WO2021013094A1 - 定位块、基于定位块的光学定位系统和方法及功能模组 - Google Patents

定位块、基于定位块的光学定位系统和方法及功能模组 Download PDF

Info

Publication number
WO2021013094A1
WO2021013094A1 PCT/CN2020/102713 CN2020102713W WO2021013094A1 WO 2021013094 A1 WO2021013094 A1 WO 2021013094A1 CN 2020102713 W CN2020102713 W CN 2020102713W WO 2021013094 A1 WO2021013094 A1 WO 2021013094A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
optical
block
positioning block
bottom plate
Prior art date
Application number
PCT/CN2020/102713
Other languages
English (en)
French (fr)
Inventor
金新刚
Original Assignee
嘉兴旭锐电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴旭锐电子科技有限公司 filed Critical 嘉兴旭锐电子科技有限公司
Priority to EP23191456.5A priority Critical patent/EP4270074A3/en
Priority to KR1020227001453A priority patent/KR20220019822A/ko
Priority to EP20843875.4A priority patent/EP3988982B1/en
Priority to US17/628,743 priority patent/US20220269029A1/en
Priority to JP2022504009A priority patent/JP2022541812A/ja
Publication of WO2021013094A1 publication Critical patent/WO2021013094A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/004Manual alignment, e.g. micromanipulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the invention belongs to the field of optical technology, and relates to a positioning system and method for each optical function component in an optical path, and in particular to an optical positioning system and method based on a positioning block, and a functional module.
  • the present invention provides an optical positioning system and method in which the positioning block utilizes the positioning block, and the positioning block and functional modules thereof. It can quickly realize the erection and positioning of the optical functional components in the optical path, and can be easily reconstructed.
  • the following describes the specific content of the positioning block, the optical positioning system and method based on the positioning block, and the functional module of the present invention.
  • the positioning block of the present invention includes a bottom surface, an upper surface that can be used for mounting optical components, and at least one positioning side surface.
  • the positioning block has two positioning sides perpendicular to each other.
  • the positioning block has a block structure with four positioning side surfaces perpendicular to the bottom surface.
  • the horizontal section of the positioning block is a rectangle, which can be a rectangle of the same size, or a modular design.
  • the so-called modular design means that the plane size takes a square with the smallest side length as the basic unit, and a rectangle or square whose length or width is an integral multiple of the smallest side length can be designed.
  • the unit is 1 ⁇ 1
  • other blocks of modular design can be 1 ⁇ 2, 1 ⁇ 3, 2 ⁇ 2, and so on.
  • the square mentioned in the present invention does not require a geometrically strict hexahedron, and each corner can be chamfered or smoothly transitioned.
  • the positioning block of the block structure may be called a positioning block, and may be simply called a block.
  • a magnet is embedded in the bottom surface of the positioning block.
  • a magnet is embedded in the positioning side of the positioning block.
  • the positioning block of the block structure adopts magnetic materials, and the four positioning sides are embedded with magnets. Further, the four positioning side magnets are embedded in the position avoiding the middle position and are unified to the left or right, and the polarity direction of each magnet is the same.
  • the bottom plate includes a bottom plate with a level upper surface, at least one supporting body, and several (at least two) positioning blocks for carrying optical functional components and positioning.
  • the bottom plate is used to provide a mounting platform for the optical system, and is also the horizontal reference surface of the optical system. Initial positioning in the vertical direction (called the Z direction).
  • the lean body and the bottom plate are an integral structure or a split structure, and the lean body has at least one straight positioning side to provide the positioning block with initial positioning in the horizontal direction.
  • the bottom surface of the positioning block can be attached to the upper surface of the bottom plate, the positioning side surface of the positioning block can be attached to the positioning side of the body, and the top of the positioning block can be equipped with optical components.
  • the bottom plate and the supporting body are collectively referred to as a positioning plate.
  • the present invention only needs to set the optical axis of the optical components on the different positioning blocks to be parallel to the positioning side and have the same distance. In this way, it can be ensured that when the positioning sides of different positioning blocks are attached to the positioning sides of the lean body, the optical axes of the optical components on the different positioning blocks are on the same vertical plane. According to the needs of the optical path, if the optical axes of the optical components are further set to the same height and parallel to the bottom surface of the positioning block, the optical axes of the optical components on different positioning blocks are on the same horizontal straight line.
  • the optical components need to be positioned in two perpendicular directions (called the X direction and the Y direction) of the plane.
  • the present invention provides a lean body with two positioning sides (X-direction and Y-direction) perpendicular to each other.
  • the lean body can be a single structure or two lean bodies that are perpendicular to each other.
  • the positioning block may have two mutually perpendicular positioning sides, one of which is parallel to the optical axis, and the other is perpendicular to the optical axis. In this way, the positioning side surfaces of the different positioning blocks are attached to the positioning side edges in the X direction and the positioning side edges in the Y direction of the leaning body respectively to realize the positioning in the X direction and the Y direction.
  • the positioning block in the above solution realizes positioning in the direction of the light path, and the distance between different positioning blocks can be adjusted by sliding the positioning block along the lean body. In this way, the distance between the optical components can be changed without changing the direction of the optical path.
  • a positioning block with a block structure, which may be called a positioning block.
  • the bottom surface of each positioning block can be attached to the bottom plate.
  • the vertical bottom surface of the side of the block can be attached to the side of the body and the side of different blocks. All or part of the top surface of the block can be equipped with optical function components.
  • the horizontal section of the block is rectangular, which can be Rectangles of the same size can also be a modular design. In this way, the positioning side of the body provides the initial positioning in the X and Y directions, and the continuous bonding and extension between the positioning blocks realizes the accurate distance positioning between the optical components, and the distance is strictly an integral multiple of the side length of the basic block unit.
  • a movable carrier plate can be added to the bottom plate.
  • One side or at least two vertical sides of the carrier plate can be attached to the supporting body. The upper surface is attached.
  • the bottom plate or carrier plate is the positioning reference in the vertical direction (Z direction), and the leaning body on the bottom plate is the positioning reference in the horizontal direction (X- and/or Y-direction).
  • Z direction the vertical direction
  • X- and/or Y-direction the positioning reference in the horizontal direction
  • X- and/or Y-direction the positioning reference in the horizontal direction
  • different positioning blocks of the component are attached to the bottom plate and the body, and the positioning blocks are attached. It can quickly realize the rapid positioning of the optical path.
  • the plane direction is one-dimensional positioning (single direction) or two-dimensional positioning (vertical X and Y directions) and whether accurate distance positioning is required, the following methods can be used:
  • the positioning side of the positioning block is attached to the same positioning edge of the lean body. It is only necessary to set the optical axis of the optical components on the different positioning blocks to be parallel to the positioning side and have the same distance. In this way, it can be ensured that when the positioning sides of different positioning blocks are attached to the positioning sides of the lean body, the optical axes of the optical components on the different positioning blocks are on the same vertical plane. According to the needs of the optical path, if the optical axes of the optical components are further set to the same height and parallel to the bottom surface of the positioning block, the optical axes of the optical components on different positioning blocks are on the same horizontal straight line. The distance between the optical components can be roughly adjusted by sliding the positioning block along the supporting body.
  • the optical components are positioned in two perpendicular directions (X direction and Y direction) of the plane.
  • the leaning body with two mutually perpendicular positioning sides (X direction and Y direction) is used, and the positioning block can have two mutually perpendicular positioning sides, one of which is parallel to the optical axis, and the other is parallel to the optical axis.
  • the axis is vertical.
  • the different positioning blocks are attached to the corresponding positions on the side of the desired setting in the required direction.
  • the positioning side surfaces of the different positioning blocks are attached to the positioning side edges in the X direction and the positioning side edges in the Y direction of the leaning body respectively to realize the positioning in the X direction and the Y direction.
  • the distance between the optical components can be roughly adjusted by sliding the positioning block along the supporting body.
  • each positioning block is attached to the bottom plate, the side surface of the block is perpendicular to the bottom surface of the supporting body and the side surface of different blocks, and all or part of the top surface of the block is equipped with optical function components.
  • the positioning side of the body provides the initial positioning in the X and Y directions, and the continuous bonding and extension between the positioning blocks realizes the accurate distance positioning between the optical components, and the distance is strictly an integral multiple of the side length of the basic block unit.
  • the optical positioning method of the present invention is further explained.
  • the optical functional components are mounted on the required position of the block; the upper optical functional components, through the connection structure, place the center points of all functional components at the same height, and the light emitting components (such as lasers, collimators, etc.)
  • the light emitting components such as lasers, collimators, etc.
  • the emitted light is parallel to a positioning side and bottom surface of the positioning block, and the center point of other optical components is consistent with the height of the emitted light, and by adjusting the optical fiber assembly, the light's position and position will not change after the light passes through the assembly.
  • the various optical function components are designed to have the same height and the same horizontal position relative to the upper surface of the block.
  • a number of squares equipped with optical functional components are placed in the corresponding positions of the square array on the bottom plate to achieve basically accurate positioning of the optical system.
  • Some fine-tuning structures can also be added to the block, and then some fine-tuning of the optical function components can be performed to further improve the alignment and coupling accuracy of the optical components on different blocks. Under normal circumstances, all the blocks using the same size basic unit can meet the needs.
  • Blocks of different sizes with modular design can meet more flexible needs and improve positioning efficiency and accuracy. For example, when the bottom of the optical function component exceeds the size of the basic unit block, a larger block can be used; when the distance between adjacent optical function components is large, a block of suitable specifications can be selected. In this way, the entire optical system reduces the number of squares, and the positioning speed is faster and the accuracy is higher.
  • the blocks with or without optical functional components can be replaced with other blocks at will, so as to realize the rapid construction and reconstruction of the optical path.
  • One solution is to use glue to bond between the square and the bottom plate or carrier and between the squares to achieve a close fit.
  • the base or carrier uses magnetic materials (referring to materials that can react to the magnetic field in a certain way, rather than the magnet itself, for the present invention, it refers to the material that can be adsorbed by the magnet), and the positioning block uses the above A positioning block with a magnet is embedded in the bottom surface, so that the positioning block is reliably attracted to the bottom plate or the carrier board.
  • the positioning block is a positioning block, the above-mentioned magnetic material is used, and the four positioning sides are embedded with magnets.
  • the four positioning side embedding magnet positions avoid the middle position, and are unified to the left or right, and the polarity direction of each magnet is the same. In this way, adjacent squares are attracted to each other when they are close to achieve a close fit.
  • the leaning body can also be made of magnetic materials to realize the close fit between the square and the leaning body.
  • the positioning block is relatively fixed to the bottom plate or the carrier plate to form a relatively stable system, which becomes the functional module of the present invention.
  • the formed functional module can be:
  • Glue-fixed functional modules including already positioned positioning blocks with or without optical components, and bottom plates or carrier boards glued to the positioning blocks.
  • the functional module also includes the supporting body.
  • Magnetically-attached functional modules including already-positioned positioning blocks with or without optical components, and base plates or carriers that are magnetically attached to positioning blocks.
  • the functional module also includes the supporting body.
  • the bottom plate with the limiting effect, the body and the square use rigid materials that are convenient for processing, and the materials can be but not limited to stainless steel, aluminum alloy, ceramics, quartz, monocrystalline silicon, etc. These materials are easy to process, can ensure surface flatness, have good wear resistance and stability. Use certain processing technology to form one piece, thereby reducing processing errors.
  • any light emitting element such as a laser emitting element, or an optical fiber collimator
  • any light emitting element can be adjusted or pre-fixed so that the light beam emitted from the square is completely parallel to the bottom and sides of the square, so that as long as the square is Between the square and the square, as long as it is close to the bottom and against the body, the beam can be smoothly transmitted from one square to another, and received by any detector such as a collimator or a power meter in another square.
  • the continuous structure of the optical functional components and the pre-alignment of the optical path can be achieved by various existing technical means, and some fine-tuning mechanisms can be added to the block as required to further improve the alignment accuracy and coupling efficiency.
  • the block and the supporting body, and the close adhesion between the block and the block are used to realize the precise positioning of the optical element of each block, which is simple and quick.
  • the optical functional components on the block can be fixed by adjusting the frame or pre-adjustment, so that after the optical path passes through the optical element, it does not have any influence on the angle and position of the optical path, so as to realize the replacement and reconstruction of any optical element.
  • the invention is particularly suitable for teaching and scientific research. Building a light path in teaching may only be for teaching demonstration or student practice, and building a light path in scientific research may only be for an experimental purpose. In this case, the built optical path does not need to be stored for a long time and reused many times.
  • the present invention provides an extremely low-cost, convenient and easy-to-implement optical path construction solution that can be disassembled and reconstructed at any time.
  • Figure 1 is a schematic top view of Embodiment 1 of the present invention.
  • Figure 2 is a three-dimensional schematic diagram of Embodiment 1 of the present invention.
  • Embodiment 2-1 of the present invention is a schematic top view of Embodiment 2-1 of the present invention.
  • Fig. 4 is a three-dimensional schematic diagram of an embodiment 2-1 of the invention.
  • Figure 5 is a three-dimensional schematic diagram of Embodiment 2-2 of the present invention.
  • Figure 6 is a three-dimensional schematic diagram of Embodiment 3-1 of the present invention.
  • Fig. 7 is a three-dimensional schematic diagram of Embodiment 3-2 of the present invention.
  • Positioning plate 11. Bottom plate, 12. Lean body; 2. Positioning block (or positioning block), 21. Magnet; 3. Carrier plate; 4. Collimator.
  • the positioning block, positioning system and method, and functional modules are also described in the positioning system.
  • the optical components in the embodiments all take the collimator as an example, but it does not mean that the optical components of the present invention are limited to the collimator.
  • the invention is applicable to all optical components that can be positioned with the technical solution of the invention.
  • Figure 1 and Figure 2 based on the positioning block optical positioning system. It includes a positioning plate 1 and two positioning blocks 2 for positioning.
  • the positioning plate 1 is composed of a bottom plate 11 with a horizontal upper surface and a supporting body 12 with a flat inner side as a positioning side; the block 2 includes a bottom surface and a positioning side surface.
  • the upper surface is used to carry optical components.
  • the optical components in this embodiment It is a collimator.
  • the positioning method using the positioning system of this embodiment is to use the bottom plate 11 of the positioning plate 1 as the positioning reference in the vertical (height) direction, and the positioning side of the supporting body 12 on the bottom plate 11 as the positioning reference in the horizontal direction.
  • the bottom surface of the positioning block is attached to the bottom plate 11 and the upper surface to achieve vertical positioning; the positioning side of the positioning block is attached to the positioning side of the body to achieve horizontal positioning.
  • the two positioning blocks 2 are equipped with collimators 4 coupled with each other.
  • the axis height is set to the same.
  • the optical axes of the two collimators 4 are positioned on the same horizontal straight line, which is parallel to the positioning side of the bottom plate and the supporting body. It can be seen from the figure that the size and cross-sectional shape of the positioning block in this embodiment are not required to be consistent.
  • the key is that the optical axis of the optical assembly is parallel to the positioning side surface of the positioning block and the distance from the positioning side surface is equal.
  • the bottom plate 11 adopts a magnetic material, and a magnet (not shown in the figure) is embedded in the bottom surface of the positioning block, so that the positioning block is adsorbed and fixed on the bottom plate. It is also possible that the material of the bottom plate 11 is not limited to a magnetic material, and the positioning block 2 and the bottom plate 11 are fixed with glue. After being fixed by any of the above methods, removing the supporting body or not removing the supporting body (when the supporting body and the bottom plate are inseparable), it is the functional module of the present invention.
  • the supporting body and the bottom plate are inseparable.
  • a movable carrier board 3 is added to the bottom plate, and one side of the carrier board 3 is attached to the positioning side of the lean body 12.
  • the bottom surface of the positioning block 2 is attached to the carrier board 3.
  • the positioning plate 1 is made of non-magnetic material
  • the carrier plate 3 is made of magnetic material, so that the box 2 and the carrier plate 3 are adsorbed as a whole, and there is no adsorption between the positioning plate, and it is convenient to connect the carrier plate 3 and the box 2 and
  • the optical functional components are moved out of the positioning plate as a whole to form an independent functional module.
  • the positioning block 2 and the carrier board 3 can also be fixed with glue, and the carrier board 3, the block 2 and the optical functional components are moved out of the positioning disc as a whole to form an independent functional module.
  • FIG. 3 and Figure 4 based on the positioning block optical positioning system.
  • the positioning plate 1 is composed of a bottom plate 11 with a horizontal upper surface and a straight inner side body 12 perpendicular to each other; the planes of the blocks 2 in the figure are squares of the same size, and the plane size can also be designed in a modular manner.
  • a square with the smallest side length is the basic unit, and a rectangle or square whose length or width is an integral multiple of the smallest side length can be designed.
  • Block 2 is made of magnetic stainless steel or other magnetic materials, and is integrally formed.
  • a magnet 21 is embedded on each side of the square 2. The positions of the magnets 21 avoid the middle position, and are unified to the left or right, and the polarity directions of the embedded magnets 21 are the same (that is, the outwards are unified as N pole or unified as S pole).
  • the positioning method using the positioning system of this embodiment is to use the bottom plate 11 of the positioning plate 1 as the positioning reference in the vertical (height) direction, and use the two side support bodies 12 on the bottom plate 11 as the two horizontal positioning references.
  • the bottom of the block 1 is close to the bottom plate 11 to achieve vertical positioning, and the edge of the block 1 is attached to the body and the edges of adjacent blocks are attached to each other to achieve horizontal positioning.
  • each side of the block 2 is embedded with magnets 21, the adjacent blocks 2 can be attracted to each other to achieve a close fit.
  • the magnet 21 on the side is not in the middle, it adopts a staggered arrangement.
  • the outward magnetic poles of the magnet 22 are the same. Only when the squares are placed in the front direction, the squares can be normally attracted and closely attached.
  • the bottom plate 11 and the supporting body 12 can also be made of magnetic solid materials, and the bottom surface of the block 2 is also embedded with magnets (not shown in the figure). In this way, the square 2 can also be closely attached to the bottom plate 11 and the supporting body 12 by magnetic adsorption.
  • the upper-layer optical function components are mounted on the block 2 where the position is needed; the upper-layer optical function components, through the connection structure, place the center points of all the functional components at the same height, and the light emitting components (such as lasers, collimators) Etc.).
  • the light emitting components such as lasers, collimators
  • Etc. the light emitting components
  • the optical fiber assembly is adjusted so that the light passes through the assembly without changing the light position and Angle, so that the light emitted from a light emitting component, after passing through several optical components, can smoothly enter the final functional optical component, such as collimator, detector, etc.
  • optical functional components are designed to have the same height and the same horizontal position relative to the upper surface of the block. According to the needs of the optical path, a number of squares equipped with optical functional components are placed in the corresponding positions of the square array on the bottom plate to achieve basically accurate positioning of the optical system. Make some fine adjustments to the optical function components to achieve the required accurate positioning (some fine-tuning mechanisms can be added to the block as needed to further improve the alignment accuracy and coupling efficiency).
  • FIG. 3 is a schematic top view, and the upstream and downstream sides each show a collimator optical path;
  • FIG. 4 is a perspective schematic view of FIG. 3 with the downstream collimator removed.
  • Fig. 3 there are three squares 2 in the upper row.
  • the square 2 in the middle is not equipped with optical functional components, but it has the effect of extending the optical path.
  • a pair of coupled collimators are fixed on two adjacent squares 2 in the downward direction. It can be seen from FIG. 3 and FIG.
  • the coupled collimators 4 that since the squares 2 are of equal width and aligned and fit, the coupled collimators 4 are installed in the same position in the square 2 and are arranged parallel to and opposite to the sides of the square 2. Therefore, the coupled collimator 4 naturally achieves horizontal alignment. Through the connection structure, the center point of the coupled collimator 4 is also aligned in the height (vertical) direction.
  • FIG. 5 This embodiment is shown in FIG. 5, and the difference from the embodiment 2-1 is that a movable carrier 3 is added to the bottom plate, and two mutually perpendicular sides of the carrier 3 are attached to the supporting body 12. The bottom surface of the square 2 is attached to the carrier 3.
  • the positioning plate 1 is made of non-magnetic material
  • the carrier plate 3 is made of magnetic material, so that the box 2 and the carrier plate 3 are adsorbed as a whole, and there is no adsorption between the positioning plate, and it is convenient to connect the carrier plate 3 and the box 2 and The optical functional components are moved out of the positioning plate as a whole to form an independent functional module.
  • FIG. 6 This embodiment is shown in Fig. 6, and the difference from the embodiment 2-1 is that the block 2 has no magnet. Adopt glue bonding to realize the close fit between the squares 2. You can also use glue to tightly fit the box with the body and the bottom plate.
  • This embodiment is mainly used for optical paths using ultra-small optical functional components.
  • the required cube 2 is small in size, and processing other structures on it will have certain processing difficulties.
  • this structure can also be used for blocks 2 of various sizes, and is not limited to a small size.
  • the glue can be degradable or soluble glue, which is convenient for secondary disassembly and reorganization.
  • the advantages of adopting this structure are: (1) The choice of materials is more free, and various metal and non-metal materials that are easy to process and not easy to deform can be used, such as aluminum alloy, quartz, single crystal silicon, ceramics, etc.; (2) glue After fixing, the bonded block can be taken out from the positioning plate 1 and assembled into an independent small module; or the positioning plate 1, block 2 and the light path can be bonded into a large whole to form an independent small module.
  • Fig. 6 is the same as Fig. 5, taking the coupled collimator 4 as an example, and both are the same as in the embodiment 1-1. Therefore, the description is not repeated here.
  • the difference between this embodiment and the embodiment 3-1 lies in that a movable carrier plate 3 is added to the bottom plate, and two mutually perpendicular sides of the carrier plate 3 are attached to the supporting body 12.
  • the bottom surface of the square 2 is attached to the carrier 3.
  • Glue is used between the squares 2 and between the squares 2 and the carrier. After the glue is fixed, the carrier board 3, the block 2 and the optical function components can be moved out of the positioning plate as a whole to form an independent functional module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

定位块(2)、基于定位块(2)的光学定位系统和方法及功能模组。光学定位系统包括:一个上表面水平的底板(11),至少一个包含平直定位侧边的靠体(12),若干用于搭载光学组件和定位的定位块(2),底板(11)上还可以有可移动载板(3)。利用定位块(2)底部紧贴底板(11)或载板(3)实现垂直方向的定位,利用定位块(2)侧面与靠体(12)定位侧边贴合,实现水平方向的位置定位。根据不同的光路设计,在需要位置的定位块(2)上搭载光学组件;通过连接结构,将所有光学组件的中心点,位于同一高度,光发射组件(4)通过机械调整,使得出射光跟定位块(2)定位侧面和底面平行,其他光学组件的中心点跟出射光的高度一致,实现光学系统基本准确的定位。

Description

定位块、基于定位块的光学定位系统和方法及功能模组 技术领域
本发明属于光学技术领域,涉及对光路中各光学功能组件的定位系统和方法,特别涉及基于定位块的光学定位系统和方法及功能模组。
背景技术
目前在实验室,光学系统搭建时,都需要用多维调节架对系统进行光路调节,在一些复杂的光学系统中,需要耗费大量的工作在光路搭建上。而且,由于光路自由度太高,系统几乎不具有重复性,每次光路结构发生变化时,都需要对系统进行再次调整,浪费大量时间精力。为克服现有技术的不足,本发明提供一种定位块利用定位块的光学定位系统和方法及其定位块和功能模组。可快速实现光路中光学功能组件的搭建定位,且可方便重构。
技术问题
以下说明本发明的定位块、基于定位块的光学定位系统和方法及功能模组的具体内容。
技术解决方案
一、本发明的定位块
本发明的定位块包括底面、可用于搭载光学组件的上表面、至少一个定位侧面。
进一步,所说的定位块有两个相互垂直的定位侧面。
再进一步,所说的定位块为方块结构,有与底面垂直的四个定位侧面。定位块水平截面为矩形,可以是相同大小的矩形,也可是模数化设计。所谓模数化设计,即:平面大小以一个最小边长的正方形为基本单元,可设计长或宽为最小边长整倍数的长方形或正方形。比如:其本单元为1×1,模数化设计的其他方块可以是1×2、1×3、2×2,等等。本发明所说的方块,并不要求是几何学上严格的六面体,各边角可以有倒角或圆滑过渡。故其可能会表现为多棱柱体(比如四个侧棱位置都加工有倒角时,会成为几何学上的八棱柱),但只要有相互垂直的四个侧面,都属于本发明所说的方块,都视为其水平截面为矩形。在本发明中方块结构的定位块可称为定位方块,并可简称为方块。
作为优选方案,定位块的底面内嵌有磁体。
作为优选方案,定位块的定位侧面内嵌有磁体。
做为优选方案,方块结构的定位块采用采用磁性材料,四个定位侧面内嵌有磁体。进一步,四个定位侧面嵌入磁体位置避开中间位置,统一靠左或靠右,各磁体嵌入的极性方向相同。
二、本发明基于定位块的光学定位系统
包括一个上表面水平的底板,至少一个靠体,若干(至少两个)用于搭载光学功能组件和定位的定位块,底板用于提供光学系统的搭载平台,也是光学系统的水平基准面,是垂直方向(称之为Z方向)的初始定位。靠体与底板为一体结构或者分体结构,靠体至少有一个平直的定位侧边,为定位块提供水平方向的初始定位。定位块的底面可与底板的上表面贴合,定位块的定位侧面可与靠体的定位侧边贴合,定位块的顶部可搭载光学组件。本发明中将底板和靠体合称为定位盘。
当所搭建的光学系统在水平面仅是一个方向(称之为X方向)延伸时,本发明仅需将不同定位块上光学组件的光轴设置为与定位侧面平行且距离相等。这样就可保证不同定位块的定位侧面与靠体的定位侧边贴合时,不同定位块上的光学组件的光轴在同一垂直平面上。根据光路的需要,如果进一步将光学组件的光轴设置成高度相同且平行于定位块的底面,那么不同定位块上的光学组件的光轴则在同一水平直线上。
在一些光路中,光学组件需要在平面的两个垂直方向(称之为X方向和Y方向)定位。此情况下,本发明提供具有相互垂直的两个定位侧边(X方向和Y方向)的靠体,该靠体可以是单一结构的,也可以是相互垂直的两个靠体。而定位块可有两个相互垂直的定位侧面,其中一个定位侧面与光轴平行,另一个定位侧面与光轴垂直。这样不同定位块的定位侧面分别与靠体的X方向定位侧边和Y方向的定位侧边贴合就可实现X方向和Y方向的定位。
以上方案中的定位块实现的是光路的方向定位,不同定位块之间的距离可以通过沿靠体滑动定位块来调节。这样在不改变光路方向的前提下,可以改变光学组件间的距离。
在某些情况下,不仅需要X方向和Y方向的定位,还需要实现这两个方向准确的距离定位。该需求可能通过采用方块结构的定位块来实现,可以把这种定位块称为定位方块。各定位方块的底面可与底板贴合,方块的侧面垂直底面可与靠体及不同方块的侧面贴合,全部或部分方块的顶面可搭载光学功能组件,方块的水平截面为矩形,可以是相同大小的矩形,也可是模数化设计。这样,靠体的定位侧边提供X及Y方向的初始定位,而定位方块间连续贴合延伸,则实现光学组件间的准确距离定位,其距离严格为基本方块单元边长的整倍数。
当底板和靠体为不可分离时,在底板上可以加上一可移动的载板,载板的一个侧边或至少两个垂直侧边可贴合靠体,方块的底面可与载板的上表面贴合。
三、本发明基于定位块的光学系统定位方法
底板或载板为垂直方向(Z方向)的定位基准,以底板上的靠体为水平方向(X方和/或Y方向)的定位基准,根据不同的光路设计,将搭载或未搭载有光学组件的不同定位块与底板和靠体贴合,以及定位块之间贴合。即可快速实现光路的快速定位。根据平面方向是一维定位(单一方向)还是二维定位(垂直的X和Y方向)及是否需要准确的距离定位,可具体为以下方法:
当仅需一维定位时,定位块的定位侧面贴合靠体的同一定位边。仅需将不同定位块上光学组件的光轴设置为与定位侧面平行且距离相等。这样就可保证不同定位块的定位侧面与靠体的定位侧边贴合时,不同定位块上的光学组件的光轴在同一垂直平面上。根据光路的需要,如果进一步将光学组件的光轴设置成高度相同且平行于定位块的底面,那么不同定位块上的光学组件的光轴则在同一水平直线上。可通过沿靠体滑动定位块来大致调节光学组件间的距离。
当需要二维定位,即光学组件在平面的两个垂直方向(X方向和Y方向)定位。则利用有相互垂直的两个定位侧边(X方向和Y方向)的靠体,而定位块可有两个相互垂直的定位侧面,其中一个定位侧面与光轴平行,另一个定位侧面与光轴垂直。根据光路设计,将不同的定位块按所需方向贴合在所需定们侧边的相应位置。这样不同定位块的定位侧面分别与靠体的X方向定位侧边和Y方向的定位侧边贴合就可实现X方向和Y方向的定位。可通过沿靠体滑动定位块来大致调节光学组件间的距离。
当不仅需要X方向和Y方向的二维定位,还需要实现这两个方向准确的距离定位。该需求可能通过定位方块来实现。各定位方块的底面与底板贴合,方块的侧面垂直底面与靠体及不同方块的侧面贴合,全部或部分方块的顶面搭载光学功能组件。这样,靠体的定位侧边提供X及Y方向的初始定位,而定位方块间连续贴合延伸,则实现光学组件间的准确距离定位,其距离严格为基本方块单元边长的整倍数。
以上述二维且需准确的距离定位为例,更进一步说明本发明的光学定位方法。根据不同的光路设计,在需要位置的方块上搭载光学功能组件;上层光学功能组件,通过连接结构,将所有功能组件的中心点,位于同一高度,光发射组件(比如激光器,准直器等),通过机械调整,使得出射光跟定位方块的一个定位侧面和底面平行,其他光学组件的中心点跟出射光的高度一致,并且通过调整光纤组件,使得光通过组件后,不改变光的位置和角度,这样从一个放光组件出射的光,经过若干个光学组件后,可以顺利进去最终的光学组件,比如准直器,探测器等。即,各种光学功能组件设计成,相对于方块上表面出光或入光位置高度相同,水平位置一致。根据光路的需要,将若干搭载了光学功能组件的方块置于底板上方块阵列的相应位置,就可以实现光学系统基本准确的定位。方块上也可以再加一些微调结构,再对光学功能组件进行一些微调,进一步提高不同方块上光学组件的对准耦合精度。通常情况下,全部采用采用大小一致的基本单元的方块就可满足需要。而采用模数化设计的不同大小的方块,则可满足更灵活的需求,并可提高定位效率和精度。比如,在光学功能组件底部超过基本单元方块大小时,可用较大的方块;相邻光学功能组件距离较大时,可选用合适规格的方块。这样,整个光学系统减少了方块的数量,定位速度更快,精度更高。
这种光学定位系统和方法,搭载或未搭载光学功能组件的方块,可以任意用其他方块替换,从而实现光路的快速搭建和重构。
为实现方块与靠体、方块与底板或载板、方块与方块间的贴合,可以让其自然贴合,但为了实现更可靠的贴合,可采用以下不同的技术方案:
一种方案为,方块与底板或载板之间及方块之间用胶水粘结,实现紧密贴合。
另一种方案为,底板或载板采用磁性材料(指能对磁场以某种方式反应的材料,而不是磁体本身,就本发明来说指能被磁体吸附的材料),定位块采用上文所述底面内嵌有磁体的定位块,这样定位块与底板或载板之间可靠吸附。进一步,当定位块采用定位方块时,使用上文所述的磁性材料,四个定位侧面内嵌有磁体。四个定位侧面嵌入磁体位置避开中间位置,统一靠左或靠右,各磁体嵌入的极性方向相同。这样相邻方块靠近时互相吸附,实现紧密贴合。靠体也可采用磁性材料,实现方块与靠体的紧密贴合。
四、本发明基于定位块的功能模组
上述已定位的光路系统,将其定位块与底板或载板相对固定,形成位置相对稳定的系统,即成为本发明的功能模组。根据上述系统组件间实现可靠贴合的不同方式。所形成的功能模组可以是:
胶水固定的功能模组:包括已经定位的搭载或未搭载光学组件的定位块,与定位块胶合固定的底板或载板。当定位块是与底板胶合且靠体与底板不可分时,功能模组还包括靠体。
磁性吸附的功能模组:包括已经定位的搭载或未搭载光学组件的定位块,与定位块磁性吸附的底板或载板。当定位块是与底板吸附且靠体与底板不可分时,功能模组还包括靠体。
本发明中具有限位作用的底板,靠体和方块,采用方便加工的刚性材料,材料可以是但不仅限于不锈钢,铝合金,陶瓷,石英,单晶硅等。这些材料易加工,可以确保表面平整度,有较好耐磨性,稳定性。利用一定加工工艺一体成型,从而减少加工误差。
本发明中,凡是涉及到出光元件,比如激光发射元件,或者光纤准直器等,可以通过调节架,或者预固定,使得从该方块出射的光束,完全平行于方块底部和侧面,使得只要方块和方块之间,只要紧贴底部和靠体,就能使得光束顺利从一个方块,传输到另一个方块,被另一个方块的准直器或者功率计等任意探测器接收。光学功能组件的连续结构,光路的预调准,可以采用各种现有技术的手段,方块上根据需要也可以再加一些微调机构,方便进一步提高对准精度和耦合效率。
有益效果
如上所述,本发明中利用方块和靠体,以及方块和方块之间的紧密贴合,实现每个方块光学元件的精确定位,简单快捷。方块上的光学功能组件,可以通过调节架,或者预调节固定,使得光路通过该光学元件后,对光路的角度和位置不产生任何影响,从而实现任意光学元件之间的替换,重构。
本发明特别适合教学和科研使用。在教学中搭建一个光路可能仅是为了教学示范或学生实践,在科研中搭建一个光路可能仅是为了一个实验目的。这种情况下搭建的光路并不需要长期保存和多次重复使用,本发明提供了一种成本极低,方便易行,且可随时拆解重构的光路搭建方案。
附图说明
图1为本发明实施例1的俯视示意图;
图2为本发明实施例1的立体示意图;
图3为本发明实施例2-1的俯视示意图;
图4为发明实施例2-1的立体示意图;
图5为本发明实施例2-2的立体示意图;
图6为本发明实施例3-1的立体示意图;
图7为本发明实施例3-2的立体示意图。
图中:1.定位盘,11.底板,12.靠体;2.定位块(或定位方块),21.磁体;3.载板;4.准直器。
本发明的最佳实施方式
以下结合附图,具体说明本发明的实施方式。在说明中定位块、定位系统和方法、功能模组,在定位系统中一并说明。实施例中的光学组件均以准直器为例,但不意味着本发明的光学组件仅限于准直器。本发明适用于所有可用本发明的技术方案定位的光学组件。
实施例 1-1
如图1和图2,基于定位块的光学定位系统。包括定位盘1和用于定位的两个定位块2。定位盘1由上表面水平的底板11和一个内侧平直作为定位侧边的靠体12构成;方块2包含一个底面,一个定位侧面,上表面用于搭载光学组件,本实施例中的光学组件是准直器。
使用本实施例定位系统的定位方法是:以定位盘1的底板11为垂直(高度)方向的定位基准,以底板11上的靠体12的定位侧边为水平方向的定位基准。定位块的底面与底板11和上表面贴合,实现垂直方向的定位;定位块的定位侧面与靠体的定位侧边贴合,实现水平方向的位置定位。两个定位块2上搭载有相互耦合的准直器4,准直器4的光轴分别与各自定位块2的定位侧面平行且距离H=h(图1);将准直器4的光轴高度设置为相同。这样,两个准直器4的光轴就定位在了同一条水平直线上,该水平直线平行于底板和靠体的定位侧边。从图中可见,本实施例定位块的大小和截面形状不要求一致,关键是光学组件的光轴平行于定位块的定位侧面且与定位侧面的距离相等。
为实现定位块2与底板11的可靠贴合和定位,底板11采用磁性材料,定位块的底面内嵌磁体(图中未示出),使定位块吸附固定在在底板上。也可以底板11材料不限于磁性材料,用胶水将定位块2和底板11固定。用上述任一种方法固定后,去掉靠体或不去掉靠体(靠体与底板不可分时),就是本发明的功能模组。
实施例 1-2
本实施例无附图,可参照实施例2-2的图5。
本实施例中是靠体与底板不可分离。与实施例1-1的区别在于:在底板上增加可移动的载板3,载板3的一条边贴合靠体12的定位侧边。定位块2的底面与载板3贴合。
本实施例中定位盘1采用非磁性材料,而载板3采用磁性材料,这样方块2与载板3吸附成为一个整体,而与定位盘间并不吸附,方便将载板3和方块2及光学功能组件整体移出定位盘,形成一个独立的功能模组。也可用胶水将定位块2和载板3固定,将载板3和方块2及光学功能组件整体移出定位盘,形成一个独立的功能模组。
实施例 2-1
如图3和图4,基于定位块的光学定位系统。包括定位盘1和用于定位的若干方块2。定位盘1由上表面水平的底板11和互相垂直的内侧平直的靠体12构成;图中的各方块2的平面为大小相同的正方形,平面大小也可以模数化设计,即平面大小以一个最小边长的正方形为基本单元,可设计长或宽为最小边长整倍数的长方形或正方形。
方块2采用磁性不锈钢或其他磁性材料,整体加工成形。方块2的每个侧面嵌入磁体21。磁体21的位置避开中间位置,统一靠左或靠右,各磁体21嵌入的极性方向相同(即向外统一为N极或统一为S极)。
使用本实施例定位系统的定位方法是:以定位盘1的底板11为垂直(高度)方向的定位基准,以底板11上的两个侧面靠体12为两个水平方向的定位基准。利用方块1底部紧贴底板11实现垂直方向的定位,利用方块1边缘与靠体贴合及相邻方块边缘间相互贴合,实现水平方向的位置定位。由于方块2各侧面嵌有磁体21,可使相邻方块2间吸附,实现紧密贴合。同时由于侧面的磁体21不在中间,而采用了错位设置,同时磁体22向外的磁极相同,只有当方块都正向放置,方块之间才能正常吸附,紧密贴合。
底板11和靠体12,也可以用磁性固体材料制作,方块2的底面亦嵌入磁体(图中未示出)。这样方块2也可与底板11和靠体12以磁性吸附紧密贴合。
根据不同的光路设计,在需要位置的方块2上搭载上层光学功能组件;上层光学功能组件,通过连接结构,将所有功能组件的中心点,位于同一高度,光发射组件(比如激光器,准直器等),通过机械调整,使得出射光跟定位方块侧边和底面平行,其他光学组件的中心点跟出射光的高度一致,并且通过调整光纤组件,使得光通过组件后,不改变光的位置和角度,这样从一个放光组件出射的光,经过若干个光学组件后,可以顺利进去最终的功能光学组件,比如准直器,探测器等。各种光学功能组件设计成,相对于方块上表面出光或入光位置高度相同,水平位置一致。根据光路的需要,将若干搭载了光学功能组件的方块置于底板上方块阵列的相应位置,就可以实现光学系统基本准确的定位。再对光学功能组件进行一些微调,即可实现所需要的准确定位(方块上根据需要也可以再加一些微调机构,方便进一步提高对准精度和耦合效率)。
本实施例以准直器4为例。图3的俯视示意图,上行和下行各示出一种准直器光路;图4为图3中去掉下行准直器后的立体示意图。如图3所示,上行中有三个方块2,在两端的方块2上,为一对耦合的准直器4,中间的方块2未搭载光学功能组件,但起到了延长光程的作用。下行在相邻的两个方块2上固定了一对耦合的准直器。从图3和图4可见,由于方块2等宽且对准贴合,而耦合的准直器4在方块2中安装位置相同,且都与方块2的侧边平行相向设置。故此,耦合的准直器4自然实现了水平方向对准。通过连接结构,将耦合的准直器4的中心点在高度(垂直)方向上也对准。
本发明的实施方式
实施例 2-2
本实施例如图5所示,与实施例2-1的区别在于:在底板上增加可移动的载板3,载板3的两条互相垂直的边贴合靠体12。方块2的底面与载板3贴合。
本实施例中定位盘1采用非磁性材料,而载板3采用磁性材料,这样方块2与载板3吸附成为一个整体,而与定位盘间并不吸附,方便将载板3和方块2及光学功能组件整体移出定位盘,形成一个独立的功能模组。
实施例 3-1
本实施例如图6所示,其与实施例2-1的区别在于:方块2无磁体。采用胶水粘结的方式实现方块2之间的紧密贴合。还可以用胶水将方块和靠体及底板紧密贴合。
该实施例主要用于使用超小型的光学功能组件的光路。其所需的方块2体积很小,其上加工其他结构会有一定的加工难度。当然,该结构也可以用于各种大小的方块2,并不限于很小的尺寸。胶水可以采用可降解或可溶解胶水,方便二次拆卸、重组。采用这一结构的优点是:(1)材料的选择更自由,可采用各种便于加工且不易变形的金属和非金属材料,如铝合金、石英、单晶硅、陶瓷等;(2)胶水固定后,可将粘结好的方块整体从定位盘1中取出,组装成独立的小模块;或者粘结为大整体的定位盘1、方块2及光路,整个形成独立的小模块。
光学功能组件的搭载及预调准,同实施例1-1。图6也同图5以耦合的准直器4为例加以说明,均与实施例1-1相同。因此,此处不重复叙述。
实施例 3-2
本实施如图7所示,与实施例3-1的区别在于:在底板上增加可移动的载板3,载板3的两条互相垂直的边贴合靠体12。方块2的底面与载板3贴合。方块2之间及方块2与载板之间用胶水粘结。胶水固定后,可将载板3和方块2及光学功能组件整体移出定位盘,形成一个独立的功能模组。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (23)

  1. 一种定位块,用于光学定位系统,其特征在于:包括底面、可用于搭载光学组件的上表面、至少一个定位侧面。
  2. 一种如权利要求1的定位块,其特征在于:所说的定位侧面为两个相互垂直的定位侧面。
  3. 一种如权利要求1的定位块,其特征在于:底面内嵌有磁体。
  4. 一种如权利要求1的定位块,其特征在于:有与底面垂直的四个侧面,水平截面为矩形。
  5. 一种如权利要求4的定位块,其特征在于:定位块采用磁性材料,四个侧面内嵌有磁体。
  6. 一种如权利要求5的定位块,其特征在于:四个侧面嵌入磁体位置避开中间位置,统一靠左或靠右,各磁体嵌入的极性方向相同。
  7. 一种基于定位块的光学定位系统,其特征在于:包括一个上表面水平的底板,至少一个靠体,若干用于搭载光学功能组件和定位的定位块;靠体与底板固定或不固定,靠体有至少一个平直的定位侧边,定位块包括底面、可用于搭载光学组件的上表面、至少一个定位侧面;定位块的定位侧面可与靠体的定位侧边贴合。
  8. 一种如权利要求7的基于定位块的光学定位系统,其特征在于:所说的靠体与底板固定,底板上有一载板,载板边可与靠体的定位侧边贴合。
  9. 一种如权利要求7的基于定位块的光学定位系统,其特征在于:所说的底板的材料为磁性材料,所说的定位块的底面内嵌有磁体。
  10. 一种如权利要求8的基于定位块的光学定位系统,其特征在于:所说的载板的材料为磁性材料,所说的定位块的底面内嵌有磁体。
  11. 一种如权利要求7至10之一的基于定位块的光学定位系统,其特征在于:所说的靠体至少有两个相互垂直的定位侧边,所说的相互垂直的定位侧边位于同一个靠体或不同的靠体上。
  12. 一种如权利要求11的基于定位块的光学定位系统,其特征在于:所说的定位块有两个相互垂直的定位侧面。
  13. 一种如权利要求11的基于定位块的光学定位系统,其特征在于:所说的定位块为方块结构,方块的侧面垂直底面,侧面可与靠体的定位侧边或不同方块的侧面贴合,全部或部分方块的顶面可搭载光学功能组件,方块的水平截面为矩形,不同方块的水平截面大小相同或为模数化设计的大小不同的矩形。
  14. 一种如权利要求13的基于定位块的光学定位系统,其特征在于:所说的方块采用磁性材料,四个侧面内嵌有磁体。
  15. 一种如权利要求14的基于定位块的光学定位系统,其特征在于:所说的方块四个侧面嵌入磁体位置避开中间位置,统一靠左或靠右,各磁体嵌入的极性方向相同。
  16. 一种如权利要求7或8的基于定位块的光学定位系统,其特征在于:所说的定位块与底板或载板间用胶水实现紧密贴合。
  17. 一种如权利要求13的基于定位块的光学定位系统,其特征在于:所说的方块间、方块与底板或载板间用胶水实现紧密贴合。
  18. 一种基于定位块的光学系统定位方法,其特征在于:利用定位块底部紧贴底板或载板实现垂直方向的定位,利用定位块侧面与靠体贴合,实现水平方向的位置定位;根据不同的光路设计,在需要位置的方块上搭载光学功能组件;通过连接结构,将所有光学功能组件的中心点,位于同一高度,光发射组件通过机械调整,使得出射光跟定位方块侧边和底面平行,其他光学组件的中心点跟出射光的高度一致。
  19. 一种如权利要求18的基于定位块的光学系统定位方法,其特征在于:所说的定位块为方块结构,方块的侧面垂直底面,侧面可与靠体的定位侧边或不同方块的侧面贴合,全部或部分方块的顶面可搭载光学功能组件,方块的水平截面为矩形,不同方块的水平截面大小相同或为模数化设计的大小不同的矩形;利用方块侧面与靠体贴合及相邻方块的侧面贴合,实现水平方向的位置定位。
  20. 一种如权利要求18或19的基于定位块的光学系统定位方法,其特征在于:定位块与底板或载板之间及相贴合的定位块之间用磁性吸附固定。
  21. 一种如权利要求18或19的基于定位块的光学系统定位方法,其特征在于:定位块与底板或载板之间及相贴合的定位块之间用胶水固定。
  22. 一种基于定位块的功能模组,其特征在于:包括底板或载板、底板或载板上的若干如权利要求1的定位块,部分或全部定位块上搭载有光学组件;定位块与底板或载板之间用磁性吸附或胶水连接。
  23. 一种如权利要求22的基于定位块的功能模组,其特征在于:彼此贴合的定位块之间用磁性吸附或胶水连接。
PCT/CN2020/102713 2019-07-24 2020-07-17 定位块、基于定位块的光学定位系统和方法及功能模组 WO2021013094A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP23191456.5A EP4270074A3 (en) 2019-07-24 2020-07-17 Positioning block, optical positioning system and method based on positioning block, and functional module
KR1020227001453A KR20220019822A (ko) 2019-07-24 2020-07-17 포지셔닝 블록, 포지셔닝 블록에 기반한 광학 포지셔닝 시스템과 방법 및 기능 모듈
EP20843875.4A EP3988982B1 (en) 2019-07-24 2020-07-17 Positioning block, optical positioning system and method based on positioning block, and functional module
US17/628,743 US20220269029A1 (en) 2019-07-24 2020-07-17 Positioning block, optical positioning system and method based on positioning block, and functional module
JP2022504009A JP2022541812A (ja) 2019-07-24 2020-07-17 位置決めブロック、位置決めブロックに基づく光学位置決めシステム及び方法並びに機能モジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910669312.4 2019-07-24
CN201910669312.4A CN110286458A (zh) 2019-07-24 2019-07-24 一种利用方块结构实现可重构的光学定位系统和方法
CN201911043079.5A CN110618512B (zh) 2019-07-24 2019-10-30 定位块、基于定位块的光学定位系统和方法及功能模组
CN201911043079.5 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021013094A1 true WO2021013094A1 (zh) 2021-01-28

Family

ID=68022279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102713 WO2021013094A1 (zh) 2019-07-24 2020-07-17 定位块、基于定位块的光学定位系统和方法及功能模组

Country Status (6)

Country Link
US (1) US20220269029A1 (zh)
EP (2) EP3988982B1 (zh)
JP (1) JP2022541812A (zh)
KR (1) KR20220019822A (zh)
CN (2) CN110286458A (zh)
WO (1) WO2021013094A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286458A (zh) * 2019-07-24 2019-09-27 嘉兴旭锐电子科技有限公司 一种利用方块结构实现可重构的光学定位系统和方法
CN110703452A (zh) * 2019-10-30 2020-01-17 嘉兴旭锐电子科技有限公司 基于方块结构的扩束准直器及其光路调节装置和调节方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885140A (zh) * 2014-04-15 2014-06-25 昆山柯斯美光电有限公司 芯片阵列与并行光纤被动耦合的光组件及其组装方法
US20150068310A1 (en) * 2013-09-09 2015-03-12 Banner Engineering Corporation Sensor with oblique-angle display
CN205300528U (zh) * 2015-12-26 2016-06-08 东莞市华兴隆模具钢材有限公司 表面平面精准检测装置
CN207271294U (zh) * 2017-05-22 2018-04-27 杭州医学院 一种多功能离心管架
CN208125059U (zh) * 2018-05-11 2018-11-20 山西迪迈沃科光电工业有限公司 一种用于航空发动机的叶片位移检测器装置
CN110286458A (zh) * 2019-07-24 2019-09-27 嘉兴旭锐电子科技有限公司 一种利用方块结构实现可重构的光学定位系统和方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323169A (ja) * 1992-05-19 1993-12-07 Ricoh Co Ltd 光学走査装置
JP2860741B2 (ja) * 1993-01-12 1999-02-24 日本電信電話株式会社 光学系の構成方法および光学系構造体
JP3570882B2 (ja) * 1997-03-13 2004-09-29 日本電信電話株式会社 光素子実装基板、該実装基板を用いた光モジュール、およびそれらの製造方法
US6437929B1 (en) * 2001-01-30 2002-08-20 Avanex Corporation Piezo-actuator based optical add/drop module
JP2003279795A (ja) * 2002-03-20 2003-10-02 Seiko Instruments Inc 光ファイバコリメータ及びその製造方法
GB2415792B (en) * 2002-04-22 2006-06-07 Cyberoptics Corp Optical device with alignment compensation
WO2004010190A1 (en) * 2002-07-23 2004-01-29 Corning Incorporated Optoelectronic module with passive alignment of optical elements
JP3932552B2 (ja) * 2003-04-24 2007-06-20 理研電線株式会社 光合分波モジュール
JP2005189332A (ja) * 2003-12-24 2005-07-14 Three M Innovative Properties Co 光コネクタ、コネクタ付き光ファイバ、光ファイバ接続装置及び光ファイバ接続方法
JP2007057650A (ja) * 2005-08-23 2007-03-08 Shimadzu Corp 光学素子の保持機構
JP2009072443A (ja) * 2007-09-21 2009-04-09 Toshiba Corp マルチリーフコリメータおよび放射線治療装置
TWI420177B (zh) * 2007-12-26 2013-12-21 Hon Hai Prec Ind Co Ltd 鏡頭模組組裝設備及組裝方法
CN201211725Y (zh) * 2008-07-11 2009-03-25 陕西立人印刷设备有限公司 一种彩色胶印机
US20120224373A1 (en) * 2009-11-13 2012-09-06 Koninklijke Philips Electronics, N.V. Modular lighting unit comprising a magnetic fastening arrangement
TW201137489A (en) * 2010-04-28 2011-11-01 Hon Hai Prec Ind Co Ltd Light blocking member, method for making same and lens module having same
CN201673275U (zh) * 2010-04-29 2010-12-15 上海电信工程有限公司 集成式光缆光纤切割器
DE102010020659A1 (de) * 2010-05-03 2011-11-03 Meinbaukasten Gmbh Murmelbahnsystem
DE102011051949B4 (de) * 2011-07-19 2017-05-18 Leica Microsystems Cms Gmbh Wechselvorrichtung für ein Mikroskop
CN203083951U (zh) * 2013-01-31 2013-07-24 温岭市现代晶体有限公司 用于滤光片x射线定向仪的定向平板
CN204065533U (zh) * 2014-07-03 2014-12-31 利达光电股份有限公司 一种v型双面定位多用工装
CN104142536B (zh) * 2014-08-26 2017-05-17 福州百讯光电有限公司 一种自由空间光学组件的双基片固定装置及其方法
CN104181652A (zh) * 2014-09-04 2014-12-03 苏州承乐电子科技有限公司 一种光纤准直器
CN105798804B (zh) * 2014-12-31 2018-01-16 马鞍山市江南光学有限公司 一种小棱镜上盘控制侧垂的工装
CN106291853B (zh) * 2015-05-24 2019-03-26 上海微电子装备(集团)股份有限公司 一种悬挂定位机构
CN105116498A (zh) * 2015-09-16 2015-12-02 成都美美通信技术有限公司 一种光纤对接找正机构
JP2017090741A (ja) * 2015-11-12 2017-05-25 日本電気硝子株式会社 光学部品ユニット
CN106324852B (zh) * 2016-10-27 2019-03-12 中国电子科技集团公司第十三研究所 一种vbg外腔半导体激光器快轴准直透镜组装装置及方法
US11513314B2 (en) * 2016-11-29 2022-11-29 Ramot At Tel-Aviv University Ltd. 3D modular optics for 3D optical alignments
CN207318790U (zh) * 2017-08-16 2018-05-04 衡水皓辰光电科技有限公司 双陶瓷插芯光纤连接装置
CN207636824U (zh) * 2017-12-25 2018-07-20 卡门哈斯激光科技(苏州)有限公司 同轴光路架
CN108274339B (zh) * 2018-03-30 2023-05-09 马鞍山市江南光学有限公司 一种光学棱镜侧垂控制的定位、校验工装和加工方法
CN109343191A (zh) * 2018-12-03 2019-02-15 深圳市普坤实业有限公司 同轴移动结构和装配方法
CN211857024U (zh) * 2019-07-24 2020-11-03 嘉兴旭锐电子科技有限公司 定位块、基于定位块的光学定位系统及功能模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068310A1 (en) * 2013-09-09 2015-03-12 Banner Engineering Corporation Sensor with oblique-angle display
CN103885140A (zh) * 2014-04-15 2014-06-25 昆山柯斯美光电有限公司 芯片阵列与并行光纤被动耦合的光组件及其组装方法
CN205300528U (zh) * 2015-12-26 2016-06-08 东莞市华兴隆模具钢材有限公司 表面平面精准检测装置
CN207271294U (zh) * 2017-05-22 2018-04-27 杭州医学院 一种多功能离心管架
CN208125059U (zh) * 2018-05-11 2018-11-20 山西迪迈沃科光电工业有限公司 一种用于航空发动机的叶片位移检测器装置
CN110286458A (zh) * 2019-07-24 2019-09-27 嘉兴旭锐电子科技有限公司 一种利用方块结构实现可重构的光学定位系统和方法
CN110618512A (zh) * 2019-07-24 2019-12-27 嘉兴旭锐电子科技有限公司 定位块、基于定位块的光学定位系统和方法及功能模组

Also Published As

Publication number Publication date
EP3988982B1 (en) 2023-08-16
US20220269029A1 (en) 2022-08-25
EP3988982C0 (en) 2023-08-16
EP3988982A4 (en) 2022-08-31
EP3988982A1 (en) 2022-04-27
EP4270074A2 (en) 2023-11-01
CN110286458A (zh) 2019-09-27
EP4270074A3 (en) 2024-01-17
KR20220019822A (ko) 2022-02-17
CN110618512B (zh) 2023-09-26
CN110618512A (zh) 2019-12-27
JP2022541812A (ja) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2021013094A1 (zh) 定位块、基于定位块的光学定位系统和方法及功能模组
US8390154B2 (en) Plate spring and voice coil motor
US8605372B2 (en) Voice coil motor and lens module including same
CN103097957A (zh) 移动体装置、物体处理装置、曝光装置、平板显示器的制造方法、及元件制造方法
JP2013222155A5 (zh)
CN1758081A (zh) 高耦合效率光电模块
US11137452B2 (en) Single chip high-sensitivity magnetoresistive linear sensor
WO2015165336A1 (zh) 一种平面电动机驱动的粗微动一体掩模台
CN211857024U (zh) 定位块、基于定位块的光学定位系统及功能模组
CN204989539U (zh) 阵列准直器
CN114019769B (zh) 激光调控纳米压印对准装置及调控方法
US20040052494A1 (en) Optical fiber array and optical fiber collimator array and optical module using the same
JP2862633B2 (ja) レンズ格子
CN115083293B (zh) 一种显示屏拼接固定结构、显示屏和显示屏安装方法
KR101078011B1 (ko) 이송 유니트 및 이를 구비하는 이송 장치
JPH03221336A (ja) 可動ステージ装置
CN211348807U (zh) 一种前端定位的定位块准直器及多功能光学模组
CN219068506U (zh) Pcb板表面加工载台
TWI817865B (zh) Led顯示裝置及其led顯示單元
CN201754193U (zh) 一种圆柱形直角棱镜
JP2595016B2 (ja) 対物レンズアクチユエータ
CN114236734B (zh) 一种组合光学元件的角度对准装置
WO2022099797A1 (zh) 位移装置
KR20180029145A (ko) 기판 처리 장치
JP2860741B2 (ja) 光学系の構成方法および光学系構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001453

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022504009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020843875

Country of ref document: EP

Effective date: 20220121