作机的判断电机是否启动的逻辑控制图;
图13是图1中的后走式自推工作机的判断推力的响应方式的逻辑控制图;
图14是图1中的后走式自推工作机的PID调节的逻辑控制图。
具体实施方式
图1示出了一种后走式自推工作机,其可以是一种割草机、扫雪机或小推车等其他具备自推功能的工作机。作为一种可选的实施方式,以下以割草机为例进行介绍。如图1所示,割草机100主要包括把手装置11、主机12。其中,主机12包括行走组件121和动力机构(图未示出)。可选的,割草机100为手推式割草机100。把手装置11连接至主机12以供用户在割草机100的后侧操作割草机100。在其他诸如扫雪机、小推车等后走式自推工作机也可以包括把手装置11、主机12、行走组件121等部件。如图2所示,把手装置11包括有连接杆111及可供握持的操作件112。其中,操作件包括供用户握持的握持部;连接 杆111为中空的长杆结构,连接杆111连接操作件112和主机12。行走组件121安装至主机12上,行走组件121能围绕一个转动轴转动从而使整个割草机100能够在地面上移动。
为了操作便捷且推动省力,本实施方式中的割草机100还带有自行走功能,动力机构能驱动行走组件121转动,从而带动割草机100在地面上移动,使用户不需要手动推动割草机100移动。动力机构可以是驱动马达122,驱动马达122能够输出一个驱动行走组件121转动的驱动力。可选的,自走功能的开启与关闭需要用户单独操作控制开关。事实上,在一些实施方式中,割草机100的电源按钮112a、扳机112b和操作开关112c均集成在把手装置11上。示例性的,割草机100的电源按钮112a、扳机112b和操作开关112c均集成在操作件112上。此外,操作开关112c并不限于物理开关或信号开关,任何可以控制电路中电流的开启和关闭的装置均适用。事实上,这类操作开关112c并不限于对电流的控制,也可以是以机械手段控制自走功能的开启或关闭。为了增加用户操作的便利性,本实施方式提供了一种方便操作的割草机100,其能根据用户的行走速度自动判断自身的自走速度,且能根据用户的操作状态判断并控制自走状态的启动与关闭,即提供了一种自适应模式。本实施方式还提供了一个手动调节模式,示例性的,割草机100包括一个设置在把手装置11上的调速开关,其能供用户调节后走式自推工作机在地面上行走时的行走速度。还包括一个设置在把手装置上的操作开关112c,操作开关112c用于控制后走式工作机在自适应模式和手动调速模式之间切换。操作开关112c包括一个信号接收件,信号接收件收到一个切换信号时,控制且控制后走式自推工作机进行模式切换。切换信号包括无线信号或有线信号。切换信号还被设置为通过智能语音输入或通过手机客户端输入。操作开关112c还可以被设置成为一个切换开关或一个控制面板。
如图1至图2所示,为了清楚的说明本申请的技术方案,还定义了如图1所示的前侧、后侧、左侧、右侧、上侧和下侧。作为一种具体结构,把手装置11与主机12构成活动连接。示例性的,把手装置11与主机12构成转动连接,并能被锁定件锁定在预设的角度上。在操作割草机100进行割草作业时,用户需要推动割草机100运动。根据草地上的草量及路况等变量,用户需要人为调整推动割草走行走的速度,而并非根据割草机100自身输出的自走速度机械的进行割草。如果用户仅控制割草机100前进,且无法根据实际情况控制割草机100的自走速度,或者控制割草机100的自走速度需要经历一系列的操作,则大 大降低了割草机100的操作体验感,如果涉及复杂的操作,则可能无法应对突发情况而具备一定的安全隐患。作为一种实现方式,割草机100能够根据用户的行走速度自动调节自走速度,并能在用户停止前进时,自动切断驱动马达122的功率输出。可选的,在操作件112和主机12之间设置有感测模块14。感测模块14具体可以设置在主机12上,也可以设置在操作件112与主体部12的连接处上或者设置在操作件112与主体部12之间的任意位置。在本实施方式中,感测模块14设置在操作件112与连接杆111之间。感测模块14能够通过感知来自操作件112的推力而输出电信号。事实上,来自操作件112的推力不同,则感测模块14输出的电信号也不相同。
如图2至图5所示,操作件112形成有容纳空间112e,感测模块14设置在该容纳空间112e内。感测模块14包括支撑件145、按压件146和传感器组件141。支撑件145形成有第一容纳腔145a,按压件146和传感器组件141至少部分设置在第一容纳腔145a内。按压件146可被操作以触发传感器组件141,从而使得传感器组件141能输出一个电信号。传感器组件141包括分别设置在支撑件145左右两侧的两个压力传感器141a,其能通过应变反馈压力值并将压力值转换成电信号以供运算或发出指示信号。在感测模块14所在的区间范围内,沿连接杆111的延伸方向可定义为预设直线101方向,支撑件145、按压件146和传感器组件141沿预设直线101方向依次排布。感测模块14还包括中间件147,封装件149。其中,中间件147用于将按压件146连接至操作件112,封装件149用于封闭至少部分的第一容纳腔145a,使得按压件146和传感器组件141能被固定在第一容纳腔145a内。在操作件112还包括沿预设直线101方向的上形成的连接臂112d。支撑件145还包括套设至连接臂112d的第二容纳腔145b,第一容纳腔145a和第二容纳腔145b至少部分贯通,并可供按压件146穿过。可选的,中间件147自身形成有通孔,按压件146至少部分设置在通孔内,并通过第一连接件145f连接至中间件147上。中间件147上形成有用于连接按压件146的第一连接孔147a,按压件146上形成有与第一连接孔147a配合的第二连接孔146a,中间件147和按压件146通过穿过第一连接孔147a和第二连接孔146a的第一连接件145f连接。
事实上,支撑件145上还形成有与第一连接孔147a和第二连接孔146a配合的第三连接孔145c,即第一连接件145f同时穿过第一连接孔147a、第二连接孔146a和第三连接孔145c。其中,第一连接件145f在穿过第一连接孔147a时, 与第一连接孔147a过盈配合,从而使得中间件147不会在沿预设直线101方向上产生位移。第二连接孔146a的孔径大于第一连接件145f的外径,其能使得按压件146连接至中间件147时,按压件146与中间件147之间可以产生相对转动,使得来自操作件112的作用力能传递至按压件146,并使得按压件146能压迫传感器组件141,从而使得传感器组件141产生变形。其中,握持部受到的推力沿预设直线101方向的分力与压力传感器141a沿预设直线101方向的形变量的比值大于等于40N/mm且小于等于1200N/mm。示例性的,握持部受到的推力沿预设直线101方向的分力与压力传感器141a沿预设直线101方向的形变量的比值大于等于150N/mm且小于等于300N/mm。通过这样的设置,压力传感器141a更易识别压力,从而能够输出更加精准的压力值。可选的,中间件147还包括可供第二连接件145g穿过的第四连接孔147b,第四连接孔147b可供第二连接件145g穿过从而将中间件147连接至连接臂112d上。连接臂112d上形成有可供第二连接件145g接入的第五连接孔(图未示出)。当第二连接件145g设置为螺钉时,第五连接孔被设置为与螺钉配合的螺钉孔。事实上,中间件147还可以通过其他方式连接至连接臂112d上,此处不再赘述。作为一种实现方式,支撑件145可以作为一个单独零件设置在容纳空间112e中,也可以设置为与连接杆111固定连接或一体成型。当支撑件145被设置为与连接杆111固定连接或一体成型时,连接杆111被设置成两半式,从而可供出传感器、按压件146等安装至其中。
按压件146还包括基本沿预设直线101方向延伸的主体部,其中,主体部的第一端形成上述第二连接孔146a,第二端形成限位部146c和触发端146d。其中,限位部146c用于与支撑件145配合,避免按压件146脱离支撑件145。同时,由于按压件146还通过中间件147与连接臂112d连接,当限位部146c与支撑件145配合时,由于支撑件145上第一容纳腔145a和第二容纳腔145b的连通处设置为通孔145d,该通孔145d仅可供按压件146的主体部通过,而设置在主体部一端的限位部146c无法穿过该通孔145d,故支撑件145还通过限位部146c限位,并保持与连接臂112d基本不产生相对位移。可选的,感测模块14还包括预紧元件148,预紧元件148设置在限位部146c的远离触发端146d的一侧,当传感器组件141和按压件146被设置在第一容纳腔145a内,且被封装件149封装时,设置在限位部146c和支撑件145之间的预紧元件148能提供一个预紧力。传感器组件141由于变形而获取的信号值的数量级较小,而且其获取 的信号值是由压力传感器141a自身变形而产生的,在预设区间范围内,压力传感器141a可能无法获知数据,或者即使获知数据也无法判别传数据的准确性,即压力传感器141a输出的信号值包括第一区间值和第二区间值。其中,第一区间值由离散型数据或非线性数据构成,第一区间值构成非线性关系。第二区间值处于压力传感器141a被压缩至一定区段后或知的数据,其呈线性关系。第一区间值需要系统通过复杂运算才能被过滤掉,且由于处于该区段数据的非线性关系,可能导致整个系统运算不准确。而通过增设预紧元件148,可以对压力传感器141a进行预压,其能直接且有效的过滤上述第一区间值,使得压力传感器141a能输出一个包含零点值且能呈线性关系的数值。从而使得系统计算数据更加方便,同时避免系统通过多次校正以获得零点数据,从而减少系统的运算负荷。上述预紧元件148实际上设置在压力传感器141a的上侧的。作为另一种实现方式,预紧元件148在也可以设置在压力传感器141a的下侧,其能达到的效果与上述设置在压力传感器141a上侧的预紧元件148的效果基本一致,此处不再赘述。预紧元件148可以是压力弹簧,或者其他具备弹性力的弹性件,其均能在受力时产生基本上呈线性的弹性变形,并在力被撤回后,恢复至原位置。
触发端146d还包括与传感器组件141配合以向传感器组件141施加压力的触发面146e。传感器组件141还包括与触发面146e接触以接受压力的受力面141d。其中,接触面在一个平行于预设直线101方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直线与预设直线101倾斜相交。事实上,触发面146e所在的平面还与预设直线101倾斜相交。从而,当触发面146e挤压受力面141d时,触发面146e与受力面141d接触时,其二者之间的接触面在沿预设直线101方向上的投影仍为圆面,其能确保压力传感器141a组件准确的获知当前的压力值,而避免了较复杂的运算过程。事实上,触发端146d被设置为一个圆台,传感器组件141上设置有可供圆台至少部分穿过的通孔141e,通孔141e所在的平面即为受力面141d;圆台的侧面即为触发面146e。在本实施方式中,封装件149还形成或连接有支撑部149a,支撑部149a被设置为与传感器组件141配合以至少部分的支撑传感器组件141,以防止传感器组件141在按压件146的作用下导致变形量过大而失效。作为另外一种实现方式,还可以设置受力面141d在一个平行于预设直线101方向的平面内的截面包括一段截面线,截面线上的某两个点的连线所在的直线与预设直线101倾斜相交。此时触发面146e设置为平面,其也能实现触发面146e与受力面141d接触时,其二者之间 的接触面在沿预设直线101方向上的投影仍为圆面,确保压力传感器141a组件准确的获知当前的压力值,从而避免了较复杂的运算过程。
在一个垂直于预设直线101方向的第一平面上,支撑件145上的第二容纳腔145b所在的位置在该平面上的投影包括沿左右方向延伸的第一长度和沿上下方向延伸的第二长度。其中,第一长度大于等于第二长度。可选的,第一长度大于第二长度,且第一长度减去第二长度的差值大于等于1mm且小于等于10mm。通过这样的设置,使得连接臂112d与操作件112之间在上下方向被一定程度的限位,在左右方向上能产生一定的晃动,从而避免支撑件145与连接臂112d之间因为摩擦而被卡死,或者因为摩擦的作用而无法有效的传递作用力。可选的,第二容纳腔145b在第一平面上的投影呈椭圆形。该椭圆的长边沿左右方向设置,该椭圆的短边沿前后方向设置。示例性的,沿预设直线101方向上,支撑件145上的第二容纳腔145b在第一平面上的投影面具有第一面积,连接臂112d在第一平面上的投影具有第二面积。其中,第一面积大于第二面积,且第一面积与第二面积的比值大于等于1且小于等于3。通过这样的设置,一方面可以确保连接臂112d能有效的插入至第二容纳腔145b中,另一方面还能保证第二容纳腔145b的内壁能至少部分的对连接臂112d进行限位,避免操作件112在被操作时,与支撑件145之间产生沿上下方向上的晃动。
此外,在沿预设直线101方向上,支撑件145的第二容纳腔145b的内壁上围绕形成轨道部145e,即第二容纳腔145b的内壁并非连续的椭圆曲线,而是设置了基本均匀分布的凸起或凹槽,使得连接臂112d在插入至第二容纳腔145b时,支撑件145的与连接臂112d之间接触面较小并能产生间隙,从而使得其二者之间的摩擦力较小。在本实施方式中,还包括与封装件149配合的固定件,其能固定至连接杆111上,并与操作件112的壳体配合,形成一个能封压感测模块14的容纳空间112e。
如图6至图7所示,在本实施方式中,当用户操作操作件112上,用户施加至操作件112上的作用力会被感测模块14感知并提供一个可供判断的电信号。可选的,感测模块14还包括:滤波器142和信号放大器143。其中,传感器组件141用于接收来自操作件112的压力并输出一个电信号,滤波器142用于将传感器组件141输出的电信号进行过滤,而信号放大器143用于将滤波器142过滤后的电信号进一步放大,使之成为可供判断的电信号。
由于用户的习惯、工况不同等多种因素,单个传感器有时候并不能准确反 映机器实际的受到的压力大小。为了增加传感器组件141接收压力信号的灵敏性与准确性,传感器组件141还可以包括第一传感器和第二传感器。第一传感器和第二传感器分别设置在操作件112与连接杆111的两个连接位置。第一传感器设置在操作件112与连接杆111的左连接处,第二传感器设置在操作件112与连接杆111的右连接处,其中,左连接处与右连接处在横向或纵向上可以位于同一位置,也可以在横向和纵向上分别位于不同的位置。实际上,由于第一传感器和第二传感器安装的位置不同,以及可能受到的用户操作时的影响,从而造成输入至感测模块的第一信号与第二信号差异较大,感测模块需要叠加来自第一传感器和第二传感器的信号值。此外,在实际操作过程中,还需要对输入至感测模块的第一信号与输入至感测模块的第二信号进行校正,如以不同系数加权进行处理,才能准确识别用户输入的总作用力,从而可以有效避免触碰到单个传感器时造成误判。另一方面,也能有效避免习惯使用右手或习惯使用左手的用户在操作件112上施加一个不均衡的作用力,从而也会导致误判。作为另一种可选的实施方式,传感器组件141也可以仅包含一个传感器,通过设置一类较智能的传感器,根据用户的操作情况识别信号,并输出信号以控制割草机100的自走功能。可选的,上述传感器可以设置在操作件112与连接杆111的一侧,或者设置在连接杆111与主机12的连接处,并能通过作用至连接杆111或主机12上的作用力、位移等的改变以形成一个可供输出的信号,并利用该信号控制割草机100的自走功能。在本实施方式中,第一传感器和第二传感器具体为两个相同的压力传感器141a。压力传感器141a可以是可接触式压力传感器或非接触式压力传感器。
可选的,当触发端146d接触至受力面141d时,受力面141d产生一定的弹性变形,该变形量转化为一个电信号输出。因受到的压力不同,压力传感器141a可以输出与压力成正比的电压信号,根据此获得用户作用到把手的推力值,进而控制驱动马达122加速运动。当用户用不同的力推动把手时,造成操作件112相对连接杆111在联接处为毫米级位移或小于毫米级位移,压力传感器感测到与用户推力值大小大致成正比的正电压信号,以此控制驱动马达122正向运转的速度大小。需要注意的是,割草机100上的压力传感器141a的受力面141d与触发端146d初始位置在1mm-10mm左右,这样对割草机100操作件112与连接杆111的连接处整机外观不改变,操作件112与连接杆111之间的相对位移较小,用户不易觉察割草机100操作件112与连接杆111之间为明显的可拆卸式连 接或活动式连接,整机产品的用户体验性好。
受力面141d在被触发端146d触发后,其变形量的数量级较小,故通过感知变形后输出的电信号也较弱,此时通过设置在把手装置11中的信号放大电路将该电信号放大。事实上,在压力传感器141a传输信号且电信号被放大之前,还需要对电信号进行滤波。压力传感器141a输出的电信号存在噪音杂波,杂波一般可以包括:高频小幅值的噪音信号,由于误触碰产生的异常压力信号等。可选的,在连接压力传感器141a的后续电路中接入前级滤波部分,通过容值较小的电容消除高频噪声,同时通过容值较大的电容消除低频噪声。压力传感器141a输出的信号在经过滤波和放大之后,输出一个基本稳定的信号供判断。
感测模块14还包括一个姿态传感器144,姿态传感器144用于收集割草机100的空间位置信号,并能输出三维姿态方位信号。在操作割草机100割草过程中,当割草机100需要掉头时,用户一般需要将割草机100的头部翘起,并以后轮为支点,才更加方便转弯掉头。事实上,割草机100在掉头前至到掉头后的过程中,割草机100仍处于工作状态,用户一般不会具有主动操作操作件112上的控制开关以关停割草机100的意识,从而使得此时的割草机100具备一定的安全隐患。此时,通过安装姿态传感器144,检测到割草机100抬起且有掉头趋势后,输出一个信号至感测模块14,感测模块14输出停机信号,以控制割草机100刹车或停机。
感测模块14在接收各类信号后,会经过初步处理,并能进一步输出一个可供判断的电信号,电信号进一步传输至驱动电路15。驱动电路15根据感测模块14传输过来的信号,从而控制驱动马达122。可选的,当用户打开操作开关112c,并推动割草机100前进时,用户会给操作件112一个较大的推力值。此时,压力传感器141a会传出一个较大的电信号,该信号在经过感测模块14初步处理,即将两个压力传感器141a的压力信号进行过滤、放大并进行合并后,传输至驱动电路15,驱动电路15根据电信号控制驱动马达122输出较大的转矩。当用户根据操作情况需要减速时,此时用户作用于操作件112推力值变小,压力传感器141a会传出一个较小的电信号,该信号在经过感测模块14处理后,继续将信号传递至驱动电路15,驱动电路15根据电信号控制驱动马达122输出一个较小的转矩。当用户不触碰操作件112或远离操作件112时,此时压力传感器141a不再输出电信号,驱动电路15会根据电路中的电信号值的变化控制自走驱动马达122停转,从而使得割草机100停下。
驱动马达122的转速与用户推动割草机100的行走速度基本呈正相关关系。即用户行走速度加快,自走驱动马达122的转速也加快;用户行走速度减缓,自走驱动马达122的转速降低。对于在电路出现波动或者电信号不稳定时,驱动马达122的转速与用户的行走速度的比例关系游离于前述正相关关系之外时,也认为驱动马达122的转速与用户的行走速度的比例关系落入上述正相关关系之中。传感器组件输出的电信号的大小与自走驱动马达122的输出扭矩也构成正相关关系。当感测模块14和驱动电路15的精度达到较高水平时,自走驱动马达122的转速与用户的行走速度可以达到正比关系。
当用户需要翘起割草机100的头部并进行转向时,此时会被姿态传感器144会检测到状况,并输出一个电信号,该电信号传输至驱动电路15,驱动电路15经过判断后控制割草机100的自走驱动马达122停机。而当用户调整好割草机100的转向并放平割草机100时,割草机100的驱动电路15被接通,其可以启动自走功能并能根据用户的行走速度调整自走速度。
作为另一种实现方式,后走式自推工作机还具有一个恒速模式。具体以割草机100为例。在本实施方式中,割草机100的驱动方式能使用户更加便捷的操作。可选的,如图6和图7所示,用户按下操作开关112c,割草机100的自走功能启动时,割草机100进入一个软启阶段,在这一阶段中,自走驱动马达122给予割草机100一个加速度,割草机100从停止状态瞬间进入行走状态。示例性的,软启阶段时间非常短暂,其仅提供一个改变割草机100状态的加速度。在用户按下操作开关112c同时推动割草走行走的过程中,软启阶段已经完成,并进入自走状态,此时割草机100会根据用户的行走速度控制自走驱动马达122的转速或扭矩,从而控制自走速度。割草机100在用户的推动下,通过传感器组件141接收来自操作件112的压力,从而控制割草机100加速。当用户行走至一个适应自身行走速度的匀速状态时,并保持对割草机100的操作件112输出一个相对稳定的压力时,割草机100进入一个适应用户行走速度的恒速状态。
如图7所示,割草机100在一个预设的压力区间范围内处于一个恒速状态。可选的,当传感器组件141接收到的压力大于等于F1且小于等于F2时,割草机100根据用户的行走状态进入一个适应用户行走速度的恒速状态。示例性的,在传感器组件141受到的压力大于等于FI且小于等于F2的区间范围内,割草机100的行走速度并不与其受到的作用力成正相关关系。而是在用户推动割草机100前进过程中,用户推动割草机100走的较快时,传感器组件141会根据 受到的作用力驱动割草机100以一个较快的速度前进,当割草机100行走速度与用户行走速度同步时,用户作用于操作件112上的作用力开始减小,但由于任然需要输出一部分作用力至操作件112上,以握持操作件112,此时传递至传感器组件141上的作用力降低至F1到F2之间,感测模块14会根据作用力的变化控制割草机100恒定在当前的行走速度下。不同用户推动割草机100前进并保持匀速运动时,行走速度各不相同,此时用户作用于操作件112上的作用力在用户与割草机100匀速运动时逐渐降低并落入F1与F2之间,割草机100进入一个与上一时刻运行速度相同的恒速状态。此时,用户不用再推动割草机100继续前进,而仅需将手搭在操作件112上跟随割草机100匀速运动即可。
此外,当传递至传感器组件141上的作用力大于F2时,割草机100会继续进入加速状态,直至作用力再次回落至大于等于F1且小于等于F2的区间范围内时,割草机100再次进入至恒速状态。而当传递至传感器组件141上的作用力小于F1时,割草机100由恒速状态进入减速状态。当传递至传感器组件141上的作用力持续减小,并减至0时,割草机100停止运行。这里所限定的F1和F2并不限定用户自身行走的最大速度和最小速度,用户根据自身的行走速度调整和割草机100的相对运动,并在传递至传感器组件141的作用力落入F1与F2之间时,保持与上一时刻相同的速度以恒速状态运行。割草机100保持恒速运行的速度还被限定在一个安全且能保持有效割草的速度区间范围内。即割草机100以高速状态运行时,不会超过一个威胁用户安全且使得用户行走速度无法跟上的最高速N2;割草机100以低速状态运行时,也不会低于一个阻碍用户正常行走且影响割草效果的最低速N1。
作为一种实现方式,割草机100还包括一个控制器,控制器可以设置有预设模块、转换模块和控制模块。其中,预设模块用于设定或存储一个预设推力值;上述感测模块能周期性的感测用于施加至把手装置以驱动割草机100的推力值;转换模块能根据感测模块感测到的推力值,并根据设定或存储在预设模块中的推力值获取一个期望转速,控制模块控制驱动马达122的转速朝向该期望转速改变。
可选的,如图8所示,预设模块作为割草机100的存储系统,其可在初始化状态下存储一组数据。示例性的,预设模块分别记录无压力状态下左右传感器的电信号值,并通过随机规则生成左侧20个初始元素a1至a20,右侧20个初始元素b1至b20,存储至预设模块中并获得存储矩阵A1的平均和存储矩阵 A2的平均。进而通过统计参数估计获得二组平均数和标准差,以获得左、右两个正态分布,系统完成初始化。
如图9至图10所示,系统完成初始化之后,割草机100可被正常操作。可选的,当系统完成初始化后,设置在操作件上的左右两个压力传感器开始作为感测模块开始感测当前压力信号值。这里以设置在左侧的压力传感器为例,当压力传感器感测到压力时,系统对感测到的压力信号进行滤波,当滤波完成后,系统采集了100个滤波值,对该100个值求平均,获得一个参数a21,此时调取上述存储在左侧的正态分布,判定参数a21是否落入该正态分布内,若是,则丢弃当前参数a21,调用存储矩阵A1的平均值并获得存储矩阵A1,若否,则进入蠕变校准规则判断过程。割草机100还包括矫正模块,蠕变校准规则设置在矫正模块中,矫正模块用于在感测模块的感测到的初始输出信号是否符合上述正态分布时矫正初始输出信号值。可选的,蠕变校准规则判定当前判定参数a21是否满足(a21-μ)<1.1×3σ,其中,μ为上述存储在预设模块中的正态分布的数学期望,σ上述存储在预设模块中的正态分布的标准差。当参数a21满足蠕变校准规则时,上述左侧初始元素a1至a20被更新为a2至a21,更新后的初始元素形成更新后的存储矩阵A1’,对更新后的存储矩阵A1’求平均,进而通过统计参数估计获得一组更新的平均数和标准差,此时,存在左侧的正态分布被更新,系统调用更新后的存储矩阵A1’的平均值并获得存储矩阵A1’。当参数a21不满足蠕变校准规则时,则丢弃当前参数a21,调用原始存储矩阵A1的平均值并获得存储矩阵A1。
如图10所述,右侧压力传感器通过同样的方式获取实存储矩阵的平均值。可选的,当压力传感器感测到压力时,系统对感测到的压力信号进行滤波,当滤波完成后,系统采集了100个滤波值,对该100个值求平均,获得一个参数b21,此时调取上述存储在左侧的正态分布,判定参数b21是否落入该正态分布内,若是,则丢弃当前参数b21,调用存储矩阵A2的平均值并获得存储矩阵A2,若否,则进入蠕变校准规则判断过程。可选的,蠕变校准规则判定当前判定参数b21是否满足(b21-μ)<1.1×3σ,其中,μ为上述存储在预设模块中的正态分布的数学期望,σ为上述存储在预设模块中的正态分布的标准差。当参数b21满足蠕变校准规则时,上述左侧初始元素b1至b20被更新为b2至b21,更新后的初始元素形成更新后的存储矩阵A2’,对更新后的存储矩阵A2’求平均,进而通过统计参数估计获得一组更新的平均数和标准差,此时,存在左侧的正 态分布被更新,系统调用更新后的存储矩阵A2’的平均值并获得存储矩阵A2’。当参数b21不满足蠕变校准规则时,则丢弃当前参数b21,调用原始存储矩阵A2的平均值并获得存储矩阵A2。这里,通过设置蠕变校准规则,可以有效的避免压力传感器发生蠕变后,系统调用的数据无法满足当前压力传感器的实际精度需求。通过设置蠕变校准规则,使得压力传感器能实时提供精准数据。通过对左、右侧压力传感器获取的实存储矩阵的平均值再次求平均,获得压力传感器实时推力值。
如图11至图14所示,作为一种实现方式,本申请中的割草机100包括低速行驶模式和自适应模式。其中,在感测模块接受到的推力值小于第一预设值f1时,割草机100处于低速行驶模式;在推力值大于第二预设值f2时,割草机100处于自适应模式。这里,预设模块还设定或存储有一个预设速度,在自走式自推工作机处于低速行驶模式时,控制模块控制驱动马达122的转速小于等于预设转速;在自走式自推工作机处于自适应模式时,控制模块控制驱动马达122朝向一个根据推力值获得的期望转速而改变,期望转速大于预设转速。可选的,第一预设值f1小于等于第二预设值f2。当第一预设值f1等于第二预设值f2时,自走式自推工作机被设置为仅包括低速行驶模式和自适应模式。当第一预设值f1小于第二预设值f2时,自走式自推工作机被设置为也包括低速行驶模式和自适应模式。当推力值大于第二预设值f2时,割草机100处于自适应模式;当推力值大于0且小于f2时,割草机100处于低速行驶模式;其中,当推力值大于等于f1且小于f2时,割草机100处于低速行驶模式,且驱动马达122保持小于等于预设转速值转动。当推力值大于0且小于f1时,此时驱动马达122具有保持在小于等于预设转速值转动的趋势,转换模块根据感测模块感测到的推力值的持续时长判定驱动马达122的转速,即当感测模块感测到的推力值大于0且小于f1且持续时长小于等于一个预设时长T时,控制模块控制驱动马达122依旧保持在小于等于预设转速值转动;当感测模块感测到的推力值大于0且小于f1且持续时长大于一个预设时长T时,控制模块控制驱动马达122停机。
以上仅给出了一个割草机100在低速行驶模式和自适应模式之间进行判定的过程,事实上,当割草机100在被操作时,作用至操作部的推力值会持续被感测模块所感知,感测模块会将感测到的实施推力值源源不断的按照以上判定过程进行判定,从而控制割草机100根据实时推力值实时调控自身的运行状况,即驱动马达122在获得当前转速后,会进行整机响应,控制整机按照当前转速 行驶,当控制模块获得下一个转速值时,会立刻控制驱动马达122按照下一个转速值进行整机响应。,当作用至割草机100的推力值为0,或割草机100被向后拉动时,感测模块感测到的推力值小于等于0,此时控制模块控制驱动马达122的转速为0。示例性的,由于感测模块中设置有预压元件,预压元件本身处于预压状态,其使得压力传感器处于预压状态,当割草机100的操作件被向后拉动时,作用至压力传感器上的预压力被至少部分的卸去,压力传感器此时输出负值,即此时感测模块输出的推力值小于等于0。
当割草机100在摩擦力较小的地面或路面上自走时,用户仅需输出一个较小的推力值就能推动割草机100行走,此时,感测模块感测到的推力值始终保持在大于0且小于f2的区间范围内,控制模块控制驱动马达122保持小于等于预设转速值转动。用户可以保持在一个较舒适的状态推动割草机100行走。除非用户需要主动加速,则快速推动割草机100行走,此时在加速度的作用下,用户作用至操作件上的作用力可能会在一定时间内大于等于f2,此时转换模块能根据感测模块感测到的推力值,并根据设定或存储在预设模块中的推力值获取一个期望转速,控制模块控制驱动马达122的转速朝向该期望转速改变。
当割草机100在摩擦力较大的地面或草地上自走时,此时由于作用至行走组件121的摩擦力较大,用户需要输出较大的推力值才能推动割草机100,即此时作用至操作件上的作用力大于等于f2,转换模块能根据感测模块感测到的推力值,并根据设定或存储在预设模块中的推力值获取一个期望转速,控制模块控制驱动马达122的转速朝向该期望转速改变。示例性的,当感测模块感测到的推力值大于等于f2时,转换模块首先对当前推力值进行滤波。再对滤波完成的推力值进行调节,以获得一个期望转速。作为一种实现方式,转换模块的转换过程可以采用PID调节。可选的,预设模块中还设定或存储有一个预设推力值F*,该预设推力值F*可以被设置为一个定值,并可被设置在一个预设区间范围内选择。预设推力值F*与实时获得的推力值做差获得一个数值,对该数值进行比例运算、积分运算、微分运算以获得一个期望转速,控制模块控制电机以该期望转速实时运行。,该期望转速值大于预设转速值。上述PID调节仅反映了一次调节的过程。事实上,当用户在操作割草机100时,感测模块在不停的感测施加至操作件上的推力值,转换模块也在根据推力值不停的进行转换。当推力值大于等于f2时,系统也在不停的进行PID调节,直至用户的行走速度与割草机100的自走速度达到一个动态平衡,即用户的行走速度与割草机100的 自走速度基本一致。示例性的,上述PID调节过程中,感测模块感测到的推力值并不一定能通过PID调节以反映出实时的驱动马达122的转速。一般而言,在期望转速信号传递至驱动马达122,驱动马达122响应当前信号以改变转速的过程中,存在响应时差,即感测模块感测到当前推力值至PID调节完成以获得期望转速的时长较短,期望转速获得速度及信号传递速度远大于驱动马达122的响应速度。但是响应时差的存在并不影响割草机100的运行。为了避免期望转速的获取速度过快导致驱动马达122无法及时响应,感测模块被设置为从感测当前推力值到下一次感测推力值经过0.04s,在此过程中,虽然感测模块感测到当前压力值至转换模块完成当前推力值的转换并获得期望转速的时间远小于0.04s,感测模块也不再感测推力值,直至经过0.04s,感测模块才重新开始感测当前推力值,并将该推力值传递至转换模块以供转换,从而获得新的期望转速。在经过一系列PID调节过程之后,用户的行走速度与割草机100的自走速度趋于一致,则上述响应时差随即消失。
此时的预设转速为系统中预设的可供参考的转速值,期望转速即为操作者操作时期望驱动马达122能达到的转速值。作为一种实现方式,上述各数值可被设置成为以下数据,例如:割草机100的预设模块中的预设转速被设置为3000r/min,第一预设值f1被设置为10N,第二预设值被设置为17N。预设时长T被设置为0.25s,预设推力值F*可在大于等于10N且小于等于60N的区间范围内选择;可选的,预设推力值F*可在大于等于20N且小于等于30N的区间范围内选择。当感测模块接受到的推力值小于等于0N时,控制模块控制驱动马达122转速为0;当感测模块接受到的推力值大于0N且小于等于10N时,判断推力值持续时长是否小于等于0.25s,当持续时长小于等于0.25s时,控制模块控制驱动马达122转速以小于等于3000r/min的速度转动,当持续时长大于0.25s时,控制模块控制驱动马达122转速为0。当感测模块接受到的推力值大于等于10N且小于等于17N时,控制模块控制驱动马达122转速以小于等于3000r/min的速度转动。当感测模块接受到的推力值大于等于17N时,转换模块能根据感测模块感测到的推力值经过滤波和PID调节获取一个期望转速,控制模块控制驱动马达122以大于3000r/min的期望转速转动,直至实现用户的推力值稳定在大于等于20N且小于等于30N的区间范围内,割草机100以一个可供用户舒适行走的速度运行为止。可选的,预设转速、f1、f2、T并不限于上述数值,这里仅给出一个可供选择的实施例以供参考。
在本实施方式中,割草机100在进入低速行驶模式或自适应模式的模式判定之前,还需要系统根据实时推力值判定驱动马达122是否启动。可选的,当实时推力值小于预设模块中的第二预设值f2时,电机不启动。当实时推力值大于等于第二预设值f2时,系统对获取到的实时推力值进行滤波,再将滤波值进行PID调节后获取一个电机目标值。这里,预设模块中还存储着一个启动预设转速,当电机目标值大于启动预设转速,且持续时长大于0.25s时,电机启动,并进入至低速行驶模式或自适应模式的模式判定过程。否则,电机不启动。
本申请还提供了一种后走式推进工作机方法,其包括以下步骤:
S101:开始上电,并执行S102。即割草机100接入电源,且电源开关处于开启阶段。
S102:采集电信号完成后,执行S103。此时设置在操作件内部的感测模块在外力的作用下开始采集压力信号。例如,第一传感器采集100个电信号;第二传感器采集100个电信号。
S103:滤波完成后,执行S104。当压力信号被采集到时,系统开始对采集到的压力信号进行滤波,即过滤掉一些噪音杂波。当滤波完成后,系统采集了左右各100个滤波后的滤波值,求平均,确定a21和b21。
S104:判断a21是否符合初始状态下的正态分布,若是,则执行105,若否,则执行107。
S105:丢弃当前值a21并执行S106。
S106:初始状态下存储矩阵A1的正态分布不更新;获得左侧当前存储矩阵A1的平均。
S107:判断当前值a21是否符合蠕变校准规则,若是,则执行S108;若否,则执行S110。
S108:进行存储矩阵更新,并执行S109。
S109:获得更新后的存储矩阵A1’的平均。
S110:丢弃当前值a21,并执行S111。
S111:初始状态下存储矩阵A1的正态分布不更新;获得左侧当前存储矩阵A1的平均。
b21与a21的判断方式一致。同上述S104至S111的判断过程。
S112:获得左侧和右侧当前存储矩阵的平均,并执行S113。
S113:获得实施推力值F,并执行S114。
S114:根据实时推力值F判断是否启动驱动马达122,若F<f2,则执行S119;若F≥f2,则执行S115。
S115:当推力值F被采集到时,系统开始对推力值F进行滤波,即过滤掉一些噪音杂波。当滤波完成后,则执行S116。
S116:进行PID转换,并执行S117。
S117:获得驱动马达122的期望转速Pre-speed,并执行S118。
S118:判断驱动马达122的期望转速Pre-speed是否大于3200且持续0.25s,若否,则执行S119,若是,则执行S120。
S119:驱动马达122不启动。
S120:驱动马达122启动,执行S121。
S121:根据实时推力值F判断推力响应方式。若F≤0,则执行S122;若0<F<f1,则执行S123;若f1<F<f2,则执行S124;若f2≤F,则执行S125。
S122:驱动马达122输出转速为0。即驱动马达122处于刹车状态。
S123:驱动马达122输出转速为3000r/min,判断是否持续输出0.25s,若是则执行S122;若否,则执行S127
S124:系统开始对推力值F进行滤波。即过滤掉一些噪音杂波。当滤波完成后,则执行S125。
S125:进行PID转换,并执行S126。
S126:获得驱动马达122的期望转速Pre-speed,并执行S127。此时,存在驱动马达122速度跟随驱动马达122预速度的过程。
S127:驱动马达122响应,整机响应,执行S121。

Claims (93)

  1. 一种后走式自推工作机,包括:
    主机,包括行走组件和驱动所述行走组件的驱动马达;
    操作开关,与所述驱动马达连接;
    把手装置,连接至所述主机;
    其中:
    所述把手装置包括:
    操作件,包括用于供用户握持的握持部;
    连接杆,连接至所述主机;
    感测模块,用于感测施加至所述把手装置以驱动所述后走式自推工作机的推力;所述感测模块还包括:
    压力传感器,设置在所述操作件和所述连接杆之间;
    按压件,在所述握持部受到推力时,所述按压件向所述压力传感器施加沿预设直线方向的作用力以驱动所述压力传感器发生形变;
    预紧元件,用于向所述压力传感器施加一个预紧力;其中,所述握持部受到的所述推力沿所述预设直线方向的分力与所述压力传感器沿所述预设直线方向的形变量的比值大于等于40N/mm且小于等于1200N/mm,所述操作开关能够根据所述压力传感器感测到的推力生成控制信号以控制所述驱动马达的转速。
  2. 根据权利要求1所述的后走式自推工作机,其中,
    所述后走式自推工作机具有低速行驶模式和自适应模式;在所述推力小于第一预设值时,所述后走式自推工作机处于所述低速行驶模式;在所述推力大于第二预设值时,所述后走式自推工作机还处于所述自适应模式。
  3. 根据权利要求2所述的后走式自推工作机,其中,
    在所述自走式自推工作机处于所述低速行驶模式时,所述控制模块控制所述驱动马达的转速小于等于第一预设转速;
    在所述自走式自推工作机处于所述自适应模式时,所述控制模块控制所述驱动马达朝向一个根据所述推力获得的期望转速改变,所述期望转速大于所述第一预设转速。
  4. 根据权利要求3所述的后走式自推工作机,其中,
    所述第一预设值等于所述第二预设值。
  5. 根据权利要求3所述的后走式自推工作机,其中,
    所述第一预设值小于所述第二预设值,在所述推力小于第二预设值时,所 述后走式自推工作机处于所述低速行驶模式。
  6. 根据权利要求5所述的后走式自推工作机,其中,
    在所述推力大于等于第一预设值且小于所述第二预设值时,所述后走式自推工作机处于所述低速行驶模式。
  7. 根据权利要求5所述的后走式自推工作机,其中,
    在所述推力大于0且小于所述第一预设值时,所述后走式自推工作机处于所述低速行驶模式。
  8. 根据权利要求5所述的后走式自推工作机,其中,
    当所述推力大于0且小于所述第一预设值,所述推力持续时间小于一个预设时长时,所述控制模块控制所述驱动马达的转速小于等于第一预设转速;
    当所述推力大于0且小于所述第一预设值,所述推力持续时间大于一个预设时长时,所述控制模块控制所述驱动马达的转速输出为0。
  9. 根据权利要求3所述的后走式自推工作机,其中,
    当所述推力值小于等于0时,所述后走式自推工作机的驱动马达输出的转速为0。
  10. 根据权利要求3所述的后走式自推工作机,其中,
    还包括转换模块,根据所述感测模块感测到的所述推力获得所述期望转速。
  11. 根据权利要求3所述的后走式自推工作机,其中,
    所述驱动马达还包括启动状态和不启动状态,当所述推力小于所述第二预设值时,所述驱动马达不启动;当所述推力大于等于所述第二预设值时,所述期望转速大于一个第二预设转速且持续时间大于等于一个预设时长时,所述驱动马达启动。
  12. 根据权利要求1所述的后走式自推工作机,其中,
    所述握持部受到的所述推力沿所述预设直线方向的分力与所述压力传感器沿所述预设直线方向的形变量的比值大于等于150N/mm且小于等于300N/mm。
  13. 根据权利要求1所述的后走式自推工作机,其中,
    还包括支撑件,形成有第一容纳腔,所述压力传感器和所述按压件至少部分设置在所述第一容纳腔内。
  14. 根据权利要求13所述的后走式自推工作机,其中,
    所述支撑件、按压件和所述压力传感器沿所述预设直线方向依次排布。
  15. 根据权利要求13所述的后走式自推工作机,其中,
    所述操作件包括沿所述预设直线方向延伸的连接臂;所述支撑件包括套设至所述连接臂的第二容纳腔。
  16. 根据权利要求13所述的后走式自推工作机,其中,
    所述第一容纳腔和所述第二容纳腔至少部分贯通,并可供所述按压件穿过。
  17. 根据权利要求1所述的后走式自推工作机,其中,
    所述按压件包括能向所述压力传感器施加压力的触发面,所述压力压力传感器包括与所述触发面配合的受力面。
  18. 根据权利要求17所述的后走式自推工作机,其中,
    所述受力面与所述预设直线方向垂直相交。
  19. 根据权利要求17所述的后走式自推工作机,其中,
    所述触发面所在的平面与所述预设直线倾斜相交。
  20. 根据权利要求17所述的后走式自推工作机,其中,
    所述触发面与所述受力面接触时,在一个垂直与所述预设直线方向的平面内,所述触发面与所述受力面在沿所述预设直线方向在所述平面内的投影为圆。
  21. 根据权利要求1所述的后走式自推工作机,其中,
    所述压力压力传感器包括受力面,所述预紧元件使得所述受力面发生初始变形。
  22. 根据权利要求1所述的后走式自推工作机,其中,
    所述压力压力传感器发生所述初始变形时,输出一个初始信号值,当拉动所述操作件向后时输出的信号值小于所述初始信号值,所述后走式自推工作机停机。
  23. 根据权利要求1所述的后走式自推工作机,其中,
    所述压力压力传感器发生所述初始变形时,输出一个初始信号值,当推动所述操作件向后时输出的信号值大于所述初始信号值,所述后走式自推工作机开始自走。
  24. 根据权利要求1所述的后走式自推工作机,其中,
    在所述握持部受到推力时,所述压力压力传感器的输出信号值随所述推力的变化而变化,所述信号值包括第一区间值和第二区间值;所述压力传感器在输出所述第一区间值时的变形量小于所述压力传感器在输出所述第二区间值时的变形量;
    当所述预紧元件向所述压力传感器施加一个预紧力时,所述初始信号值位 于所述第二区间值中。
  25. 根据权利要求24所述的后走式自推工作机,其中,
    所述第一区间值呈非线性分布,所述第二区间值呈线性分布。
  26. 根据权利要求1所述的后走式自推工作机,其中,
    所述预紧元件被设置为弹性件。
  27. 根据权利要求1所述的后走式自推工作机,其中,
    所述预紧元件设置在所述压力压力传感器的上侧。
  28. 根据权利要求1所述的后走式自推工作机,其中,
    所述预紧元件设置在所述压力压力传感器的下侧。
  29. 根据权利要求1所述的后走式自推工作机,其中,
    所述后走式自推工作机设定或者存储有一个预设推力值;所述后走式自推工作机还包括:
    转换模块,根据所述感测模块感测到的所述推力和所述预设推力值获取一个期望转速;
    控制模块,控制所述驱动马达的转速朝向所述期望转速改变。
  30. 根据权利要求29所述的后走式自推工作机,其中,
    还包括预设模块,所述预设推力值存储在所述预设模块中,所述预设推力值被设置为定值。
  31. 根据权利要求29所述的后走式自推工作机,其中,
    所述预设推力值被设置为大于等于10N且小于等于60N。
  32. 根据权利要求29所述的后走式自推工作机,其中,
    所述预设推力值被设置为大于等于20N且小于等于30N。
  33. 根据权利要求29所述的后走式自推工作机,其中,
    所述控制模块驱动所述驱动马达从当前的实际转速以一个变化的加速度朝向所述期望转速加速。
  34. 根据权利要求29所述的后走式自推工作机,其中,
    所述控制模块驱动所述驱动马达从当前的实际转速以一个变化的加速度朝向所述期望转速减速。
  35. 根据权利要求34所述的后走式自推工作机,其中,
    所述转换模块的调节过程可被设置为PID调节过程;
    所述PID调节被设置为所述预设推力值与所述感测模块感测到的推力值做 差以获得一个差值,对所述差值进行比例运算、积分运算、微分运算以获得所述期望转速。
  36. 根据权利要求29所述的后走式自推工作机,其中,
    所述感测模块感测完当前压力值至进行下次感测的时长被设置为0.04s。
  37. 根据权利要求1所述的后走式自推工作机,其中,
    还包括:
    控制模块,在所述感测模块感测到的推力在一个预设时长内持续小于等于第一预设值时控制所述驱动马达停机。
  38. 根据权利要求37所述的后走式自推工作机,其中,
    还包括预设模块,所述预设模块设定或存储所述第一预设值和所述预设时长,所述预设模块还设定或存储有一个预设推力值。
  39. 根据权利要求37所述的后走式自推工作机,其中,
    还包括一个转换模块,根据所述感测模块感测到的所述推力和所述预设推力值获取一个期望转速,当所述推力值小于等于所述第一预设值时,所述转换模块输出一个期望转速。
  40. 根据权利要求37所述的后走式自推工作机,其中,
    当所述感测模块感测到的推力小于所述预设时长时,所述控制模块获得所述期望转速。
  41. 根据权利要求37所述的后走式自推工作机,其中,
    当所述感测模块感测到的推力大于所述预设时长时,所述控制模块获得的转速信号为0。
  42. 根据权利要求1所述的后走式自推工作机,其中,
    还包括:
    预设模块,存储有所述感测模块的初始输出信号的正态分布;
    矫正模块,在所述感测模块的所述初始输出信号不符合所述正态分布时矫正所述初始输出信号。
  43. 根据权利要求42所述的后走式自推工作机,其中,
    所述感测模块包括设置在把手装置上的左、右两个压力压力传感器,当所述把手装置处于无压力状态下时,所述左、右两个压力压力传感器通过随机规则生成两组初始元素,通过对所述两组初始元素进行统计参数估计获得二组平均数和标准差,从而获得两个所述正态分布。
  44. 根据权利要求42所述的后走式自推工作机,其中,
    所述压力压力传感器感测到压力时,感测模块对采集到的数值进行滤波,并获得滤波值,对所述滤波值求平均后可获得参数值,判定所述参数值是否符合所述正态分布,若符合所述正态分布,则丢弃当前参数值;若不符合所述正态分布,则矫正所述初始信号。
  45. 根据权利要求42所述的后走式自推工作机,其中,
    所述矫正模块包括一个蠕变校准规则,所述蠕变校准规则用于判定当前参数值是否满足(a21-μ)<1.1×3σ,其中,所述a21为当期那参数值,所述μ为所述正态分布的数学期望,所述σ为所述正态分布的标准差。
  46. 根据权利要求45所述的后走式自推工作机,其中,
    当所述参数值满足所述蠕变校准规则时,所述预设模块中的所述初始元素被更新,所述参数值更替所述初始元素中的一个,以获得一个新的正态分布。
  47. 根据权利要求1所述的后走式自推工作机,其中,
    还包括:
    调速开关,供用户操作以调节所述后走式自推工作机在地面上行走时的行走速度;
    其中,所述后走式自推工作机具有一个自适应模式和手动调速模式;
    在所述后走式自推工作机处于所述自适应模式时,所述后走式自推工作机的行走速度能自动适应用户推动后走式自推工作机时用户行走的行走速度;
    在所述后走式自推工作机处于所述手动调速模式时,所述后走式自推工作机的行走速度由所述调速开关控制。
  48. 根据权利要求47所述的后走式自推工作机,其中,
    还包括一个设置在所述把手装置上的操作开关,所述操作开关用于控制所述后走式工作机在所述自适应模式和所述手动调速模式之间切换。
  49. 根据权利要求48所述的后走式自推工作机,其中,
    所述操作开关包括一个信号接收件,所述信号接收件收到一个切换信号时,所述控制且控制所述后走式自推工作机进行模式切换。
  50. 根据权利要求49所述的后走式自推工作机,其中,
    所述切换信号包括无线信号或有线信号。
  51. 根据权利要求49所述的后走式自推工作机,其中,
    所述切换信号被设置为通过智能语音输入或通过手机客户端输入。
  52. 根据权利要求48所述的后走式自推工作机,其中,
    所述操作开关被设置为一个切换开关。
  53. 根据权利要求48所述的后走式自推工作机,其中,
    所述操作开关被设置为一个控制面板。
  54. 根据权利要求47所述的后走式自推工作机,其中,
    所述调速开关相对于所述把手装置在第一位置和第二位置之间运动;
    所述调速开关位于第一位置时所述驱动电机的转速大于所述调速开关位于第二位置时所述驱动电机的转速。
  55. 一种后走式自推工作机,包括:
    主机,包括行走组件和驱动所述行走组件的驱动马达;
    操作开关,与所述驱动马达连接;
    把手装置,连接至所述主机;
    其中:
    所述把手装置包括:
    操作件,包括用于供用户握持的握持部;
    连接杆,连接至所述主机;
    感测模块,用于感测施加至所述把手装置以驱动所述后走式自推工作机的推力;所述感测模块还包括:
    传感器,设置在所述操作件和所述连接杆之间;
    按压件,在所述握持部受到推力时,所述按压件向所述传感器施加沿预设直线方向的作用力以驱动所述传感器发生形变;
    其中,所述握持部受到的所述推力沿所述预设直线方向的分力与所述传感器沿所述预设直线方向的形变量的比值大于等于40N/mm。
  56. 根据权利要求55所述的后走式自推工作机,其中,
    所述握持部受到的所述推力沿所述预设直线方向的分力与所述传感器沿所述预设直线方向的形变量的比值大于等于150N/mm且小于等于300N/mm。
  57. 根据权利要求55所述的后走式自推工作机,其中,
    还包括支撑件,形成有第一容纳腔,所述传感器和所述按压件至少部分设置在所述第一容纳腔内。
  58. 根据权利要求57所述的后走式自推工作机,其中,
    所述支撑件、按压件和所述传感器沿所述预设直线方向依次排布。
  59. 根据权利要求57所述的后走式自推工作机,其中,
    所述操作件包括沿所述预设直线方向延伸的连接臂;所述支撑件包括套设至所述连接臂的第二容纳腔。
  60. 根据权利要求57所述的后走式自推工作机,其中,
    所述第一容纳腔和所述第二容纳腔至少部分贯通,并可供所述按压件穿过。
  61. 根据权利要求55所述的后走式自推工作机,其中,
    所述按压件包括能向所述传感器施加压力的触发面,所述传感器包括与所述触发面配合的受力面。
  62. 根据权利要求61所述的后走式自推工作机,其中,
    所述受力面与所述预设直线方向垂直相交。
  63. 根据权利要求61所述的后走式自推工作机,其中,
    所述触发面所在的平面与所述预设直线倾斜相交。
  64. 根据权利要求61所述的后走式自推工作机,其中,
    所述触发面与所述受力面接触时,在一个垂直与所述预设直线方向的平面内,所述触发面与所述受力面在沿所述预设直线方向在所述平面内的投影为圆。
  65. 根据权利要求55所述的后走式自推工作机,其中,
    所述把手装置包括:
    支撑件,用于支撑所述按压件;
    其中,所述支撑件形成有容纳腔,所述操作件至少部分伸入至所述容纳腔,所述容纳腔的侧壁与所述操作件伸入至所述容纳内的部分的外表面之间具有间隙。
  66. 根据权利要求65所述的后走式自推工作机,其中,
    所述容纳腔包括沿左右方向延伸的第一长度和沿上下方向延伸的第二长度;其中,所述第一长度大于所述第二长度。
  67. 根据权利要求66所述的后走式自推工作机,其中,
    所述第一长度与所述第二长度的差值大于等于1mm且小于等于10mm。
  68. 根据权利要求65所述的后走式自推工作机,其中,
    所述支撑件沿预设直线方向延伸,在一个垂直于所述预设直线方向的第一平面上,所述容纳腔沿所述预设直线方向在所述第一平面上的投影为椭圆。
  69. 根据权利要求65所述的后走式自推工作机,其中,
    所述支撑件沿预设直线方向延伸,在一个垂直于所述预设直线方向的第一 平面上,所述容纳腔沿所述预设直线方向在所述第一平面上的投影具有第一面积,所述操作件伸入至所述容纳腔的部分沿所述预设直线方向在所述第一平面上的投影具有第二面积,所述第一面积与所述第二面积的比值大于等于1且小于等于3。
  70. 根据权利要求65所述的后走式自推工作机,其中,
    所述支撑件的内壁围绕形成有轨道部,所述操作件至少部分伸入至所述容纳腔时,所述操作件与所述支撑件的内壁沿上下方向上至少部分接触。
  71. 根据权利要求55所述的后走式自推工作机,其中,
    所述把手装置包括:
    支撑件,用于支撑所述按压件;
    其中,所述支撑件与所述操作件在之间具有间隙。
  72. 根据权利要求71所述的后走式自推工作机,其中,
    所述支撑件形成有容纳腔,所述操作件至少部分伸入至所述容纳腔,所述容纳腔包括沿左右方向延伸的第一长度和沿上下方向延伸的第二长度;其中,所述第一长度大于所述第二长度;所述第一长度与所述第二长度的差值大于等于1mm且小于等于10mm。
  73. 根据权利要求71所述的后走式自推工作机,其中,
    所述支撑件形成有容纳腔,所述操作件至少部分伸入至所述容纳腔,所述支撑件沿预设直线方向延伸,在一个垂直于所述预设直线方向的第一平面上,所述容纳腔沿所述预设直线方向在所述第一平面上的投影具有第一面积,所述操作件伸入至所述容纳腔的部分沿所述预设直线方向在所述第一平面上的投影具有第二面积,所述第一面积与所述第二面积的比值大于等于1且小于等于3。
  74. 根据权利要求55所述的后走式自推工作机,其中,
    所述把手装置包括:
    支撑件,与所述连接杆固定连接或一体成型并用于支撑所述按压件;
    其中,所述支撑件与所述操作件在之间具有间隙。
  75. 根据权利要求55所述的后走式自推工作机,其中,
    所述按压件包括与所述传感器接触以向所述传感器施加沿预设直线方向的压力的接触面;
    其中,所述接触面在一个平行于所述预设直线方向的平面内的截面包括一段截面线,所述截面线上的某两个点的连线所在的直线与所述预设直线倾斜相 交。
  76. 根据权利要求75所述的后走式自推工作机,其中,
    还包括中间件,用于连接所述按压件和所述操作件,所述中间件包括用于连接所述按压件的第一连接孔。
  77. 根据权利要求76所述的后走式自推工作机,其中,
    所述按压件包括第一端和第二端,所述第一端形成有与所述第一连接孔配合的第二连接孔,所述第二端形成有限位部和触发端;其中,所述限位部与所述第一容纳腔配合用于限制所述按压件脱离所述第一容纳腔;所述触发端形成有所述触发面。
  78. 根据权利要求77所述的后走式自推工作机,其中,
    所述支撑件上还形成有与所述第一连接孔和所述第二连接孔配合的第三连接孔,所述连接销同时穿过所述第一连接孔、所述第二连接孔和所述第三连接孔从而同时连接所述支撑件、所述中间件和所述按压件的连接销,所述连接销穿过所述第一连接孔与所述第一连接孔过盈配合。
  79. 根据权利要求77所述的后走式自推工作机,其中,
    所述触发端呈圆台状。
  80. 根据权利要求77所述的后走式自推工作机,其中,
    所述传感器形成有与所述触发面配合的受力面,所述受力面形成有可供至少部分所述触发端通过的通孔。
  81. 根据权利要求80所述的后走式自推工作机,其中,
    所述支撑件还包括用于容纳至少部分所述操作件的第二容纳腔,所述第一容纳腔与所述第二容纳腔至少部分贯通,所述按压件远离所述触发面的一端至少部分设置在所述第二容纳腔内。
  82. 根据权利要求77所述的后走式自推工作机,其中,
    还包括封闭至少部分所述第一容纳腔的封装件,所述封装件形成或连接有支撑部,所述支撑部与所述传感器配合用于支撑至少部分所述的传感器。
  83. 根据权利要求55所述的后走式自推工作机,其中,
    所述传感器包括与所述按压件接触以接收沿预设直线方向的压力的受力面;所述受力面在一个平行于所述预设直线方向的平面内的截面包括一段截面线,所述截面线上的某两个点的连线所在的直线与所述预设直线倾斜相交。
  84. 一种后走式自推工作机,包括:
    主机,包括行走组件和驱动所述行走组件的驱动马达;
    操作开关,与所述驱动马达连接;
    把手装置,连接至所述主机;
    其中:
    所述把手装置包括:
    操作件,包括用于供用户握持的握持部;
    连接杆,连接所述操作件和所述主机;
    感测模块,用于感测施加至所述把手装置以驱动所述后走式自推工作机的推力;所述感测模块还包括:
    压力传感器,设置在所述操作件和所述连接杆之间,在所述握持部受到推力时,所述压力传感器的输出信号随所述推力的变化而变化;
    按压件,用于将所述握持部受到的推力传递至所述压力传感器,所述按压件包括与所述压力传感器接触以向所述压力传感器施加沿第一直线方向的压力的接触面;
    其中,所述接触面在一个平行于所述第一直线方向的平面内的截面包括一段截面线,所述截面线上的某两个点的连线所在的直线与所述第一直线倾斜相交,所述操作开关能够根据所述压力传感器感测到的推力生成控制信号以控制所述驱动马达的转速。
  85. 根据权利要求84所述的后走式自推工作机,其中,
    还包括支撑件,所述支撑件设置在所述操作件与所述连接杆之间,并形成有第一容纳腔,所述按压件和所述传感器组件至少部分设置在所述第一容纳腔中。
  86. 根据权利要求84所述的后走式自推工作机,其中,
    还包括中间件,用于连接所述按压件和所述操作件,所述中间件包括用于连接所述按压件的第一连接孔。
  87. 根据权利要求86所述的后走式自推工作机,其中,
    所述按压件包括第一端和第二端,所述第一端形成有与所述第一连接孔配合的第二连接孔,所述第二端形成有限位部和触发端;其中,所述限位部与所述第一容纳腔配合用于限制所述按压件脱离所述第一容纳腔;所述触发端形成有所述触发面。
  88. 根据权利要求87所述的后走式自推工作机,其中,
    所述支撑件上还形成有与所述第一连接孔和所述第二连接孔配合的第三连接孔,所述连接销同时穿过所述第一连接孔、所述第二连接孔和所述第三连接孔从而同时连接所述支撑件、所述中间件和所述按压件的连接销,所述连接销穿过所述第一连接孔与所述第一连接孔过盈配合。
  89. 根据权利要求87所述的后走式自推工作机,其中,
    所述触发端呈圆台状。
  90. 根据权利要求87所述的后走式自推工作机,其中,
    所述传感器为压力传感器,所述压力传感器形成有与所述接触面配合的受力面,所述受力面形成有可供至少部分所述触发端通过的通孔。
  91. 根据权利要求87所述的后走式自推工作机,其中,
    所述支撑件还包括用于容纳至少部分所述操作件的第二容纳腔,所述第一容纳腔与所述第二容纳腔至少部分贯通,所述按压件远离所述接触面的一端至少部分设置哎所述第二容纳腔内。
  92. 根据权利要求87所述的后走式自推工作机,其中,
    还包括封闭至少部分所述第一容纳腔的封装件,所述封装件形成或连接有支撑,所述支撑部与所述传感器配合用于支撑至少部分所述的传感器。
  93. 一种后走式自推工作机,包括:
    主机,包括行走组件和驱动所述行走组件的驱动马达;
    操作开关,与所述驱动马达连接;
    把手装置,连接至所述主机;
    其中:
    所述把手装置包括:
    操作件,包括用于供用户握持的握持部;
    连接杆,连接所述操作件和所述主机;
    感测模块,用于感测施加至所述把手装置以驱动所述后走式自推工作机的推力;所述感测模块还包括:
    压力传感器,设置在所述操作件和所述连接杆之间,在所述握持部受到推力时,所述压力传感器的输出信号随所述推力的变化而变化;
    按压件,用于将所述握持部受到的推力传递至所述压力传感器;
    其中,所述压力传感器包括与所述按压件接触以接收沿第一直线方向的压力的受力面;所述受力面在一个平行于所述第一直线方向的平面内的截面包括 一段截面线,所述截面线上的某两个点的连线所在的直线与所述第一直线倾斜相交,所述操作开关能够根据所述压力传感器感测到的推力生成控制信号以控制所述驱动马达的转速。
PCT/CN2020/104524 2019-07-25 2020-07-24 后走式自推工作机 WO2021013251A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20843060.3A EP3987906B1 (en) 2019-07-25 2020-07-24 Walk-behind self-propelled work machine
CA3148298A CA3148298A1 (en) 2019-07-25 2020-07-24 Walk-behind self-propelled working machine
AU2020317357A AU2020317357B2 (en) 2019-07-25 2020-07-24 Walk-behind self-propelled working machine
US17/576,567 US20220132732A1 (en) 2019-07-25 2022-01-14 Walk-behind self-propelled working machine
US17/869,830 US11844305B2 (en) 2019-07-25 2022-07-21 Walk-behind self-propelled working machine
US17/972,272 US20230037664A1 (en) 2019-07-25 2022-10-24 Rear-moving self-propelled working machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910674384 2019-07-25
CN201910674384.8 2019-07-25
CN201911001974 2019-10-21
CN201911001974.0 2019-10-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083092 Continuation WO2022227970A1 (zh) 2019-07-25 2022-03-25 后走式自推工作机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,567 Continuation US20220132732A1 (en) 2019-07-25 2022-01-14 Walk-behind self-propelled working machine

Publications (1)

Publication Number Publication Date
WO2021013251A1 true WO2021013251A1 (zh) 2021-01-28

Family

ID=74192533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104524 WO2021013251A1 (zh) 2019-07-25 2020-07-24 后走式自推工作机

Country Status (6)

Country Link
US (2) US20220132732A1 (zh)
EP (1) EP3987906B1 (zh)
CN (8) CN214413506U (zh)
AU (1) AU2020317357B2 (zh)
CA (1) CA3148298A1 (zh)
WO (1) WO2021013251A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245087A (zh) * 2021-04-27 2022-10-28 南京泉峰科技有限公司 后走式自推工作机
EP4129041A4 (en) * 2021-04-27 2023-11-29 Nanjing Chervon Industry Co., Ltd. HAND-HELD SELF-PROPELLED WORKING MACHINE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917951B2 (en) 2019-05-22 2024-03-05 Nanjing Chervon Industry Co., Ltd. Sweeper head and hand-held sweeper
US12016267B2 (en) 2019-05-28 2024-06-25 The Toro Company Walk power mower with ground speed responsive to force applied to a handle grip by the operator
CN115245086B (zh) * 2021-04-27 2024-03-15 南京泉峰科技有限公司 后走式自推工作机
CN214413506U (zh) 2019-07-25 2021-10-19 南京德朔实业有限公司 后走式自推工作机
CN114902856B (zh) * 2021-02-10 2024-02-02 格力博(江苏)股份有限公司 园林工具及割草机
EP4344525A1 (en) * 2022-09-27 2024-04-03 Nanjing Chervon Industry Co., Ltd. Walk-behind electric device
US20240206385A1 (en) * 2022-12-27 2024-06-27 Nanjing Chervon Industry Co., Ltd. Rear-moving power tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862060A (zh) * 2005-05-10 2006-11-15 本田技研工业株式会社 用于自动推进割草机的变速传动扭转控制装置和方法
US20180146619A1 (en) * 2016-11-30 2018-05-31 Honda Motor Co., Ltd. Electric power equipment
CN108781713A (zh) * 2017-05-02 2018-11-13 南京德朔实业有限公司 后走式自推进机器
CN108790946A (zh) * 2017-05-02 2018-11-13 南京德朔实业有限公司 后走式自推进机器

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442901A (en) 1994-07-22 1995-08-22 Ryobi North America Self-propelled mower
US5575140A (en) 1995-05-30 1996-11-19 Novae Corp. Apparatus for transporting operator behind self-propelled vehicle
FR2755573A1 (fr) * 1996-11-14 1998-05-15 Wolf Outils Tondeuse a gazon equipee d'un entrainement des roues par moteur
JP3819525B2 (ja) 1997-03-28 2006-09-13 本田技研工業株式会社 補助動力付き歩行型運搬車
JPH11262111A (ja) * 1998-03-11 1999-09-24 Sugikuni Kogyo Kk 車両の駆動モーター制御装置
US6082083A (en) 1998-09-18 2000-07-04 The Toro Company Ground speed control system
US6523334B1 (en) * 2000-10-26 2003-02-25 Textron Inc. Battery-powered walk-behind greensmower
JP2002315416A (ja) * 2001-04-20 2002-10-29 Honda Motor Co Ltd 歩行型自走式作業機
US6843048B2 (en) * 2002-05-23 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Variable mulching system for a lawnmower
DE10302908A1 (de) * 2003-01-24 2004-08-05 Trolliet, Patrick, Dipl.-Ing. Automatische Rasenmäher-Vorrichtung
US7228679B2 (en) * 2004-06-18 2007-06-12 Textron Inc. Electrical method of sensing operator presence on a walk-behind mower
JP2008070224A (ja) 2006-09-14 2008-03-27 Denso Corp 車載用角速度センサ
GB0622148D0 (en) * 2006-11-07 2006-12-20 Arpino Mario P Walk-with apparatus
US20090266042A1 (en) 2008-04-25 2009-10-29 Mooney P Wade Mower
CN101611675B (zh) 2009-07-13 2012-05-02 常州市乾乾工具有限公司 电动独立行走割草机
JP2011093493A (ja) * 2009-11-02 2011-05-12 Iseki & Co Ltd 歩行型電動作業機
US8733477B1 (en) 2009-12-22 2014-05-27 The Toro Company Speed control system for earth working apparatus
CN102232333B (zh) 2010-04-21 2014-10-08 苏州宝时得电动工具有限公司 自驱割草机
WO2011131031A1 (zh) 2010-04-21 2011-10-27 苏州宝时得电动工具有限公司 割草机和控制割草机自驱操作的控制方法
CN102232331B (zh) * 2010-04-21 2013-08-07 苏州宝时得电动工具有限公司 自驱割草机
CN201752182U (zh) * 2010-04-21 2011-03-02 苏州宝时得电动工具有限公司 自驱割草机
DE102010044276B4 (de) * 2010-09-02 2015-08-06 AL-KO KOBER Ges.mbH Schalteinrichtung für einen Rasenmäher
CN103202136A (zh) * 2012-01-11 2013-07-17 杨健 一种带有自动离合器的割草机
DE102012200445A1 (de) * 2012-01-13 2013-07-18 Robert Bosch Gmbh Autonomes Arbeitsgerät
CN102808434B (zh) * 2012-08-07 2014-12-24 中联重科股份有限公司渭南分公司 工程机械的行走速度控制方法及系统
EP2955993B1 (en) * 2013-02-12 2018-11-28 Headsight, Inc. Automatic calibration system for header height controller with operator feedback
US9696749B2 (en) 2013-05-24 2017-07-04 Honda Motor Co., Ltd. Control devices, systems, and methods for self-propelled machinery
KR101686642B1 (ko) * 2014-09-29 2016-12-15 대전대학교 산학협력단 보행 보정 장치 및 그 제어 방법
US9545054B2 (en) 2014-10-22 2017-01-17 Honda Motor Co., Ltd. Mechanisms and related methods for drive by wire control systems in walk-behind working machines
CN106385938B (zh) * 2015-07-29 2019-04-19 南京德朔实业有限公司 割草机
CN106385982B (zh) * 2015-07-29 2019-04-19 南京德朔实业有限公司 割草机
CN105068680B (zh) * 2015-09-12 2019-01-08 浙江瑞邦智能装备股份有限公司 一种具有触感振动功能的触控笔
US9925999B2 (en) * 2015-09-29 2018-03-27 Radio Flyer Inc. Power assist wagon
CN106576569B (zh) * 2015-10-14 2020-01-31 南京德朔实业有限公司 电动工具及其控制方法
CN205510937U (zh) * 2015-12-29 2016-08-31 常州格力博有限公司 一种驱动装置及适配该驱动装置的割草机
WO2017158095A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Handgeführtes gartengerät
DE102016204403A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Handgeführtes Gartengerät
CN105751891B (zh) * 2016-03-29 2018-03-09 宁波市德霖机械有限公司 一种割草机的无极调速控制机构
CN107371562B (zh) * 2016-05-16 2020-07-17 南京德朔实业有限公司 动力工具、割草机及其控制方法
CN106034568B (zh) * 2016-06-14 2018-07-20 常州格力博有限公司 动力设备及控制方法
CN106063409B (zh) * 2016-06-14 2019-04-02 常州格力博有限公司 控制面板及其推草机
EP3471126B1 (en) 2016-06-14 2023-08-16 Globe (Jiangsu) Co., Ltd. Power device
WO2017215051A1 (zh) 2016-06-14 2017-12-21 常州格力博有限公司 一种动力设备及控制方法
CN205883996U (zh) 2016-06-14 2017-01-18 常州格力博有限公司 活动面板结构及其推草机
US10111381B2 (en) * 2016-06-28 2018-10-30 The Toro Company Walk power mower with transmission providing both forward and reverse propulsion
US10123478B2 (en) * 2016-06-28 2018-11-13 The Toro Company Walk power mower with biased handle
CN106314511A (zh) * 2016-08-31 2017-01-11 上海科源电子科技有限公司 一种推车助力装置的随动控制系统及控制方法
CN206155488U (zh) * 2016-10-21 2017-05-10 河海大学常州校区 一种可自动提供动力的航站楼行李车
CN106263399B (zh) * 2016-11-01 2018-05-15 无锡艾科瑞思产品设计与研究有限公司 一种基于转轮方向自动控制装置的行李箱
CN207022561U (zh) 2016-11-25 2018-02-23 南京德朔实业有限公司 草坪护理装置
CN108235859B (zh) * 2016-12-23 2020-05-26 南京德朔实业有限公司 手推式自驱行进机器
CN106625541A (zh) * 2017-01-25 2017-05-10 金华市精工工具制造有限公司 一种工具车及控制方法
CN206552084U (zh) * 2017-03-15 2017-10-13 魏掌全 一种机械手推车
CN117256299A (zh) 2017-06-23 2023-12-22 创科(澳门离岸商业服务)有限公司 割草机
CN109199803B (zh) * 2017-06-29 2021-05-04 沈阳新松机器人自动化股份有限公司 一种检测跌倒的方法和装置
CN107371576A (zh) * 2017-07-14 2017-11-24 盐城工学院 除草设备和清理设备
CN109782750A (zh) * 2017-11-14 2019-05-21 宝时得科技(中国)有限公司 自动行走设备及其避障方法
CN108032895B (zh) * 2017-12-12 2020-04-24 瑞安市浙工大创新创业研究院 一种自适应智能婴儿推车
CN207737348U (zh) * 2017-12-22 2018-08-17 侯景岱 一种新型自动助力系统及具有该自动助力系统的布草车
CN109966121A (zh) * 2017-12-28 2019-07-05 沈阳新松机器人自动化股份有限公司 一种辅助行走机器人
CN109983907A (zh) * 2017-12-29 2019-07-09 苏州宝时得电动工具有限公司 电动工具
CN108312896B (zh) * 2018-02-23 2024-03-22 北京理工大学 一种双电机自适应预调速多挡动力耦合装置及其控制方法
CN208638994U (zh) * 2018-02-27 2019-03-26 创科(澳门离岸商业服务)有限公司 具有数据信息显示能力的割草机及割草机系统
CN110192968B (zh) * 2018-02-27 2023-03-07 株式会社捷太格特 步行辅助装置
CN108413025B (zh) * 2018-03-01 2020-02-14 上海质慧新能源科技有限公司 一种自适应自动变速的变速箱控制系统及其控制方法
CN208572762U (zh) 2018-06-29 2019-03-05 南京德朔实业有限公司 手推式动力工具
EP3586594B1 (en) 2018-06-29 2022-10-19 Techtronic Outdoor Products Technology Limited Walk-behind electric gardening device
WO2020088195A1 (en) 2018-10-29 2020-05-07 Tti (Macao Commercial Offshore) Limited Mower
US12016267B2 (en) 2019-05-28 2024-06-25 The Toro Company Walk power mower with ground speed responsive to force applied to a handle grip by the operator
CN210610330U (zh) 2019-07-18 2020-05-26 南京德朔实业有限公司 手推式动力工具
CN214413506U (zh) 2019-07-25 2021-10-19 南京德朔实业有限公司 后走式自推工作机
US20230037664A1 (en) 2019-07-25 2023-02-09 Nanjing Chervon Industry Co., Ltd. Rear-moving self-propelled working machine
CN215601946U (zh) 2021-04-27 2022-01-25 南京德朔实业有限公司 后走式自推工作机
CN215601947U (zh) 2021-04-27 2022-01-25 南京德朔实业有限公司 后走式自推工作机
CN215601945U (zh) 2021-04-27 2022-01-25 南京德朔实业有限公司 后走式自推工作机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862060A (zh) * 2005-05-10 2006-11-15 本田技研工业株式会社 用于自动推进割草机的变速传动扭转控制装置和方法
US20180146619A1 (en) * 2016-11-30 2018-05-31 Honda Motor Co., Ltd. Electric power equipment
CN108781713A (zh) * 2017-05-02 2018-11-13 南京德朔实业有限公司 后走式自推进机器
CN108790946A (zh) * 2017-05-02 2018-11-13 南京德朔实业有限公司 后走式自推进机器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245087A (zh) * 2021-04-27 2022-10-28 南京泉峰科技有限公司 后走式自推工作机
EP4129041A4 (en) * 2021-04-27 2023-11-29 Nanjing Chervon Industry Co., Ltd. HAND-HELD SELF-PROPELLED WORKING MACHINE
CN115245087B (zh) * 2021-04-27 2024-04-30 南京泉峰科技有限公司 后走式自推工作机

Also Published As

Publication number Publication date
CN112293033B (zh) 2023-06-30
US20220132732A1 (en) 2022-05-05
CN112293032A (zh) 2021-02-02
EP3987906A4 (en) 2022-08-10
AU2020317357A1 (en) 2022-02-17
CN112293035A (zh) 2021-02-02
US20220361401A1 (en) 2022-11-17
CN112293034B (zh) 2022-01-04
EP3987906A1 (en) 2022-04-27
CN112293030A (zh) 2021-02-02
CN112293036B (zh) 2022-03-01
CN112293032B (zh) 2022-03-22
CN112293030B (zh) 2022-07-05
CN214413506U (zh) 2021-10-19
US11844305B2 (en) 2023-12-19
EP3987906B1 (en) 2024-04-17
AU2020317357B2 (en) 2023-10-12
CA3148298A1 (en) 2021-01-28
CN112293036A (zh) 2021-02-02
CN112293031B (zh) 2022-07-05
CN112293033A (zh) 2021-02-02
CN112293034A (zh) 2021-02-02
CN112293031A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021013251A1 (zh) 后走式自推工作机
CN110636754B (zh) 割草机
US20190021223A1 (en) Power tool, lawn mower, and control method thereof
US11191210B2 (en) Manually guided garden device
US20190269067A1 (en) Power equipment
EP3545744B1 (en) Work machine
CN215601947U (zh) 后走式自推工作机
US20230037664A1 (en) Rear-moving self-propelled working machine
CN215379927U (zh) 后走式自推工作机
CN215601946U (zh) 后走式自推工作机
CN215601945U (zh) 后走式自推工作机
CN114902856B (zh) 园林工具及割草机
US20220274638A1 (en) Pram
AU2022265163B2 (en) Rear-moving self-propelled working machine
AU2018101484A4 (en) Power tool, lawn mower, and control method thereof
CN115245087A (zh) 后走式自推工作机
CN115245086A (zh) 后走式自推工作机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3148298

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020843060

Country of ref document: EP

Effective date: 20220119

ENP Entry into the national phase

Ref document number: 2020317357

Country of ref document: AU

Date of ref document: 20200724

Kind code of ref document: A