WO2021012297A1 - 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法 - Google Patents

一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法 Download PDF

Info

Publication number
WO2021012297A1
WO2021012297A1 PCT/CN2019/098277 CN2019098277W WO2021012297A1 WO 2021012297 A1 WO2021012297 A1 WO 2021012297A1 CN 2019098277 W CN2019098277 W CN 2019098277W WO 2021012297 A1 WO2021012297 A1 WO 2021012297A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
barbed
sensing film
pressure sensing
hollow
Prior art date
Application number
PCT/CN2019/098277
Other languages
English (en)
French (fr)
Inventor
武利民
石澜
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US16/619,463 priority Critical patent/US11193845B2/en
Publication of WO2021012297A1 publication Critical patent/WO2021012297A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • B29C41/042Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry
    • B29C41/045Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry the axis being placed vertically, e.g. spin casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/52Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention belongs to an ultra-sensitive pressure sensing film based on barbed hollow carbon microspheres and a preparation method thereof, and belongs to the technical field of preparation of flexible electronic materials.
  • Pressure sensing material refers to the change in the internal microstructure of the material after a certain pressure on the surface of the material, which leads to the change of the overall electrical properties of the material.
  • the pressure sensing function can be realized by detecting the electrical signal change of the material.
  • Sensing materials are at the core of this process.
  • Pressure sensors are widely used in various industries and fields such as aerospace, aviation, navigation, petrochemical, power machinery, medical treatment, meteorology, geology and so on. In the industrial field, pressure sensors can be used to detect the real-time stress conditions of various instruments and equipment. For example, it is used to test the pressure of patient's breathing, oil and gas transportation pipelines, the deformation of the rails in use, whether foreign objects are encountered in the operation of the equipment, the dynamic distortion of the engine air intake and so on.
  • resistive and capacitive flexible pressure sensors are the most commonly used for static force.
  • the purpose of the present invention is to provide an ultra-sensitive pressure sensing film based on barbed hollow carbon microspheres and a preparation method thereof. While having ultra-high sensitivity, it also has the ability to respond with signals parallel to the pressure direction and not to feedback signals perpendicular to the pressure direction, laying the foundation for its application in ultra-high-density array sensing, and its theoretical detection density point It can reach more than 3.2 million per square centimeter.
  • the system's sensing material has good environmental stability, it can work normally under water, and its stress detection ability is not affected by temperature changes. It also takes into account excellent fatigue resistance and has certain advantages in mass production. , Compatible with the mature spin coating and other thin film preparation processes, so it has good theoretical research and practical application value.
  • the present invention proposes an ultra-sensitive pressure sensing film based on barbed hollow carbon microspheres.
  • the pressure sensing film includes conductive barbed hollow carbon microspheres and a siloxane material with dielectric properties.
  • the barbed hollow carbon microspheres The mass percentage of carbon microspheres and siloxane materials is 0.5%-20%.
  • the film thickness of the pressure sensing film is 0.1 ⁇ m to 200 ⁇ m.
  • the mass percentage of nitrogen and carbon is 0.2% to 15%; the mass percentage of oxygen and carbon is 2% to 35%.
  • the present invention proposes a method for preparing a super-sensitive pressure sensing film based on barbed hollow carbon microspheres, and the specific steps are as follows:
  • step (2) Put the prickly hollow organic nanospheres obtained in step (1) in an inert gas (Ar or N 2 ), heat to 330-360°C, hold for 50-70 minutes, and then heat up to 600-950°C, After holding for 1 to 2 hours, cool down with the furnace to obtain barbed hollow carbon microspheres;
  • an inert gas Ar or N 2
  • step (2) Take the barbed hollow carbon microspheres and siloxane materials obtained in step (2), and the mass percentage of the barbed hollow carbon microspheres and siloxane materials is 0.5%-20%. Under ice bath conditions, high speed Stir for 4.5-5.5 hours to obtain slurry for preparing pressure sensing film;
  • the slurry of the pressure sensing film obtained in step (4) is formed on the substrate obtained in step (3) through a film forming process, and cured in an oven at 60-120°C for 15 to 180 minutes; Soak in a solvent that can dissolve the sacrificial layer for 2 hours to obtain a pressure sensing film with ultra-high sensitivity.
  • the precursor of step (1) contains at least one of aniline, pyrrole, dopamine, melamine or amino acid.
  • the hollow template nanospheres in step (1) comprise at least one of nano-polystyrene microspheres, nano-silica microspheres or nano-polymethyl methacrylate microspheres.
  • the particle size of the barbed hollow carbon microspheres obtained in step (2) is 100 nm to 1000 nm.
  • the film forming process described in step (5) includes any one of spin coating method, casting method, spray coating method, blade coating method, drop coating method or reverse mold method.
  • the sacrificial layer material in step (3) contains at least one of polyvinyl alcohol, polymethyl methacrylate or dextran.
  • the siloxane material in step (4) is polydimethylsiloxane.
  • the sensing material has been reasonably optimized design, and its specific mass concentration makes it work under the condition of FN tunneling effect.
  • the stress deformation reaction can be super-exponentially The signal changes to achieve ultra-high sensitivity sensing.
  • the filling unit is thin-walled hollow carbon spheres, after being compounded with the polydimethylsiloxane matrix, the hollow structure can effectively absorb changes in the internal structure distribution caused by changes in external temperature, so that it can be A pressure sensing material that does not respond to temperature.
  • the barbed hollow carbon nanosphere/polydimethylsiloxane composite film pressure sensing material prepared by the present invention has ultra-high sensitivity, high array density, transparency, low delay, and no temperature interference, and can be used for complex In the environment (such as submerged detection, high and low temperature conversion environment, complex surface, etc.), and the preparation method is simple, the process is mature, and it does not pollute the environment.
  • Figure 1 is a scanning transmission electron microscope and transmission electron microscope photos of 600nm conductive barbed microspheres.
  • Figure 2 is a physical image of the pressure sensing film.
  • Figure 3 shows the light transmittance spectrum of the film.
  • Figure 4 shows the resistance-pressure curve and sensitivity-pressure curve of the sensing film.
  • Figure 5 shows the relaxation response curve of the sensing film.
  • Figure 6 shows the fatigue response test curve of the sensing film.
  • Figure 7 shows the resistance values of the sensing film at different pressures from 25°C to 160°C.
  • Figure 8 is an implementation diagram of the sensing film used in PBS submerged test.
  • Figure 9 shows the resistance-pressure curve and sensitivity-pressure curve of the sensing film tested in PBS.
  • Figure 10 shows the sensor test demonstration of the sensor film applied to the 64 ⁇ 64 array electrode. Among them: (a) is the array electrode test chart, (b) is the real-time result display chart.
  • Figure 11 shows the X-ray photoelectric spectroscopy analysis results of Example 1.
  • Figure 12 shows the resistance of the sensing film of Example 2 under different pressure conditions, and calculates its specific sensitivity index.
  • Figure 13 shows the X-ray photoelectric spectroscopy analysis results of Example 2.
  • the present invention will be further described below in conjunction with specific embodiments and drawings, but the present invention is not limited to the following embodiments.
  • the methods are conventional methods unless otherwise specified.
  • the raw materials can be obtained from open commercial channels unless otherwise specified.
  • Example 1 First, 0.5 g of polystyrene microspheres with a particle size of 600 nm were dispersed in 10 mL of deionized water at room temperature for 10 minutes ultrasonically, and then 0.5 g of aniline precursor was added, followed by magnetic stirring for 3 hours at 100 rpm. Then add 100 mL of 0.5M Fe(NO 3 ) 3 aqueous solution to the solution, and magnetically stir at room temperature for 24 hours at 300 rpm. The obtained solution was washed three times with deionized water and ethanol solution in a centrifuge at 5000 rpm, placed in a freeze dryer, and dried for 48 hours.
  • Figure 1 is its scanning transmission electron microscope and transmission electron microscope microscopic pictures.
  • Figure 3 shows the film's ability to transmit light at different wavelengths, and its transparency is close to that of a cover glass.
  • Figure 4 shows the resistance of the sensing film under different pressure conditions, and calculates its specific sensitivity index.
  • Figure 5 shows the response speed of the sensing film to pressure, with a pressure response time of 60ms and a pressure release response time of 30ms.
  • Figure 6 shows the pressure response signal of the sensor film during 5000 times of load-release.
  • Figure 7 shows the resistance signal of the sensing film under different pressure conditions at 25°C to 160°C.
  • Figure 8 shows the response test of the sensor film to pressure after simulating the human body fluid environment for 20 cm in PBS solution.
  • Figure 9 shows the ability of the sensing film to detect pressure signals in the PBS solution.
  • Figure 10 shows the mass resolution capability of the sensing film for two slight objects on a detection electrode array with a size of 3.2 ⁇ 3.2cm with 64 ⁇ 64
  • Figure 11 shows the X-ray photoelectric spectroscopy analysis results of Example 1.
  • the stirred slurry was spin-coated on a petri dish coated with a PVA sacrificial layer by a spin coating method, and the spin coating procedure was: 600 rpm, 9 s, 5000 rpm, 35 s.
  • Figure 12 shows the resistance of the sensing film of Example 2 under different pressure conditions, and calculates its specific sensitivity index.
  • Figure 13 shows the X-ray photoelectric spectroscopy analysis results of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种基于带刺空心碳微球的超灵敏压力传感薄膜及其制备方法。在该带刺碳空心微球复合聚二甲基硅氧烷传感薄膜中,带刺碳空心微球均匀分散于基体中,带刺结构有助于微球间发生F-N隧穿效应,提升材料灵敏度。通过前驱体转化法制备的碳材料,含有适量氮元素掺杂,有效的提高了微球的电子传输能力。空心结构既可以调控填料的密度,又有助于提高材料的温度稳定性。在制备过程中,通过惰性气体保护下的煅烧工艺将带刺空心有机纳米微球转化为带刺空心碳微球,并调控其含氮量与石墨化程度。该薄膜材料具备超高灵敏度、高阵列密度,且透明、低延迟、无温度干扰,该制备方法过程简单、工艺成熟、对环境无污染。

Description

一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法 技术领域
本发明属于涉及一种基于带刺空心碳微球超灵敏压力传感薄膜及其制备方法,属于柔性电子材料的制备技术领域。
背景技术
压力传感材料是指在材料表面受到一定的压力之后,因其材料内部微结构的改变,导致了材料整体电学性质的变化,通过检测材料的电学信号变化即可实现压力传感的功能,压力传感材料是实现这一过程的核心。压力传感器广泛应用于航天、航空、航海、石油化工、动力机械、医疗、气象、地质等各个行业和领域。在工业领域,压力传感器可用于检测各类仪器设备的实时应力状况。例如,用于测试患者呼吸、油气输运管道的承压,铁轨使用中的变形,设备运行中是否碰到异物,发动机进气口的动态畸变等等。
传统的压力传感器通常使用微机电系统传感器,其稳定性好,测试精度也相对较高,但在大面积应用与非平面应用上有较大限制。基于有机无机复合的柔性压力传感材料可以很好的应用于这两个领域。
柔性压力传感器有多种实现途径,包括电阻式,电容式,压电式,摩擦发电式,磁性传感,光纤传感等。其中对于静态力的作用最常用的是电阻式和电容式的柔性压力传感器。
发明内容
本发明的目的在于提供了一种基于带刺空心碳微球超灵敏压力传感薄膜及其制备方法。在具备超高灵敏度的同时,还具备平行于受压方向有信号响应,垂直于受压方向不反馈信号的能力,为其在超高密度阵列传感的应用奠定了基础,其理论检测密度点每平方厘米可达320万个以上。并且该体系传感材料具备很好的环境稳定性,它可以在水下正常工作,同时应力检测能力不受温度变化的影响,也兼顾优异的抗疲劳性能,在大规模生产方面也具备一定优势,兼容目前已经成熟的旋涂等薄膜制备工艺,从而具有很好的理论研究和实际应用价值。
本发明提出的一种基于带刺空心碳微球超灵敏度压力传感薄膜,所述压力传感薄膜包括可导电的带刺空心碳微球与具有介电性能的硅氧烷类材料,所述带刺空心碳微球与硅氧烷类材料的质量百分比为0.5%~20%。
本发明中,所述压力传感薄膜的膜厚为0.1μm~200μm。
本发明中,带刺空心碳微球中,氮元素与碳元素的质量百分比为0.2%~15%;氧元素与碳元素的质量百分比为2%~35%。
本发明提出的一种基于带刺空心碳微球超灵敏度压力传感薄膜的制备方法,具体步骤如下:
(1)、10~30℃下,量取10mL去离子水,加入纳米微球模板0.1~1g,和前驱体0.1~0.5g,超声分散8-12分钟后,密封搅拌溶胀1-8小时,然后加入与前驱体对应聚合引发剂,搅拌18-28小时后,离心,冷冻干燥,得到带刺空心有机纳米微球;
(2)、将步骤(1)得到的带刺空心有机纳米微球置于惰性气体(Ar或N 2)中,加热至330-360℃,保温50-70分钟,再升温至600~950℃,保温1~2小时后随炉冷却,即可获得带刺空心碳微球;
(3)、取制备薄膜的载体基板,在其上涂布一层牺牲层,得到基材,备用;
(4)、取步骤(2)所得带刺空心碳微球与硅氧烷类材料,带刺空心碳微球与硅氧烷类材料的质量百分比为0.5%~20%,在冰浴条件下,高速搅拌4.5-5.5小时,即可获得用于制备压力传感薄膜的浆料;
(5)、将步骤(4)所得压力传感薄膜的浆料通过成膜工艺成型于步骤(3)所得基材上,于60-120℃烘箱中,固化15~180分钟;取出后置于可溶解牺牲层的溶剂中浸泡2小时,即可获得一种具备超高灵敏度的压力传感薄膜。
本发明中,步骤(1)所述前驱体包含苯胺、吡咯、多巴胺、三聚氰胺或氨基酸中的至少一种。
本发明中,步骤(1)中空心模板纳米微球包含纳米聚苯乙烯微球、纳米二氧化硅微球或纳米聚甲基丙烯酸甲酯微球中的至少一种。
本发明中,步骤(2)所得带刺空心碳微球的粒径为100nm~1000nm。
本发明中,步骤(5)所述的成膜工艺包含旋涂法、流延法、喷涂法、刮涂法、滴涂法或倒模法中的任一种。
本发明中,步骤(3)中所述牺牲层材料包含聚乙烯醇、聚甲基丙烯酸甲酯或葡聚糖中的至少一种。
本发明中,步骤(4)中硅氧烷类材料为聚二甲基硅氧烷。
本发明中制备的压力传感材料的有益效果在于:
(1)由于碳微球成分的合理调控,其载流子输运能力十分优良,作为应力传感体系中的固定位点,能够有效的提高传感的可靠性。
(2)该传感材料经过合理的优化设计,其特定的质量浓度使其工作在以F-N隧穿效应为主的条件下,材料受到极其微小的应力即可呈超指数的将应力变形反应为信号变化,实现了超高的灵敏度传感。
(3)由于其填充单元为薄壁空心碳球,在与聚二甲基硅氧烷基体复合后,空心结构可以有效吸收因外界温度变化带来的内部结构分布变化,从而使其表现为对温度无响应的一种压力传感材料。
(4)由于其超薄的薄膜设计结构,大大缩减了其受压回弹的行程,从而提高了其信号响应速率,并增加了透明性。
(5)由于F-N隧穿效应与纳米粒子统计行为的统一机制,实现了其平行于受压方向有信号响应,垂直于受压方向不反馈信号的能力,为其在超高密度阵列传感的应用奠定了基础。
(6)由于其合成工艺简单,原材料成本较低,复合薄膜成型工艺成熟,为其在大面积应用方面提供了便利。
(7)本发明制得的带刺空心碳纳米微球/聚二甲基硅氧烷复合薄膜压力传感材料具备超高灵敏度、高阵列密度、透明、低延迟、无温度干扰,可用于复杂的环境中(如液下检测、高低温变换环境、复杂的表面等),且制备方法简单、工艺成熟、对环境无污染。
附图说明
图1为600nm可导电带刺微球的扫描透射电镜和透射电镜照片。
图2为该压力传感薄膜的实物图。
图3为该薄膜的光线透过率谱图。
图4为该传感薄膜的电阻-压力曲线和灵敏度-压力曲线。
图5为该传感薄膜弛豫响应曲线。
图6为该传感薄膜疲劳响应测试曲线。
图7为该传感薄膜在25℃到160℃下不同压力对应的电阻值。
图8为该传感薄膜用于PBS液下测试的实施图。
图9为该传感薄膜在PBS中测试的电阻-压力曲线和灵敏度-压力曲线。
图10为该传感薄膜应用于64×64阵列电极上的传感测试演示。其中:(a)为阵列电极测试图,(b)为实时结果显示图。
图11展示了实施例1的X射线光电能谱分析结果。
图12展示了实施例2传感薄膜在不同压力条件下的电阻强弱,并计算了其具体的灵 敏度指标。
图13展示了实施例2的X射线光电能谱分析结果。
具体实施方式
下面结合具体实施例与附图对本发明做进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1:首先将粒径为600nm的聚苯乙烯微球0.5g于10mL去离子水中,在室温下超声分散10min,然后加入0.5g苯胺前驱体,磁力搅拌3小时,转速100rpm。再向该溶液中加入100mL 0.5M Fe(NO 3) 3水溶液,室温下磁力搅拌24小时,转速300rpm。将获得的溶液用去离子水和乙醇溶液在5000rpm的离心机中分别洗涤三次,置于冷冻干燥机,干燥48小时。
其次将干燥获得的粉末放入氮气气氛保护的管式炉中,升温至350℃保温1小时,再升温至900℃保温1小时,然后随炉冷却,即可获得可导电的带刺空心微球,图1是其扫描透射电镜和透射电镜的微观照片。
将获得的可导电带刺空心微球取0.4g分散于A:B组分10:1的10mL聚二甲基硅氧烷(道康宁184)中,在冰浴条件下磁力搅拌5小时,转速500rpm。通过旋涂方法将搅拌后的浆料旋涂在表面涂有PVA牺牲层的培养皿上,旋涂程序为:600rpm,9s,5000rpm,35s。给旋涂好的培养皿中倒入30mL去离子水,室温下静置浸泡12小时,即可得到具有超高灵敏度的透明传感薄膜。如图2所示。
图3展示了该薄膜对不同波段光线的透过能力,其透明性接近盖玻片。
图4展示了该传感薄膜在不同压力条件下的电阻强弱,并计算了其具体的灵敏度指标。
图5展示了该传感薄膜对于压力的响应速度,其受压响应时间为60ms,释放压力响应时间为30ms。
图6展示了该传感薄膜在5000次加载-释放过程中的压力响应信号。
图7展示了该传感薄膜在25℃到160℃时,在不同压力状态下所传出的电阻信号。
图8展示了该传感薄膜在深入模拟人体体液环境PBS溶液中20cm后,对压力的响应测试。
图9展示了上述PBS溶液中该传感薄膜对压力信号的检测能力。
图10展示了该传感薄膜在具有64×64个的3.2×3.2cm大小检测电极阵列上对于两个轻微物体的质量分辨能力
图11展示了实施例1的X射线光电能谱分析结果。
实施例2:首先将粒径为800nm的聚苯乙烯微球0.8g于10mL PH=8.5的Trish缓冲液中,在室温下超声分散10min,然后加入0.3g多巴胺前驱体,后加入0.1g过硫酸铵,磁力搅拌12小时,转速200rpm。将获得的溶液用去离子水和乙醇溶液在12000rpm的离心机中分别洗涤三次,置于冷冻干燥机,干燥48小时。
其次将干燥获得的粉末放入氮气气氛保护的管式炉中,升温至350℃保温1小时,再升温至800℃保温1小时,然后随炉冷却,即可获得可导电的空心微球,
将获得的可导电带刺空心微球取0.35g分散于A:B组分10:1的10mL聚二甲基硅氧烷(道康宁184)中,在冰浴条件下磁力搅拌5小时,转速500rpm。通过旋涂方法将搅拌后的浆料旋涂在表面涂有PVA牺牲层的培养皿上,旋涂程序为:600rpm,9s,5000rpm,35s。给旋涂好的培养皿中倒入30mL去离子水,室温下静置浸泡12小时,即可得到具有高灵敏度的透明传感薄膜。
图12展示了实施例2传感薄膜在不同压力条件下的电阻强弱,并计算了其具体的灵敏度指标。
图13展示了实施例2的X射线光电能谱分析结果。

Claims (10)

  1. 一种基于带刺空心碳微球超灵敏度压力传感薄膜,其特征在于,所述压力传感薄膜包括可导电的带刺空心碳微球与具有介电性能的硅氧烷类材料,所述带刺空心碳微球与硅氧烷类材料的质量百分比为0.5%~20%。
  2. 根据权利要求1所述的压力传感薄膜,其特征在于,所述压力传感薄膜的膜厚为0.1μm~200μm。
  3. 根据权利要求1所述的压力传感薄膜,其特征在于,带刺空心碳微球中,氮元素与碳元素的质量百分比为0.2%~15%;氧元素与碳元素的质量百分比为2%~35%。
  4. 一种如权利要求1所述的基于带刺空心碳微球超灵敏度压力传感薄膜的制备方法,其特征在于,具体步骤如下:
    (1)、10~30℃下,量取10mL去离子水,加入空心模板纳米微球0.1~1g,和前驱体0.1~0.5g,超声分散8-12分钟后,密封搅拌溶胀1-8小时,然后加入与前驱体对应聚合引发剂,搅拌18-28小时后,离心,冷冻干燥,得到带刺空心有机纳米微球;
    (2)、将步骤(1)得到的带刺空心有机纳米微球置于惰性气体(Ar或N 2)中,加热至330-360℃,保温50-70分钟,再升温至600~950℃,保温1~2小时后随炉冷却,即可获得带刺空心碳微球;
    (3)、取制备薄膜的载体基板,在其上涂布一层牺牲层,得到基材,备用;
    (4)、取步骤(2)所得带刺空心碳微球与硅氧烷类材料,带刺空心碳微球与硅氧烷类材料的质量百分比为0.5%~20%,在冰浴条件下,高速搅拌4.5-5.5小时,即可获得用于制备压力传感薄膜的浆料;
    (5)、将步骤(4)所得压力传感薄膜的浆料通过成膜工艺成型于步骤(3)所得基材上,于60-120℃烘箱中,固化15~180分钟;取出后置于可溶解牺牲层的溶剂中浸泡2小时,即可获得一种具备超高灵敏度的压力传感薄膜。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)所述前驱体包含苯胺、吡咯、多巴胺、三聚氰胺或氨基酸中的至少一种。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(1)中空心模板纳米微球包含纳米聚苯乙烯微球、纳米二氧化硅微球或纳米聚甲基丙烯酸甲酯微球中的至少一种。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所得带刺空心碳微球的粒径为100nm~1000nm。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(5)所述的成膜工艺包含旋涂法、流延法、喷涂法、刮涂法、滴涂法或倒模法中的任一种。
  9. 根据权利要求4所述的制备方法,其特征在于,步骤(3)中所述牺牲层材料包含聚乙烯醇、聚甲基丙烯酸甲酯或葡聚糖中的至少一种。
  10. 根据权利要求4所述的制备方法,其特征在于,步骤(4)中硅氧烷类材料为聚二甲基硅氧烷。
PCT/CN2019/098277 2019-07-25 2019-07-30 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法 WO2021012297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/619,463 US11193845B2 (en) 2019-07-25 2019-07-30 Ultrahigh sensitive pressure-sensing film based on spiky hollow carbon spheres and the fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910674945.4 2019-07-25
CN201910674945.4A CN110511569B (zh) 2019-07-25 2019-07-25 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021012297A1 true WO2021012297A1 (zh) 2021-01-28

Family

ID=68622852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098277 WO2021012297A1 (zh) 2019-07-25 2019-07-30 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法

Country Status (3)

Country Link
US (1) US11193845B2 (zh)
CN (1) CN110511569B (zh)
WO (1) WO2021012297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115350589A (zh) * 2022-07-18 2022-11-18 上海问鼎环保科技有限公司 一种聚合纳滤膜及其制备与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531182B (zh) * 2020-04-02 2023-04-07 西安工程大学 一种3d碳纳米球@金纳米纤维微纳结构的制备方法
CN113865477B (zh) * 2021-09-28 2022-10-14 电子科技大学 一种含碳纳米管/碳纳米杯复合结构的柔性应变薄膜及其制备方法和应用
CN113831562B (zh) * 2021-09-28 2022-10-04 电子科技大学 一种含有碳纳米杯基的柔性传感器薄膜及其制备方法和应用
CN114754906B (zh) * 2022-03-18 2023-09-22 复旦大学 一种受生物启发的超灵敏柔性压力传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110388A (ko) * 2010-04-01 2011-10-07 한국표준과학연구원 압력감응소자의 제조방법, 그 제조방법으로 제조된 압력감응소자 및 그 압력감응소자에 의한 압력 측정방법
CN102374910A (zh) * 2010-08-23 2012-03-14 清华大学 碳纳米管/聚合物复合膜阵列式柔性力敏传感器及制法
CN103536937A (zh) * 2013-08-20 2014-01-29 中山大学 一种有机-无机复合脂质超声显像微胶囊及其制备方法
CN108225625A (zh) * 2017-12-11 2018-06-29 中国科学院深圳先进技术研究院 柔性压力传感器及其制备方法
CN108760101A (zh) * 2018-04-26 2018-11-06 中国科学院兰州化学物理研究所 一种三维石墨烯/碳纳米管弹性体及其在柔性压阻式传感器中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245370B (zh) 2013-04-10 2015-11-18 南京大学 基于脉冲编码和相干探测的botda系统
CN102759371B (zh) 2012-07-19 2014-10-15 南京大学 融合cotdr的长距离相干检测布里渊光时域分析仪
EP3140620A1 (en) 2014-05-05 2017-03-15 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
CN106949850B (zh) 2017-03-29 2019-05-24 哈尔滨工业大学 一种高灵敏度高精度的光纤形状传感测量方法及系统
CN109785995B (zh) * 2018-12-07 2021-07-13 深圳大学 一种用于制备柔性压阻式传感器的多孔导电浆料及其制备方法和应用
CN109796019B (zh) * 2019-02-21 2020-12-15 华中科技大学 一种空心二氧化硅纳米球及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110388A (ko) * 2010-04-01 2011-10-07 한국표준과학연구원 압력감응소자의 제조방법, 그 제조방법으로 제조된 압력감응소자 및 그 압력감응소자에 의한 압력 측정방법
CN102374910A (zh) * 2010-08-23 2012-03-14 清华大学 碳纳米管/聚合物复合膜阵列式柔性力敏传感器及制法
CN103536937A (zh) * 2013-08-20 2014-01-29 中山大学 一种有机-无机复合脂质超声显像微胶囊及其制备方法
CN108225625A (zh) * 2017-12-11 2018-06-29 中国科学院深圳先进技术研究院 柔性压力传感器及其制备方法
CN108760101A (zh) * 2018-04-26 2018-11-06 中国科学院兰州化学物理研究所 一种三维石墨烯/碳纳米管弹性体及其在柔性压阻式传感器中的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115350589A (zh) * 2022-07-18 2022-11-18 上海问鼎环保科技有限公司 一种聚合纳滤膜及其制备与应用

Also Published As

Publication number Publication date
CN110511569A (zh) 2019-11-29
US20210172817A1 (en) 2021-06-10
CN110511569B (zh) 2021-06-04
US11193845B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2021012297A1 (zh) 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法
Cao et al. Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range
CN109115266B (zh) 一种可穿戴多功能柔性传感器及其制备方法
Wu et al. Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range
He et al. A high-resolution flexible sensor array based on PZT nanofibers
Cao et al. Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics
Liang et al. Formation of superhydrophobic cerium oxide surfaces on aluminum substrate and its corrosion resistance properties
Yang et al. Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel via freeze drying
CN103837517B (zh) 金属薄膜/氧化锌纳米棒阵列荧光增强材料的制备方法
Hidayat et al. Quartz crystal microbalance coated by PAN nanofibers and PEDOT: PSS for humidity sensor
Li et al. Fast-response MoS 2-based humidity sensor braced by SiO 2 microsphere layers
CN112816106B (zh) 一种铽镝铁柔性磁弹性薄膜生物传感器及其制备方法
CN110726757B (zh) 一种基于埃洛石纳米管的湿度传感器及其制备方法
CN107057562B (zh) 一种pdms超疏水复合涂料及涂层的制备方法
Liu et al. High-sensitivity crack-based flexible strain sensor with dual hydrogen bond-assisted structure for monitoring tiny human motions and writing behavior
Jiang et al. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home
Yang et al. Multifunctional conductive sponge with excellent superhydrophobicity, piezoresistivity, electro/light to heat conversion, and oil/water separation performance
Yang et al. Electrospun ionic nanofiber membrane-based fast and highly sensitive capacitive pressure sensor
Khan et al. MWCNTs based flexible and stretchable strain sensors
CN106643460B (zh) 一种石墨烯基应变传感薄膜及其制备方法和应用
CN108776156A (zh) 一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器
CN111855749A (zh) 多孔TiO2/NaPSS的复合敏感材料的制备方法及其产品
Cui et al. Flexible Piezoelectric Tactile Sensor With Cilia-Inspired Structures Based on Electrospun PVDF/Fe 3 O 4 Nanofibers
CN108654966B (zh) 透明导电复合薄膜及其制备方法
CN101334413A (zh) 一种具有酒精气体敏感效应的碳薄膜/硅异质结材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938944

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19938944

Country of ref document: EP

Kind code of ref document: A1